
                                                       

       
A method for using marginal statistics for image denoising  
 
Ruth Bergman, Yacov Hel-Or, Hila Nachlieli, Gitit Ruckenstein  
HP Laboratories Israel 
HPL-2004-201(R.1) 
August 11, 2006* 
 
  
 
 
image denoising, 
co-occurrence 
matrix, salt and 
pepper noise, 
image statistics, 
universal denoiser  

This invention is concerned with a method for removing noise
(denoising) from gray level images using statistics that model the image
textures. The denoising method presented here uses the framework of the 
general denoising algorithm published in [1]. The algorithm in [1],
known as the Discrete Universal DEnoising algorithm (DUDE),  has been
proved to be an optimal algorithm for data denoising in certain settings.
However, when the input is a noisy gray-level image of a finite size, the 
sufficient conditions for optimality are not satisfied. A major difficulty in 
implementing DUDE for gray-level images, as opposed to binary images, 
lays in the high space complexity required for collecting block statistics.
Furthermore, since these statistics are very sparse they do not estimate the
corresponding probabilities very well. 

We suggest here a method to approximate the image block statistics 
required for DUDE by using a gray level co-occurrence matrix. Such a 
matrix has been used, for example in [2], to model the statistics of
textured images. 
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1 Introduction

This invention is concerned with a method for removing noise (denoising) from gray level
images using statistics that model the image textures. The denoising method presented here
uses the framework of the general denoising algorithm published in [1]. The algorithm in [1],
known as the Discrete Universal DEnoising algorithm (DUDE), has been proved to be an
optimal algorithm for data denoising in certain settings. However, when the input is a noisy
gray-level image of a finite size, the sufficient conditions for optimality are not satisfied. A
major difficulty in implementing DUDE for gray-level images, as opposed to binary images,
lays in the high space complexity required for collecting block statistics. Furthermore, since
these statistics are very sparse they do not estimate the corresponding probabilities very
well.

We suggest here a method to approximate the image block statistics required for DUDE by
using a gray level co-occurrence matrix. Such a matrix has been used, for example in [2], to
model the statistics of textured images.

2 Model

The model in which [1] is applied is illustrated in Figure 1. The model consists of the
following components.

• The signals coming out of the source are represented by random variables Xi that take
their values xi from a discrete alphabet A, i.e., a finite set of symbols. The signals
that come out of the noisy channel are represented by random variables Zi that take
their values zi from the same discrete alphabet. The alphabet in our case consists of
the gray scale values, typically A = {0, 1, . . . , 255}.
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Figure 1: Model

• No assumptions are made on the source distribution. This is why the denoiser is
considered universal.

• On the other hand, the error probability Pr(Z = z |X = x), namely the channel
distribution, is assumed to be known.

• The channel is memoryless, namely

Pr(Zi = zi |X1X2 · · ·Xi = x1x2 · · · xi) = Pr(Zi = zi |Xi = xi) .

The channel can therefore be compactly described by an M ×M transition probability
matrix Π, where Πi,j = Pr(Z = αj |X = αi), in which αi, αj ∈ A = {α1 · · ·αM}. The
channel probability matrix is assumed to be non-singular, hence Π−1 exists.

• A cost function Λ : A×A → < is defined to represent the error measure of estimating
one alphabet symbol by another one.

If the channel output distribution were known, then the channel input distribution, namely
the source distribution, could be computed by inverting the matrix Π. Specifically, let PX

denote the column vector of input probabilities, where the ith component is Pr(X = αi),
and let PZ denote the column vector of output probabilities. If Π−T is the transpose of Π−1,
then

PX = Π−T PZ . (1)

Though the channel output distribution is generally not assumed to be known, it can be
empirically estimated from the data. Therefore, the estimation of x by x̂ is based on the
given channel matrix Π, the statistics gathered from the observed sequence z, and the cost
function Λ().

3 DUDE definitions and notations

The algorithm performs two passes over the data. The required statistics of the observed
sequence z are computed in the first pass, while the denoiser output sequence x̂ is generated
in the second pass.
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First pass: learning data statistics

In this framework the input data is assumed to be a realization of a stationary Markovian
process. Hence, a sliding window is chosen whose set of indexes, corresponding to the sym-
bols in the window, is denoted by K. The window size |K| and the window shape are chosen
a-priori according to space/complexity limitations. The random multi-variable representing
a window symbols is denoted by ZK . The values of ZK are taken from the alphabet A. One
of the indexes in K, say index 0, defines the center of the window, and its corresponding
random variable is denoted by Z0. The set of remaining indexes, i.e., c = K \ 0, are defined
as the window context, and their random variable is defined as Zc. For every possible con-
text Zc = zc of size |K|−1, we count the number of appearances of each alphabet symbol
αi, i = 1, 2, . . . , M , as a central symbol. This number is denoted here by m(zc)[i]. The
corresponding column vector of size M is denoted m(zc).

Second pass: denoising

To estimate a symbol in the original sequence x, we fix a window of size |K| around the
respective symbol z0 in z.

The minimum loss is attained if z0 is replaced by the symbol β which minimizes the expression

M∑

i=1

Λ(αi, β) · Pr(X0 = αi |Z = z) , (2)

where Λ is a cost function.

Suppose Z0 = z0 appears with the context Zc = zc. The probabilities in (2) are approximated
by

Pr(X0 = αi|Z0 = z0,Zc = zc) =

Pr(Z0=z0|X0=αi)·Pr(X0=αi|Zc=zc)

Pr(Z0=z0|Zc=zc)
(3)

Let PZ0 | zc denote the column vector whose ith component is Pr(Z0 = αi |Zc = zc). In a
similar manner, we define PX0 | zc . Due to the memorylessness of the channel,

PX0 | zc = Π−T PZ0 | zc .

Assuming that z0 = αj, Equation (3) can be re-written as

Πi,j [Π−T PZ0 | zc ]i
[PZ0 | zc ]j

. (4)

3



The channel matrix Π is assumed to be known. The statistics collected in the vector m(zc)
are used to estimate the probability vector PZ0,zc . This is equivalent here to estimating
PZ0 | zc , since the minimization is taken over the various values β that replace z0 while the
context c is fixed.

4 Estimation of data prior using marginal statistics

An estimation of the post channel distribution PZ0,zc is required in the second phase of
DUDE. The original version of DUDE uses the statistics m(zc) in order to estimate PZ0,c.
Although collecting the post-channel statistics of a binary image is a feasible task, in the
case of gray-level images this task is problematic; Due to the finite size of the output image,
and the high dimensionality of m(zc) the collected statistics are expected to be very sparse
and thus unreliable.

In this report we suggest to overcome this problem by estimating the post channel distribu-
tion PZ0,zc using the statistics of its 2D marginals. This approach has been used successfully
in the past for texture analysis and synthesis, using the so called co-occurrence statistics
[2, 4].

4.1 Gray level co-occurrence matrix

Let I be an image of size Lx×Ly in which pixel values are taken from a set G of gray levels.
The image I can be written as a function I : {1, . . . , Lx} × {1, . . . , Lx} → G. Let ∆ be the
set ∆ = {−δ, . . . , 0, . . . , δ} for some fixed positive integer δ smaller than min(Lx, Ly). We
define a |G| × |G| × |∆| × |∆| four-dimensional matrix C = C(I) known as the gray-level
co-occurrence (GLC) matrix of I. The element Cα,β,δx,δy , where α, β ∈ G and δx, δy ∈ ∆, is
the number of different coordinates (x, y) for which

I(x, y) = α ,

I(x + δx, y + δy) = β .

The matrix C may be normalized so that
∑

α∈G

∑

β∈G

Cα,β,δx,δy = 1 , ∀δx, δy

defining a 2D probability distribution for every (δx, δy). By taking I to be a large image
and ∆ to be a small set of indices, representing a small fixed-size window, we reduce the
sparsity of the statistics gathered in C. The information contained in a GLC matrix includes
2D marginals of the joint distribution of the image windows whose size is |∆| × |∆|. These
marginals have been shown to capture the essence of the statistical characterizations of a
textured image. GLC matrices have been therefore used in the past to perform texture
analysis and texture synthesis, as in [2, 4].
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Figure 2: Example of a gray level pair stored in a co-occurrence matrix.

4.2 Estimating post-channel probabilities via co-occurrence

Consider the post-channel probabilities [PZ0,zc ]i = Pr(Z0 = αi,Zc = zc) we aim to estimate.
Applying Bayse rule, we write

Pr(Z0 = αi,Zc = zc) = Pr(Zc = zc |Z0 = αi) · Pr(Z0 = αi) (5)

Let {Zr}r∈ c denote the set of random variables corresponding to the values of the context
zc = (z1, . . . , z|K|). Suppose that these random variables are conditionally independent given
Z0, namely

Pr(Zc = zc |Z0 = αi) =
∏
r∈ c

Pr(Zr = zr |Z0 = αi) (6)

We can thus replace Equation (5) by

∏
r∈ c Pr(Zr = zr |Z0 = αi) · Pr(Z0 = αi) =

∏
r∈ c

{
Pr(Zr=zr ,Z0=αi)

Pr(Z0=αi)

}
· Pr(Z0 = αi) .

(7)

The probabilities Pr(Zr = zr , Z0 = αi) are naturally estimated by the statistics contained in
the co-occurrence matrix, given that the relative position set ∆ covers the required window.
The probabilities Pr(Z0 = αi) are estimated simply by gray level statistics collected from
the data.

In general, the independence assumption (6) does not hold for images because of two-
dimensional correlations and the structure of blocks. It turns out, nevertheless, that the
approximation in (7) allows a rather good denoising. In order to improve the probability
estimation, we refine the assumption (6) by incorporating an additional descriptor of the
window joint distribution. Let σ(ZK) denote the standard deviation of the random variables
in ZK , and let σ = σ(zK) be the standard deviation computed for a given window zK :

σ(zK) =
1

|K| ·
√∑

r∈K

(zr − z̄)2 ,
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where z̄ is the average of gray level values in the window. We then replace (6) by the
assumption

Pr(Zc = zc |Z0 = αi , σ(ZK) = σ) =
∏
r∈ c

Pr(Zr = zr |Z0 = αi , σ(ZK) = σ) .

We then get

Pr(ZK = zK) = Pr(Z0 = αi ,Zc = zc , σ(ZK) = σ)

=
∏
r∈ c

{
Pr(Zr = zr , Z0 = αi, σ(ZK) = σ)

Pr(Z0 = αi, σ(ZK) = σ)

}
(8)

·Pr(Z0 = αi, σ(ZK) = σ) .

In order to estimate the probabilities in (8), we change the structure of the co-occurrence
matrix constructed in the statistics collection phase. A fifth dimension is added to the co-
occurrence matrix as representing the standard deviation of the block in which a specific pair
of values is observed. We quantize the values of the standard deviation in order to achieve
a finite set. The matrix element Cα,β,δx,δy ,σ stands for the number of times that the values
(α, β) are located in a relative distance (δx, δy) inside a window of (quantized) standard
deviation σ.

5 Implementation issues

The implementation currently supports salt and pepper noise on gray images. This section
describes some of the implementation details that are necessary for the algorithm.

5.1 Channel definition

For 256 gray levels 0-255, the channel transition matrix Π for a salt and pepper noise is
defined by

Πi,j =





1− p (i = j) ∧ (i, j 6∈ {0, 255}
p/2 i 6= j ∧ (j ∈ {0, 255})
1− p/2 (i = j = 0) ∨ (i = j = 255)
0 otherwise

where p < 1/2 is the probability of switching from any color to either salt or pepper.
The transition matrix we obtain from this channel definition is invertible. This channel is,
therefore, easy to work with in DUDE.

5.2 Cost function definition

Following is a short description of the cost function Λ() we used in our implementation. The
cost of estimating α by β (α, β ∈ {0, . . . , 255}) increases as the absolute difference between
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the two values increases. The increase is defined by a gaussian centered on α with a standard
deviation of 15.

5.3 Co-occurrence matrix implementation

The first step of the algorithm computes the co-occurrence matrix as counts. The window
size used in our experiments was 3 × 3 pixels. Our specific implementation collects joint
co-occurrence counts enhanced with the contrast feature (standard deviation of the neigh-
borhood), as described in Section 4. Typically we used four quantization levels of the contrast
feature, where the actual lines of demarcation between bins was computed adaptively so that
each bin contains the same number of data points.

Based on the co-occurrence counts, we compute the conditional probabilities required by (8).
Due to insufficient data, some entries in the matrix have a value of zero where, based on the
nearby values, the corresponding probability should not be zero. To overcome this problem
we interpolate the “missing counts” in the co-occurrence matrix from the neighboring rel-
evant counts. The probability Pr(Z0 = αi, σ(ZK) = σ) in (8) is estimated by summing up
the relevant entries in the post-interpolation co-occurrence matrix.

Another problem in the computation of (8) arises from multiplying the directional conditional
probabilities together to obtain the overall conditional probability of the context. When one
directional conditional probability is zero for any gray level, it sets the overall conditional
probability to zero for that gray level. Furthermore, when we multiply together many very
small probabilities we quickly exceed the floating point accuracy and again values are set to
zero. Our first experiments did not successfully denoise because of this problem. To avoid
this problem we threshold the (directional) probability values by a small minimal probability
(typically 0.005). We then move the entire computation to a more stable range by dividing
by that same value. (That is, the minimal probability value is 1, and the maximum value is
1/.005.)

6 Results

This implementation successfully cleans up high levels of salt and pepper noise, as the
example in Figures 3 and 4 shows. Note that we do not compute any mathematical measure
to grade the quality of denoising, but we look for visually pleasing output images.

7 Future Work

Describing the pixel neighborhood (context) by the gray values of the neighboring pixels is
one option out of many possible transformations. In future work, we will find the optimal
representation, such that the correlation between the middle pixel to each context variable
is maximal, using the Canonical Correlation Analysis (CCA).
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To assess the validity of our approach, we plan to apply it to other noisy channels, and
particularly to the Gaussian channel, which is assumed in many image denoising schemes.
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Figure 3: An image with 30% salt & pepper noise.
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Figure 4: The denoised image.
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