Q)

invent

The perfmon2 interface specification

Stephane Eranian

Internet Systems and Storage L aboratory

HP Laboratories
HPL-2004-200(R.1)
February 7, 2005*

E-mail: eranian@hpl.hp.com

Performance
Monitoring Unit,
PMU, performance
tools, hardware
counters, IPF, IA-
64 Linux, perfmon
kernel interface

Monitoring program execution is becoming key to achieving world class
performance. All modern processors implement a sophisticated set of
hardware performance counters to collect a lot of micro-architectural
events which are important clues for software optimizations. Y et there is
no standardized interface to access those counters which makes
developing portable performance tools challenging. We have designed a
powerful monitoring interface to access the performance counters present
on all modern processors. The interface is generic and does not
compromise access to processor specific features. It enables a diversity
of tools to be developed or ported. In particular tools can collect ssmple
counts or profiles on a per-thread or systemwide basis. The interface
introduces several innovations such as customizable kernel-level
sampling buffer formats, time and overflow-based event set multiplexing.
An implementation exists for Linux 2.6 kernel for the Itanium Processor
Family (IPF). Several opensource and commercial tools based on
interface are available from HP and others. This document presents
version 0.6 of the full specification of the interface including the Itanium-
specific features.

* Internal Accession Date Only Approved for External Publication
a Copyright 2005 Hewlett-Packard Development Company, L.P.

Contents

1 Document revision history
1.1 Important Warning e e e e

1.2 ReviSion SUMMATY v v v vt e

2 Introduction
2.1 Goalsoftheinterface L e
2.2 Design choices o it e e e e e e e
2.2.1 Logical PMU e e e
2.2.2 Basicoperations on PMU registers
2.2.3 Systemcallinterface e
2.2.4 System-wide support e e e e e e e
2.2.5 Sampling support e e e e
2.2.6 Event sets and multiplexing
2.3 Perfmon Terminology e
2.3.1 Processor, CPU,and core e e
2.3.2 The PMU
2.3.3 The PMU registers i i e e e e e e e
2.3.4 Threads, Processes,andtasks
2.3.5 Perfmoncontext
2.3.6 Perfmonsession e

2.3.7 Reservedfieldsandbits

3 The interface
3.1 The perfmonctl() systemcall
3.1.1 The PFM_CREATE.CONTEXT command,
3.1.2 The PFM.WRITEPMCS command

11
11
12
12
13
13
13
13
14
14
14
15
15
15
16

3.1.3 The PFM_WRITE.LPMDS command 26

3.1.4 The PFM_READ_PMDS command 31
3.1.5 The PFM.STARTcommand it e e ettt 34
3.1.6 The PFM.STOP command ittt it e 35
3.1.7 The PFM_LOAD_CONTEXT command 36
3.1.8 The PFM_UNLOAD_CONTEXT command 41
3.1.9 The PFM_RESTART command it 43
3.1.10 The PFM_CREATE EVTSETS commando v .. 45
3.1.11 The PFM_DELETE_EVTSETS command 47
3.1.12 The PFM_GETINFO_EVTSETS command 49
3.1.13 The PFM_GETINFO_LPMCS command 51
3.1.14 The PFM_GETINFO_PMDS command 53
3.1.15 Destroying a context with close() 55
3.1.16 The PFM_SET_.CONFIG command 58
3.1.17 The PFM_ GET.CONFIG command 60
3.2 PMU register mappings o vt it e e e e e e e e e e e e 62
3.2.1 Logical versus actual PMU registers 62
3.2.2 Extending to virtual PMD registers 62
3.2.3 Accesstomappings e e e e e 63
3.2.4 Mapping to the logical view 63
3.3 Event notifications 64
3.3.1 Themessage qUeUE o v v i i it et e e e e e e e e 64
3.3.2 Themessage structure e 64
3.3.3 Extractingmessages e e e 65
3.3.4 Sizeofthe messagequeue e 66
3.3.5 Messagequeuereset e e e 66
3.3.6 Termination notifications L 66
3.3.7 Asynchronous notifications 68
3.3.8 Waiting on multiple contexts 69
3.3.9 Extensibility of the notification interface 69
3.4 Support for sampling e e e 71
3.4.1 Setting sampling periods e e 72
3.4.2 Randomization of sampling periods 74
3.4.3 Counter Overflow notifications 77

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 2

3.5 Support for kernel level sampling formats 78

3.5.1 Custom sampling format interfaces. 80
3.5.2 Identification of sampling formats 80
3.5.3 Passing arguments to a sampling format 81
3.5.4 Accessing the samplingbuffer 82
3.5.5 Buffer initialization L L 85
3.5.6 Buffercontent 85
3.5.7 Kernel level interface overview oo L. 86
3.5.8 The pfm_register _buffer fmt() function 87
3.5.9 The pfm _unregister _buffer fmt() function. 87
3.5.10 The fmt _validate() function 88
3.5.11 The fmt _getsize() function 88
3.5.12 The fmt _init() function 89
3.5.13 The fmt exit() function 89
3.5.14 The fmt _handler() function 90
3.5.15 The pfm _restart() function 93
3.6 The default sampling format 93
3.6.1 Identification of the default format 94
3.6.2 Format specific parameters 94
3.6.3 Thebufferheader 95
3.6.4 Structureofasample 96
3.6.5 Overflow and restart behaviors 98
3.7 Support for event sets and multiplexing 101
3.7.1 Definitionofaneventset. L 101
3.7.2 Motivations e e e e e e 101
3.7.3 Why a kernel-level interface? 103
3.7.4 Operatingoneventsets e 104
3.7.5 Creatingeventsets e e e 104
3.7.6 Set switching e e 106
3.7.7 Event Setsandsampling 110

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 3

4 Security 112

4.1 Introduction e e 112
4.2 Accessingtheinterface 112
4.3 Protectionoftheuser 114
4.3.1 Identificationof contexts L 114
4.3.2 PMUmachinestate e 114
4.3.3 Thesamplingbuffer e 115

4.4 Protectingthesystem e 115
4.4.1 Visibility of kernel level information, 115
4.4.2 The vector arguments e e 116
4.4.3 The size of the samplingbuffer 116
4.4.4 Throttling PMU interrupts e 116
44,5 Custom samplingformats 117

5 Itanium Processor Family specific interface 118
5.1 TItanium specific register mappings e 118
5.2 Privileged versus user monitors L. e e 119
5.3 Secure monitoring i e e e e e e e e e e e 119
5.4 Contextflags e e e 120
5.4.1 The PEMTAFLINSECURE flag ittt 120

55 Eventsetflags e e 120
5.5.1 The PFM_TASETFLEEXCLINTRflag o it 120
5.5.2 The PFMTASETFLINTR.IONLY flag o it 120

5.6 Support for code and data range restrictions 121
5.6.1 Debug registers mappingst e e e e 121
5.6.2 Interactions with debugging 122
5.6.3 Using PFM_WRITE_.PMCS with the debug registers 123

5.7 Calling perfmonctl() from signal handlers 123
6 Future extensions 125
6.1 Alternative system call interface, 125
6.1.1 Creation the perfmoncontext 125
6.1.2 Accessingthe PMCregisters. i 126
6.1.3 Accessing the PMD registers e 126
6.1.4 Starting and stopping monitoring 126

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 4

6.1.5 Attaching and detachacontext 127

6.1.6 Resuming monitoring e e 127
6.1.7 Operatingoneventsets i 127
6.1.8 Configuring the perfmon interface 127

6.2 Command Extensions 128
6.2.1 The PFM_REGFLNO 64BITEMULflag 128
6.2.2 The PFM_REGFL.READ RESETflag o i it 128
6.2.3 The PFM_SETFL EXCL KERNEL_.ONLY THREADSflag 128

6.3 Sampling support e e e e e e 128
6.3.1 Double-buffering sampling format 128
6.3.2 Support for correlation of samples 129

6.4 Extensions specific to the Itanium Processor Family 130
6.4.1 The PFM_ITALFLPRIV.MONITORSflag o it i i 130

6.5 Support for PMU preemption e e 130
7 References 131

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 5

Chapter 1

Document revision history

1.1 Important Warning

This document does not describe the existing 2.6 Linux! kernel implementation of
the interface for the Itanium Processor Family (Linux/ia64). Instead, this document
provides a base for the principles behind the Linux/ia64 implementation.

1.2 Revision summary

Revision Date Description
02/07/2005 | release version 0.6 (first public release)

1Linux is a U.S. registered trademark of Linus Torvalds

Chapter 2

Introduction

Nowadays monitoring program execution is becoming key to achieving world class performance. Per-
formance monitoring is the action of collecting performance-related information during the execution
of a program. There are two levels of monitoring commonly used today:

* Program-level monitoring collects information such as basic block call counts. The information is
collected through instrumentation of the program. This is achieved at compile time or dynami-
cally by tools like HP Caliper [6], PIN [4], or Paradyn [16] for instance.

¢ Hardware level monitoring collects information at the micro-architectural level such as the num-
ber of caches misses. It requires hardware support in the processor. This is typically implemented
by a Performance Monitoring Unit (PMU) which exports a set of programmable counters. Moni-
tored program do not need to be recompiled nor modified to collect the performance information.

Performance monitoring has been used for a number of years by compilers to optimize code generation.
On many platforms, compilers support a technique called Profile Based Optimization (PBO), where the
program is first instrumented, then it is run, and finally the generated execution profile is fed back to
the compiler to adjust certain optimizations. For instance, the profile can indicate the most commonly
used path inside a function. With this information, it is possible to reorder the basic blocks of the path
such that the path becomes straight, i.e., no more branches. Even though today, PBO is mostly done
with program-level monitoring, it is moving towards using the hardware counters to gain access to
lower-level information. For instance, by knowing where cache misses are, the compiler could insert
prefetch instructions.

Similarly, managed runtime environments (MREs), such as Java, are generating code of the fly and
they can certainly benefit from performance monitoring information to tweak the code they generate.
Both monitoring levels could be used, but hardware level monitoring is more adequate to low level
tuning of the code.

Finally, with the rise of multi-threaded processors, it becomes useful for operating system scheduler to
understand the execution profile of a thread, especially the cache behavior, to adjust the scheduling de-
cision to avoid cache trashing, for instance. Such profile could fairly easily be obtained using hardware
level monitoring.

These few examples show that monitoring is becoming a very common practice that is applied at
various levels of a computer system. In particular, hardware monitoring looks promising because it
does not require modifications to the monitored code. This is an important point because it means

that source code access is not necessary, the monitored code is running at close to the original speed,
very-low level code paths of the kernel can be monitored. Furthermore, hardware monitoring can help
solve difficult problems which otherwise cannot be solved using standard instrumentation techniques
such as cache, TLB related issues.

By definition, the PMU is a very specific piece of hardware which operates at the micro-architectural
level. It can change a lot from one processor implementation to another and sometimes inside the
same processor family. For instance, in the Itanium Processor Family [8] the number of events that
can be measured goes from about 200 for Itanium® to about 500 for Itanium® 2. Events with the same
name are not necessarily encoded the same way. The width of the counters goes from 32-bit to 47 bits
between the two generations of processor. Until recently, PMUs have often been documented poorly.
They were kept secret and were used internally by hardware vendors during processor bring up and
for optimization of key proprietary applications.

Although the PMU can harvest very useful information, it is not always exploited to the fullest of its
capabilities. Besides the documentation problem, this can be attributed to the lack of a standard kernel
interface to access the PMU. It is very common that access to the PMU registers requires running at
the most privileged level of execution, i.e., in the operating system kernel. Hence, it is not possible to
develop only a user level library for the interface, some kernel level support is required.

All modern processors incorporate a PMU. Depending on the processor family the level of public infor-
mation varies. But it is clear, that the functionalities of each PMU model can vary greatly. Many PMU
models go beyond just providing simple counters, many can capture addresses, latencies and branches
for instance. Similarly, monitoring tools have very different needs depending on what they measure.
For instance, some tools collect simple counts while other collect profiles. Some tools operates on a per-
thread basis while others measure on a system-wide basis, i.e., across all threads and possibly across
multiple processors.

All this diversity is good because it means that a lot of interesting information can be collected. How-
ever it can also be overwhelming because it can be hard to develop tools that can be portable across
multiple PMU models and operating systems. There is obviously a challenge at the hardware level but
also at the software level because there is no standard kernel-level interface to access the PMU. This
did not use to be a real problem because PMU were undocumented and operating systems were propri-
etary. Open-source operating systems, such as Linux which runs across all major hardware platforms,
are changing the dynamics and making the lack of a standard monitoring interface a pressing issue
that needs to be resolved now.

To understand the issue clearly, it is important to distinguish between hardware diversity and software-
imposed diversity. Many hardware differences can be managed with some level of indirection or a vir-
tualization layer. Obviously, if a tool is exploiting a unique feature of a PMU then it could be hard to
port it to another PMU. Differences at the kernel interface level may also be difficult to deal with and
could limit the ability to port tools. Existing interfaces do not always offer the same level of function-
alities. For instance, some do not offer per-thread monitoring, others do not support collecting profiles
in system-wide mode. Those artificial differences come on top of the hardware differences and may
become show-stopper because they could impose deep structural changes to tools. Those differences
are totally orthogonal to the PMU diversity and are most commonly explained by software design lim-
itations which could be avoided by using a standardized interface. Such interface would guarantee
that the same set of generic features would be implemented across all platforms. With such interface
in place, tool developer could focus on the core added-value of their tool and not have to waste time
working around artificial software differences.

The Linux operating system as it stands today offers access to the PMU hardware on several platforms
such as TA-32, IA-64, PowerPC, and X86_64. The problem here is not the lack of interface but rather the
multiplicity of interfaces. Just on the leading IA-32 platform, The VTUNE [11] performance analyzer

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 8

uses its own kernel interface which is implemented by an open-source device driver. Then, there is
the OProfile [3] interface used by tools such as Prospect [13]. There is also the perfctr [12] interface
used by all the tools based on the PAPI [14] toolkit. This approach of one tool one kernel interface
is dangerous because there is clearly code duplication but more importantly there is no coordination
between the various interfaces which can all exist more or less at the same time and share access to
the same PMU resource. Such duplication of interfaces creates fragmentation and does not makes it
very attractive for developers, especially for ISVs, to create or port professional-grade tools. Up until
recently, none of these interfaces was even part of the standard kernel distributions and users had to
download patches or kernel modules. In order for the development of tools to really become attractive
and pervasive, it is important that the interface be standardized and implemented in the official Linux
kernel. This would ensure that it is robust, maintained and shipped by all Linux distributors.

The goal of the work presented in this document is to address the so-called perfmon challenge: how to
design a generic performance monitoring interface that would provide access to all existing and future
PMU implementations and that would also support a variety of monitoring tools?

Despite the diversity, it is possible to design a generic interface by:

¢ focusing on the providing access to the resource and not on the programming of the resource

¢ exploiting certain key characteristics of all PMU models

Accessing and programming the PMU are too very distinct operations. The former focuses on access the
PMU registers whereas the latter implies knowledge about events and what they measure. It is very
unlikely that there will ever be a complete standardization on events, they are just too specific to each
implementation. For instance, an |IA64_INST_RETIRED event on Itanium® 2 does not necessarily measure
the same exact thing as the INSTR_RETIRED event on a Pentium 4 because retirement may be defined
differently. As such knowledge about events should never be part of a kernel interface and is best
encapsulated into user level libraries, such as those provided by the PAPI toolkit or the Performance
Counter Library (PCL) [5]. Both packages go further by providing their own set of standard events
which are then mapped onto the actual events. For instance, there is a PAPI_L1_DCM to measure data
cache misses in the first level cache. Tools, such as TAU [15] which use those logical events, can then
be ported across PMU models. This approach works for most events yet it is subject to the limitation
we just described.

The key characteristic that the interface must leverage is that all PMU models export a set of pro-
grammable registers which can be read and written with simple instructions. For instance, all PMU
models inside the Itanium Processor Family (IPF) export a set of Performance Monitoring Configu-
ration (PMC) registers and a set of Performance Monitoring Data (PMD) registers. Similarly, the
Pentium 4 [10] PMU uses Machine Specific Registers (MSR).

The interface is primarily targeted for the Linux operating system because this is where the issue is
really problematic but it can easily be implemented into other open-source or commercial operating
systems.

After we begin with the goals of interface and a short section on terminology we present in details the
interface, the PMU register mapping scheme, the support for sampling and event-sets, and security.
Then a chapter describes the Itanium specific extensions and we conclude with future extensions.

2.1 Goals of the interface

The goal of the interface is to establish an industry standard to access the PMU resource, just like
the POSIX pthread interface is a standard way of implementing threads of execution. Current trends

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 9

in processor and application developments show that the need for performance monitoring support
is growing rapidly. The lack of a unified monitoring interface limits the scope of tools to only a one
platforms. This, in turn, makes developing commercial tools not very attractive. Similar arguments
do apply to academic research projects.

In order to be successful, the interface must meet certain requirements which are presented next.

The paramount requirement is that the interface and its implementation must be an integral part of
the operating system kernel. In other words, it must be built-in and come by default with the kernel
as shipped by OS vendors. It is not possible to have performance monitoring support be an optional
module that one can download from the Internet or recompile separately. This is key to enabling
performance tools to be developed on a larger scale. As recent history has shown, having a certain
software package bundled with the operating system can be quite critical to its success. Similarly,
this requirement also ensures that the implementation is correctly maintained and that it presents a
robust level of security.

The interface must be portable across operating systems. Although the primary target is the Linux
operating system, it is envisioned that other systems could also adopt it.

The interface must be portable across PMU models. No PMU specific features must be exposed explic-
itly. For instance, the number of PMU registers must not be part of the interface.

The interface must not prevent access to PMU specific features. It must not use the least common
denominator approach to satisfy the portability requirement. In particular, the interface must not limit
access only to the PMU registers which implement counters. Modern PMUs, oftentimes, implement
registers which are used for other purposes, such as buffers for instance. Access to PMU-specific
features must be done using the existing framework of the interface whenever possible, i.e., no back
door.

The interface must be unified across implementations. The set of features not dictated by hardware
must be identical across platforms. For instance, the ability to monitor per-thread and on a system-
wide basis must always be implemented. This is important to ensure that software using one mode
could be ported from one platform to another.

The interface must provide a way to collect simple counts, i.e., accumulate the number of occurrences
of PMU events. This is the very basic kind of measurement a tool would want to make.

The interface must provide a way to collect profiles by sampling PMU registers. It must be possible
to sample directly from the application. Sampling at the kernel level may be provided to minimize
overhead.

The interface must be generic to allow a variety of performance tools to be implemented. Some tools
are just collecting simple counts, others are collecting profiles. Both kinds of tool must access the PMU
using the same interface.

The interface must allow a performance tool to measure only one thread of execution at a time. This
mode of operation is called per-thread.

The interface must allow per-thread monitoring to work on complicated workloads which are using
multiple processes or multiple threads. Monitoring multiple threads at the same time and indepen-
dently of each other must be supported by the interface.

The interface must allow a performance tool to measure across all processes running on all or a subset
of the processors of a system. This mode of operation is called system-wide.

The interface must be designed such that it minimizes the amount of PMU specific knowledge neces-
sary inside the operating system kernel. As much as possible such knowledge must be pushed into
user level libraries.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 10

The interface must not impose the use of a particular set of user level libraries to program the PMU.
Each tool may use its own support library in particular for event encodings and assignments to PMU
registers.

The interface must be designed for efficient monitoring. The overhead, especially when sampling, must
be kept to a bare minimum to avoid perturbing the execution of the monitored application or system
as this could lead to misinterpretations of the collected data.

The interface must scale to large machine configurations. With current processor developments,
machines with a single processor will soon disappear from the marketplace. Multi-core and multi-
threaded processors will transform simple machines into large SMP machines. For instance, a 4-
processor socket machine, which today provides 4-way would become a 16-way machines with dual-
core dual-threaded processors. Large machine configurations will soon reach several thousands of
processors. Monitoring across large number of processors must be possible with minimal overhead.

The interface must not impose special compilation flags to the operating systems kernel or applications
to allow monitoring to function.

2.2 Design choices

In the next few sections, the key design choices based on the requirements for the interface are pre-
sented.

2.2.1 Logical PMU

The first issue is the diversity that exists between the various PMU models. From one architecture to
another, the set of registers, how they are named, what they do and how they are related to each other
can be very different. The only common characteristic that can be relied upon is that the hardware
interface is always composed of registers. A register has a unique name and can be read or written.
There are typically two kinds of registers in a PMU:

® control registers to describe what is to be measured, start and stop monitoring

e data registers where the results are stored
To hide the differences in naming and provide for better portability and simplicity, the interface ex-
poses a logical view of the PMU to applications. This logical PMU is then mapped onto the actual
PMU by each implementation. The logical PMU exports a uniform set of registers:

¢ Performance Monitoring Control, or PMC, registers

¢ Performance Monitoring Data, or PMD, registers
Each register is identified by a simple (index,value) pair. Each index identifies a unique hardware
register. This scheme works well when the hardware PMU uses indexed registers, such as with the

Itanium Processor Family PMU, but also when the registers have individual names such as with the
Pentium 4 PMU [10].

The interface maintains the distinction between data and control registers because by nature, they do
not play the same role.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 1 1

The mappings to the actual PMU registers can be retrieved by a specific call through the interface.
Knowledge of the mapping may be needed to use certain helper libraries which do not use the same
mapping as the interface.

The number of PMC and PMD registers as well as what they measure is specific to each PMU model
and is not part of the interface.

The interface exposes all PMC and PMD registers as 64-bit registers no matter what the underly-
ing PMU implements. In particular all counters are exported as 64-bit wide. It is common to have
hardware counters implemented with only about forty bits.

2.2.2 Basic operations on PMU registers

The interface exports basically two operations on PMU registers: read and write. It stays very close to
the hardware interface to avoid using software abstractions that would not be portable.

The PMC registers can only be written whereas the PMD registers can be read and written. it is not
possible to read PMC registers, because their are only programmed by applications.

Registers can be read or written either individually or in batches. Both modes are important to min-
imize the cost of accessing the PMU. Sets of registers are typically access during the setup phase of
a measurement. Individual registers are accessed during the measurement to adjust monitoring. For
instance, a PMD may be modified to adjust a sampling period.

By operating at the register level, the interface avoids having to manipulate the entire PMU machine
state during each call. This is clearly more scalable as the size of the data structures passed between
the application and the kernel are smaller. This is also more portable because the structure do not
hard-code the actual size of the machine state.

The interface does not interpret the values of the PMC and PMD registers unless necessary for security
reason. This is important for portability but also to avoid kernel bloat which would occur if the kernel
had to know about each possible PMU event.

The other key operations are: start and stop monitoring. The interface exposes simple start and
stop operations. There may exist several methods for starting and stopping. Some PMU models may
have this operation at the PMC level, other may be using a common control bit, some may use both
methods. While the interface does not prevent using the PMC level mode, it also provides a centralized
and portable method.

2.2.3 System call interface

The interface uses the system call model instead of the usual device driver model. This choice is
mandated by some of the requirements set forth in the previous section. In particular because the
interface must be built-in and must allow per-thread monitoring. System calls are rarely an optional
feature of a kernel. At best, they can be turned off at compile time of the kernel. As such a system call
reinforces the notion that performance monitoring is a built-in feature of the kernel. There is no need
to compile and insert a separate module. Support for per-thread monitoring is a show-stopper for the
device driver model. Drivers are typically not allowed access to the context switch code of the kernel.
Having hooks in the context switch code is necessary to save and restore the PMU state.

The system call interface is also very flexible in that it is not constrained to having a fixed number of
parameters like ioctl() does.

The interface can be implemented via a single system call with multiple commands or a set of system
calls.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 12

2.2.4 System-wide support

The support for system-wide monitoring must be designed such that it scales to large NUMA-style
machine configurations while, at the same time, minimizing the kernel code complexity.

The interface uses a CPU-wide model where monitoring across multiple CPU cores requires indepen-
dent monitoring of each CPU core. The monitoring tool must spawn a worker thread or process on
each CPU core it wants to monitor. The tool can then aggregate the results, if needed.

The design is quite scalable because all operations are local to each CPU core, i.e., strong affinity
improves code and data locality and hence minimizes the overhead. This is especially important when
sampling and is in line with hardware sampling support in PMU models such as the Pentium 4 [10]
with its Precise Event Based Sampling (PEBS) support.

2.2.5 Sampling support

The interface supports two types of sampling: time-based and event-based sampling. In the first mode,
the sampling period is determined by a timeout. In the second mode, the period is defined as a number
of occurrences of a PMU event.

Time-based sampling is supported at the user level. Event-based sampling is supported at both user
and kernel levels.

The interface provides an efficient message-based overflow notification mechanism which is used as
the basis for sampling at the user level.

For efficiency reasons, the interface also provides support for a kernel level sampling buffer where
samples are automatically stored into a kernel buffer. When the buffer fills up, a notification is sent to
the monitoring tool.

Support for a kernel level sampling buffer is achieved without loss of flexibility using a unique mech-
anism that allows for customized formats to be plugged into the kernel at runtime. Each format is
responsible for the information that gets recorded and how it is recorded in the kernel buffer.

2.2.6 Event sets and multiplexing

To work around certain frequent PMU limitations, such as limited number of counters or incompatible
events, the interface provides the notion of an event set. Each event set encapsulates the entire PMU
machine state. It is possible to define multiple independent sets. The interface can then multiplex the
sets on the actual PMU, i.e., only one set is ever active at the same time. Set switching can happen on
a timeout or after a certain number of PMU events have been observed.

2.3 Perfmon Terminology

Throughout this document, we use a set of terms to describe certain abstractions and logical names
used by the interface. In this section, we define the commonly used terms.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 13

T0O T1 T0O T1

core O core 1l

Processor(CPU)

Figure 2.1: Processor anatomy.

2.3.1 Processor, CPU, and core

We refer to the processor or CPU as the physical package that is plugged into the processor socket
on the computing board. A processor may implement multiple processing cores or CPU cores. Each
core has its own set of physical resources such as registers, caches, execution pipeline, translation
look-aside buffer.

In turn, each core can be multi-threaded. Current implementations, on different architectures, all
expose each thread as a CPU core to the operating system. For instance, a dual-core multi-threaded
processor appears as 4 single-threaded CPU cores. We show the example of a dual-core dual-threaded
processor in figure 2.1.

2.3.2 The PMU

The term PMU refers to the Performance Monitoring Unit which is a piece of hardware present in
most modern processors. The PMU typically exports a set of registers that can be programmed to
collect certain hardware events.

There is one PMU per CPU core. For dual-core processors, there are two PMUs. Typically a multi-
threaded core only implements one PMU but each thread has its own set of PMU registers that are
multiplexed onto the PMU.

2.3.3 The PMU registers

The interface of a PMU consists, for the most part, of a set of control and data registers.

The control registers describe what to monitor. For that interface, they are called Performance Moni-
toring Control (PMC) registers. The data register is where the collected information is stored. For that
interface, they are called Performance Monitoring Data (PMD) registers. A PMC register is typically
associated with one PMD register or more. The pair forms what is called a monitor. A PMD register
can be used as a counter. It is incremented at each occurrence of the event of interest programmed into
the controlling PMC register. In that case the PMD register is called a counting PMD register and the

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 14

monitor as a whole is called a counting monitor. Depending on the PMU model, some PMD registers
are may be used for other purposes such as buffers, for instance.

2.3.4 Threads, Processes, and tasks
Throughout the document we make reference to the terms process, task, and threads. The terminology
is heavily leveraged from the Linux kernel.

A thread is referring to a kernel thread, i.e., a flow of control that is visible to the operating system.
Depending on the operating system and environment, there may be user threads which are multiplexed
by a library on top of a kernel thread. An application typically manipulates threads via the POSIX
threads (pthreads) library. Depending on the environment, pthreads may be implemented using a one
to one mapping with kernel threads or they may be multiplexed on top of a a kernel threads. This
interface only deals the threads which are visible to the kernel.

A process is a software abstraction which encapsulates an address space, several other system re-
sources, and at least one thread. Multiple threads can exist inside a single process.

A task is a term coming from the Linux world which represents a unique flow of control, in other words,
a kernel thread. The Linux kernel sees tasks and not threads. The difference is that a task also has
all the attributes of a process including an address space. In the case of a process with multiple flows
of control, there are multiple tasks but they all share certain attributes such as the address space.

2.3.5 Perfmon context

The PMU state includes the values of the PMC and PMD registers and possibly other related registers.
The PMU hardware state along with the associated software state is called a perfmon context. The
user can create and manipulate a context through the interface. The internal structure of the context
is dependent on the PMU and operating system and is never directly exposed to an application.

2.3.6 Perfmon session

A perfmon session, or session for short, describes the minimum sequence of actions necessary to collect
a simple measurement. The set of actions is at least as follows:

1. create the perfmon context
program the PMU

start monitoring

run code to measure

stop monitoring

read results

S A T L

destroy the perfmon context

Of course, there exists a multitude of variations of the sequence but the basic steps remain the same.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 15

2.3.7 Reserved fields and bits

In this specification, some fields or bits inside fields are marked as reserved. This means that they are
reserved for future use. Such fields or bits must be set to zero in order to guarantee that extensions
will work correctly.

The interface does check that reserved bits inside bit-fields are indeed cleared, otherwise an error is
returned.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 16

Chapter 3

The interface

3.1 The perfmonctl() system call

The central piece of the interface is the perfmon system call which is defined as follows:
int perfmoncti(int fd, int cmd, void *arg, int narg);

The system call takes four arguments. The first argument is a file descriptor, fd, identifying the
context on which to apply the command indicated by cmd. The file descriptor is obtained when a
perfmon context is created. Some commands do not require a valid file descriptor, in which case, the
first argument is ignored. A command may take some optional or mandatory parameters. In that case,
the parameters are pointed to by arg. It is possible to apply the command to more than one parameter
in one call. In that case, arg is actually a pointer to an array of parameters. The number of elements
in the array is indicated by narg. This is an efficient way of minimizing the number of system calls
which is especially useful when programming the PMU registers.

The kind of system call implemented by perfmonctl() is labeled a multiplexing call, where multiple
commands are passed through a single entry point. Based on the command, the kernel then dispatches
to the particular function implementing it, thereby demultiplexing the command. In the Linux world,
the use of a system call per command is preferred. We certainly acknowledge this approach which
has some advantages, such as a better type checking of the parameters for instance. We describe the
alternative set of system calls in section 6.1. For historical reasons, the specification uses the single
system call model but we do not envision any difficulty in switching to a multi system call model. This
would not affect the semantics of the interface in any way.

The return value of the system call is O when successful. Otherwise the value is -1 and the errno
variable contains an error code describing the problem. Unlike the open() or socket() system calls,
the file descriptor identifying the context is never passed as the return value of the perfmoncti() call,
i.e., there is no overloading of the return value. The file descriptor is, instead, returned in the data
structure passed with the command to create a new context.

Table 3.1 shows all the commands defined by the interface.

Each implementation must ensure that the perfmoncti() system call cannot be preempted, i.e., the call
runs to completion or blocks in which case all perfmon-related locks must be released. This ensures
that the calling thread cannot be rescheduled on a different CPU core than the one used to initiate the
system call.

17

| Name | Description | Section |
PFM_CREATE_CONTEXT | create a perfmon context 3.1.1
PFM_WRITE_PMCS program PMC registers 3.1.2
PFM_WRITE_PMDS program PMD registers 3.1.3
PFM_READ_PMDS read PMD registers values 3.14
PFM_START activate monitoring 3.1.5
PFM_STOP stop monitoring 3.1.6
PFM_LOAD_CONTEXT attach perfmon context 3.1.7
PFM_UNLOAD_CONTEXT | attach perfmon context 3.1.8
PFM_RESTART resume monitoring after notification | 3.1.9
PFM_CREATE_EVTSETS create or modify event sets 3.1.10
PFM_DELETE_EVTSETS delete event sets 3.1.11
PFM_GETINFO_EVTSETS get information about event sets 3.1.12
PFM_GETINFO_PMCS get information about PMC registers | 3.1.13
PFM_GETINFO_PMDS get information about PMD registers | 3.1.14
PFM_SET_CONFIG set global perfmon properties 3.1.16
PFM_GET_CONFIG get global perfmon properties 3.1.17

Table 3.1: List of commands.

3.1.1 The PFM_CREATE CONTEXT command

Description

The PFM_CREATE_CONTEXT command creates a new perfmon context. This is the first command that
must be invoked before any useful monitoring work can be accomplished. Without a context, it is not
possible to program the PMU. With this command, certain characteristics of the context are defined
such as the type of the context: per-thread or system-wide. For this command, the invocation of
perfmonctl() is as follows:

perfmonctl(0, PFM _CREATECONTEXT, ctx, 1);

The cmd argument is set to PFM_CREATE_.CONTEXT. The file descriptor argument is ignored for this
call, we show it as 0. The third argument must be a pointer to a structure of type pfarg _ctx _t. The
command only supports the creation of one context at a time, hence the last argument must have the
value 1.

The pfarg _ctx _t structure is defined as follows:

typedef unsigned char pfm _uuid _t[16];
typedef struct {
uint32 _t ctx _flags;
int ctx _fd;
pfm _uuid _t ctx _smpl _buf _id;
size _t ctx _smpl _buf _size;

} pfarg _ctx

18

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P

The fields of the pfarg _ctx _t structure are as follows:

e ctx flags : describes the properties of the context. The flags are divided in two categories:
generic and platform specific. The latter category describes certain features which are specific
either to the host PMU or the host operating system. The bits which are not defined are reserved
and must be cleared. It is only possible to set bits that are defined. You need to refer to the PMU
model and/or operating system specific sections for more details. The following set of generic flags
are defined:

- PFM_FL_SYSTEM_WIDE: indicates that the context is for a system-wide session. By default, a
context is created for a per-thread session.

— PFM_FL_NOTIFY_BLOCK: indicates that the thread being monitored should be blocked during
an overflow notification. This flag is only valid for a non self-monitoring per-thread session.
The default behavior is to let the monitored thread run while the overflow notification is
processed.

- PFM_FL_.OVFL.NO_MSG: indicates that the application is not interested in receiving over-
flow notification messages. By default, one message is generated for every notification. See
section 3.3 for more details on this flag.

e ctx _fd : this field is ignored on input. Upon successful return, this field contains the file descrip-
tor which uniquely identifies the context within the calling process. This descriptor is needed by
most commands. The file descriptor remains valid until the context is destroyed via close().

e ctx _smpl _buf _id : contains the unique identifier (UUID) of the sampling format to use for the
context. When a sampling buffer format is not needed, this field must be initialized to all zeroes.
See section 3.4 for more details.

e ctx _smpl _buf _size : this field is ignored on input. Upon successful return and when the selected
sampling buffer format exists and uses the buffer re-mapping service, this field contains the
actual size in bytes of the buffer. Otherwise this field contains O. See section 3.4 for more details
on the support for sampling.

When the command is successful, the pfarg _ctx _t structure is modified therefore if the same config-
uration is to be shared between multiple contexts, separate copies must be passed for the creation of
each context to avoid conflicts should the calls occurs simultaneously.

The file descriptor returned in ctx _fd is a regular file descriptor. It can be used with several system
calls such as, read(), select(), poll(), fecntl(), close(). We describe for what purpose an application might
want to use those system calls in section 3.3.

Theoretically, the number of contexts that can be created within a process is limited by the amount of
memory available in the system. Each implementation may impose other resources limitations such
as the maximum number of open files.

Upon return from the call, the context is ready to accept further commands. It is not attached to
any particular thread or CPU core. The context is said to be unloaded. It is necessary to invoke the
PFM_LOAD_CONTEXT to bind the context to a thread or CPU core. Until that happens, the actual PMU
is never accessed, only the software maintained PMU state can be modified.

Not all combinations of the ctx _flags are valid for any context. This is especially true with regards
to the PFM_FL_NOTIFY_BLOCK flag. Table 3.2 shows the valid combinations. It is important to note
that for some combinations the validity of the flags can only be assessed when the context is actually
attached to a thread of CPU core using the PFM_LOAD_CONTEXT command. Platform specific flags
may have additional restrictions.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 19

system-wide | per-thread, | per-thread,
not self self
PFM_FL_NOTIFY_BLOCK no yes no
w/o PFM_FL_NOTIFY_BLOCK yes yes yes
PFM_FL_.OVFL.NO_MSG yes yes yes
w/o PFM_FL_OVFL_NO_MSG yes yes yes
Table 3.2: possible context flags combinations.
System-wide context
monitoring tool
/ orker threads/proces\$\
fdo fd1l fd2 fd3
user \ \
kernel
core0 corel core2 core3

Figure 3.1: how to measure across multiple CPU cores.

A system-wide context can only be used to monitor one CPU core at a time. To construct monitoring
tools that measure across all CPU cores of a multi-processor (or multi-threaded processor) machine, it
is necessary to create multiple contexts and use multiple threads or processes, each pinned to run on a
distinct CPU core, to achieve the desired coverage. This is illustrated in figure 3.1 for a 4-way (4 cores)
machine. The monitoring tool must spawn additional threads or processes. Each one must be pinned
to a specific CPU core. See the description of PFM_LOAD_CONTEXT in section 3.1.7 for more details.

Controlling threads and processes

Any thread with access to the file descriptor identifying a context is called a controlling thread, mean-
ing that it can access the context with any of the defined commands. The interface relies, for the most
part, upon the file descriptor security semantics for access control. It should be noted that the threads
do not all necessarily have to belong to the same process, in case of a fork().

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 20

Given that a file descriptor is accessible to all threads inside a process, all threads inside a multi-
threaded process are controlling threads. Similarly the process is called the controlling process.

For a given context, a thread ceases to be a controlling thread once the file descriptor is closed. The
same behavior applies at the process level.

Behavior on fork()
parent process parent process fork() child process
fd fd fd
user
kernel
file table — pfm_context file table — pfm_context file table
before fork() after fork()

Figure 3.2: controlling threads and fork()

When a controlling thread invokes the fork() system call, the regular POSIX semantics for file descrip-
tor sharing apply. This is shown in figure 3.2. The file descriptor is cloned in the child process. Both
descriptors lead to the same context. In other words, all the threads of the parent and children pro-
cesses have access to the context. This behavior can be altered by explicitly closing the file descriptor
in each newly created child process.

Behavior on pthread_create()

By definition, a file descriptor is accessible to all threads of process. This is independent of the threads
being implemented purely at the user level or at the kernel level. Therefore the context is automati-
cally accessible to all threads.

Behavior on exec()

When a controlling thread invokes the exec() system call, the regular file descriptor semantics apply.
Unless the descriptor was explicitly setup to be closed on exec via fentl() and the F_SETFD command, it
is valid in the newly loaded code and therefore the context remains accessible.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company. L.P 2 1

Behavior when sampling

When a valid custom sampling buffer format (see section 3.5.1), is passed and that format is using
the perfmon buffer allocated and re-mapping services, the actual size of the buffer is returned in
ctx _smpl _buf _size . In all other case, the value of this field is O.

Based on the format, an application may be able to specify a sampling buffer size via a format specific
structure passed during this command. The requested and actual size may differ due to some platform
constraints, such as alignment. The buffer is not automatically accessible from the user level address
as a result of the command. An explicit call to mmap() is necessary. See section 3.4 for more details.

Interactions with event sets

When a context is created the initial event set, set0, is systematically created and ready for use. Event
sets are described in section 3.7.

Security considerations

Access to the context is granted to all threads with access to the file descriptor. The operating system
semantics for sharing a file descriptor govern the access to the context.

The creation of a context may fail because the caller may not have the right credentials. In particular,
the system administrator may have setup some restrictions on the creation of a context based on a
group of users. See chapter 4 for more details.

Similarly, the command may fail if there is a problem allocating the memory resources associated with
a particular sampling format. For instance, the system administrator may have setup some memory
size restrictions. See section 4.4.3 for more details.

Return values

® (0: the command was successful. The ctx _fd and potentially ctx _smpl _buf _size fields are up-
dated.

® _1: there was an error. The value of errno can be any one of:

- ENOSYS : the perfmon subsystem is not compiled into the kernel.

- EINVAL : invalid arguments.

- ENOMEM : no enough memory to allocate the context or the sampling buffer.
- E2BIG : size of sampling format specific argument is too big.

— EFAULT : an invalid address is passed, most likely ctx is invalid.

- EPERM : the application is not allowed to create a perfmon context.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 22

3.1.2 The PFM_WRITE_.PMCS command

Description

The PFM_WRITE_LPMCS command is used to program the PMC registers for a particular context. More
than one register can be programmed in one call. For this command, the invocation of perfmonctl() is
as follows:

perfmonctl(fd, PFM WRITEPMCS, pmcs, n);

The command applies to the context identified by fd. The descriptor must identify a valid context.
The third argument, pmcs, is a pointer to an array of structures of type pfarg _pmct. The fourth
argument, n, indicates the number of elements in the array. It must be greater than O.

The pfarg _pmc_t structure is defined as follows:

typedef struct {

uintlé _t reg _num;
uintlé _t reg _set;

uint32 _t reg _flags;
uinté4 _t reg _value;

uinté4 _t reg _reset _pmds[PFM_MAXPMDBITVECTOR];
uinté4 _t reg _smpl _pmds[PFM_MAXPMDBITVECTOR];
uinté4 _t reg _smpl _eventid;

} pfarg _pmc.t;

The fields are used as follows for this command:

* reg _num: the PMC register index.
* reg set : the event set for the PMC register.

® reg value : the value to load into the PMC register. The value is highly specific to the host
PMU. The interface normally treats the value as opaque however implementations may check
the validity of the value, see section 3.1.13 for more details.

e reg flags : a set of flags to enable certain features. The bits which are not defined are reserved
and must be cleared. It is only possible to set bits that are defined. Upon return, the field may be
updated to reflect possible error conditions. The defined flags are as follows:

— PFM_REGFL_OVFL_NOTIFY : when the counting PMD associated with the PMC register over-
flows, a overflow notification message is appended to the message queue of the context.
Depending on the PMU, not all PMC registers are necessarily associated with a counting
PMD. For those, this flag is ignored. The default behavior is that no notification is sent on
counter overflow, i.e., the counter simply wraps around.

- PFM_REGFL_.RANDOM : when the associated counting PMD register overflows, the reset
value must be chosen randomly. By default, this flag is off. Depending on the PMU, not
all PMC registers are necessarily associated with counting PMD registers. For those, this
flag is ignored.

e reg _smpl _pmds : this bitvector contains the list of PMD registers to be recorded in a sample
when the associated counting PMD overflows. Each bit represents a PMD register. The PMD
registers referenced in the bitvector are interpreted as being from the same set as the controlling

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 23

PMC. If no PMD is of interest, the bitvector must be all zeroes. It is possible to specify PMD
registers that are not used as counters. This field is ignored for all PMC registers not controlling
a counting PMD register. Specifying PMD registers that are unimplemented generates an error.
It is up to the buffer sampling format selected by the application to use this field to record the
requested information. The default sampling format uses this field.

* reg _reset _pmds : this bitvector contains the list of PMD registers to reset when the associated
counting PMD register overflows. Each bit represents a PMD register. The PMD registers refer-
enced in the bitvector are interpreted as being from the same set as the PMC register. If no PMD
is to be reset, the bitvector must be all zeroes. It is possible to specify PMD registers that are not
used as counters. Specifying PMD registers that are unimplemented generates an error.

* reg _smpl _eventid : this value is passed to the sampling buffer format when the associated
counting PMD register overflows. The value is not interpreted by the interface and is passed
directly to the sampling format. This mechanism can be used to pass information to the sampling
format. This field is ignored for all PMC registers not controlling a counting PMD register. It is
up to the format to use this information. The default sampling format does not use of this field.

At any time, the interface maintains a software state for the PMU that includes the current value for
both the PMC and PMD registers. When a context is created, each PMC register is initialized with a
default value. This value is specific to each PMU but must be chosen such that nothing is measured.
Hence, applications only need to setup the PMC registers they need. Perfmon guarantees that all non
explicitly used PMC registers do not measure anything. It is possible to retrieve the default value for
a PMC register using the PFM_GETINFO_PMCS command.

The interface does not impose any ordering between modifying a PMC register and its associated
PMD register(s). It is up to the application to decide the best order. It is not necessary to program
all PMC registers, just to get a know stable base. The interface guarantees that the unused PMC
registers will be programmed with their respective default values. Those values must be chosen by
each implementation such that nothing is captured by the PMC and its associated PMD registers.

It is always possible to modify a PMC register when the context is unloaded. However, when the
context is loaded the following must be possible:
¢ for a system-wide session, any thread with access to the file descriptor and running on the moni-
tored CPU must be able to execute this command
e for a per-thread session which is self-monitoring, i.e., the context is attached to the controlling

thread, this command must always be possible

For all other cases, each implementation may decide to restrict access depending on the state of the
thread. In particular, there may be some restrictions on multi-processor machines to ensure that the
thread is actually stopped.

Bitvector sizes

The bitvectors represent all PMD registers accessible to an application. For this command the pfarg _pmc.t
structure includes two bitvectors: reg _smpl _pmds and reg _reset _pmds.

Bitvectors are always represented as an array of 64-bit elements. The size of the array depends on the
host PMU and implementation and is determined by the following formula:

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 24

#define PFM _MAXPMDBITVECTOR (((PFM _MAXPMDS+64-1)/64)

The constant PFM_MAX_PMDS represents the maximum number of PMD registers that are accessible
to an application. Holes in the PMD name space are supported and the value of this constant takes it
into account, i.e., the actual number of PMD registers may be less than PFM_MAX_PMDS.

How to use the reg smpl _pmds bitvector

The reg _smpl _pmds bitvector is used when sampling. It allows an application to indicate which PMD
registers must be recorded in each sample. It is always up to the sampling format to honor this
information. As many bits as there are implemented PMD registers can be set in the bitvector.

The use of the bitvector is best explained using a simple example. Let us suppose that PMC4/PMD4,
a counting monitor, is used as the sampling period and that PMC8/PMD8 and PMC9/PMC9 are pro-
grammed to count two other events of interest. When PMD4 overflows, the application would like to
record in the sample, the values for PMDS8, PMD9. In that case, it would program PMC4 such that
reg _smpl _pmds would be equal to 0x300, i.e., bit 8 and bit 9 are set.

How to use the reg reset _pmds bitvector

The reg _reset _pmds bitvector is used when sampling. It allows an application to indicate which
PMD registers must be reset at the end of a sampling period. The reset operation is performed after
the sample is recorded or upon restart, i.e., PFM_RESTART, when monitoring is masked. This feature is
independent of the sampling format used.

This field is interesting to compute differences in the value of some sampled counters between two
samples. It avoids having to post-process the sampling buffer to compute the differences.

Let us take a simple example to illustrate how to use this feature. Let us suppose that an appli-
cation would like to take a sample every one million cycles. In each sample, it would also like to
record the number of instructions that have retired since the last sample was taken. For this measure-
ment, the application would program, PMC4/PMD4 to be the sampling period counting cycles and it
would program PMC5/PMD5 to count the number of instructions retired, for instance. When program-
ming PMC4, the application would indicate that PMD5 must be included in each sample by setting
reg _smpl _pmds to 0x20 . It would also set reg _reset _pmds to 0x20 . With this setup each sample will
contain the delta of instructions retired between each sample.

Interactions with event sets

It is not possible to specify an event set that does not exist. An event set needs to be explicitly created,
except for set0 which is created by default.

Security considerations

For security reasons or because of resource limitations, each implementation may limit the number of
elements that can be passed in the pfarg _pmc.t array.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 25

Return values

® 0: the command was successful.
e -1: there was an error. The value of errno can be any one of:

— ENOSYS : the perfmon subsystem is not compiled into the kernel
- EINVAL : invalid arguments (see below for discussion)
— EBADF : invalid file descriptor

— EFAULT : an invalid address is passed. Most likely the pfarg _pmc.t array is invalid or the
number of elements in the array is too big.

There are several reasons why the call may return EINVAL. It may be due to an invalid register in-
dex or because the PMC value is invalid or the event set does not exist. As alluded to earlier, some
implementations may check the validity of the value. In the case where multiple PMC registers are
programmed in one call, it may be difficult to figure out which element in the array caused the prob-
lem. However the interface includes a simple mechanism to help identify the invalid element by using
thereg flags field. When EINVAL is returned, the caller may want to scan the vector of pfarg _pmc.t
elements using the following macro and definitions:

* PFMREGHASERROR(flags) : the flags parameter must be the value of the reg _flags field.
The macro returns non-zero if flags contains an error code. Otherwise, the value O is returned.

e PFM_REG_RETFL_EINVAL: if this flag is set in the reg _flags then the value for the corresponding
PMC is invalid

* PFM_REG_RETFL_NOTAVAIL: if this flag is set in the reg _flags then the index of the PMC register
is invalid
e PFM_REG_RETFL_NOSET: if this flag is set in the reg _flags field then the requested set does not

exist

The command aborts at the first error therefore no further elements are processed beyond the invalid
element. Elements placed before the invalid element are guaranteed processed by the interface, i.e.,
there is no need to resubmit them. If no error is reported by the macro, then the reason for EINVAL is
different.

3.1.3 The PFM_WRITE_PMDS command

Description

The PFM_WRITE_LPMDS command is used to program the PMD registers for a particular context. More
than one register can be programmed in one call. For this command, the invocation of perfmonctl() is
as follows:

perfmonctl(fd, PFM WRITEPMDS, pmds, n);

The command applies to the context identified by fd. The descriptor must identify a valid context.
The third argument, pmds, is a pointer to an array of structures of type pfarg _pmdt. The fourth
argument, n, indicates the number of elements in the array. It must be greater than O.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 26

The pfarg _pmd.t structure is defined as follows:

typedef struct {

uintlé _t reg _num;

uintlé _t reg _set;

uint32 _t reg _flags;

uinté4 _t reg _value;

uinté4 _t reg _long _reset;
uinté4 _t reg _short _reset;
uinté4 _t reg _last _reset _val;
uinté4 _t reg _ovflsw _thres;
uinté4 _t reg _random _mask;
uint32 _t reg _random _seed;

} pfarg _pmdit;
The fields are used as follows for this command:

* reg _num: the PMD register index.
* reg _set : the event set for the PMD register.

* reg _value : the value to load into the PMD register. For all counting PMD registers, the value
is always 64-bit no matter what the underlying PMU supports. For other types of PMD registers,
it depends on the underlying PMU and some of the bits in the value may be ignored. Certain
implementations may check the validity of the value, see section 3.1.14 for more details. If the
context is detached, then the value represents the initial value to be loaded into the actual PMD
register when the context is attached. If the context is attached, the value is used to update the
actual PMD register.

e reg flags : there are no input flags defined for this command. All but the return flag bits are
reserved.

* reg _long _reset : this field contains the 64-bit value to reload into the PMD register during the
PFM_RESTART command following an overflow notification. Depending on the sampling format,
the register may have been reset prior to restart, in which case, this value is not used. When the
designated PMD register is not a counter, it does not overflow, therefore the value of this field
is normally ignored. However if the PMD register is specified as part of the reg _reset _pmds
bitvector of a PMC register, it will be reset.

* reg _short _reset : this field contains the 64-bit value to reload into the PMD register when it
overflows and there is no user level notification requested or necessary. The actual behavior may
be different when the sampling format is not the default format. When the designated PMD
register is not a counter, it does not overflow, therefore the value of this field is normally ignored.
However if the PMD register is specified as part of the reg _reset _pmds bitvector of a PMC
register, it will be reset.

* reg last _reset _val : this field is ignored for this command.

e reg ovflsw _thres : the number of overflows before switching to the next set. Switching only
effectively occurs when the PFM_SETFL_OVFL_SWITCH flag is selected for the event set, otherwise
this field is ignored. This field is also ignored for all non counting PMD registers.

e reg _random _mask: this field contains the 64-bit mask used to compute the pseudo-random value
generated on reset. This field is used only with a counting PMD register for which the controlling

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 2 7

PMC register enabled randomization by setting the PFM_REGFL_RANDOM flag. Otherwise, this
field is ignored. The mask determines the range of allowed variation for the new pseudo-random
value. See section 3.4.2 for more details.

® reg random _seed: this field contains the seed value to initialize the built-in pseudo-random
number generator. This field is used only with a counting PMD register for which the controlling
PMC register enabled randomization by setting the PFM_REGFL_RANDOM flag. Otherwise, this
field is ignored. There is no restriction on the 32-bit value of this field. See section 3.4.2 for more
details on randomization.

At any time, perfmon maintains a software state for the PMU that includes the current value for both
the PMC and PMD registers. When a context is created, each PMD register is initialized with a default
value. This value is specific to each PMU however for all counting PMD registers, it is guaranteed to
be 0. Hence, applications do not need to initialize all the PMD registers.

The interface does not impose any ordering between modifying a PMC register and its associated PMD
register. It is up to the application to decide the best order.

It is always possible to modify a PMD register when the context is detached. However, when the
context is attached the following must be possible:

¢ for a system-wide session, any thread with access to the file descriptor and running on the moni-
tored CPU must be able to execute this command

e for a per-thread session which is self-monitoring, i.e., the context is attached to the controlling
thread, this command must always be possible

For all other cases, each implementation may decide to restrict access depending on the state of the
thread. In particular, there may be some restrictions on multi-processor machines to ensure that the
thread is actually stopped.

64-bit emulation

All counting PMD register values are exposed as being 64-bit wide. Each PMU does not necessarily
implement full 64 bit counters. In that case, an implementation must emulate in software. The emu-
lation is based on the counter overflow interrupt mechanism which all modern PMU provide. Always
exposing a 64-bit value for a counter provides stability for applications because there is no need to
know about each PMU specific width. In figure 3.3 we show an hypothetical PMU which implements
actual PMD registers, shown as hwPMDwhich are only 32-bit counters. At the top, an application pro-
vides the value O for the register, the upper 32 bits are stored in the software PMD register which is 64
bits wide. The lower 32 bits are stored in the actual hardware register, hwPMDand the bottom 32 bits
of the software PMD are set to 0. The bottom of the figure shows what happens when the hardware
PMD overflows, i.e., when value goes from 232 — 1 to 232 in which case it wraps around to 0. The PMU
generates an interrupt, the interrupt handler emulates the 64-bit counter by adding to the software
counter the value 232 changing the value to 0x100000000. Of course, this mechanism requires that the
PMU be configured such that a counter overflow generates an interrupt.

For non counting PMD registers, up to 64-bit values are supported but no emulation is done. Those
registers are typically used as buffers, in which case the hardware PMD probably implements as
many bits as is necessary for the value to be meaningful. The bits in reg _value , reg _long _reset ,
reg _short _reset which are not relevant to the hardware PMD register are ignored.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 28

32 bits 32 bits

reg_value ‘ 0 0 ‘
SWPMD 0 0 hWPMD‘ 0
32 bits ! 32 bits
3 !
| wemp| FEEFFFFf |
' PMU interrupt !
hWPMD‘ 0
SWPMD 1 0
32 bits 32 bits

Figure 3.3: 64-bit emulation for counting PMD registers

base random mask
\ 0x100000 0x1567f b Oxf f

|

| 0x0000f b

b=

®
i

| 0x1000fb
new value

Figure 3.4: randomization of the value of a PMD register

29

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P

Randomization

When randomization is selected, the new value for a counting PMD is built by combining the new
random value, the mask and the base value, which is either the value in the reg _short _reset or
reg long reset field depending when the reset happens. The combination is as follows:

new_pmd_value = base + (new_random_value & mask)

In figure 3.4, we illustrate the formula with a simple example. The base value 0x100000 is the value
provided in the reg _value field. The mask is set such that it selects only the bottom 8 bits, allowing
values from 0 to Oxff . The random number generator produces 0x1567fb which is then masked and
added to the base value, yielding 0x1000fb as the new random value. As can be seen in this example,
if the mask is set up such that it masks all the bits from 0 to the n'" bit, then a range of 2" values is
possible.

Interactions with event sets

It is not possible to specify an event set that does not exist. An event set needs to be explicitly created,
except for set0 which is created by default.

Security considerations

For security reasons or because of resource limitations, each implementation may limit the number of
elements that can be passed in the pfarg _pmd.t array.

Return values

® (: the command was successful.
e -1: there was an error. The value of errno can be any one of:

— ENOSYS : the perfmon subsystem is not compiled into the kernel
— EINVAL : invalid arguments (see below for discussion)
- EBADF : invalid file descriptor

- EFAULT : an invalid address is passed. Most likely the pfarg _pmd.t array is invalid or the
number of elements in the array is too big.

There are several reasons why the call may return EINVAL. It may be due an invalid index or value or
set. As alluded to earlier, some implementations may check the validity of the value. In the case where
multiple PMD registers are programmed in one call, it may be difficult to figure out which element in
the array caused the problem. However the interface includes a simple mechanism to help identify the
invalid element by using the reg flags field. When EINVAL is returned, the caller may want to scan
the vector of pfarg _pmd.t elements using the following macro and definitions:

* PFMREGHASERROR(flags) : the flags parameter must be the value of the reg _flags field.
The macro returns non-zero if flags contains an error code. Otherwise, the value O is returned.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 30

o PFM_REG_RETFL_EINVAL: if this flag is set in the reg _flags then the value for the corresponding

PMD is invalid

e PFM_REG_RETFL_NOTAVAIL: if this flag is set in the reg _flags then the index of the PMD register
is invalid

e PFM_REG_RETFL_NOSET: if this flag is set in the reg _flags field then the requested set does not
exist

The command aborts at the first error therefore no further elements are processed beyond the invalid
element. Elements placed before that the invalid element are guaranteed processed by the interface,
i.e., there is no need to resubmit them. If no error is reported by the macro, then the reason for EINVAL
is different.

3.1.4 The PFM_READ PMDS command

Description

The PFM_READ_PMDS command is used to read the value of PMD registers for a particular context.
More than one register can be read in one call. For this command, the invocation of perfmonctl() is as
follows:

perfmonctl(fd, PFM _READPMDS, pmds, n);

The command applies to the context identified by fd. The descriptor must identify a valid context.
The third argument, pmds, is a pointer to an array of structures of type pfarg _pmdt. The fourth
argument, n, indicates the number of elements in the array. It must be greater than O.

The pfarg _pmd.t structure is the same as the one used by PFMWRITEPMDSIt is defined as follows:

typedef struct {

uintlé _t reg _num;

uintlé _t reg _set;

uint32 _t reg _flags;

uinté4 _t reg _value;

uinté4 _t reg _long _reset;
uinté4 _t reg _short _reset;
uinté4 _t reg _last _reset _val;
uinté4 _t reg _ovflsw _thres;
uinté4 _t reg _random _mask;
uint32 _t reg _random _seed;

} pfarg _pmdt;
The fields are used as follows for this command:

¢ reg _-num: the PMD register index.
* reg _set : the event set for the PMD register.

® reg _value : this field is ignored on input. Upon successful return, the field contains the current
value of the PMD register.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 3 1

e reg flags : there are no input flags defined for this command. All but the return flag bits are
reserved.

® reg _long _reset : this field is not used by this command.
® reg _short _reset : this field is not used by this command.

e reg last _reset _val : this field is not used on input. Upon successful return, it contains the
last value that was loaded in the PMD register. This is useful for a counting PMD register when
randomization is selected on the controlling PMC register. In this case, the field contains the last
pseudo random value that was loaded into the register otherwise it contains either the value of
reg _short _reset orreg _long _reset .

* reg _ovflsw _thres : this field is not used on input. Upon successful return and when the event
set for the PMD register has the PFM_SETFL_OVFL_SWITCH flag enabled, the field contains the
number of overflows left before switching to the next set. When the PFM_SETFL_OVFL_SWITCH flag
is not enabled or if the PMD is not a counting PMD, then this field contains O.

® reg _random _mask : this field is not used by this command.

® reg random _seed : this field is not used by this command.

At any time, perfmon maintains a software state for the PMU that includes the current value for both
the PMC and PMD registers. When a context is created, each PMD register is initialized with a default
value. This value is specific to each PMU however for all counting PMD registers, it is guaranteed to
be 0. Hence, reading a PMD register just after the context is created returns its default value.

For all counting PMD registers, the 64-bit value of the counter is returned. When the host PMU does
not implement 64-bit counters, the implementation must emulate in software. We have described
the mechanism in figure 3.3. For reading, the 64-bit value is constructed by combining the hardware
counter and its software emulation when the context is attached. When the context is detached the
64-bit value is contained in the software counter.

For all non counting PMD registers, no emulation is done. When the actual PMD register is less than
64-bit wide, the remaining upper bits are zero-extended. The extension applies to reg value and
reg _last _reset _val .

For a detached context, the command returns the last value of the PMD, i.e., the value the register had
when the context was last detached.

It is always possible to read a PMD register when the context is detached. However, when the context
is attached the following must be possible:
¢ for a system-wide session, any thread with access to the file descriptor and running on the moni-

tored CPU must be able to execute this command

¢ for a per-thread session which is self-monitoring, i.e., the context is attached to the controlling
thread, this command must always be possible

¢ for any type of session and when monitoring is masked following an overflow notification, this
command must be possible. Note that this behavior may be affected by the use of a custom
sampling format. However, it is guaranteed to work with the default format.

For all other cases, each implementation may decide to restrict access depending on the state of the
thread.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 32

Interactions with event sets

It is not possible to specify an event set that does not exist. An event set needs to be explicitly created,
except for set0 which is created by default.

Security considerations

For security reasons or because of resource limitations, each implementation may limit the number of
elements that can be passed in the pfarg _pmdt array.

Return values

® (0: the command was successful.
e -1: there was an error. The value of errno can be any one of:

— ENOSYS : the perfmon subsystem is not compiled into the kernel
- EBADF : invalid file descriptor
- EINVAL : invalid arguments (see below for discussion)

— EFAULT : an invalid address is passed. Most likely the pfarg _pmdt array is invalid or the
number of elements in the array is too big.

- EBUSY : the command cannot be executed at this time.

There are several reasons why the call may return EINVAL. It may be due to an invalid index or invalid
set. In the case where multiple PMD registers are read, it may be difficult to figure out which element
in the array caused the problem. However the interface includes a simple mechanism to help identify
the invalid element by using the reg _flags field. When EINVAL is returned, the caller may want to
scan the vector of pfarg _pmd.t elements using the following macro and definitions:

* PFMREGHASERROR(flags) : the flags parameter must be the value of the reg _flags field.
The macro returns non-zero if flags contains an error code. Otherwise, the value O is returned.

e PFM_REG_RETFL_NOTAVAIL: if this flag is set in the reg flags field then the index of the PMD
register is invalid

e PFM_REG_RETFL_NOSET: if this flag is set in the reg _flags field then the requested set does not

exist

The command aborts at the first error therefore no further elements are processed beyond the invalid
entry. Elements placed before the invalid entry are guaranteed processed by the interface, i.e., there is
no need to resubmit them. If no error is reported by the macro, then the reason for EINVAL is different.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 33

3.1.5 The PFM_START command

Description

The PFM_START command is used to activate monitoring for a context. Activation is the operation
which puts the PMU into a state where the PMD registers are actually collecting qualified events. For
this command, the invocation of perfmoncti() is as follows:

perfmonctl(fd, PFM _START, arg, 1);
or
perfmonctl(fd, PFM _START, NULL, 0);

The command applies to the context identified by fd. The descriptor must identify a valid context. The
command takes an optional argument arg of type pfarg _start _t. When the argument is not used
the value must be NULL. When the third argument is used, the fourth argument must be set to 1, i.e.,
this command does not take vectors. Otherwise the fourth argument must be set to O.

The pfarg _start _t data structure is defined as follows:

typedef struct {
uintlé _t start _set;
} pfarg _start _t;

The fields are defined as follows for this command:
e start _set : the set to activate first

This command is only valid for a context that is attached to a thread or a CPU core. Upon return, the
interface guarantees that monitoring is active. The interface does not guarantee that the activation
is necessarily atomic. Some PMU may not have a mechanism to activate monitoring with a single
atomic instruction. For a non self-monitoring per-thread session, monitoring is guaranteed activated
but the effect are not visible until that thread runs again and this may occur after returning from the
command.

Depending on the implementation, there may be ways to activate monitoring without invoking this
command. In that case, this command is still usable and must not conflict.

For all non self-monitoring sessions, some implementations may impose restrictions as to when this
command can be issued. In particular, there may be some restrictions on multi-processor machines to
ensure that the thread is actually stopped.

When sampling, it should be noted that this command does not actually trigger a call in the sampling
format managing the sampling buffer. There is no format call-back for this command. In the case of
the default sampling format, the buffer is not reset as it would with a PFM_RESTART command.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 34

Interactions with event sets

The activation applies to all defined event sets. There can only be one set on the PMU at any time. That
set is called the active set. When multiple sets are defined, an application can indicate which set must
be activated first by specifying its number with PFM_LOAD_CONTEXT or by passing a pfarg _start _t
argument to this command. Specifying a set with this command overrides the first set designated with

the PFM_LOAD_CONTEXT.

When an application does not specify the first active set, then it will be determined as follows:

¢ the set specified during the last PFM_LOAD_CONTEXT

¢ whatever was the last active set from the previous activation
On implementations where it is possible to activate monitoring without calling PFM_START, the first
set follows the possibilities listed above.

Until monitoring is activated no set switching occurs. The PFM_LOAD_CONTEXT does not, by itself,
enable time-based set switching. That restriction also applies to implementations which can effectively
activate monitoring without calling PFM _START.

As a consequence of this command, both time-based and overflow-based set switching are activated.

Return values

® 0: the command was successful.
e -1: there was an error. The value of errno can be any one of:

— ENOSYS : the perfmon subsystem is not compiled into the kernel
- EBADF : invalid file descriptor
- EBUSY : the command cannot be executed at this time.

- EFAULT : an invalid address is passed. Most likely the pfarg _start _t pointer is invalid.

3.1.6 The PFM_STOP command

Description

The PFM_STOP command is used to stop monitoring for a context. Stopping is the operation which
puts the PMU into a state where the PMD registers are not collecting events. For this command, the
invocation of perfmonctl() is as follows:

perfmonctl(fd, PFM _STOP, NULL, 0);

The command applies to the context identified by fd. The descriptor must identify a valid context.
The command takes no argument therefore the third and fourth arguments are shown as NULL and O
respectively.

This command is only valid for a context that is attached to a thread or a CPU core. Upon return,
the interface guarantees that monitoring is inactive. The interface does not guarantee that the deac-
tivation is necessarily atomic. Some PMU may not have a mechanism to deactivate monitoring with a

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 35

single atomic instruction. For a non self-monitoring per-thread session, monitoring is guaranteed de-
activated but the effect are not visible until that thread runs again and this may occur after returning
from the command.

The effects of monitoring, especially when sampling, may extend beyond the point in time where the
PFM_STOP command returns. This behavior depends upon the implementation and the PMU model. In
other words, it may be possible to collect one extra sample beyond the point in time when the PFM_STOP
command returns.

Depending on the implementation, there may be ways to stop monitoring without calling into the
kernel via the perfmonctl system call. In that case, this command is still usable and must not
conflict.

For all non self-monitoring threads, some implementations may impose restrictions as to when this
command can be issued. In particular, there may be some restrictions on multi-processor machines to
ensure that the thread is actually stopped.

Event set interactions

The deactivation applies to all defined event sets. Stopping monitoring does stop time-based and
overflow-based set switching, i.e., no more set switching occurs. This also applies on implementations
where stopping monitoring can be done without calling PFM_STOP.

Return values

¢ (: the command was successful.
e -1: there was an error. The value of errno can be any one of:

- ENOSYS : the perfmon subsystem is not compiled into the kernel
- EBADF : invalid file descriptor

— EBUSY : the command cannot be executed at this time.

3.1.7 The PFM_LOAD_CONTEXT command

Description
The PFM_LOAD_CONTEXT command is used to attach a context to a thread. This command effectively

loads the PMU software state onto the actual PMU. For this command, the invocation of perfmonctl()
is as follows:

perfmonctl(fd, PFM _LOADCONTEXT, load _args, 1);

The command applies to the context identified by fd. The descriptor must identify a valid context. The
command takes one argument of type pfarg _load _t pointed to by load_args. The fourth argument
must be 1. The pfarg _load _t structure is defined as follows:

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 36

typedef struct {
pid _t load _pid;
uintle _t load _set;
} pfarg _load _t;

The fields of the structure are defined as follows:

* |load _pid : the identification of the thread to which the context must be attached.

e |oad _set : indicates the event set to load first.

controlling process monitored process | icontrolling process monitored process

user
kernel

file table pfm_context file table —pfm_contex

before after

Figure 3.5: the effect of the PFM_LOAD_CONTEXT command.

The value of load _pid is the identification of the kernel thread. On Linux, this is the value returned
by gettid() and not getpid() on NPTL-enabled systems. This value may be different from that returned
by pthread _create().

A context can only be attached to one thread at a time. A thread can have, at most, one context
attached to it. The thread to which the context is attached is called the monitored thread. While the
context is attached, it is under the control of the threads of the controlling process, called controlling
threads. For self-monitoring threads, the controlling thread is the monitored thread. Upon return, the
interface guarantees that the context is effectively attached to the designated thread. The effects of
the command are depicted in figure 3.5 where we only consider the case of a single-threaded process.
The link between the monitored thread on the right-hand side and the context is established by the
command.

The caller must have permissions to access the monitored thread. It is up to each implementation to
define to set of permissions and capabilities necessary to allow the operation.

As part of the attachment, the notification message queue is reset. All pending messages are lost.

The command loads the current software state of the designated event set onto the actual PMC and
PMD registers. For the PMC registers, the last values programmed via the PFM_WRITE_LPMCS com-
mand are used. For PMD registers, their current values, as would be returned by a PFM_READ_PMDS

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 3 7

command, are used. If a PMC or PMD register has never been explicitly programmed, then its default
value is used.

The interface guarantees that the PMU is not active, i.e., no events are effectively collected. A subse-
quent call to PFM_START or equivalent is required to activate monitoring.

For a non self-monitoring per-thread context, some implementations may impose restrictions as to
when this command can be issued. In particular, there may be some restrictions on multi-processor
machines to ensure that the thread is actually stopped.

Per-thread context

Each implementation must ensure that more than one per-thread session may exist at the same time
in the entire system. This implies that the PMU state must be saved and restored on context switches.

System-wide context

controlling process controlling process controlling process

fdo fdo fdo
user

kernel core_mask core_mask core_mask
[1/0]of0] 1]o]o]o]
F core3

core0| (corel| [core2| [core3 F F F core3 F

initial state after sched_setaffinity(CPU3) after PFM_CONTEXT_LOAD

Figure 3.6: PFEM_LOAD_CONTEXT for a system-wide context.

For a system-wide context, the command is used to bind a context to a specific CPU core. By design,
a system-wide context only captures events on one CPU core. Simultaneous full coverage of a multi-
processor machine is achieved using multiple contexts.

For a system-wide context, the value of load _pid must be that of the calling thread. In other words,
self-monitoring is enforced. Any other combination is rejected by this command for this type of context.
However, this restriction only applies to this command. Later on, access to the context, for other
commands, is granted to threads with access to the file descriptor and which run on the monitored
CPU core.

The determination of the CPU core the context is bound to is done during the execution of this com-
mand. The interface uses the CPU core on which the calling thread is executing. Implementations

© Copyright (c) 2004-2005 Hewlett-Packard Development Company. L.P 38

must ensure that preemption is disabled during the call. The CPU core cannot be changed unless the
context is detached via PFM_CONTEXT_UNLOAD and then re-attached to another CPU core. To avoid
problems, it is highly recommended to pin the controlling thread to the monitored CPU core prior to
calling this command. On Linux, this can easily be done using the sched_setaffinity() system call. A
typical sequence of code would be:

unsigned long mask;

pfarg _load _t load;

mask = 1UL << core _to _monitor;

ret = sched _setaffinity(getpid(), &mask, sizeof(mask));
if (ret) exit(1);

/* now running on the right core */

load.load _pid = gettid();

perfmonctl(fd, PFM _LOADCONTEXT, &load, 1);

Affinity is adjusted at the thread level not at the process level, hence the gettid() instead of the get-
pid() for NPTL-enabled Linux systems. The perfmon interface does not implicitly perform the affinity
operation. There can only be one system-wide context bound to a CPU core at a time.

An example is shown in figure 3.6 in a 4-way (4 CPU cores) machine. To simplify the figure, we
consider a single-threaded process but the same behavior would apply to a multi-threaded process. On
the left-hand side, the controlling thread can run on any of the 4 cores as indicated by the core _mask
which represents the set of allowed cores for the thread. In the middle of the figure, we see what
happens after the thread changed its CPU core affinity to run only on core3. The shaded processor
boxes indicate forbidden cores. Then, the PFM_LOAD_CONTEXT command is issued. The effect of the
command is shown on the right-hand side, where the context is now bound to core3.

Per-thread and System-wide contexts co-existence

There can be more than one per-thread contexts in the system. The interface allows one system-wide
context per CPU core. A context is said to exist on a CPU core when it is loaded. When it is unloaded,
it does not have access the PMU, therefore there is no resource sharing issue.

If a system-wide and a per-thread contexts were to exist at the same time, they would have to share the
PMU resource when the thread runs on the CPU core which is monitored. In theory, there is nothing to
prevent such thing from happening. In some cases, it would even make sense. For instance, imagine a
configuration with long running system-wide monitoring session, such as what happens with DCPI [2],
running as a background process and an application developer trying to collect performance data on a
program. It would certainly be nice to allow the two measurements to run at the same time. Yet there
are some difficulties in sharing the PMU. The two measurements may need the same PMU registers
and they may not start and stop at the same time.

The interface manages the system-wide and per-thread contexts totally independently from each other.
Therefore there no inherent barrier in allowing co-existence. There are too many PMU and operating
system constraints to assume sharing could be accomplished for every system. Thus, it is up to each
implementation to figure out if co-existence is possible and would be useful. However such determina-
tion must be done only when the context is attached not when it is created.

When co-existence is not possible, the interface currently enforces mutual exclusion. In that case, a
per-thread and system-wide contexts cannot exist at the same time. In the future, the interface will
provide a PMU preemption mechanism to allow better sharing of the PMU, see section 6.5.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 39

controlling process monitored process |controlling process monitored process child process
fd fd
user
kernel
e e fork()
file table — pfm_contex file table — pfm_contex
before fork() after fork()
Figure 3.7: monitored process and fork()
Behavior on fork()

When the monitored thread invokes the fork() system call, the context is not inherited by the initial
thread of the child process. The same is true during a vfork(). The behavior is depicted in figure 3.7.
If an application needs to monitor across fork(), it needs to detect the creation of the new process and
create a new context for each new thread associated with it. On Linux, the detection can be achieved
with the ptrace() system call. See section 3.1.1 for the file descriptor inheritance rules on fork().

Behavior on pthread_create()

When a monitored thread creates new threads with pthread_create(), the behavior depends on the type
of implementation of the thread package.

When threads are implemented as a user level library, the kernel has no visibility on the thread,
therefore the context is shared for all threads.

When threads are implemented using kernel threads, they can independently be identified by the
kernel and, hence, by the perfmon interface. A context can only be attached to a single thread at a
time. Hence, it is never inherited in the newly created thread. If a monitoring tool needs to monitor a
newly created thread, it needs to use another operating system interface to detect the creation of the
thread. Then it needs to create and attach the context to the new thread. On Linux, the detection can
be achieved with the ptrace() system call.

Behavior on exec()

When a monitored thread invokes the exec() system call, the context remains attached. If monitoring
was active, it remains active.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 40

Interaction with event sets

The set specified in load _set is loaded onto the PMU first. It can be any set from the list of defined
sets. This command verifies that the list of events and especially the link from one set to another
are sane, otherwise an error is returned. After this command returns, the list of event sets cannot be
modified until the context is detached.

When the set specified in the load _set field has the PFM_SETFL_.OVFL_SWITCH flag set, all counting
monitors designated as triggers have their switch overflow counter reset to the value specified in the
reg _ovflsw _thres field of their PMD register. Similarly, if the set has the PFM_SETFL_TIME_SWITCH
flags, set the timeout is reset to the value specified in the set _timeout field when the set was created
or last modified.

Return values

® (0: the command was successful.
® _1: there was an error. The value of errno can be any one of:

— ENOSYS : the perfmon subsystem is not compiled into the kernel

— EBADF : invalid file descriptor

— EPERM : the caller does not have permission to operate on the designated thread
— EINVAL : the designated event set does not exist

— EFAULT : an invalid address is passed. Most likely the pfarg _load _t argument is invalid
or the number of element is different from 1

— EBUSY : the command cannot be executed at this time. Some of the possible reasons are:

% the designated thread already has a context attached to it
% the current CPU already has a context bound to it

3.1.8 The PFM_UNLOAD_CONTEXT command

Description

The PFM_UNLOAD_CONTEXT command is used to detach a context from a thread. The state of the
actual PMU is saved into the software state. For this command, the invocation of perfmonctl() is as
follows:

perfmonctl(fd, PFM _UNLOADCONTEXT, NULL, 0);

The command applies to the context identified by fd. The descriptor must identify a valid context.
The command takes no argument therefore the third and fourth arguments are shown as NULL and O
respectively.

The context must already be attached for this command to succeed. Upon successful, return the context
is detached and the PMU state is saved. Any subsequent calls to PFM_READ_PMDS returns the values
that were in the PMU at the time the context was detached.

As part of the call, the context is stopped as if a PFM_STOP command had been issued. This avoids bad
surprises should the context be re-attached later.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 4 1

The notification message queue is not drained during this command, therefore pending messages can
still be extracted.

Once detached, a context can be re-attached to any thread or CPU core. The attach-detach cycle can
be repeated as many times as is necessary for the measurement.

For all non self-monitoring threads, some implementations may impose restrictions as to when this
command can be issued. In particular, there may be some restrictions on multi-processor machines to
ensure that the thread is actually stopped.

System-wide context

controlling process controlling process

fdo fdo
user

kernel core_mask core_mask

1]0[0]0] 1[0]0]0]

- -

before PFM_CONTEXT_UNLOAD after PFM_CONTEXT_UNLOAD

Figure 3.8: effect of the PFM_UNLOAD_CONTEXT command.

Upon successful return, a system-wide context is not bound to a CPU core anymore. As such another
system-wide context can now be bound to the same CPU core. To detach a system-wide context, the
calling thread must be running on the CPU core the context is bound to. This can easily be achieved
using the sched _setaffinity() system call or equivalent. The perfmon interface never changes the CPU
core affinity of the calling thread.

Once detached a system-wide context can be re-attached to any CPU core. In that case, the CPU core
affinity of the controlling thread must be adjusted accordingly.

Event set interactions

On unload, monitoring is implicitly stopped, therefore set switching is stopped as well. The interface
does not guarantee which will be the last active set a the time of unload.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 42

Return values

® (0: the command was successful.
® -1: there was an error. The value of errno can be any one of

- ENOSYS : the perfmon subsystem is not compiled into the kernel
- EBADF : invalid file descriptor

— EBUSY : the command cannot be executed at this time.

3.1.9 The PFM_RESTART command

Description

The PFM_RESTART command is used to inform the kernel that the caller is done processing an overflow
notification. For this command, the invocation of perfmonctl() is as follows:

perfmonctl(fd, PFM _RESTART, NULL, 0);

The command applies to the context identified by fd. The descriptor must identify a valid context.
The command takes no argument therefore the third and fourth arguments are shown as NULL and O
respectively.

The context must be attached for this command to succeed. The command is used to finish the overflow
notification procedure. As described in section 3.1.2, it is possible to setup a PMC register to send a
notification message when the associated counting PMD register overflows.

This basic mechanism can be used to implement user-level sampling. It is also used in conjunction
with kernel level sampling formats. In that case, the overflow notification is delivered when a certain
condition is reached. That condition is determined by the sampling format. For instance, with the
default sampling format the condition is that the buffer has become full.

Whether or not a sampling buffer is associated to the context, this command signals that the control-
ling thread is done processing the notification.

The interface mandates that there is one call to PFM_RESTART per overflow notification message re-
ceived. More than one message can be extracted in a single read() call, see section 3.3 for more details.

Behavior without a sampling buffer format

When no sampling buffer is used and there is an overflow, monitoring is masked. That means that no
events are actually collected in any PMD register. The term masked is used instead of stopped to avoid
confusion with the PFM_STOP command. It is up to each implementation to figure out how to implement
the masked state. However, each implementation must ensure that a PFM_START command is not
required to reactivate monitoring after a PFM_RESTART. Between the moment the overflow occurred
and the time the restart is issued the following conditions exist:

* no qualified events are actually collected

e if the PFM_FL_NOTIFY_BLOCK flag is set for the context and the monitored thread is not self-
monitoring, then it is blocked.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 43

The consequences of invoking the command are:

e each counting PMD register which overflowed is reloaded with a new value. This value, called
long reset value, is the content of the reg _long _reset field provided during the PFM_WRITE_PMDS
command. If randomization is requested a pseudo-random value is used. A non-overflowed PMD
register keeps its value unless it is designated in the bitvector reg _reset _pmds of an overflowed
counting PMD register. in which case, it is reset with its long reset value.

¢ if the monitored thread had been blocked with the PFM_FL_NOTIFY_BLOCK flag, it is awaken. The
interface does not guarantee that the monitored thread is actually running when the call returns.

* monitoring resumes. Qualified events are again collected once the monitored thread is scheduled
on a processor.

In the case of a non self-monitoring, per-thread, session, reloading of the overflowed PMD registers
and resuming of monitoring may not be completed by the time the command returns. For all others
types of session, the interface does guarantee both operations are indeed completed.

Behavior with a sampling buffer format

The use of this command with sampling buffer format can vary a lot depending on what the format
does. The following control points exists for a format:

* when to notify

¢ the need to mask monitoring on counter overflow

® blocking of the monitored thread

¢ the need for using PFM_RESTART

¢ which PMD registers must be reset before the notification is sent

* the need to reset overflowed PMD registers

Unlike the PFM_START, this command triggers a call-back into the sampling format. Refer to sec-
tion 3.5.15 for details about the call-back. The effects of the call-backs for the default sampling format
are presented in section 3.6. For other formats, please refer to the appropriate documentation.

In the case of a non self-monitoring, per-thread, session, and when the format requests reloading of
the overflowed PMD registers and resuming of monitoring, the interface does not guarantee that those
two operations are completed by the time the command returns. For all others types of session, the
interface does guarantee both operations are indeed completed.

Interactions with event sets

When the active set at the time of the notification is using time-based set switching, then switching is
stopped until the PFM_RESTART command is issued. That implies that the restarted set is the same as
the set that was active at the time of the notification.

When the active set at the time of the notification is using overflow-based set switching, switching
occurs if at least one of the overflowed PMD registers has reached its allowed number of overflows as
indicated by the reg _ovflsw _thres field.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 44

Return values

® 0: the command was successful.
e -1: there was an error. The value of errno can be any one of:

— ENOSYS : the perfmon subsystem is not compiled into the kernel
- EBADF : invalid file descriptor

— EBUSY : the command cannot be executed at this time.

3.1.10 The PFM_CREATE_EVTSETS command

Description

The PFM_CREATE_EVTSETS command is used to create or modify an event set. More than one event set
can be created or modified in one call. For this command, the invocation of perfmonctl() is as follows:

perfmonctl(fd, PFM _CREATEEVTSETS, setdesc, n);

The command applies to the context identified by fd. The descriptor must identify a valid context.
The third argument, setdesc, is a pointer to an array of structures of type pfarg _setdesc _t. The
fourth argument, n, indicates the number of elements in the array. It must be greater than 0. The
pfarg _setdesc _t structure is defined as follows:

typedef struct {
uintle _t set _id;
uintlé _t set _id _next;
uint32 _t set _flags;
struct timespec set _timeout;

} pfarg _setdesc _t;
The fields are defined as follows for this command:

e set .id : a unique number to identify the event set.

e set _id _next : the set to which to switch to, also called the explicit next. This field is ignored
unless the PFM_SETFL_EXPL_NEXT flag is set.

e set flags : aset of flags describing the properties of the event set. The flags are divided in two
categories: generic and platform specific. The latter category describes certain features which
are specific to either the host PMU or the host operating system. The bits which are not defined
are reserved and must be cleared. It is only possible to set bits that are defined. You need to refer
to the PMU model and/or operating system specific sections for more details. The following set of
generic flags are defined:

PFM_SETFL_EXCL_IDLE : the idle thread is not monitored. This flag is only valid for system-
wide sessions. It is ignored for per-thread sessions.

PFM_SETFL_OVFL_SWITCH: the set uses overflow-based switching.
PFM_SETFL_TIME_SWITCH: the set uses time-based switching.
PFM_SETFL_EXPL_NEXT: use the set _id _next as the next set to switch to from this one.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 45

* set _timeout : on input this field contains the requested timeout before switching to the next
set. Upon return, this field contains the effective timeout which is guaranteed to be greater or
equal to the requested timeout. This field is only used when the PFM_SETFL_TIME_SWITCH
flag is set. Otherwise, it is ignored.

When a context is created, a default event set, sef0 is systematically created. All other sets must be
explicitly created by the application.

If the set already exists, its properties are modified with the values provided in the pfarg _setdesc _t
structure. In all other cases, a new set is created. The initial set, set0, always exists, hence it can only
be modified by this command.

It is only possible to create event sets when the context is detached.

Event Sets can only be created or modified when the context is detached. Theoretically, the maximum
number of sets is 65536, including set0, however each implementation may impose other resources
limitations such as the amount of memory used by a thread.

Set identifications do not need to be contiguous, holes are supported. Sets are ordered in increasing
value of their set _id field. That order determines the default switching order. When it is time to
switch from a set, the next higher order set is used in a round-robin fashion. In other words, once the
last set in the list has been reached, the next set is the first in the list, i.e., set0. It is possible to modify
this behavior using the PFM_SETFL_.EXPL_NEXT flag. When this flag is set, the next set is indicated by
the set _id _next and not by the next set in the ordered list. This field must contain the identification
of a valid set once the context is attached. Hence it is possible to specify a set which has not yet
been created. The checking is deferred until the context is attached with the PFM_LOAD_CONTEXT
command.

Each event set can be in either no-switch, time-based or overflow-based switching mode. The initial
set, set0 is created such that there is no switching from the set.

The switching mode is determined on a per-set basis. For a given context some sets may be using
time-based switching while others are using overflow-based switching.

Time-based switching is expected to be driven off the timer tick, i.e., the lowest level timer, of the
operating system hence reaching a good granularity. Depending on the operating system and the
underlying hardware, it may not be possible to achieve the desired timeout granularity. In this case,
the effective timeout may be different from the requested timeout. The effective timeout is always
rounded up to the next multiple of the timer granularity. It is up to application to either accept
the effective timeout or adjust the requested timeout. In per-thread mode, the timeout only is active
only when the monitored thread is active, i.e., the timeout is not measuring wall-clock time. More
information about time-based switching is provided in section 3.7.6.

Interactions with custom sampling format
Some sampling formats may not support multiple event sets. This is not the case for the default
sampling format. In that case, they must set the PFM_FMTFL_NOSET flag in the pfm _buffer _fmt _t

structure. When this flag is set and the format is being used by the context, this command fails with
EINVAL when the set _id is different from O.

Security considerations

For security reasons or because of resource limitations, each implementation may limit the number of
elements that can be passed in the pfarg _setdesc _t array.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 46

Return values

® (0: the command was successful.
® -1: there was an error. The value of errno can be any one of?

— ENOSYS : the perfmon subsystem is not compiled into the kernel
- EINVAL : invalid arguments (see below for discussion)

- EFAULT : an invalid address is passed. Most likely the pfarg _setdesc _t array is invalid
or the number of elements is too big.

The EINVAL error code is returned when one of the pfarg _setdesc _t argument contains invalid infor-
mation. In the case where multiple sets are created in one call, it may be difficult to figure out which
element in the array caused the problem. However the interface includes a simple mechanism to help
identify the invalid element by using the set flags field. When EINVAL is returned, the caller may
want to scan the array of pfarg _setdesc _t elements using the following macro and definitions:

* PFMSET HASERROR(flags) : the flags parameter must be the value of the set flags field.
The macro returns non-zero if flags contains an error code. Otherwise, the value O is returned.

o PFM_SET_RETFL_EINVAL: if this flag is set in the set _flags field, it may be because the set is
already defined, or the set flags are invalid.

The command aborts at the first error therefore no further elements are processed beyond the invalid
element. Elements placed before the invalid element are guaranteed processed by the interface, i.e.,
there is no need to resubmit them. If no error is reported by the macro, then the reason for EINVAL is
different.

3.1.11 The PFM_DELETE_EVTSETS command

Description

The PFM_DELETE_EVTSETS command is used to delete an existing event set. More than one event set
can be deleted in one call. For this command, the invocation of perfmonctl() is as follows:

perfmonctl(fd, PFM _DELETEEVTSETS, setdesc, n);

The command applies to the context identified by fd. The descriptor must identify a valid context. The
third argument, setdesc, is a pointer to an array of structures of type pfarg _setdesc _t. The fourth
argument, n, indicates the number of elements in the array. It must be greater than O.

The pfarg _setdesc _t data structure, as used with the PFM_CREATE_EVTSETS command, is defined as
follows:

typedef struct {

uintlé _t set _id;
uintlé _t set _id _next;
uint32 _t set _flags;
struct timespec set _timeout;

} pfarg _setdesc _t;

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 47

The fields are defined as follows for this command:

e set .id : a unique number to identify the event set to delete.
e set _id _next : this field is ignored for this command.

e set flags : there are no input flags defined for this command. All but the return flag bits are
reserved.

return this field may contain additional error information.

* set _timeout :this field is ignored for this command.

The command can only be issued when the context is detached. It is not possible to delete set0 which
is automatically created by the PFM_CREATE_CONTEXT command. That implies that there is always at
least one event set defined for a context.

Removing event sets may break the chain used for switching. However, the sanity of the chain is only
verified when the context is attached with PFM_UNLOAD_CONTEXT.

Security considerations

For security reasons or because of resource limitations, each implementation may limit the number of
elements that can be passed in the pfarg _setdesc _t array.

Return values

® (: the command was successful.
® -1: there was an error. The value of errno can be any one of:

- ENOSYS : the perfmon subsystem is not compiled into the kernel
- EINVAL : invalid arguments (see below for discussion)

- EFAULT : an invalid address is passed. Most likely the pfarg _setdesc _t array is invalid
or the number of elements is too big.

The EINVAL error code is returned when one of the pfarg _setdesc _t argument contains invalid infor-
mation. In the case where multiple sets are deleted in one call, it may be difficult to figure out which
element in the array caused the problem. However the interface includes a simple mechanism to help
identify the invalid element by using the set flags field. When EINVAL is returned, the caller may
want to scan the array of pfarg _setdesc _t elements using the following macro and definitions:

* PFMSET.HASERROR(flags) : the flags parameter must be the value of the set _flags field.
The macro returns non-zero if flags contains an error code. Otherwise the value O is returned.
e PFM_SET_RETFL_NOSET: if this flag is set in the set _flags field, the specified set does not exist.
The command aborts at the first error therefore no further elements are processed beyond the invalid
element. Elements placed before the invalid element are guaranteed processed by the interface, i.e.,

there is no need to resubmit them. If no error is reported by the macro, then the reason for EINVAL is
different.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 48

3.1.12 The PFM_GETINFO_EVTSETS command

Description

The PFM_GETINFO_EVTSETS command is used to retrieve information about event sets. Information on
more than one event set can be retrieved in one call. For this command, the invocation of perfmonctl()
is as follows:

perfmonctl(fd, PFM _GETINFQEVTSETS, setinfo, n);

The command applies to the context identified by fd. The descriptor must identify a valid context. The
third argument, setinfo, is a pointer to an array of structures of type pfarg _setinfo _t. The fourth
argument, n, indicates the number of elements in the array. It must be greater than O.

The pfarg _setinfo _t data structure is defined as follows:

typedef struct {

uintlé _t set _id;

uintlé _t set _id _next;

uint32 _t set _flags;

uinté4 _t set _switch _pmds[PFM_MAXPMDBITVECTOR];
uinté4 _t set _runs;

struct timespec set _timeout;

struct timespec set _act _duration;

} pfarg _setinfo _t;
The fields are defined as follows for this command:

* set _id : a unique number to identify the event set.

e set flags : on input, there are no flags defined for this command. All but the return flag bits
are reserved. Upon successful return, this field contains the flag values that were passed when
the set was created or last modified. Details about the flags are given in section 3.1.10. In case of
error, extra information is also contained in this field.

e set _switch _pmds: this field is ignored on input. Upon successful return and if the set is using
overflow-based switching, this bitvector contains the last overflowed PMD registers which caused
a switch from this set. When time-based switching is used, this vector is all zeroes.

® set runs : on input, this field is ignored. Upon successful return, this field contains the number
of times the set was the active set. This is a cumulative count since the context was created. It is
not reset when the context is attached via PFM_LOAD_CONTEXT.

e set _timeout : on input, this field is ignored. Upon successful return, this field contains the
remainder of the effective timeout. If the set is using overflow-based switching, this field is all
zeroes.

® set _act _duration : on input, this field is ignored. Upon successful return, this field contains

the cumulative time duration the set was the active set.

The bitvector set _switch _pmds is systematically reset when the context is attached to a thread to
avoid reporting stale information. Hence issuing the command just after a PFM_LOAD_CONTEXT com-
mand yields an all-zero bitvector.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 49

The set _runs fields may be used to scale the accumulated values of the PMD registers. This field
can return a value of O if the set was never designated as the first set with PFM_LOAD_CONTEXT or
PFM_START and it was never switched to. In the case of PFM_LOAD_CONTEXT, the number of runs is
incremented even though monitoring may never be activated via PFM_START. In the case, the set is the
active set and the next set happens to be itself, the number of runs is also incremented. This situation
arises when the set is the only set defined and switching is selected or when the set has an explicit next
pointing to itself.

The set _active _duration returns the period of time the set was the active set for the context. Only
the periods of time for which monitoring is active are accounted for. That means the periods between
a PFM_START and PFM_STOP or PFM_UNLOAD_CONTEXT. The periods of time monitoring is masked
following an overflow are not included. The reported time is cumulative since the set was created.
The only way to reset, is to delete the set and recreate it. It is the responsibility of the application to
maintain a past value to derive a time delta.

The command can be issued at any time including when the context is attached to a thread. However,
for all non-self monitoring per-thread context, the interface does not guarantee that set _act _duration
is accurate unless the context is detached.

Security considerations

For security reasons or because of resource limitations, each implementation may limit the number of
elements that can be passed in the pfarg _setinfo _t array.

Return values

® 0: the command was successful.
e -1: there was an error. The value of errno can be any one of:

— ENOSYS : the perfmon subsystem is not compiled into the kernel
- EINVAL : invalid arguments (see below for discussion)

- EFAULT : an invalid address is passed. Most likely the pfarg _setdesc _t array is invalid
or the number of elements is too big.

The EINVAL error code is returned when one of the pfarg _setdesc _t argument contains invalid infor-
mation. In the case where the information for multiple sets is retrieved in one call, it may be difficult
to figure out which element in the array caused the problem. However the interface includes a sim-
ple mechanism to help identify the invalid element by using the set flags field. When EINVAL is
returned, the caller may want to scan the array of pfarg _setdesc _t elements using the following
macro and definitions:

e PFMSET HASERROR(flags) : the flags parameter must be the value of the set flags field.
The macro returns non-zero if flags contains an error code. Otherwise, the value O is returned.
e PFM_SET_RETFL_NOSET: if this flag is set in the set _flags field, the specified set does not exist.
The command aborts at the first error therefore no further elements are processed beyond the invalid
element. Elements placed before the invalid element are guaranteed processed by the interface, i.e.,

there is no need to resubmit them. If no error is reported by the macro, then the reason for EINVAL is
different.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 50

3.1.13 The PFM_GETINFO_PMCS command

Description

The PFM_GETINFO_PMCS command can be used at any time to retrieve the information about imple-
mented PMC registers. For this command, the invocation of perfmoncti() is as follows:

perfmonctl(0, PFM _GETINFOPMCS, pmcs, n);

There is no need to have a context to access this command, therefore the first argument is ignored.
The third argument, pmcs, is a pointer to an array of structures of type pfarg _pmcinfo _t. The fourth
argument, n, indicates the number of elements in the array. It must be greater than O.

The pfarg _pmcinfo _t structure is defined as follows:

typedef struct {
uintlé _t reg _num;
uintle _t reg _type;
uint32 _t reg _flags;

uinté4 _t reg _def _value;
uinté4 _t reg _rsvd _mask;
size _t reg _index;

} pfarg _pmcinfo _t;
The pfarg _pmcinfo _t structure is defined as follows:

* reg _num: the PMC register index.

e reg _def value : ignored on input. Upon successful return, this field contains the default value
of the PMC register. The value is highly specific to the host PMU. When the width of the actual
register is less than 64 bits, the value is zero-extended.

e reg flags : there are no input flags defined for this command. All but the return flag bits are
reserved.

® reg _rsvd _mask : ignored on input. Upon successful return, this field contains a bitmask indicat-
ing the reserved bits in the actual register. When a bit is set in the mask, the corresponding bit
in the PMC register is reserved. When the width of the actual register is less than 64 bits, the
value is ero-extended.

® reg _type : ignored on input. Upon successful return, this field indicates the type of the actual
hardware register. On all PMU models, each PMC registers maps to a particular hardware reg-
ister. The following types are defined:

- PFM_REG_TYPE_PMC : the register maps to a Peformance Monitoring Configuration (PMC)
register on the actual PMU. This is the case for Itanium® 2, for instance.

- PFM_REG_TYPE_MSR: the register maps to a Machine Specific Register (MSR) on the actual
PMU. This is the case for a Pentium 4, for instance.

- PFM_REG_TYPE_SPR: the register maps to a Special Purpose Register (SPR) on the actual
PMU. This is the case for a PowerPC, for instance.

- PFM_REG_TYPE_IBR: the register maps to an Instruction Breakpoint Register (IBR) on the
actual PMU. This is the case for a Itanium® and Itanium® 2, for instance.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 5 1

— PFM_REG_TYPE_DBR: the register maps to a Data Breakpoint Register (DBR) on the actual
PMU. This is the case for a Itanium® and Itanium® 2, for instance.

- PFM_REG_TYPE_PMD: the register maps to a Performance Monitoring Data (PMD) register
on the actual PMU. This constant is mostly used for PMD registers.

* reg _index :ignored on input. Upon successful return, this field indicates the index or address of
the actual hardware register corresponding to the PMC. When the actual register is completely
described by its name, this field contains the special value PFM_REG_IDX_NONE.

It is important to note that this is not because an application can retrieve the default value of a PMC
register that this register can actually be programmed. Depending upon the PMU model, some PMC
registers may be reserved for kernel use only.

The reg _rsvd _mask field is used to retrieve which bits in the PMC register are reserved. Reserved bits
must retain their default value as returned by reg _def _value . An implementation must preserve all
reserved bits as follows:

final _value = (value & ~reg rsvd _mask) | (reg _dfl _value & reg _rsvd _mask)
The masking operation may be done silently during the PFM_WRITE_PMCS command, i.e., no error may
be returned if the value passed by the application has modified reserved fields.

The command can be used to figure out which actual hardware register corresponds to a PMC regis-
ter. The mapping is dictated by the implementation and is unique for each PMC register. Refer to
section 3.2 for more details on register mappings.

The reg _index data type is chosen to accommodate platforms where the index is in fact some address
or offset in a large space.

The interface guarantees that the register type and index always corresponds to the actual hardware
registers and not some PMU-specific logical name. Using the type and index, it must be possible to
craft the assembly instruction(s) to read or write the register.

Extensibility of types and indexes

As new PMU models are developed with new register names, the list of types can easily be extended
without backward compatibility problems.

When the PMU uses non-indexed registers, dedicated types must be created.
Security considerations

For security reasons or because of resource limitations, each implementation may limit the number of
elements that can be passed in the pfarg _pmcinfo _t array.

Return values

¢ 0: the command was successful.

e -1: there was an error. The value of errno can be any one of:

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 52

— ENOSYS : the perfmon subsystem is not compiled into the kernel
- EINVAL : invalid arguments (see below for discussion)

— EFAULT : an invalid address is passed. Most likely the pfarg _pmcinfo _t array is invalid
or the number of elements is too big.

The EINVAL error code is returned when one of the requested PMC register is unimplemented by the
host PMU. In the case where multiple PMC registers are requested in one call, it may be difficult
to figure out which element in the array caused the problem. However the interface includes a sim-
ple mechanism to help identify the invalid element by using the reg flags field. When EINVAL is
returned, the caller may want to scan the array of pfarg _pmcinfo _t elements using the following
macro and definitions:

* PFMREGHASERROR(flags) : the flags parameter must be the value of the reg flags field.
The macro returns non-zero if flags contain an error code. Otherwise, the value O is returned.

o PFM_REG_RETFL_EINVAL: if this flag is set in the reg _flags then the value for the corresponding
PMC is invalid

The command aborts at the first error therefore no further elements are processed beyond the invalid
element. Elements placed before the invalid element are guaranteed processed by the interface, i.e.,
there is no need to resubmit them. If no error is reported by the macro, then the reason for EINVAL is
different.

3.1.14 The PFM_GETINFO_PMDS command
Description

The PFM_GETINFO_PMDS command can be used at any time to retrieve the information about imple-
mented PMD registers. For this command, the invocation of perfmonctl() is as follows:

perfmonctl(0, PFM _GETINFQPMDS, pmds, n);

There is no need to have a context to access this command, therefore the first argument is ignored.
The third argument, pmds, is a pointer to an array of structures of type pfarg _pmdinfo _t. The fourth
argument, n, indicates the number of elements in the array. It must be greater than O.

The pfarg _pmdinfo _t structure is defined as follows:

typedef struct {

uintlé _t reg _num;
uintlé _t reg _type;
uint32 _t reg _flags;
uinté4 _t reg _def _value;
uinté4 _t reg _rsvd _mask;
size _t reg _index;

} pfarg _pmdinfo _t;
The pfarg _pmdinfo _t structure is defined as follows:

¢ reg _-num: the PMD register index.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 53

* reg _def _value : ignored on input. Upon successful return, this field contains the default value
of the PMD register. The value is generally O but some depends on the host PMU. When the width
of the actual register is less than 64 bits, the value is zero-extended.

e reg flags : there are no input flags defined for this command. All but the return flag bits are
reserved.

® reg rsvd _mask : ignored on input. Upon successful return, this field contains a bitmask indicat-
ing the reserved bits in the actual register. When a bit is set in the mask, the corresponding bit
in the PMD register is reserved. When the width of the actual register is less than 64 bits, the
value is zero-extended.

® reg _type : ignored on input. Upon successful return, this field indicates the type of the actual
hardware register. On all PMU models, each PMD registers maps to a particular hardware
register. The supported types are listed in section 3.1.13.

* reg _index :ignored on input. Upon successful return, this field indicate the index of the actual
hardware register corresponding to the PMD. When the actual register is completely described
by its name, this field contains the special value PFM_REG_IDX_NONE.

It is important to note that this is not because an application can retrieve the default value of a PMD
register that this register can actually be programmed. Depending on the PMU model, some PMD
registers may be reserved for kernel use only.

The reg _rsvd _mask field is used to retrieve which bits in the PMC register are reserved. Reserved bits
must retain the value they have in the default value returned in reg _def value . An implementation
must preserve all reserved bits as follows:

final _value = (value & ~reg rsvd _mask) | (reg _dfl _value & reg _rsvd _mask)
The masking operation may be done silently during the PFM_WRITE_PMDS command, i.e., no error may
be returned if the value passed by the application has modified reserved fields.

The command can be used to figure out which actual hardware register corresponds to a PMD regis-
ter. The mapping is dictated by the implementation and is unique for each PMD register. Refer to
section 3.2 for more details on register mappings.

The reg _index data type is chosen to accommodate platforms where the index is in fact some address
or offset in a large space.

The interface guarantees that the register type and index always corresponds to the actual hardware
registers and not some PMU-specific logical name. Using the type and index, it must be possible to
craft the assembly instruction(s) to read or write the register.

Extensibility of types and indexes

As new PMU models are developed with new register names, the list of types can easily be extended
without backward compatibility problems.

When the PMU uses non-indexed registers, dedicated types must be created.

Security considerations

For security reasons or because of resource limitations, each implementation may limit the number of
elements that can be passed in the pfarg _pmdinfo _t array.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 54

Return values

® (: the command was successful.
® -1: there was an error. The value of errno can be any one of:

- ENOSYS : the perfmon subsystem is not compiled into the kernel
- EINVAL : invalid arguments (see below for discussion)

- EFAULT : an invalid address is passed. Most likely the pfarg _pmdinfo _t array is invalid
or the number of elements is too big.

The EINVAL error code is returned when one of the requested PMD register is unimplemented by the
host PMU. In the case where multiple PMD registers are requested in one call, it may be difficult
to figure out which element in the array caused the problem. However the interface includes a sim-
ple mechanism to help identify the invalid element by using the reg _flags field. When EINVAL is
returned, the caller may want to scan the array of pfarg _pmdinfo _t elements using the following
macro and definitions:

* PFMREGHASERROR(flags) : the flags parameter must be the value of the reg _flags field.
The macro returns non-zero if flags contain an error code. Otherwise, the value O is returned.

* PFM_REG_RETFL_EINVAL: if this flag is set in the reg flags then the value for the corresponding
PMD is invalid

The command aborts at the first error therefore no further elements are processed beyond the invalid
element. Elements placed before the invalid element are guaranteed processed by the interface, i.e.,
there is no need to resubmit them. If no error is reported by the macro, then the reason for EINVAL is

different.
p2
m

3.1.15 Destroying a context with close()

P1 fork()

user

fd
kernel k

]]

file table pfm_contéx file table file table pfm_contéx file table

before close() after close() by P1

Figure 3.9: effect of close() on a shared detached context.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 5 5

fork()

P1 P2 P1 P2
fd fd fd
user
kernel \
file table — pfm_conteXxt file table file table pfm_context file table
before close() after close() by P2
Figure 3.10: effect of close() on a shared attached context.
P1 P2 P1 P2
fd
user
kernel U
ﬁm Zombie

file table — pfm_context

before close()

file table pfm_context

after close() by P1

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P

Figure 3.11: effect of close() on an attached context.

56

There is no specific perfmonctl() command to destroy a context. Instead the interface leverages the fact
that a context is uniquely identified by a file descriptor. To destroy a context, the following system call
is used:

close(fd);

The command applies to the context identified by fd. The descriptor must identify a valid context.
Because the kernel automatically closes all open files on exiz(), be it a voluntary exit or because the
program was killed, a context is guaranteed to be destroyed at some point in time.

To destroy a context, two basic operations are necessary. First the context must be detached if at-
tached to a thread or CPU core, and second it must be effectively destroyed, i.e., the resources must
be freed. Depending on the number of remaining controlling processes and the state of the context,
both operations may not necessarily be performed during close(). However, the interface guarantees
that a controlling process loses access to the context after the call and that when eventually no more
controlling processes exist and the context is detached, the context will be physically destroyed.

It is important to understand the difference between being a controlling thread and having a context
attached to a thread or CPU core. A thread may have a context attached to it, yet this does not give it
access to the context, i.e., it is not a controlling thread. Only threads with access to the file descriptor
of the context are controlling threads. This aspect of a context is relevant to close(), because only a
controlling thread can issue a close().

Except for self-monitoring sessions, this means that if a context is attached to another thread it must
somehow be detached during the call or as a consequence of it. It is up to the implementation to decide
what to do in this situation. The interface guarantees that eventually the context will be destroyed.

Example with a shared context

Figure 3.9 shows a configuration where two processes, P1 and P2, both single-threaded processes,
share access to the same detached context. When a controlling thread in P1 closes the file descrip-
tor, the context is not actually destroyed because P2 still has its file descriptor open, i.e., remains a
controlling process.

Figure 3.10 shows a similar situation, with two processes, P1 and P2, both single-threaded processes,
sharing access to the same context. However, P2 also has the context attached, i.e., is self-monitoring.
When that the single thread in P2 invokes close(), the context is unloaded and the file descriptor is
closed. P2 efectively loses access to the context, however, the context remains, process P1 remains.
Eventually when P1 terminates the context is actually destroyed.

When the last controlling thread invokes close() and the context is attached to another thread, the
interface does not guarantee that the context will be unloaded and destroyed upon return. However
the interface guarantees that eventually both operations will happen. As such it is possible to have
a situation where a context is not controlled by any threads but it is still attached. In this case, the
context is said to be zombie. Implementation must ensure that as soon as possible the context will be
destroyed by the monitored thread.

Example with an attached context

Figure 3.11 shows a configuration with two processes, P1 and P2, both single-threaded. P1 is the con-
trolling process and the context is attached to P2. When a thread in P1 invokes close(), P1 loses access

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 5 7

to the context. Yet the interface does not guarantee that the context is necessarily detached and de-
stroyed as is shown on the left-hand side of the figure. However, there is the guarantee that eventually
the context will disappear. This configuration leaves the possibility of having zombie contexts in the
system. They remain zombie until the monitored thread detects the condition and cleans up or possibly
next time an application tries to attach a context to P2. Implementation may chose to effectively force
the destruction of the context during the call, instead of dealing with zombies.

Effects on the sampling buffer

Refer to section 3.4 for a description of what happens to the sampling buffer on close().

Return values

® 0: the command was successful.

e -1: there was an error. The error code is in errno . Refer to the manual of close() for a description
of the possible errno values.

3.1.16 The PFM_SET_CONFIG command

The PFM_SET_CONFIG command can be used at any time by a system administrator to setup global
properties of the perfmon interface. For this command, the invocation of perfmonctl() is as follows:

perfmonctl(0, PFM _SET.CONFIG, config, 1);
There is no need to have a context to access this command, therefore the first argument is ignored. The

third argument, config, is a pointer to a structure of type pfarg _config _t. Only one such structure
can be passed at a time, therefore the fourth argument must be 1.

The pfarg _config _t structure is defined as follows:

typedef struct {

uint32 _t cf _version;

uint32 _t cf _flags;

uinté4 _t cf _impl _pmcs[PFM_MAXPMCBITVECTORY];
uint64 _t cf _impl _pmds[PFM_MAXPMDBITVECTOR];
gid t cf _sys _gid;

gid _t cf _thread _gid;

size _t cf _arg _size _max;

size _t cf _smpl _buf _size _max;

uintle _t cf _counter _width;

} pfarg _config _t;
The fields are defined as follows:

e cf _version : this field is ignored for this command.

e cf flags : a set of flags to enable or disable certain perfmon features. The flags are divided into
two groups: command and PMU-specific flags. At this point, no common flags are defined.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 58

e cf _impl _pmcs : this field is ignored for this command.
e cf .impl _pmds: this field is ignored for this command.

e cf sys _gid : the identification of the group of users allowed to create system-wide contexts. By
default, any user from any group can create such a context. To restore the default value, the
special value PFM_GROUP_ANY must be passed.

e cf thread _gid : the identification of the group of users allowed to create per-thread contexts.
By default, any user from any group can create such a context. To restore the default value, the
special value PFM_GROUP_ANY must be passed.

e cf _arg _size _max: the maximum size in bytes for the vector arguments of the perfmonctl() sys-
tem call. By default, the limit is set to the default page size of the operating system. The limit
cannot be smaller than the smallest page size.

e cf _smpl _buf _size _max: the maximum size in bytes that can be allocated for all the sampling
buffers existing in the system at any one time. The limit cannot be smaller than the smallest
page size.

e cf _counter _width : this field is ignored for this command.

This command can be issued at any time. However, only the most privileged user is allowed to make
the call. On a UNIX system, that would normally correspond to the root user. The effects of the
command are not retroactive.

It is the responsibility of the system administrator to decide which users are part of the groups. This
command does not check the validity of the group identifications. The group checking are performed
when the PFM_CREATE_CONTEXT command is issued and are based on the group identification of the
calling thread. By default, there is no group restrictions.

The maximum size for the vector arguments protects against potential abuses which could lead to
large consumption of system memory. By default, the limit is set to the default size of a page. The
limit cannot be smaller than the smallest page size to ensure that, at least, a vector with only one
element can be passed for any command. On operating systems supporting variable page sizes, the
limit must be set to the smallest page size.

The maximum size for sampling buffer protects against potential abuses which could lead to large con-
sumption of system memory. Depending on the sampling format used the buffer may not be allocated
through the custom sampling format interface, in which case this limit is not relevant. By default,
the interface does not impose a limit because it is very hard to evaluate as it applies to all sampling
buffers in the system at any one time. The value depends on factors which can only be determined at
runtime such as the amount of memory installed in the system, for instance. It is advised that each
implementation adjust the limit at boot time.

Linux implementation

On a Linux system, the interface to access perfmon configuration could also be implemented using a
sysctl or sysfs interface. But the command-style interface must be preserved to ensure portability
across operating systems.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 59

Return values

® 0: the command was successful.
e -1: there was an error. The value of errno can be any one of:

— ENOSYS : the perfmon subsystem is not compiled into the kernel

— EFAULT : an invalid address is passed, most likely pfarg _config _t is invalid or the num-
ber of elements is different from 1.

— EPERM : the caller does not have the permission to issue the command.

3.1.17 The PFM_GET_CONFIG command

The PFM_GET_CONFIG command can be used to retrieve the current settings for the global properties
of the perfmon interface. For this command, the invocation of perfmonctl() is as follows:

perfmonctl(0, PFM _GET.CONFIG, config, 1);

There is no need to have a context to access this command, therefore the first argument is ignored. The
third argument, config, is a pointer to a structure of type pfarg _config _t. Only one such structure
can be passed at a time, therefore the fourth argument must be 1.

The pfarg _config _t is the same as the one used for the PFM_SET_CONFIG command. It is defined as
follows:

typedef struct {

uint32 _t cf _version;

uint32 _t cf _flags;

uinté4 _t cf _impl _pmcs[PFM_MAXPMCBITVECTORY];
uint64 _t cf _impl _pmds[PFM_MAXPMDBITVECTOR];
gid _t cf _sys _gid;

gid _t cf _thread _gid;

size _t cf _arg _size _max;

size _t cf _smpl _buf _size _max;

uintle _t cf _counter _width;

} pfarg _config _t;
The fields are used as follows:

e cf _version : contains the version number for the implementation. The version is decomposed
into a major and minor numbers. Each number occupies one half of the 32-bit field, i.e., 16-bit
each. The following macros are defined to access the two numbers:

- PFMVERSIONMAJOR(m): extract the major number from the version field value in m
— PFMVERSIONMINOR(m) : extract the minor number from the version field value in m
e cf flags :ignored on input. Upon successful return, this field contains a set of flags describing

certain perfmon features. The flags are divided into two groups: command and PMU-specific
flags. At this point, no common flags are defined.

e cf _impl _pmcs : ignored on input. Upon successful return, this field contains a bitvector where
each bit set indicates an implemented PMC register.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 60

e cf _.impl _pmds : ignored on input. Upon successful return, this field contains a bitvector where
each bit set indicates an implemented PMD register.

e cf sys _gid : ignored on input. Upon successful return, this field contains the identification of
the group of users allowed to create system-wide contexts. The value is PFM_GROUP_ANY when
any group of user is allowed to create this type of context.

e cf _thread _gid : ignored on input. Upon successful return, this field contains the identification
of the group of users allowed to create per-thread contexts. The value is PFM_GROUP_ANY when
any group is allowed to create this type of context.

e cf _arg _size _max: ignored on input. Upon successful return, this field contains the maximum
size in bytes for the vector arguments of the perfmonctl() system call.

e cf smpl _buf _size _max: ignored on input. Upon successful return, this field contains the maxi-
mum size in bytes that can be allocated by all sampling buffers existing at any one time.

e cf _counter _width : ignored on input. Upon successful return, this field contains the bit width
of the actual hardware counters.

This command can be issued at any time. Unlike, PFM_SET_CONFIG any user can invoke the command
to query the current configuration.

Linux implementation

On a Linux system, the interface to access perfmon configuration could also be implemented using a
sysctl or sysfs interface. But the command-style interface must be preserved to ensure portability
across operating systems.

Bitvector sizes

The PFM_MAX_PMC_BITVECTOR constant is defined like its equivalent for the PMD registers as de-
scribed in section 3.1.2:

#define PFM _MAXPMCBITVECTOR (((PFM_MAXPMCS+64-1)/64)

The constant PFM_MAX_PMCS represents the maximum number of PMC registers that are accessible
to an application. Holes in the PMC name space are supported and the value of this constant takes it
into account, i.e., the actual number of PMC registers may be less than PFM_MAX_PMCS.

Return values

® (: the command was successful.
e -1: there was an error. The value of errno can be any one of:

— ENOSYS : the perfmon subsystem is not compiled into the kernel

— EFAULT : an invalid address is passed, most likely pfarg _config _t is invalid or the num-
ber of elements is different from 1.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 6 1

3.2 PMU register mappings

The perfmon interfaces exposes only a logical view of the PMU registers to applications. Internally,
the logical PMC and PMD registers are mapped onto the actual PMU registers or potentially other
software resources. This provides a uniform interface across all platforms which simplifies the devel-
opment of application and increase the potential for code reuse.

3.2.1 Logical versus actual PMU registers

PMCS PMDS
of1l2]3]

perfmon view
(logical view)

actual view

I ERENER
0x300 |0x360 0x3A0|0x3B0

MSRS MSRS
IBRS MSRS

Figure 3.12: logical vs. hardware view of the PMU registers

The logical vs. hardware view is shown in figure 3.12. Any perfmon-based application must pass PMU
setup in terms of PMC and PMD registers. The figure shows an hypothetical PMU with 4 logical
PMC and 4 logical PMD registers. the bottom of the figure shows the actual registers and how they
are mapped onto by the logical registers. Both PMCO and PMC1 map to MSR registers with a given
address or index. But both PMC2 and PMC3 map to a distinct group of registers, here some debug
registers IBRO and IBR1. The figure shows all PMD registers mapping onto MSR registers. The logical
PMC and PMD register name space is not necessarily contiguous, holes are supported. Sometimes they
may make it easier for the mapping. For this PMU, a PFM_WRITE_LPMCS command on PMCO0 eventually
modifies the MSR at address 0x300 . Using a PFM_READ_PMDS command for PMD2, reads the value
of the MSR at address 0x3A0.

When the actual PMU is using a PMC and PMD based naming scheme, then the mapping may be as
simple as a one to one mapping. This is the case for the Itanium Processor Family PMU, for instance.

3.2.2 Extending to virtual PMD registers

Using the mapping scheme, it is possible to create virtual PMD registers which would map onto oper-
ating system or other processor resources. For instance, one could envision that a virtual PMD register
could indicate the amount of free physical memory in the system. By associating a PMD name to such
a resource, it becomes possible to include it into profiles using the existing perfmon infrastructure,
such as PFM_WRITE_.PMCS and the reg _smpl _pmds field.

The perfmon interface does not define a default set of virtual PMD registers because this set may vary
depending on the operating system, the type of processor and the host PMU. Enforcing a specific index
in the PMD name space across all platforms may make it difficult to come up with a good mapping
for actual PMD registers. As such, the definition of miscellaneous virtual PMD register is left to each
implementation.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 62

Certain virtual PMD registers may not be written.

3.2.3 Access to mappings

The perfmon implementation is the authority which dictates the mapping from logical to actual regis-
ter. Each read of write operation needs to eventually touch the actual register and hence need to know
the actual register name and possibly index. As such the mapping has to exist inside the kernel.

For applications, it may be necessary to know the mapping used by the implementation. This is useful
if the application relies upon a helper library to figure out the event to PMU configuration register
assignment and the library uses its own names for the PMU registers.

The interface provides commands to extract the mappings for both PMC and PMD registers and they

are:

e PEM_GETINFO_PMCS: see section 3.1.13
e PFM_GETINFO_PMDS: see section 3.1.14

Using the mappings from figure 3.12, a call to PFM_GET_PMCS_INFO for PMC1 would return that
reg _type is equal to PFM_REG_TYPE_MSR and that the reg _index is equal to 0x360 .

3.2.4 Mapping to the logical view

Any perfmon application must use the logical view to program the PMU via PFM_WRITE_.PMCS and
PFM_WRITE_PMDS. The interface does not know anything about PMU events, their encodings and how
they are assigned to various PMU configuration registers. This work is left to user level code and is
typically provided by a helper library which determines the values and assignment of PMC registers
given a set of events to measure. The interface does not provide such library.

helper library

assignment

ELAPSED_CYCLES MSR,0x300
- 0x122456

MSR —> perfmon
mapping table

PFM_WRITE_PMCS(PMCO, 0x122456);

0x300 | PMC,0

Figure 3.13: example of mapping back to perfmon logical view

Two possible situations exist:

1. the library is directly using the logical names of the perfmon interface. In other words, the library
knows about perfmon.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 63

2. the library uses its own naming scheme which is different from that of the perfmon interface.

In the first case, the value assignment can directly be passed to the PFM_WRITE_PMCS command. In
the second case however, some name translation is needed. That translation is likely table-driven. The
information for the perfmon mapping can easily be extracted using the two commands mentioned in the
previous section. The mappings returned by the commands is guaranteed to correspond to the actual
registers. We show an example of such translation in figure 3.13. The application wants to measure
the ELAPSED_CYCLES event. The helper library returns the valid assignment which uses the MSR at
address 0x300 . A translation table built from the information returned by PFM_GETINFO_PMCS is
then used to figure the PCM register that corresponds to the MSR, in this case PMCO0. Then PMCO is
programmed using the PFM_WRITE_LPMCS command. Of course, the table may also be hardcoded in the
application instead of being dynamically generated.

3.3 Event notifications

An application can receive a notification when any of the following events occur:

® a counter overflows

e a monitored thread terminates

In this section we describe the event notification interface and the termination message. The counter
overflow notification is described in section 3.4 as it is associated with sampling.

3.3.1 The message queue

A notification is sent using a message. Each message is appended to the message queue of the context.
There is only one message queue per context. The queue is accessed using the file descriptor identifying
the context.

The messages are managed in a first-in, first-out (FIFO) manner therefore a new message is always
appended at the end of the queue. The queue is managed as a stream of messages.

When using a sampling buffer format, it is the responsibility of the format the indicate the size of the
message queue it needs to operate correctly. Without a sampling buffer format, the message queue is
still necessary and it is guaranteed to accommodate at least one message at a time.

The size of the actual queue is never exposed to user level applications.

3.3.2 The message structure

A message consists of a contiguous set of bytes in the message queue.

Different type of messages are defined, as such each message must be uniquely identified by its zype.
Therefore all messages always begin with a type field followed by an optional payload. The interface
defines a message structure as a union of all messages:

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 64

typedef union {

uint32 _t msg _type;
pfm_ovfl _msgt pfm _ovfl _msg;
} pfm_msg.t;

The following types of message are defined:

e PFM_MSG_OVFL: overflow notification message. It is associated with the pfm _ovfl _msgt struc-
ture.

e PFM_MSG_END : termination message. It is not associated with any particular message type.

A message must, first, be identified by its type using the msg type field in the pfm_msg.t union. Then,
based on the type, an application can further decode the message using the structure that corresponds
to the message type, if any. Some messages do not have dedicated structure because all the information
they carry is provided by the type field.

3.3.3 Extracting messages

All messages are extracted via the read() system call using the file descriptor identifying the context.
Message must be extracted one at a time, i.e., one pfm_msgt structure for each call. A typical sequence
would be as follows:

pfmon _msg-t msg;

ret = read(fd, &msg, sizeof(msg));

if (ret != sizeof(msg)) {
perror(“cannot extract message");

}

switch(msg.msg _type) {
case PFM_OVFLMSG:
break;
case PFM_ENDMSG: // does not have a body
break;
default:
printf("unknown message type %d \n", msg.msg _type);

In the default case, an application would simply consume the message just to discard it.

Messages are extracted from the head of the queue. Once a message is read from the queue, it is
removed from the queue. It is not possible to skip bytes in the queue, i.e., Iseek() is not supported.

No partial message is ever appended to the queue, as such messages are always guaranteed to be
complete.

The behavior of read() is such that only full messages can be extracted. in other words, the size of the
read must always be a multiple of the message size as returned by the sizeof(pfm _msg.t) function.
Based on the size of the read(), the following behavior is observed:

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 65

e if size is not a multiple of the message size : the read fails and return EINVAL.

e if size is a multiple of the message size : at least one full message is returned when available.
When the number of bytes in the queue is smaller than the size of the read request, the caller blocks
unless non-blocking mode is enabled via the appropriate fcntl() call on the file descriptor.

The return value of read() is the number of bytes read or -1 with errno indicating the reason for the
error. Refer to the man page of the read() system call for more details on the possible return values.

head tail
Y
msg_1 msg_2 msg_3
\/
read_buffer read_len = 1*sizeof(pfm_msg_t)
head tail
Y
msg_2 msg_3
state of the queue after read()

Figure 3.14: Extracting a single notification message
Figure 3.14 shows an example with a read() for one message. By the time of the read(), the queue

contains 3 messages. The read request extracts the first message and copies it into the read buffer.
After the call, only two messages are left in the queue.

3.3.4 Size of the message queue

The size of the queue is an internal parameter that is not needed by user level applications. They
simply see a continuous stream of messages.

3.3.5 Message queue reset

The message queue is reset, each time the context is attached,i.e., all unconsumed messages are
deleted. This is necessary to avoid stale overflows or termination messages especially in the case
where the context is re-attached to a different thread.

3.3.6 Termination notifications

It is possible to attach a context to a thread of a process that is not a direct child of the controlling
process. In that scenario, the termination of the monitored process does not translate into a SIGCHLD
sent to the controlling process. Yet getting such notification is important to complete the monitoring

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 66

work. Although it is always possible to implement a polling mechanism or attach to the thread using
a ptrace() call or equivalent, it is not necessarily very efficient to do so. For this reason, the interface
provides a termination notification.

It is not possible to suppress the termination message.

Termination guarantee

The notification indicates that the monitored thread exited. This could be because the entire process
exited or simply because that thread terminated. The termination could be explicit such as through
an exit() or implicit because of an unrecoverable error. The message applies only non self-monitoring
threads. It is never generated for a system-wide context.

By the time, the message is received, the interface guarantees that the PMU state of the monitored
thread has been entirely saved and the context is detached.

Termination message

There is no specific termination message body because all the information is carried by the type and
also by the file descriptor. The thread can easily be identified using the file descriptor because a context
can only be attached to one thread at a time.

Termination notification example

controlling process parent process __ child process | controlling process parent process child process

— — SIGCHLD

file table pfm_context file table

attached to thread PEM_END_MSG | process terminates

Figure 3.15: The PFM_END_MSG message.

We are considering a situation where all processes are single-threaded to simplify our description.
Figure 3.15 shows a situation where a tool attaches a context to a thread in a process which is not
related to the controlling process.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 6 7

On the left of the figure the process in the middle is not related to the controlling process but it is the
parent of the process to monitor.

On the right side of the figure, when the monitored process exits, it sends a SIGCHLD to its parent
process and becomes zombie. The signal goes to the parent and not the controlling process. As part
of the exit procedure of the thread, the state of the PMU is saved in the context. The context is then
detached from the thread and a PFM_END_MSG is appended to the message queue. The controlling
process can detect the termination by checking the queue with a read() system call.

Termination message during fork() and exec()

The message is only sent when the monitored thread does not have access to the file descriptor identi-
fying the context, otherwise, the kernel believes it is a controlling thread that is self-monitoring.

File descriptors are cloned during fork() (see figure 3.2) and, by default, they are also inherited across
exec(). When a monitored thread does a fork() followed by exec(), the thread in the newly created
process has access to the file descriptor but it is not monitored. In this case, no termination message
is sent because the interface assumes the new thread is a controlling thread. It is possible to alter this
behavior by either explicitly closing the descriptor after fork() or by setting up the close-on-exec flag on
the descriptor (FD_CLOEXEC) via fentl() system call.

3.3.7 Asynchronous notifications

The read() system call is the only way to extract messages from the queue. The regular semantics
of read() apply with the restrictions we have described in section 3.3.3. Non-blocking reads are also
supported.

Under certain circumstances, it may be beneficial to receive notifications in an asynchronous manner,
especially for self-monitoring threads. Here again, the regular mechanisms used on file descriptors are
supported. In particular, it is possible to request that a signal be sent when a message is appended to
the message queue. The default signal is SIGIO, however it may be possible to change it. This may be
needed when the controlling thread already uses SIGIO for another purpose. On Linux, for instance,
it is possible to change the asynchronous notification signal with the F_SETSIG command of the fentl()
system call. In any case, the setup follows the regular procedure to request asynchronous notification
on a file descriptor. On Linux, for instance, the caller must use the fentl() system call to:

e request that the file be put in asynchronous notification mode using the O_ASYNC flag.
¢ request ownership of the descriptor using the F_SETOWN command.

By default, the signal does not carry enough information to figure out which descriptor triggered it. In
the case where a process controls multiple contexts at the same time, some polling may be required
once the signal is received. Some operating systems may provide ways to include the file descriptor in
the siginfo structure passed to the signal handler. For instance, on Linux, it is possible to get the file
descriptor as the side effect of the F_SETSIG command of the fentl() system call.

Each implementation must guarantee that the notification message is always appended to the message
queue before the signal is sent. This ensures that the notified application can always read the message
right after receiving the signal.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 68

Interaction with the PFM_FL_.OVFL.NO_MSG

When the PFM_FL_.OVFL.NO_MSG is set for the context, no overflow message is generated. However
asynchronous notifications with a signal is maintained. The idea is that the signal by itself carries
enough information for the application to figure out what to do.

Even though no message is received, a call to the PFM_RESTART command is necessary to indicate that
the processing of the notification is complete.

3.3.8 Waiting on multiple contexts

controlling process processl process2 process3
fd3 fd2 fd1
user
kernel
=
file table

Figure 3.16: monitoring multiple threads.

By construction, it is possible for a single thread to control multiple contexts at the same time. An
example of such setup is shown in figure 3.16. In that case the thread may have to wait for notifications
coming from multiple contexts at the same time, i.e., multiple file descriptors.

The interface fully supports the select() and poll() interfaces to wait on multiple file descriptors at the
same time.

For select(), the file descriptor for the context must appear in the read set. For poll(), the requested
event must be POLLIN.

3.3.9 Extensibility of the notification interface

The ability to extend the notification to new types of messages is very important as new needs may
surface in the future. It is important to ensure that the new messages can be added without breaking
the existing applications at both source and binary levels. Obviously, the space for message type if
very large, up to 4 billion. As such, messages without a body part are very easy to add. When a body is
needed, it must fit within the size of the existing union structure to avoid breaking compatibility. The
size of the union is determined by the size of its largest member. The largest member of the pfm _msg.t

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 69

union is the pfm_ovfl _msgt structure. This structure is fairly large even when excluding the header.
On Linux/ia64, it is currently set to 48 bytes.

The design choice of using a union implies some limitations on the extensibility of the interface. In
particular, all messages must fit within a predetermined size. On the other hand, it makes it very
simple and efficient to extract messages. A single call to read() if sufficient. The other alternative
would be to view the queue as a continuous stream of bytes which could be extracted in any chunk
size, i.e., like for a TCP socket. But in this case, it would be necessary to split the extraction into
two calls to read(): one to read the type and then one to read the body. A length field in the header
would also be necessary to allow skipping of unknown messages. The union approach could appear as
wasting space in the queue because each message is as big as it largest member. But the performance
impact is negligible because the largest member, i.e., the overflow notification message, is expected to
be, by far, the most frequently generated message.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 70

3.4 Support for sampling

Sampling is a technique commonly used by monitoring tools to collect profiles. There exist different
types of sampling but they are all based on the same principle. At some interval record information
about the state of the execution of a program. The information is stored in memory into a data struc-
ture called sample. Samples are collected into a sampling buffer. What is recorded can be diverse, such
as where the program is (IP), how many caches misses, how much free memory and so on. When the
interval is expressed as a unit of time, the tool is said to be using Time-Based Sampling (TBS). But
it can also be expressed as a number of occurrences of an event, in which case the tool is said to use
Event-Based Sampling (EBS). A good example of a tool using sampling is gprof . This tool produces an
execution profile of a program as well as the call graph. The PMU is not used by this tool. The profile
is collected using time-based sampling (TBS). Each sample contains the instruction pointer (IP) which
determines where the program is at a specific time. The final profile shows where the time is spent
using a per-function breakdown.The approach is based on the fact that if a program spends a lot of
time in a particular function, this is either because the function is called a lot or because the function
is slow to execute.

Time-based sampling using the PMU requires the following mechanisms:

¢ the ability to arm a timeout
¢ the ability to be notified when the timeout expires
¢ the ability to read certain counters at the end of the interval

e optionally, the ability to stop monitoring when the timeout expires. This could be useful to avoid
measuring the monitoring tool itself. In that case the ability to restart monitoring is required.

The perfmon interface supports time-based sampling without any specific commands. By combin-
ing the basic perfmonctl() commands with a simple timeout system call such as the nanosleep() or
setitimer(), it is possible to build a time-based sampling tool.

In contrast, event-based sampling using the PMU requires the following mechanisms:

* the ability to express a sampling period as a number of occurrences of an event
* the ability to load a counter with a sampling period

* the ability for the PMU to detect when a counter reaches a specific value

¢ the ability to receive a notification when a counter overflows

¢ the ability to read certain counters at the end of the interval

® optionally, the ability to stop monitoring on overflow. This could be useful to avoid measuring the
overhead of the monitoring tool. In that case the ability to restart monitoring is required.

Most modern PMU can be configured to generate an interrupt when a counter overflows. This mech-
anism is key to implementing event-based sampling. Perfmon supports event-based sampling by pro-
viding notification on overflow, multiple sampling periods, kernel level sampling buffer, randomization
of sampling periods, stop/restart on overflow. It is important to note that perfmon allows event-based
sampling to be implemented entirely at the user level or partially in the kernel for better performance.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 7 1

32 bits 32 bits

reg_value| FFFFFFFF | fffe795e | = ~O - 100000 -1
sweMD | FFFFFFFF 0 | hwemp | FFfe795e
32 bits 32 bits 32 bits

Figure 3.17: 64-bit counter emulation and sampling period.

3.4.1 Setting sampling periods

For event-based sampling, a sampling period is expressed as a number of occurrences of an event.
For instance, a program could record a sample every time 100,000 instructions have been retired.
Programming a PMD register with the value 0 and waiting until the counter reaches 100,000 does
not work because PMUs typically do not have a mechanism to detect that a counter has reached a
user-specified threshold. However, most modern PMUs do have a mechanism to detect when a counter
overflows, i.e., when it wraps around to 0. A 32-bit counter overflows when its value goes from 2°? — 1
back to 0. In other words, there is an implicit threshold set to the oWidth where width represents
the number of bits implemented by the hardware counter. When the counter reaches the threshold, an
interrupt can be generated. The kernel catches the interrupt and eventually notifies the monitoring
tool. Using this mechanism, a sampling period is expressed as an offset from the maximum value of
the counter.

The interface exports all counters as 64-bit counters no matter what the underlying PMU implements.
When the hardware does not implement 64-bit counters, the perfmon implementation must emulate,
see section 3.1.3. From the point of view of a monitoring tool, counters are always 64 bits. Therefore a
sampling period p is always expressed as

pmd.value =2 —p=~0-p—-1=—p

For our example, it means that the value of the counter must be —100000 which expressed in hexadec-
imal is Oxfffffffffffe795e . In figure 3.17, we show how the sampling period is used during a call
to PFM_WRITE_PMDS to setup the counter when the host PMU only implements 32-bit counters.

Although periods are expressed as the number of occurrences of an event, it is possible to emulate
time-based sampling using an event with a high correlation to time such as the number of elapsed
cycles which many PMUs offer. In fact, such an event usually provides a much finer granularity for
the time interval than a regular kernel timeout function.

The interface provides three sampling periods per counter. All three periods must be programmed
using the PFM_WRITE_PMDS command. They are defined as follows:
® the current period is specified in the reg _value field. It represents the current sampling period.

When the context is detached, this is actually the initial sampling period to be used.

* the short period is specified in the reg _short _reset field. It represents the sampling period to
reload into the PMD register after an overflow which does not trigger a user-level notification.

* the long period is specified in the reg _long _reset field. It represents the sampling period to
reload into the PMD register during a PFM_RESTART command.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 72

It is important to realize that the interface does not have implicit knowledge of what a sampling
period is. It treats all PMD register values as opaque, subject to some PMU specific limitations. As
such, there is no limit on the number of sampling periods supported by the interface, it is only limited
by the number of counting PMD registers which can generate an interrupt on overflow. This allows
multiple distinct sampling measurements to be run in parallel, assuming there are enough counters.

program prologue program main execution ‘ program epilogue ‘
initial smpl period smpl period smpl period smpl period smpl period

Figure 3.18: initial sampling period.

When a context is detached, the current period actually represents the value to load into the PMD
register when the context is eventually attached, i.e., it represents the first sampling period. This
value is used only in that case. If the value is later modified while the context is attached, then the
current sampling period is changed. This mechanism can be useful if samples should not be captured
when the context is attached. The rationale behind this is that typically a tool launches the program
it wants to monitor but it is not really interested in sampling the initialization part of the execution.
Therefore it is often interesting to specify a large initial period to skip over the initialization and then
fall back to a smaller value during the bulk of the execution. This is shown in figure 3.18, where the
initial period is skipping over all the prologue, then a different sampling period is used throughout
the rest of the execution. This can be the long or short reset periods depending on how sampling is
managed. A sampling period is always expressed as a number of occurrences of an event, so it is
expected that monitoring tools will use an estimate for the initial sampling period, unless a perfect
value can be determined.

The short period is only used in conjunction with kernel level sampling buffers and is subject to the
behavior of the sampling format (see section 3.5). In general the short period is used after an overflow
which does not require a user level notification, i.e., the kernel treated the overflow and execution
resumes right away.

The long period is used to reset the overflowed PMD registers during the PFM_RESTART command.
Some variations may exist depending on the sampling format behavior. In any case, the controlling
thread has been notified of the overflow. Such notification is expected to require more time than sim-
ply processing the overflow in the kernel and resuming execution. Moreover, because the controlling
thread is involved, some perturbations at the system and micro-architecture levels are expected. For
instance, it is likely that the Translation Look-aside Buffer (TLB) and caches will be polluted with
data and code coming from the controlling thread. The interface allows the monitored thread to keep
on running during the notification. The motivation behind this is to keep the caches and TLB some-
what warm. Of course, on single processor systems, the perturbation is likely to be greater than on
SMP systems where both threads do not necessarily run on the same processor. In any case, once
monitoring resumes, it is likely that the monitored thread will not immediately return to its normal
execution pattern. Caches and TLB will need to be reloaded. We call this execution period after moni-
toring is resumed the recovery period. During this period, and depending on the types of events being
measured, it may be important not to capture samples because they would not necessarily reflect the
true behavior of the thread. By using the long and short reset periods smartly, it is possible to account
for the recovery period by simply choosing a long period that is larger than the short period. The ad-
justment is highly dependent on the processor architecture, the operating system, the event used for
the sampling period and the overall system (SMP vs. UP). There is no magic settings and experiments

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 73

program executes program executes

) monitoring active monitoring masked monitoring active
program executes *
short period short period long period short period
overflow processing recovery period
program executes o program executes
i monitoring active monitoring masked monitoring active
program blocked *
short period short period long period short period
overflow processing recovery period

Figure 3.19: long vs. short sampling period.

are required, however a mechanism is offered. In cases where the perturbations can be ignored, a tool
can revert to a single sampling period by setting the short and long periods to the same value.

The interface does not impose any minimum nor maximum value for any sampling periods. It is always
up to the user to determine the right combination.

Figure 3.19 shows how the long and short period are used with the default sampling format. As long
as the sampling buffer is not full, the short period is used to reset the overflowed PMD register. When
the buffer becomes full, monitoring is masked and a notification is sent to the controlling thread. In
the example shown at the top of the figure, the monitored thread runs while the notification is being
processed, whereas in the bottom example, it is blocked. In either case, when monitoring is resumed,
via PFM_RESTART, the long period is used once to skip over the recovery period, then the short period is
used.

3.4.2 Randomization of sampling periods

The interface allows randomization for each sampling period. Why is that important? Event-based
sampling is a statistical approach based on the idea that by taking only a few samples, one can deter-
mine the overall behavior of an application. Sampling is not tracing: not all instructions are captured.
To be meaningful, sampling must be done such that:

¢ enough samples are collected to be representative of the execution (quantity factor)

* samples are taken at different moments/locations in the execution (quality factor)

For both factors, there is no magic answer. It all depends on the type of measurement and the work-
load. In general, programs tend to spend most of their time executing their main-loop. Samples are
collected only at certain points during the execution, is it important to ensure that those points are
representative of the execution. Using a fixed sampling period may easily lead to biased results. We
give on example in figure 3.20, where the program enters a loop. The sampling event is E. The top of
the figure shows what happens without randomization. We have exaggerated the sampling period by

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 74

code loop

IP1 IP% IP3 IPE& IP5 IPé

without randomization

code loop

E E E E e [E

iteration 1 to iteration 2
IP1 P2 |P§ IP4 |P§ IP6
1 4
iteration 2 to iteration 3

IP% IP% IP3 P4 IP5 IP%

with randomization

Figure 3.20: biased results without randomization.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 75

setting it to 2: every two E events, we take a sample. Each sample includes the instruction pointer IPx .
The loop actually contains six occurrences of event E. Supposing we enter the loop with no observed
events. we collect samples at IP2 , IP4 , and IP6 at the first iteration. Then execution loops back and
we capture exactly the same sequence of samples. The bias is easily visible here because none of the E
events occurring at IP1, IP3 , nor IP5 show up. The reason is that the sampling period is in lockstep
with the number of events in the loop. The period is 2 and we have 6 occurrences in the loop and
they perfectly align. Although this is an artificial example, this kind of behavior can be observed very
frequently, especially when the sampling event is one that happens very frequently in programs such
as a branch-related event. To avoid the problem, the sampling period must change to ensure that all
events get a chance to be captured. The bottom of the figure shows what happens for the first two
iterations when we randomize the period and allow variations from 1 to 4. The first iteration captures
IP3 and IP5. But the second captures IP1, IP2, and IP6 . In two iterations we get a more accurate
view of what is going in the loop than what will be captured without randomization.

Characteristics of the pseudo-random number generator

Randomization is obtained by using a pseudo-random number generator. Such generator is widely
available on all platforms. In fact, the standard C library provides the rand() and random() interfaces.
The generator does not need to be fancy, it does not even need to be generating 64-bit pseudo-random
values, 32-bit values are enough because you never want to vary the period by very much. A simple
generator such as the one describe in [1] is sufficient.

The series of numbers must be completely determined by the seed value. The interface guarantees that
if the same seed is re-used, then the same series of numbers is produced, assuming the implementation
of the generator has not changed. This is important to be able to reproduce the same pseudo-random
sampling intervals, should this be necessary.

How to setup randomization

Randomization can be achieved without kernel support when sampling is done at the user level. The
tool gets a notification that a counter has overflowed. Next, It generates a pseudo-random number
using an interface such as the random() function defined in the standard C library. Then, it invokes
PFM_WRITE_PMDS on the overflowed PMD register and passes the new value in reg _long _reset . Fi-
nally it invokes the PFM_RESTART command which resets the overflowed PMD using the long reset
value.

For efficiency reason as we shall see shortly, the interface supports sampling at the kernel level. As
such, it includes support for randomization. Each implementation must include a kernel-level pseudo-
random number generator. Randomization can be setup per counting PMD register. Randomization is
ignored on non counting PMD registers. Randomization is activated when the PFM_REGFL_.RANDOM
flag is used on the controlling PMC register. A per PMD register seed value can be passed as well. The
seed, in reg _random _seed field, fully determines the series of pseudo-random numbers. A bitmask, in
reg random _mask field, is also be passed to limit the range of variation on the pseudo-random value.

How does randomization work?

Randomization is applied each time a PMD register is reset. This can happen as a consequence of a
PFM_RESTART, i.e., during long reset. When a kernel level sampling buffer is used, and depending on
the sampling format, a PMD register can be reset immediately after overflowing, i.e., during a short
reset.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 76

The seed and mask apply to both the short and long reset. The new value is determined as follows:

new_value = base + (random_value & mask)

Where base is the value of either reg _short _reset orreg _long reset depending on the type of reset.
We give an example in figure 3.4. The new value, called reset value, is saved and can be retrieved using
the PFM_READ_PMDS command. The value appears in the reg _last _reset field. Depending on when
the read command is issued it may be different from the current value of the PMD register.

3.4.3 Counter Overflow notifications

When a counter overflows, it is possible to receive a notification. The notification is never automatic
and must be requested by specifying the PFM_REGFL_OVFL_NOTIFY flag on the controlling PMC register.
When the flag is not set, the counter simply wraps around on overflow. Therefore it will not overflow
again until it reaches 254, which is a very very long time!

There is one notification per overflow event. In case of simultaneous overflows by multiple counters,
only one notification is generated.

The overflow notification uses the message interface described in section 3.3.

The overflow message
The overflow message is defined as follows:

typedef struct {

uint32 _t msg _type;

uintlé _t msg _active _set;

uinté4 _t msg _ovfl _pmds[PFM_MAXPMDBITVECTOR];
} pfm_ovfl _msg.t;

The pfm _ovfl _msgt structure fields are used as follows:

e msg.type : setto PFM_MSG_OVFL

* msg.active _set : the identifier for the event set that was active at the time of the overflow.
Given that only one set can be active at a time.

e msgovfl _pmds: a bitvector indicating which PMD registers overflowed.

The bitvector contains all the information needed to figure out which counters overflowed. More than
one bit can be set in case of simultaneous overflows by multiple PMD registers.

Effect of the notification

When no sampling format is used, monitoring is masked after an overflow. This means that no quali-
fied event is collected. Monitoring remains masked even after the overflow message has been read. To
resume monitoring, it is necessary to invoke the PFM_RESTART command. When a sampling format is
used, the overflow notification behavior may be different. Refer to the specific documentation for sam-
pling format specific behavior on notifications. For the default sampling format, refer to section 3.6.5.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 7 7

Current issue

The interface assumes that the tool is well behaved and does a at least one read() for each PFM_RESTART.
Otherwise the queue fills up. One solution would be to tag the restart to associate it when an overflow
message. The restart always refers to the topmost overflow message in the queue.

Suppressing the overflow notification message

For some cases of self-monitoring contexts, it may be enough to receive an asynchronous notification
via a signal and the overflow message is useless. This is the case when only one counter can overflow,
for instance. Because messages are not discarded automatically on PFM_RESTART, they can fill up the
queue and cause problem when not properly drained. To minimize the overhead involved with reading
the message just to discard it, the interface provides the PFM_OVFL_.NO_MSG flag which can be set
as a context flag. When this flag is set, no overflow notification message is sent. To be notified the
controlling thread must request asynchronous notification via a SIGIO signal. The thread, then, gets
the signal but no message is placed in the message queue, therefore no read() system call is needed.

Restarting monitoring after a notification

When no sampling format is used, monitoring is masked on overflow notification. For a non self-
monitoring context with the PFM_FL_NOTIFY_BLOCK flag set, the monitored thread is blocked as a
result of the overflow. To resume monitoring, it is necessary to call the PFM_RESTART command. When
a monitored thread was blocked, it is unblocked by the call. When a sampling format is used, the
behavior depends on the format.

This behavior applies to both per-thread and system-wide contexts. For the latter type of context, the
PFM_FL_NOTIFY _BLOCK flag is not supported therefore no thread is ever blocked as a consequence of a
notification.

3.5 Support for kernel level sampling formats

Using the overflow notification mechanism, it is possible to implement sampling completely at the
application level. On notification, a tool would simply read some PMD registers, save their values into
a memory buffer and restart monitoring. This works well but there can be some important overhead
especially when the sampling periods are small, i.e. with a high frequency. For the most part, the
overhead is generated by the notification to the tool which involves at least two context switches for
a non self-monitoring thread. Depending on the type of events measured, the overhead may cause
serious problems on the final results.

In order to reduce the overhead, the interface supports kernel level sampling buffers. Instead of calling
the application for each overflow, the kernel records the information into a kernel level buffer and only
calls the tool when the buffer is full. In other words, the buffer acts as an overflow cache by recording
samples on behalf of the tool. When the buffer is full, the overflow notification is sent to the tool
which then processes the buffer. Eventually the tool invokes the PFM_RESTART to resume monitoring
and reset the buffer. The idea is to amortize the cost of calling the tool by notifying only when many
samples are available. To export the buffer in a efficient manner, the interface allows the application to
re-map it into its the user-level address. This way, accessing the samples from the tool is very efficient
and does not involve large data copying between the kernel and the tool.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 78

user user user
kernel I kernel kernel
overflow handler overflow hangler - . overflow handler
perfmon core | | custom fmt perfmon core | | custom fmt perfmon core | | custom fmt
no buffer, need callback only private buffer and export interface | use allocation & remapping services

Figure 3.21: possible scenarios for a sampling format.

The difficulty with the kernel level sampling buffer is that the kernel records information on behalf
of the tool. But there can be a variety of tools, not all tools need the same information and certainly
not always in the same format. For instance, some tools want to keep the sequential ordering of the
collected samples, others want to aggregate identical samples. Some tools want to record information
that is not coming from the PMU itself, such as the amount of free memory or the number of active
processes, the current thread identifier and so on.

In the introduction, we insisted on the fact that the interface must be flexible to support a variety of
monitoring tools, yet it must be efficient. Using a kernel level sampling buffer is a way of making the
interface efficient, the problem is to leave enough flexibility for tools to describe what they want to
record in each sample. As we have seen in the description of the commands, it is possible to specify the
set of PMD registers to record when a counter overflows. There is also a way to associate an overflow
with a unique event identifier (see reg _smpl _eventid). Those are just basic mechanisms to pass
information to the function in charge of implementing the policy, i.e. what to record and how. It is
very unlikely that we can come up with a universal interface that would suit all needs without being
prohibitively complicated. Moreover we want to ensure that existing monitoring tools can be ported
without too much effort.

The solution we chose is to decouple the policy from the basic mechanisms by using custom sampling
buffer formats. A format is responsible for recording the information needed on counter overflow. It
controls what is recorded and how it is recorded. A format may be implemented using a dynamically
loadable kernel module (DKLM). Such facility is available on most modern operating systems. The
format, then, hooks up with the core perfmon subsystem. At context creation, a tool indicates which
format it needs. The tool has implicit knowledge of what the particular format does.

Each format contains a set of call-backs which are invoked by the perfmon core on specific events.
In particular, there is a mandatory call-back handler for counter overflow. The handler can record
whatever information it needs into whatever format it wants. Conversely there is also a kernel-level
perfmon interface which formats can call when they need to access perfmon core information, such as
the current 64-bit value of a PMD register.

The buffer allocation and re-mapping services are not part of formats, they are part of the perfmon
core. A format may choose to use the services. A format may choose to export the information it
records using another dedicated interface, such as a device driver-style interface.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 79

o] T 1

kernel user interface user interface

S >

8 3
5 £
£ g
= £

perfmon g » = | custom sampling
core S £ format

(o) RS
= S
g— S
O |g¢ > g
n [7l o

Figure 3.22: custom sampling format interfaces.

There are several scenarios possible and they are depicted in figure 3.21. On the left, this is a case
where the format does not use a buffer. It may simply be counting certain things. The information
is exported via a private interface which may be following a device driver model, for instance. The
scenario in the middle depicts a format which allocates its own buffer and exports it via a private
interface. This could be used to port existing sampling drivers such as OProfile for instance. On the
right, we have a format which uses the buffer allocation and re-mapping services of the perfmon core.

The interface includes a default sampling format to provide a basic sampling support. The format can
also be used as an example to develop other formats. The default format is guaranteed to be present
on all implementations. We present its characteristics in section 3.6.

3.5.1 Custom sampling format interfaces
There are three distinct perfmon interfaces to deal with custom sampling formats:

® the user level interface describes how a user-level tool indicates the format it needs, how to pass
parameters to a format

* the kernel level interface describes how a format hooks up with the perfmon core

* the format-specific user interface describes how the format interacts with regards to overflow
notifications, restarts, how the format exports the collected information

The three interfaces are depicted in figure 3.22. In the following sections, we describe each interface.

3.5.2 Identification of sampling formats

A tool needs to identify each format in a unique fashion, yet we want to encourage new formats to
be written without having to go through a centralized registration service which would allocate some
unique identifier to each one. Instead, we use 128-bit Universal Unique Identifier (UUID) for each
format. This naming scheme is similar to the GUID identifiers used by the Extensible Firmware

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 80

Interface (EFI). A UUID can easily be generated using a tool such as uuidgen which does not require
any centralized authority. This tool generates a UUID from a shell as follows:

$ uuidgen
24aab4dd-2144-4c1f-80c0-62c2e17d3744

To avoid byte-ordering problems, the interface uses the following type definition for a UUID:
typedef unsigned char pfm _uuid _t[16];

The UUID generated by uuidgen can easily be mapped onto this data type. For our example, we would
build the UUID as follows:

#define TEST _UUID { 0x24, Oxaa, Oxb4, Oxdd,
0x21, 0x44, 0x4c, Oxif,
0x90, 0Oxc0, 0x62, 0xc2,
Oxel, 0x7d, 0x37, 0x44 }

To use a format, a tool must provide the UUID of the format when the context is created. The UUID
must be stored in the ctx _smpl _uuid field. It is expected that such UUID is available in the header
file describing the format which is necessarily included by the tool.

Each implementation must provide a way for a user level application to figure out the list of available
formats. The access should not require any special privileges, i.e., should not require to be root .
For instance, on Linux, this could be implemented via a /proc interface or /sys interface. For each
format, the UUID and logical name must be listed.

3.5.3 Passing arguments to a sampling format
There are two ways to pass parameters to a format:

e parameters affecting all contexts can be passed when the module is inserted into the kernel ,i.e.,
command line arguments. On Linux, this can be done with the insmod command.

¢ parameters affecting a particular context must be passed when the context is created.

The global parameters are unlikely to be widely used and the way values are passed is highly depen-
dent on the implementation. We do not recommend using this type of parameters except for debug
purposes.

The context-specific argument can be used to set parameters specific to a measurement. For instance,
if the format uses the perfmon buffer allocation service, it may let the user specify the size of the buffer.
The size would then be a parameter available to the tool when the context is created.

Because parameters can vary widely in numbers and nature, it is not possible for the interface to
provide generic parameters. Module specific parameters can be passed on a per context basis with
the PFM_CONTEXT_CREATE command. The parameters are expected to be encapsulated into a data
structure which is appended to the pfarg _ctx _t structure. There is no need for a specific pointer to
the parameters in that structure. If a format uses parameters then they must be provided during the
call. For instance, if a format uses the following parameters:

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 8 1

monitoring tool monitoring tool
fd
user user
kernel kernel
sampling buffer \\ “sampling buffer
file table pfm_context file table pfm_context
after PFM_CREATE_CONTEXT after mmap()

Figure 3.23: mapping the sampling buffer with mmap().

typedef struct {
size _t buffer _size;
} format _param _t;

Then the following data structure must be passed to PFM_CONTEXT_CREATE:

typedef struct {
pfarg _ctx _t ctx;
format _param_t param;
} my.context _arg _t;

Each implementation must ensure proper alignment for the pfarg _ctx _t structure such that the first
byte of the format specific structure immediately follows, i.e., no padding is necessary. As such, it
is advised that the structure be defined such that its size be at least a multiple of 8 bytes. While
this scheme is not necessarily ideal, we believe it makes it easier on the implementation compared to
having an opaque pointer in the pfarg _ctx _t structure.

The size of the format-specific structure is checked against the argument size limit set which is indi-
cated in the cf _arg _size _max of the PFM_SET_CONFIG command. See section 3.1.16 for more details.

3.5.4 Accessing the sampling buffer

When the buffer allocation and re mapping services are used by the format, the sampling buffer is not
directly accessible upon return from the PFM_CONTEXT_CREATE command. An explicit call to mmap()
is necessary to re-map the buffer into the user level address space of the controlling process. Without
the mmap() call the buffer exists and samples are stored into it but they remain totally unaccessible

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 82

from the user level. As seen in section 3.3 the read() system call is used to extract event notifications
and cannot be used to access the sampling buffer.

Re-mapping the sampling buffer with mmap()

An application can access the sampling buffer by explicitly mapping it into its user level address space
using the mmap() system call. A typical code sequence to re-map the buffer would be as follows:

pfarg _ctx _t ctx;

int fd, ret;
size _t size;
ret = perfmonctl(0, PFM _CREATECONTEXT, &ctx, 1);

if (ret) exit(1);

fd = ctx.ctx fd;

size = ctx.ct _smpl _buf _size;

vaddr = mmap(NULL, size, PROT _READ, MARSHARED, fd, 0);
if (vaddr == (void *)-1) exit(1);

Because of the nature of the sampling buffer, special constraints are imposed on the mmap() call. the
following constraints exist:

the buffer is always exported as read-only. As such only PROT_READ is valid. Any write access
must be flagged by the virtual memory subsystem and may result in the termination of the
controlling process.

the buffer has a fixed size, as such the size of the mapping is predetermined and must be as
reported in the ctx _smpl _buf _size field returned by the PFM_CREATE_CONTEXT command.

the buffer can only be mapped once inside a process.
there cannot be a non zero offset.

not all flags and protections combinations are supported. In particular the following are not
supported:

- MAP_WRITE, MAP_PRIVATE, MAP_EXECUTABLE, MAP_LOCKED, MAP_GROWSDOWN
- PROT_EXEC, PROT_WRITE, PROT_NONE

The effect of the mmap() call in shown in figure 3.23.

When the allocation and re-mapping services are not used, either there is no access to the buffer which
is stupid or most likely the access is specific to the format. Please refer to the proper format document
for further details.

In the case of the default sampling format, see section 3.6, the allocation and re-mapping services are

used.

the sampling buffer

It is possible to use munmap() to remove the buffer virtual mapping in the user level address space of
a controlling process. The call unmaps all or parts of the buffer but the physical buffer remains intact,
i.e., the physical mapping is never affected by this call. This is shown in figure 3.24. The physical
buffer, without a virtual mapping, survives as long as the context exists.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 83

monitoring tool monitoring tool

user user

<
N
kernel : " kernel
N

‘sampling buffer sampling buffer

file table pfm_context file table pfm_context

after mmap() after munmap()

Figure 3.24: effect of munmap() on the sampling buffer.

Behavior on fork()
The re-mapping is inherited in child processes via fork(). Figure 3.25 shows what happens after a fork()
when the parent has a buffer re-mapped. The buffer is exported read-only, therefore this is no risk of

copy-on-write. The physical buffer is fully shared between the two processes. This can be used by the
parent process to delegate the processing of the buffer to the child process, for instance.

Behavior on pthread_create()

By definition, all threads inside a process shared the same address space, therefore they can all access
the buffer at the same address. The physical buffer is obviously identical.

Behavior on exec()

By definition of exec(), the virtual address space is completely reloaded, therefore the virtual mapping
of the buffer is removed but the physical buffer remains but is unaccessible. The context and associated
resources are destroyed on exec() if the file descriptor is setup to close on exec(), via the fentl() system
call.

Behavior on close()

When a controlling thread invokes the close() system call, the mapping of the buffer is removed from
the address space of the controlling process, no matter how many threads exist. This implies that

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 84

monitoring tool monitoring tool fOI’k() child process

user

kernel

sampling buffer “sampling buffer’

file table pfm_context file table pfm_context file table

before fork() after fork()

Figure 3.25: buffer re-mapping and fork().

some coordination between threads is necessary in order to avoid race conditions when more than one
thread is accessing the buffer.

The physical buffer remains until the last controlling thread closes the file descriptor. Note that con-
trolling threads may be scattered between several processes in case of fork().

3.5.5 Buffer initialization

Independently of the re-mapping, the buffer is guaranteed to be initialized upon return from the
PFM_CONTEXT_CREATE command. If the format does not have an explicit initialization call-back, the
buffer is guaranteed to be all zeroes.

3.5.6 Buffer content

The content of the buffer is never interpreted by the core perfmon subsystem. The first byte of the
buffer pointed to by the address returned by mmap() contains format specific information, usually a
buffer header.

Depending on the format, the content of the buffer may be constantly changing. The interface does not
provide any guarantee with regards to getting a consistent view of the buffer. It is necessary to refer
to the format specific documentation to understand when it safe to look at the content of the buffer.

Each implementation must ensure that the memory region allocated for the buffer is aligned to, at
least, an 16-byte boundary. Mostly likely, it will be aligned on the smallest page size that the system
supports.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L. 85

3.5.7 Kernel level interface overview
This interface is divided into two parts:

¢ perfmon core interface : what the perfmon core provides to the formats

e format kernel interface: what the formats must provide to the perfmon core, i.e., a list of call-
backs

When a format is added, via a kernel module or equivalent, it must first register with the perfmon core
before it can be used by any context. The interface provides two registration-related functions:

int pfm _register _buffer _fmt(pfm _buffer _fmt _t *fmt);
int pfm _unregister _buffer _fmt(pfm _uuid _t uuid);

During registration the format must provide a data structure describing its entry points and its UUID.

This data structure is defined as follows:

typedef struct {

char *fmt _name;
pfm _uuid _t fmt _uuid;
size _t fmt _arg _size;
size _t fmt _msgqg.depth;
uint32 t fmt _flags;
fmt _validate _t fmt _validate;
fmt _getsize _t fmt _getsize;
fmt _init _t fmt _init;

fmt _handler _t fmt _handler;
fmt _restart _t fmt _restart;
fmt _exit _t fmt _exit;

} pfm_buffer _fmt _t;

All but the first five fields of the structure are pointers to call-back functions for the perfmon core.
Before we detail each one of them, we give an overview of the entire structure:

e fmt _-name: the name of the format. This field is required.

e fmt _uuid : the UUID for the format. This field is required.

e fmt _arg _size : the size in bytes of the format specific parameters passed during the creation of
the context. When no parameters are needed, this field must be zero.

e fmt _msgg.depth : the maximum number of entries that the format needs in the notification
message queue. The minimal depth is 1. If the value in this field is less than 1, it will be forced
to 1. The depth is used to determine the size of the queue given the message size.

e fmt flags : aset of flags to describe the capabilities of the format. The bits which are not defined
are reserved and must be cleared. It is only possible to set bits that are defined. The following
flags are defined:

— PFM_FMTFL_NOSET : the format does not support multiple event sets. Any attempt to create
an event set, different from set0 returns an error.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 86

e fmt _validate : this function is called during the PFM_CONTEXT_CREATE command to validate
the format-specific parameters and check the characteristics of the context.

e fmt _getsize : this function is called during the creation of the context to retrieve the size of the
buffer.

e fmt _init : this function is called during the creation of the context to initialize the buffer.
e fmt _handler : this function is called whenever a counter overflows. This function is required.

e fmt _restart : this function is called during the PFM_RESTART command when monitoring was
masked following an overflow notification.

e fmt _exit : this function is called when the physical buffer is actually freed.

3.5.8 The pfm_register _buffer _fmt() function
The function is invoked to register a new format. The definition of the function is as follows:
int pfm _register _buffer _fmt(pfm _buffer _fmt _t *fmt);

The description of the format is passed in the pointer argument fmt , a pointer to a structure of type
pfm _buffer _fmt _t. A format can only be registered once. Upon successful return from this function,
the format is usable by applications. Any format-specific global initialization must be done prior to
calling this function.

The function checks that the required fields are provided.

When the registration is successful, the function returns O, otherwise a valid errno value is returned.
The possible values are:

e EINVAL : some of the required fields in the pfm _buffer _fmt _t structure are not provided

e EBUSY : a format with the same UUID is already registered.

3.5.9 The pfm_unregister _buffer _fmt() function
The function is invoked to remove a format. The definition of the function is as follows:
int pfm _unregister _buffer _fmt(pfm _uuid _t uuid);

The format is identified by its UUID in the uuid argument.

When the removal is successful, the function returns 0, otherwise a valid errno value is returned. The
possible values are:

* EINVAL : the format is not registered

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 8 7

3.5.10 The fmt _validate() function

This function is invoked during the PFM_CREATE_CONTEXT command to validate the format specific
parameters and verify that the context is compatible with the format. The function is defined as
follows:

typedef int (*fmt _validate _t)(uint32 _t ctx _flags,
uintlé _t num _pmds,
void *arg);

The parameters are defined as follows:

e ctx flags : the flags as passed in the ctx flags during the PFM_CREATE_CONTEXT command.
The flags may be needed to verify if they are compatible with format. For instance, some formats
may only work with a system-wide context.

e numpmds: the number of PMD registers implemented by the host PMU. This could be useful to
determine the minimal buffer size, for instance.

* arg : a pointer to the format-specific parameters passed along with the pfarg _ctx _t structure.
This function is optional. If the format has no specific parameters or if no validation is necessary then
fmt _validate field must be NULL.

The function must return O when successful, otherwise a valid errno value is expected.

3.5.11 The fmt _getsize() function

This function is invoked during the PFM_CREATE_.CONTEXT command to retrieve the size of the buffer
necessary for the context. The function is defined as follows:

typedef int (*fmt _getsize _t)(uint32 _t ctx _flags,
void *arg,
size _t *size);

The parameters are defined as follows:

e ctx flags : the flags for the context as passed in the ctx _flags field of the pfarg _ctx _t struc-
ture. They may be needed to compute the size.

* arg : a pointer to the format-specific parameters passed along with the pfarg _ctx _t structure.
The structure may contain parameters necessary to compute the size.

® size : a pointer to where the size in bytes must be stored

This function is optional. If the format does not use the perfmon buffer allocation service, then
fmt _getsize field must be NULL. If the returned size is O, this is equivalent to not having using
the buffer allocation and re-mapping services.

The size is checked against the sampling buffer global size limit as set in the cf _smpl _buf _size _max
field passed to the PFM_SET_CONFIG command. If the size is too big, the PFM_CREATE_CONTEXT com-
mand fails.

The function must return O when successful, otherwise a valid errno value is expected.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 88

3.5.12 The fmt _init() function

This function is invoked during the PFM_CREATE_CONTEXT command to initialize the buffer. The
function is defined as follows:

typedef int (*fmt Jgnit - _f)(uint32 t ctx _flags,
void *arg,
void *buf);

The parameters are defined as follows:
e ctx flags :thevalue of the flags as passed in the ctx _flags during the PFM_CREATE_CONTEXT

command. They may be needed to initialize the buffer.

e arg : a pointer to the format-specific parameters passed along with the pfarg _ctx _t structure.
They may be needed to initialize the buffer.

* buf : a pointer to the memory region allocated for the buffer.
This function is optional. If the format does not need per-context initialization, then fmt _init field
must be NULL.

If the format does not use the buffer allocation service, it can still have an initialization call-back. In
that case the buf argument is NULL.

If the format uses the buffer allocation service, but does not provide the fm¢_init() call-back then the
interface guarantees that the buffer will be set to all zeroes.

The function must return O when successful, otherwise a valid errno value is expected.

3.5.13 The fmt exit() function

This function is invoked when the context is destroyed, i.e., when the last controlling thread close the
file descriptor. The function is defined as follows:

typedef int (*fmt _exit _t)(void *buf);
The parameters are defined as follows:
e buf : a pointer to the memory region allocated for the buffer

This function is called just before the physical memory used by the buffer is freed. This is the last
chance to cleanup.The function must free whatever resources it had allocated in association with the
context.

This function is optional. If the format does not need a per-context exit call-back, then the fmt _exit
field must be NULL. If the format does not use the buffer allocation service, it can still have an exit
call-back. In that case the buf argument is NULL.

The function must return O when successful, otherwise a valid errno value is expected.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 89

3.5.14 The fmt _handler() function

This function is invoked when a counter overflows. It is defined as follows:

typedef int (*fmt _handler _t)(void *buf,
pfm_ovfl _arg _t *arg,
uinté4 _t tstamp,
void *data);

The parameters are defined as follows:

® buf : a pointer to the memory region allocated for the buffer

® arg : a pointer to a structure of type pfm_ovfl _arg -t which describes the overflow and provides
control knobs to the handler.

e tstamp : a constantly increasing time stamp guaranteed unique per processor

e data : a pointer to an implementation-specific data structure which may be needed by a handler.
For instance, this could point to the interrupted machine state and/or the thread to which the
overflow is attributed.

This function is required for all formats. Failure to provide a call-back results in an error during
registration of the format.
The function does not bypass the normal PMU interrupt handler nor the 64-bit counter emulation

layer. The sequence of calls is as follows:

1. some counters overflow
2. the PMU interrupt is posted
3. the PMU interrupt handler is invoked

4. the interrupt handler determines which counters overflowed and updates their software counter-
part accordingly

5. if a 64-bit overflow is declared and a sampling format is used, the format’s handler is invoked.

In case of simultaneous overflows by multiple counters, the function is called for each overflowed
counter. The handler is expected to process one counter overflow at a time. The overflows are treated
in increasing index of PMD register. Hence, if PMD4 and PMD5 overflow at the same time, the first
call to the handler is for PMD4 and the second for PMD5. The time stamp is identical across all calls
generated by the same overflow event, therefore it is possible to detect that calls are related.

A description of the overflow is passed in arg which is a pointer to a structure of type pfm _ovfl _arg _t.
That structure is defined as follows:

typedef struct {

uintle _t ovfl _pmd;

uintlé _t active _set;

pfm_ovfl _ctrl _t ovfl _ctrl;

uinté4 _t pmd _last _reset;

uinté4 _t smpl _pmds_values[PFM _MAXPMDS];

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 90

uinté4 _t pmd _value;

uinté4 _t pmd _eventid;
uinté4 _t smpl _pmds[PFM_MAXPMDBITVECTORY];
uintlé _t ovfl _notify;

} pfm_ovfl _arg ,t;

The fields are defined as follows for this command:

ovfl _pmd: the index of the PMD register which overflowed

ovfl _notify : is set to 1 when the PMC register controlling the overflowed PMD register has
the PFM_REGFL_OVFL_NOTIFY flag set. This indicates that overflow notification was requested on
this monitor. Otherwise, this field is set to 0.

active _set : the active set at the moment of the overflow. This is the set to which the overflowed
PMD register belongs.

pmdlast _reset : the last 64-bit value loaded into the overflowed counter. When randomization
is used, this field provides the last pseudo-random value that was used for the counter. Other-
wise, this field contains either the reg _short _reset orreg _long _reset depending on how the
previous overflow was processed.

smpl _pmds : the bitvector of PMD registers of interest. This is the list of PMD registers the user
specified in reg _.smpl _pmds when programming the controlling PMC register. This bitvector
indicates the list of PMD registers to include in a sample. It is up to the format to use this
bitvector.

smpl _pmd.values : the values of the PMD registers of interest. The values are stored contigu-
ously in increasing PMD index. Only the PMD registers which have their bit set in smpl _pmds are
included. This table contains meaningful values only when at least one bit is set in smpl _pmds.
It is up to the format to use the values.

pmdvalue : the current 64-bit value of the overflowed PMD. Depending on the PMU, this value
may not necessarily be O.

pmdeventid : the opaque event identifier associated with the PMD register as passed in the
reg .smpl _eventid field. It is up to the format to interpret the value of this field.

ovfl _ctrl : a set of bits to control the behavior when returning from the handler.

Each format can use the information passed in the pfm_ovfl _arg -t structure as needed. There is
absolutely no checking done by the perfmon core. It is possible that for some formats not all the
information is necessary. In this case, it is expected that the tool set up the configuration of the PMC
and PMD registers such that the overhead is minimized. For instance, if no PMD registers are of
interest, then the reg _smpl _pmds field of the PMC register for the PFM_WRITE_LPMCS command must
be all zeroes to avoid storing any value in the smpl _pmds_values field.

The function can influence the behavior of the perfmon core upon return by using the control bits in
the ovfl _ctrl structure. The structure is defined as follows:

typedef struct {

unsigned int notify _user:1;
unsigned int reset _ovfl _pmds:1;
unsigned int block _thread:1;

unsigned int mask _monitoring:1;
} pfm_ovfl _ctrl _t;

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 9 1

The fields are defined as follows:

e notify _user : when set to 1, the perfmon core appends an overflow notification message to the
message queue of the context upon return from the handler. The notification happens only if the
controlling PMC register has the PFM_REGFL_OVFL_NOTIFY flag set. The default value is O.

e reset _ovfl _pmds: when set to 1, the overflowed PMD register is reset. The PMD registers that
were specified in the reg _reset _pmds bitvector of the controlling PMC register are also reset. For
each PMD register to reset, the value specified in reg _short _reset during the PFM_WRITE_PMDS
command is used. A new pseudo-random value is generated for each PMD register which re-
quested this option. The reset happens right upon return from the handler. The default value for
this field is O.

® block _thread : when set to 1, the monitored thread is stopped. The bit is honored only for a non
self-monitoring per-thread context with the PFM_FL_OVFL_BLOCK flag set, otherwise this field is
ignored. The default value for this field is O.

* mask_monitoring : when set to 1, monitoring is masked upon return from the handler. This
means that no qualified event is collected until a PFM_RESTART command is executed. When set,
this field cancels any reset _ovfl _pmds.

By setting any of the bits in the pfm _ovfl _ctrl _t structure, a format can decide whether PMD reg-
isters are reset, a notification is generated, or monitoring is masked. Using these control points, it is
possible for the format to implement various policies. For instance, it is possible to construct a format
that would use double-buffering, or one that would aggregate samples.

When monitoring is masked, no reset takes place even when the format sets the reset _ovfl _pmds
field to 1. Masking has priority over reset. This is necessary to ensure that the controlling process
sees a consistent view of all PMD registers should it try to read out the value of the registers with
PFM_READ_PMDS. In that case, all resets will take place during the call to PFM_RESTART.

The controls are specified per overflowed counter yet when multiple counters overflow at the same
time, the handler is called multiple times. For each call a distinct set of control bits is provided. In this
case, the interface behaves as follows:

e notify _user :ifthe bit is set once and for a PMD register for which the controlling PMC register
has the PFM_REGFL_OVFL_NOTIFY flag set, then a notification is sent.

® block _thread : if the bit is set once and the context is per-thread, non self-monitoring and has
the PFM_FL_OVFL_BLOCK then the monitored thread is blocked.

¢ mask_monitoring : if the bit is set once, monitoring is masked.

e reset _ovfl _pmds : the bit is honored on a per overflowed PMD register basis. The overflowed
PMD registers, for which this field is set, are not included in the set of PMD registers to reset
during a PFM_RESTART command, they are instead reset right upon return from the handler using
their short reset value.

When the block _thread bit is set and the context supports this feature, the interface guarantees that
the monitored thread cannot go back to user level execution unless a PFM_RESTART command is issued
before the thread reaches the location where it would have actually blocked.

When monitoring must be masked, it is masked upon return from the handler. This is true regardless
of the thread going to block or not.

The function must return O when successful, otherwise a valid errno value is expected. The calls
to the handler stop when the first error is reported. In case of simultaneous overflows by multiple
counters, this function may be called less than the number of overflowed counters.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 92

3.5.15 The pfm _restart() function
This function is invoked during the PFM_RESTART command. The function is defined as follows:

typedef int (*fmt _restart _t)(void *buf,
int is _active,
pfm_ovfl _ctrl _t *ctrl);

The arguments are defined as follows:

e buf : a pointer to the memory region allocated for the buffer.

e is _active : a boolean value. When set to 0, it means that monitoring is masked. When set to 1,
it means that monitoring is active.

e ctrl : a pointer to a pfm_ovfl _ctrl _t structure which contains some control bits used by the
perfmon core upon return from the call-back.

This function is invoked when monitoring is masked or when it is active, i.e., not masked. It is possible
that a format never masks monitoring even though they are overflows. In that case, the restart call-
back could be called when monitoring is still active. The value of the is _active can be used to tweak
the behavior of the restart call-back based of the state of the context.

The control bits in the pfm _ovfl _ctrl _t structure have the following role for this function:

e notify _user : this field is ignored for this function
* block _thread : this field is ignored for this function
* mask_monitoring : when set to 1, monitoring is masked. The default value for this field is O.

e reset _ovfl _pmds: when set to 1, all the PMD registers which last overflowed and which were
not immediately reset upon return from fmt _handler , are reset. For each overflowed PMD
register, the set of registers in the reg _reset _pmds bitvector for the controlling PMC registers
are also reset. The value specified in reg _long _reset during the PFM_WRITE_.PMD command
is used. When randomization is used, new pseudo-random values are generated for the PMD
registers. The reset happens right upon return from the call-back. The default value for this field
is O.

The function must return O when successful, otherwise a valid errno value is expected.

3.6 The default sampling format

The interface comes with a standard built-in sampling format on all implementations. The format is
generic enough to work for both system-wide and per-thread context and it can handle all sorts of PMU
configurations. The format fully supports multiple event sets per context.

The format uses the buffer allocation and re-mapping services. The samples are recorded sequentially
in the buffer until it becomes full. The memory allocated for the buffer is managed logically as one
buffer, i.e., there is no support for double-buffering. The buffer starts with a fixed size buffer header.
Then, each sample consists of a fixed sized header and a variable size body. The layout is depicted in
figure 3.26.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 93

buffer header

sample header

sample 0 [sample body

sample 1 I

Figure 3.26: default format buffer layout.

3.6.1 Identification of the default format

The default format uses the following UUID on all implementations:

#define PFM _DEFAULTSMPLUUID {
0x4d, 0x72, Oxbe, 0xcO,
0x06, 0x64, 0x41, 0x43,
0x82, Oxb4, 0xd3, Oxfd,
0x27, 0x24, 0x3c, 0x97 }

3.6.2 Format specific parameters

The format requires parameters during the PFM_CREATE_CONTEXT call. The following data structure
must be appended to the pfarg _ctx _t structure:

typedef struct {
size _t buf _size;
uint32 _t buf _flags;
} pfm_default _smpl _arg _t;

The fields are defined as follows:

e buf _size : the size of the buffer in bytes.

e buf flags : a set of flags to control the behavior of the format. The bits which are not defined
are reserved and must be cleared. It is only possible to set bits that are defined. The following
flags are defined:

- PFM_DFL_SMPL_NO_HDR : samples do not have headers, only the body part is recorded. This
is useful when the measurement is such that only one sampling period is used. In that case
the size of the sample is fixed. With this flag a lot more samples can be packed into the
buffer.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 94

— PFM_DFL_SMPL_IIP_HDR: only record the instruction pointer in the header. The body part is
not affected. This flag is useful when the measurement only uses the instruction pointer in
which case the body is usually empty.

The buffer size represents the actual memory allocated for the buffer that includes the buffer header
and the samples. Each format is responsible for checking that this size is large enough to hold any
meaningful information.

When an invalid value is passed, the PFMCREATECONTEXTcommand fails.

3.6.3 The buffer header

At the beginning of the buffer area, there is a buffer header which describes the status of the buffer.
The buffer header is initialized when the context is created. The buffer header structure is defined as
follows:

typedef struct {

size _t hdr _count;
size _t hdr _cur _offs;
uinté4 _t hdr _overflows;
size _t hdr _buf _size;
uint32 _t hdr _version;
uint32 _t hdr _flags;

} pfm_default _smpl _hdr _t;
The fields are defined as follows:

e hdr _count : the current number of samples in the buffer

e hdr cur _offs : the current position in the buffer expressed as an offset from the beginning of
the buffer (including buffer header)

e hdr _overflows : the number of times the buffer was full
e hdr _buf _size : the size in bytes of the buffer
e hdr _version : the version number of the buffer format

e hdr flags : the flags passed to the format when the context is created

The hdr _count field reports the number of samples in the buffer since it was last reset. If monitor-
ing is not masked, then this field can change at any time. It is only safe to look at it following an
overflow notification. At that point, monitoring is masked and no more samples are recorded until a
PFM_RESTART command is issued. In case the buffer is not full but monitoring has ended, this field
can be used to determine how many samples are left in the buffer. This field is reset to zero during a
PFM_RESTART command.

The hdr _cur _offs is used internally by the format. In order to locate samples, the hdr _count field
should be used instead. The offset points to the next byte to write to, i.e., the first byte after the last
sample. In case no sample is present, it points to the first byte after the buffer header.

The value of hdr _buf _size is the actual size of the memory chunk that was allocated. It is identical
to the value that was passed in buf _size field in the format specific parameters.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 95

The hdr _overflows field is a counter which represents the number of times the buffer was full. It
is not reset as part of the PFM_RESTART. It is incremented by 1 each time the last sample that fits
is recorded. This field is useful to verify if the samples in the buffer are new. It is monotonically
increasing.

The buffer header is immediately followed by the first sample. Each implementation must ensure that
the size of the buffer header is such that it aligns on, at least, an 8-byte boundary.

3.6.4 Structure of a sample
Each sample contains a fixed-size header followed by a variable size body which contains PMD register
values. The sample header provides information about when, where the sample was recorded and what

caused it to be recorded. The sample header structure is defined as follows:

typedef struct {

pid _t pid;

pid _t tid;

uintlé _t ovfl _pmd;
uintlé _t set;

uintlé _t cpu;

uinté4 _t last _reset _val;
uinté4 _t tstamp;

uintptr _t ip;

} pfm _default ,smipl _entry _t;

thread execution thread execution
PO qualified PMU event A P —-qualified PMU event
Al k5 PMD.val++
PMD.val++ z
= E overflow detected
o) g =
E 2 overflow detected < g' %
X =
* ¢ % PMU freeze
PMU freeze IP1 interrupt posted
Y v P2
IP1 .
interrupt posted
reported IP=IP1 reported IP=IP2

Figure 3.27: possible skew on the reported instruction pointer.

The fields are defined as follows:

* pid : the unique identification of the process that was running at the time of the counter overflow

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 96

® tid : the unique identification of the kernel thread that was running at the time of the counter
overflow.

e ovfl _pmd the index of the PMD register that triggered the recording of the sample
* set : the active set at the time of the overflow
e last _reset _val : the last 64-bit value that was loaded in the PMD register that overflowed

® ip : the instruction pointer of the current thread when it was interrupted because of the counter
overflow

e tstamp : a unique time stamp for the processor on which the PMU overflow interrupt was trig-
gered

® cpu : the CPU on which the PMU overflow interrupt was triggered.

The pid and tid fields are mostly interesting for system-wide contexts because monitoring is active
across all threads executing on a specific processor. In per-thread mode, the value of this field is the
identification of the thread the context was attached to at the time of the overflow.

The ip field should always be treated with caution. It denotes the location where the current thread
was executing when the PMU overflow interrupted it. On most architectures, this is always after the
location where the counter actually overflowed. This is explained by the fact that the PMU logically
runs in parallel to the execution. In certain cases, the skew can be significant, especially when the
overflow occurred in a section of code where interrupts were masked. Two examples are shown in fig-
ure 3.27. On the left-hand side, that is usual case where there is a skew between the instruction pointer
at which the event occurred and the pointer reported at the time of the interrupt. On right-hand side,
we show a case where the PMU interrupt is posted while interrupts are masked, the interrupt be-
comes visible only after interrupts are unmasked. This is when the instruction pointer is recorded by
the hardware. The skew is not specific to this sampling format, it does affect any measurement that is
based on the value of the instruction pointer.

The last _reset _val reflects the last value that was loaded into the PMD register that overflowed.
When randomization is used, this corresponds to the pseudo-random value that was last loaded into
the register.

The cpu field is mostly used for a per-thread context. It reflects the processor on which the thread was
running when it got interrupted because of the overflow. For system-wide contexts, the value reflects
the processor to which the context is bound. It remains constant unless the context is detached and
then re-attached to another processor.

The format does not make use of the reg _smpl _eventid field of the pfarg _pmdt data structure.

The body of a sample immediately follows the header. Each implementation must ensure that the
size of the sample header is such that it aligns on, at least, an 8-byte boundary. The body contains
the values for the PMD registers of interest that are associated with the overflowed counter. The
values are stored contiguously in increasing PMD register index. The PMD registers of interest are
those specified in the reg _smpl _pmds field of the controlling PMC register. An example is shown in
figure 3.28 for the pair PMC4/PMD4. When PMD4 overflows, PMD5 and PMD7 must stored in the
sample, this is indicated by the value 0xa0 in the reg _smpl _pmd bitvector. On overflow, the handler
stores the values of the two PMD registers in increasing PMD index value. This corresponds to PMD5
then PMDY7 in the figure.

In case where multiple counters are setup as sampling periods, it is possible to specify different PMD
registers of interest for each of them. Hence, samples can have different sizes. To parse the samples,

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 9 7

PMC4/PMD4
reg_smpl_pmds[0]=0xa0

PMD4 overflow !
ovfl_pmd=4 sample header
PMD5
PMD7 sample body

sampling buffer

Figure 3.28: sample body layout.

it is necessary to refer to the ovfl _pmd field to determine what triggered the recording of a sample.
Based on this information, it is possible to figure out the size of a sample. Of course, this assumes that
the tool analyzing the samples knows how the measurement was setup, but this is usually the case.

In case of multiple simultaneous overflows, one sample is recorded per overflowed PMD register. There-
fore the ovfl _pmdis different for each one of them. The samples are guaranteed to be consecutive in
the buffer, unless the buffer becomes full before the last sample can be written. The samples all con-
tain the same time stamp, making it possible to identify simultaneous overflows. Similarly, the set is
guaranteed to be identical for all samples. An example is shown in figure 3.29, where both PMD4 and
PMD5 overflow at the same time. First the sample for PMD4 is written, it is immediately followed by
the sample for PMD5. Note that the ovfl _pmdfields are different but the time-stamps are identical.

There is no padding added at the end of a sample. It is always automatically aligned to, at least, an
8-byte boundary by construction.

It is totally conceivable to have sampling periods with no associated PMD registers of interest. This
is the case if the information needed by the tool is all in the sample header, such as the instruction
pointer. In that case, the body is empty and sample headers follow each other.

There is no partial sample. There is either enough space to record a complete sample or the sample is
not written. We detail this behavior in the next section.

3.6.5 Overflow and restart behaviors

During an overflow, the format’s handler routine is called, it records the samples into the buffer. If the
buffer is not full, then the overflowed counters are all reset using their respective short periods and
monitoring resumes. If any of the overflowed PMD register has some bits set in the reg _reset _pmds

© Copyright (c) 2004-2005 Hewlett-Packard Development Company., L.P 98

PMC4/PMDA4
reg_smpl_pmds[0]=0x20

PMDA4 overflow

>

ovfI_pmd:4
tstamp=0x122789
PMD5
» —
PMD5 overflow ovfl_pmd=5
tstamp=0x122789
PMD7

simultaneous PMD4/PMD5 overflow

PMC5/PMD5
reg_smpl_pmds[0]=0x80

sampling buffer

Figure 3.29: simultaneous overflow by two counters.

bitvector of its controlling PMC register, then each of the designated PMD register is also reset using
the short reset value, if any. No notification is sent to the controlling process.

When the last sample is written, the buffer becomes full and the hdr _overflows is incremented by 1.
In this case, none of the overflowed PMD register is reset. This is deferred until the PFM_RESTART
command is issued.

Given that the format supports variable size samples, the determination as to when the buffer is full
is not necessarily trivial because it is not possible to know the size of the next sample. In order to
avoid losing the last sample, the format uses a so-called, post check approach, where an estimate of
the remaining space is computed after a sample is written. If the remaining space is smaller than
the largest sample possible for the host PMU, then the buffer full condition is declared. With this
technique, some space may be wasted at the end of the buffer, but no partial samples are ever recorded.

The maximum sample size is defined as follows:

max.sample _size = sizeof(pfm _default _smpl _entry _t) -+ 8 x numimpl _-PMD

The numimpl _PMDvariable refers to the number of PMD registers implemented by host PMU. The
eight factor comes from the fact that each PMD is represented by a 64-bit value.

When there are simultaneous overflows by multiple PMD registers, multiple samples are recorded.
However there may not be enough space in the buffer for all samples. In that case, samples up to what
can be accommodated by the buffer are written, the others are not written and therefore are lost. It
may be possible to detect such condition by analyzing the bitvector in the PFM_OVFL_MSG message
and by comparing it with the last few samples recorded in the buffer.

Figure 3.30 shows how the buffer full condition is detected. On the right-hand side the buffer is not full
because the remaining space is bigger than the maximum sample size. The left-hand side shows what

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 99

buffer size

max sample size
free space

-

free space

buffer not full buffer full

Figure 3.30: detection of a buffer full condition.

happens after the next sample is written, the remaining space is smaller than the maximum sample
size and the buffer is considered full, what is left is wasted.

When the buffer becomes full the format systematically requests a user level notification. An actual
notification happens only if any one of the overflowed PMD registers has the PFM_REGFL_OVFL_NOTIFY
flag set in its controlling PMC register. Otherwise, the buffer is said to have saturated. In both cases,
monitoring is masked, i.e., no qualified events are collected, thus no new samples are recorded. At this
point, the buffer is in a stable state, it is safe to parse it, i.e., the information cannot change until the
PFM_RESTART command is issued.

A buffer overflow occurs always as a consequence of a counter overflow, therefore the notification sent
is a regular overflow notification. The information in the overflow message reports which counters
overflowed. The monitoring tool knows it is using the sampling format, therefore it knows that the
overflow notification must be interpreted as the signal that the buffer is now full.

When the notification is received, the tool should process the sample in whatever ways it needs. When
this phase is completed, the tool signals that monitoring can restart by invoking the PFM_RESTART
command. At that point, the default format resets the buffer. The hdr _count field in the buffer
header is set to 0, the offset in hdr _cur _pos is set to point to the first byte after the buffer header. The
reset only affects the buffer header, the rest of the buffer is not touched. In particular the previous
samples are not cleared. The counters that overflowed last, i.e., the ones which caused the last sample
to be recorded are reset using their long reset values. When randomization is used new pseudo-random
values are chosen. Finally, monitoring is resumed and new samples can once again be collected.

When no notification is requested on buffer full condition, monitoring is masked and execution re-
sumes. The tool is not informed that the buffer is full and no new samples are collected. This is the
saturation point. This mode can be useful when a tool wants to collect up to n samples for an entire
run. At the end of run, the tool simply inspects the buffer and processes whatever is there. Issuing a
PFM_RESTART command on a saturated buffer does reset the buffer and monitoring resumes.

The PFM_RESTART command can be issued at any time. If it is issued following a notification, the

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 1 00

behavior is as described above. When it is issued while monitoring is not masked, the command simply
resets the buffer header such that hdr _count is O and hdr _cur _pos points to the first byte after the
buffer header. This type of restart is called an active restart.

3.7 Support for event sets and multiplexing
3.7.1 Definition of an event set

events

set0 setl set2

e1)eafes) [eofeaer) (e

MUX

Co|C1|C2
counters

Figure 3.31: event sets and multiplexing principle.

An event set is a software abstraction which encapsulates the PMU machine state. An event set
includes the values for all PMC and PMD registers and potentially the values of other registers used
in conjunction with the PMU.

A context is allowed to define multiple event sets. Each set accommodates as many counters as pro-
vided by the hardware. Sets can then be multiplexed onto the actual PMU hardware. the basic prin-
ciple is illustrated in figure 3.31, where at the top we have 7 events to measure but only 3 counters.
Events are distributed among three sets. Notice that events can be distributed in any order that is
supported by the PMU. Then the perfmon subsystem multiplexes one set at a time onto the actual
counters.

3.7.2 Motivations

There are several reasons why having support for event sets and multiplexing is very interesting for
monitoring tools. We review them in the following sections.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 10]_

time

S1 S2 S3 S4 S5 S6 | actual counts

event A = 5 4 6 1 5 4 =25
eventB=[" 10 10 15 15 10 15 =75

mux counts scaled counts
eventA=| 5 6 5 =16 =32
event B =] 10 15 15 =40 =80

Figure 3.32: event multiplexing and its limitations.

Limited number of counters

First and foremost, sets can be used to overcome the limitations on the number of available counters.
Depending on the PMU, the number of counters may be too small to collect certain measurements in
one run.

A first solution to the problem is to use multiple runs but then the tool needs to deal with possibly a
lot of fluctuations between runs. This is not very convenient and sometimes it can quite difficult if the
workload is hard to restart.

A second solution is to multiplex the counters between multiple sets of events. For instance, if there is
only 1 counter but 2 events to measure, the first event is loaded and measured for a certain period of
time, then its value is saved and the second event is loaded and measured for a certain period of time,
then the value of the counter is saved and the first event and its saved counter value are reinstalled
and so on. In the end the two accumulated values can be scaled up to obtain an estimate of the total
count for both events covering the entire run. It is important to realize that this is just an estimate and
that it may not necessarily reflect what would have been collected, had the host PMU had 2 counters.

We illustrate the limitations of multiplexing in figure 3.32 where we show an example of a PMU with
1 counter and two events, A and B, to measure.

The top half of the figure shows what is collected for event A and B if they are run one after the
other. For the complete execution we have 25 occurrences of event A and 75 of event B. Collecting this
information required two runs.

The bottom half of the figure shows what happens if we use multiplexing, effectively using two sets
of one event each. The execution time is sliced into small periods S;. During period S;, event A is
measured, then its value is saved and event B is measured during period S;. Both events alternate
until the end of the execution. At that point we have collected estimates for A and B. The scaling
operation takes these estimates and extrapolates what would have been the total value if each event
had run for the entire duration of the execution. The scaling uses a simple average such that for
event A:

A LR
Ay = — * E slice;
slicey 4 -
1=

Where A represents the value of event A at the end of the run. slice4 is the number of time slices used
for event A. slice; represents the total number of time slices for the execution. Basically the scaling
takes the average number of occurrences of an event for one time slice and scales it to the total number
of slices. We obtain the results shown on the right hand side of the figure. For event A, we have 3 time

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 102

slices with a total number of time slices equal to 6, hence the scaled count is:

16
Ay = — x6 =32
3 *
Obviously, there are overestimated because of the average calculation which does not take into account
possible drop in the number of occurrences. This is clearly visible for event A where in all blind spots,
the count is smaller. Such behavior can happen if the workload is fluctuating and the switching interval
is too long.

It is possible to minimize those blind spots by having smaller time slices. But of course, that implies
more switching which raises the overhead because the PMU state must be saved and a new state must
be installed each time.

Constraints on event combinations or counters

Sometimes, having a large number of counters does not necessarily alleviate the need for multiplexing.
For many PMU implementations, counters come with constraints on how events can be measured. It
is rare when all counters are symmetrical and fully generic, i.e., any one counter can accept any one
event. Due to underlying hardware resource constraints, it is very common to have restrictions such
as:

* event A can only be measured by counter C
e event A and event B cannot be measured at the same time

¢ if event A is measured then only event B, C, or D can be measured on the other counters

Trying to maximize the use of the all counters while minimizing the number of runs for given set of
events can be quite challenging.

Event set multiplexing can be used to overcome some of the restrictions by allowing measurements to
be collected in a single run. This is achieved by placing incompatible events into different event sets
and then multiplexing the sets during the execution.

Cascading of measurements

Another reason for supporting event sets is that it makes it easy to build cascading measurements. For
instance, let us suppose a measurement is constructed as follows: “after n retired instructions, start
counting the number of cache misses”. In this case, once a counter has reached a certain threshold,
another counter must start counting. With event sets, cascading can be constructed simply with two
sets. Switching from the first set to the second when the n threshold is reached. The threshold must
be expressed such that the counter overflows after n occurrences of the event. This can be done with
overflow-based switching.

3.7.3 Why a kernel-level interface?

Support for event set and multiplexing can very well be implemented at the user level using the ex-
ising perfmon interface. On a timeout, a monitoring tool could completely reprogram the PMU using
PFM_READ_PMDS, PFM_WRITE_LPMCS, and PFM_WRITE_LPMDS. This works well in the case of a self-
monitoring applications but it becomes quite expensive when an application is monitoring the thread

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 103

evt_list 0 evt_list 0 5

pfm_context pfm_context

after PFM_CREATE_CONTEXT add set 5

evt_list 0 3 5

pfm_context

add set 3

Figure 3.33: creating event sets.

of another process. A lot of context-switches are necessary. In fact, two context-switches per repro-
gramming. Some implementations may also impose that the monitored thread be stopped to allow
reprogramming. The overhead generated by this approach limits the rate at which sets can be muti-
plexing and can lead to large blind spots as described in the example of figure 3.32.

As a consequence, the interface directly provides event sets and multiplexing at the kernel level. For
a per-thread measurement, it implies that switching always occurs in the context of the thread that is
monitored, thereby providing an important performance boost which, in turn, allows faster switching
and more accurate results. Other optimizations are possible especially for saving and restore the PMU
machine state quickly.

3.7.4 Operating on event sets

The interface provides commands to create, modify, delete sets. Each of these operation can only be
executed when the context is detached. This restriction is not very limiting because it is expected that
sets are created at the beginning of a measurement and remain throughout the collection period. In
the following sections, we also describe how it is possible to create sublists of sets making it possible
to program multiple distinct measurements in advance.

3.7.5 Creating event sets

An event set is uniquely identified by a simple number ranging from 0 to 65535. Therefore up to 65536
distinct sets can be created. When a context is created, the initial set is automatically created. It is
always assigned the number 0. SetO cannot be deleted, therefore a context always has, at least, one
set. Extra sets can be created using the PFM_CREATE_EVTSETS command.

New sets are allocated and placed in an ordered list. The order is determined by the set identification
number. Sets are placed in the list in increasing set identification number. This is illustrated in

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P]_ 04

evt_list 0 3 5 8 10 11

pfm_context
default order

evt_list 0 3 5718 10 11

pfm_context

customized order

Figure 3.34: customized set ordering.

figure 3.33, where set5 is first inserted and placed after set0. Then set3 is added and placed after setO
but before set5.

The order in the list is important as it may determine the order in which sets are switched to and from.

Default switch ordering of sets

By default, switching does follow the way sets are ordered in the list. In the example from figure 3.33,
switching from set0O leads to set3 and switching from set3 leads to set5. Switching always happens in
a round-robin fashion. This means that, in the figure, the set following set5 is setO.

The organization of sets shown in figure 3.33 represents the logical view and does not preclude any
kind of implementation of the list of sets.

Customized switch ordering of sets

It is possible to modify the default switch ordering of sets. The main motivation is to build groups of
sets. This allows an application to program all the event sets for multiple distinct measurements all
at once and then multiplex the counters on selected group of sets without having to reprogram and
possibly add or delete sets on the fly.

Modifying the default switch order is accomplished using the PFM_SETFL_EXPL_NEXT flag on a per set
basis. When this flag is specified, the next set, i.e., the set to switch to, is not determined by the default
switch order but instead by the set identification number specified in the set _id _next field, the explicit
link, when the set is created. In practice, this mechanism is used mostly to terminate a chain of sets
early as shown in figure 3.34 where both set5 and set11 have the flag set. From set5 switching goes to
set0, from setl1, it goes back to set8. In this example we have logically created two groups, or sublists:
0-5 and 8-11. Using the PFM_LOAD_CONTEXT or PFM_START command, it is possible to select which of
the two sublists is active. The dashed line between set5 and set8 indicates the default order which is

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 105

not used in this case. Note that an explicit link does not have to be going backward, any set number is
accepted as long as the set exists when the context is attached.

3.7.6 Set switching

Switching is the action of moving from one set to another. The interface supports two methods for
switching:

* time-based : the switch from one set to another occurs after a certain interval of time

* overflow-based: the switch from one set to another occurs after some counters have overflowed a
certain number of times

The method for switching is chosen on a per-set basis. For a context with multiple sets, it is possible
to use a mix of methods. Only one method is allowed per set. By default, no method is selected, which
means that no switching occurs. This is how set0 is created. If this is not satisfactory, it is always
possible to modify the properties of a set using the PFM_CREATE_EVTSETS command.

Time-based switching

) 10ms 10ms 10ms = 10ms
OS timer | | | | |
15ms
requested | |
_ 20ms
effective | |

Figure 3.35: requested vs. effective switch timeout.

Time-based switching is selected when the PFM_SETFL_TIME_SWITCH flag is enabled. With this method,
switching occurs at a regular time interval indicated in the set _timeout field when the set is created
or modified. The timeout is expressed in seconds and nanoseconds.

Each implementation should drive the timeout from the lowest level timer of the operating system,
i.e., most likely the timer tick in order to get the best granularity possible. However, even the timer
tick may not necessarily have a small enough resolution. Oftentimes, the granularity is only 10ms, i.e.,
there is a timer interrupt every 10ms. For this reason, the timeout requested by an application may
not necessarily be possible. Each implementation is expected to approximate to the best it can. The
timeout returned in set _timeout after a call to the PFM_CREATE_EVTSETS command is the effective
timeout. In figure 3.35, we show an example where the timeout is driven by the timer tick which
has a granularity of 10ms. The requested timeout is 15ms, but the effective timeout will be 20ms, i.e.,
the timeout is rounded up to the next multiple of the timer tick. By returning the effective timeout,
the interface informs the application that the requested timeout cannot be achieved. It is up to the
application to either accept, reject, or re-adjust the timeout to suit its needs.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 106

Time-based switching effectively starts once the context is attached and monitoring is activated via
PFM_START. It stops when PFM_STOP or PFM_UNLOAD, or close() is issued. The timeout is not decre-
mented when monitoring is masked. This can happen on a counter overflow followed by a user level
notification when no custom sampling format is used. When a custom sampling format is used, it
depends on whether the format masks monitoring or not. Refer to the format specification for more
details. In any case, the timeout is reactivated whenever monitoring is resumed via PFM_RESTART. The
timeout restarts from where it was stopped, i.e., it is not reinitialized. The behavior is illustrated in
figure 3.36. While monitoring is masked, the timeout is stopped.

For implementations which make it possible to start and stop monitoring completely from the user
level, the behavior described in the previous paragraph must be identical.

In per-thread mode, the timeout is running only when the monitored thread is running. When a thread
is context switched out, the timeout is stopped. In other words, the timeout does not measure wall-
clock time. As a consequence switching can only occur when the monitored thread is running. When
the thread is running but monitoring is masked, the timeout is also stopped.

By construction, in system-wide mode, the timeout is not quite measuring wall-clock time because the
timeout is stopped when monitored is masked. Switching occurs at the end of the timeout, even when
the controlling process is not actually running on any processor.

In system-wide mode, the timeout is active when the idle thread is excluded from the measurement
with the PFM_SETFL_EXCL_IDLE flag and the idle thread is the active thread. In other words, time-based
set switching may occur while the idle thread is running even though no qualified event is captured.

During the PFM_LOAD_CONTEXT command and when the designated set is using time-based switching,
its timeout is reset to the value indicated when the set was created or last modified.

An example of time-based switching for a per-thread context is given in figure 3.37. A context with
two sets is attached to a thread. When the thread is stopped because it explicitly blocks or its quan-
tum of time runs out, it is context switched out and the set timeout is stopped. When the thread is
rescheduled, the rest of the timeout is restarted.

The timeout is not randomized however there may be enough fluctuations and noise in the system to
produce actual randomization. In particular it is likely that when interrupts are masked, no timer
interrupts are generated and the timeout is effectively extended.

Overflow-based switching

Overflow-based switching is selected when the PFM_SETFL_OVFL_SWITCH flag is enabled for the set.
With this method, switching occurs when certain counters of the set overflow. Those counters are called
triggers and there can be more than one per set. If the host PMU supports n counters with overflow
interrupt capability then there can be up to n triggers. An application can control after how many
overflows of each counter, switching occurs. In other words, switching does not necessarily happen

timeout timeout
active active
‘ | | |
MASKED
! N § time
PFM CONTEXT LOAD PFM START PFM RESTART PFM STOP

Figure 3.36: timeout activation periods.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P]_ O 7

timeout set0 timeout setl

\ -l \ -]

} active \ inactive \ active \ active
running off CPU running
setO setO
setl setl

switch from 0 to 1

Figure 3.37: a time-based switching example.

at the first overflow of a counter. Similarly, not all counters which overflow trigger a switch. The
counters which can trigger a switch must have their reg _ovflsw _thres field set to a non zero value.
This field is modified with the PFM_WRITE_LPMDS command. The value of this field determines the
overflow threshold at which switching occurs. At each overflow, the value is decremented by one, when
it reaches zero, a switch is performed. Because there can be multiple triggers, there can be multiple
thresholds, each specific to a counter. A switch occurs as soon as one of the thresholds reaches the
value of 0. It is possible that more than one threshold reaches zero at the same time in case multiple
counters overflow at the same time. Next time the set becomes active, the value is reloaded with the
same threshold. This mechanism alleviates the need to dedicate a counter as a trigger. This is useful
when sampling as a counter can be used as the sampling period as well as the switch trigger, thereby
maximizing the use of the counters.

In figure 3.38, we show a simple example with two sets: setO and setl. The left side of the figure
depicts what is going on for setO which is initially the active set. The right side depicts what is going
on with setl which is initially inactive. The arrow in the middle of the figure denotes the elapsed
time. In each set a PMD register is configured as a simple counter: PMD5 for set0 and PMD4 for set1.
We assume their controlling PMC registers are setup properly to measure certain events. For set0,
PMD4 is used as the overflow trigger and is measuring event A. It is initialized to overflow after 1000
occurrences of the event. The threshold is set to 2, meaning that after two overflows, i.e., after 2000
occurrences of event A, the measurement switches to setl. After 1000 occurrences of event A, the first
overflow occurs, the threshold is decreased to 1, the short sampling period, here -1000, is reloaded into
PMD4 and monitoring resumes. After the second overflow the threshold reaches O and switching to
set1 occurs. For this set, PMD5 is the trigger and the threshold is set to 1. Hence after one overflow, a
switch to set0 will occur.

A PMD register used as a trigger is expected to be setup just as it would be for sampling. The
reg _long _reset and reg _short _reset must be setup as for any regular sampling period. Unless
overflow notification is requested for the counter or a specific custom sampling buffer format is used,
the short reset value is reloaded in the counter on overflow.

The overflow threshold is reloaded each time the set becomes active. Each time the same threshold
value is re-used. It can be modified with the PFM_WRITE_PMDS command. As part of the switch, the
indexes of counters which triggered the switch are recorded into a bitmask. It may be extracted with
the PFM_GETINFO_EVTSETS command. In the pfarg _setinfo _t structure, the set _switch _pmds field

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 108

set O time setl
PMD4.value= -1000 §
PMD4.thres= 2 §
PMD5.value=0 §
(O]
2! [PMD4wal 1000 |_ b4 2
= value= — %)
S| | PMDA4.thres= 2 m S
PMD5.value= 5678
PMD4.value= —1000 y
PMDA4.thres= 1 Sverflow
PMD5.value= 12078
\SWitChtf setl
S
§ \
2N §\ PMD5 o
AS \ PMD4.value= 45678 | |2
S \ overflow —~ PMD5.value= —2000 | |&
PMD5.thres= 1

switch to setO

4\

Figure 3.38: Example of overflow-based switching.

is the bitmask containing the set of PMD registers which last caused a switch from this set.

Overflow-based switching cannot occur when the idle thread is running and the active set has the
PFM_SETFL_EXCL_IDLE flag is set. This comes from the fact that monitoring is effectively stopped, as if
a PFM_STOP had been issued while the thread runs.

During the PFM_LOAD_CONTEXT and when the designated set is using overflow-based switching, its
counting monitors have their switch thresholds reset to the value indicated when the corresponding
PMD registers were last programmed with the PFM_WRITE_PMDS command.

Cascading counters

Overflow-based switching can be used to easily implement counter cascading. Cascading is used when
an application needs to start measuring certain events only once a certain threshold has been reached.
The threshold is typically expressed as a number of occurrences of a particular event.

=

09

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P

Cascading requires at least two event sets. The first set contains the threshold event. Once the
threshold is reached, a switch to the second set occurs. If the threshold is never reached, the second
set is never activated.

The threshold is implemented by programming a counter in the first set to overflow at the threshold
value. For instance, if the threshold is 1000 occurrences, then the counter is armed at -1000. Then
the set enables PFM_SETFL_OVFL_SWITCH. The second set is setup not to switch at all. After the setup
phase, the context is attached to the thread to monitor and monitoring is activate via PFM_START.
At the end of the execution, the values of interest are in the second set and can be retrieved with
PFM_READ_PMDS. If they are O, then there are two possible explanations:

1. no switch happened. In other words, the threshold was not reached
2. the switch happened, but there was no occurrence of the event of interest in the second set.
Using the PFM_GETINFO_EVTSETS, it is possible to sort out whether or not the second set ever got

activated simply by looking at the number of activations in the set _runs field. If it has not changed
since the context was last attached, then the set never became active.

3.7.7 Event Sets and sampling

The interface fully supports the combination of multiple event sets with sampling.

Interactions with user level sampling

It is not necessary to use a sampling format to create a sampling measurement. Sampling can com-
pletely be driven from the user level via the overflow notification mechanism.

In this case, it is important to retrieve the identity of the active set at the time of the overflow. The
active set number is always included with the overflow message in the msg active _set field. Using
the value of this field, an application can then call PFM_READ_PMDS to retrieve the values of some
PMD registers of interest.

Interaction with custom sampling formats

All custom sampling formats do not necessarily support multiple event sets. In that case, they ad-
vertise this problem by using the PFM_FMTFL_NOSET flag in their pfm _smpl _fmt t structure. When a
context is using such a format, it is not possible to create additional event sets beyond the default set,
i.e., set0. As such, there is no risk of incompatibility with the format.

Each format is free to store the samples coming from different sets in any way it wants. in particu-
lar, one can envision a format where samples from different sets are saved into distinct regions of a
sampling buffer.

Behavior with the default sampling format

The default sampling format does support multiple event sets. Each sample header includes a field,
namely the set field, which identifies the active set number at the time of the overflow.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 1 10

The configuration of each monitor can vary widely between sets. As such, samples may have different
sizes. Parsing the buffer must be done from the top and in sequential order using the hdr _count as
the number of valid samples. Each sample must be decoded based on the set number and overflowed
PMD register.

Behavior with time-based switching

For both type of contexts, when an overflow occurs, time-based switching is stopped if and only if
monitoring is masked. Depending on the sampling format, this may not necessarily be the case for
every overflow. The interface guarantees that no time-based switching does occur during the execution
of the PMU interrupt handler.

In the case of a self-monitoring thread, each implementation must ensure that the timeout cannot
expire while the thread is in the middle of a call into the interface. In other words, switching cannot
occur while executing perfmon-related code.

Behavior with overflow-based switching

By definition, overflow-based switching occurs when there is a counter overflow. For both types of
context switching happens in the PMU interrupt handler if and only if monitoring is not masked as
a consequence of the overflow. Otherwise, switching is typically deferred until monitoring is resumed
with the PFM_RESTART command. This ensures that a consistent view of the sets is presented to the
controlling process. Depending on the sampling format, monitoring may not not necessarily be masked
for every overflow.

When switching occurs in the PMU interrupt handler, the new set is loaded. The PMD registers which
last overflowed in this new set and their associated PMD registers of interest are reset using their
short reset values.

When switching occurs during the PFM_RESTART command, the new set is loaded The PMD registers
which last overflowed in this set and their associated PMD registers of interest are reset using their
long reset values. Note that for non self-monitoring per-thread sessions, the new set may not be
reloaded by the time the command returns.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 1 1 1

Chapter 4

Security

4.1 Introduction

This interface is designed to be generic and serve a variety of performance monitoring tools. As such,
it cannot assume that tools will be well behaved and follow the proper usage model. Furthermore, it is
expected that the interface will be implemented as a built in service of the operating system. As such,
it must be incorporate the same security features as the rest of the kernel interface.

For those reasons, security is an important aspect of the interface. Security is a shared burden between
the interface specification and the implementation. There may be several operating system specific
security issues which can only be resolved at the implementation level. In general, the following
general security problems must be avoided:

¢ leaking unauthorized information from the kernel

¢ leaking unauthorized information from other processes and threads

* bringing the system down using a denial-of-service style of attack
Throughout the document, we have pointed out perfmonctl() calls where an implementation may im-
pose additional restrictions to satisfy a specific security constraint.

The challenge is to enforce reasonable security while allowing a maximum number of users to access
the interface without too much troubles. It is certainly not acceptable to use an all or nothing model
where only a super-user can collect measurements.

In this section, we will go over each aspect of the security of the interface.

4.2 Accessing the interface

The interface is expected to be built into the operating system and, as such, be readily available via
the perfmonctl() system call.

The interface provides two categories of commands:

¢ commands with no file descriptor

112

e commands requiring a valid file descriptor identifying a context

In the first category where no file descriptor is needed, there is no real security problem for the
PFM_GET_CONFIG, PFM_SET_CONFIG, PFM_GETINFO_PMCS, PFM_GETINFO_PMDS commands. Only
non-sensitive information is returned by these commands. The PFM_SET_CONFIG is restricted to the
system administrator because it sets some of the security parameters. The PFM_GET_CONFIG com-
mand returns the global properties of the interface. This is useful for some tool which may need to size
certain data structures based upon the information returned by the command.

The second category of commands includes all the calls that operate on an existing context. Without a
valid context, the commands cannot be used. The key command is PFM_CREATE_CONTEXT because it
creates a new context and therefore opens up the use of the other commands. It should be noted that
the command does not access any hardware and no sensitive information can really be extracted until
the context is attached to a thread or CPU core.

The interface has two modes of operations: per-thread and system-wide. Both have different risks
which we examine in the next two sections.

Per-thread mode

In per-thread mode, a context is monitoring only a single thread at a time. The context is attached
to a specific thread via the PFM_LOAD_CONTEXT command. Each implementation may perform some
security checks during this command to ensure that the caller has permission to access the designated
thread. Those checks are very specific to each operating system. The interface mandates that a context
is never inherited across fork(), vfork(), or pthread_create(). This implies that every monitored thread
must be explicitly attached to with the PFM_LOAD_CONTEXT command and thus it must go through
the security checks of this command.

By default, any user can create a per-thread context. In environments where this level of security
is not enough, the interface provides a way for the system administrator to restrict the creation of a
per-thread context to a specific group of users with the PFM_SET_CONFIG command. The identification
of the group of users is passed in the cf _thread _group field of the pfarg _config _t structure. Only
users from the group are allowed to create a per-thread context.

By default, there is no group restrictions for a per-thread context.

System-wide mode

In system-wide, by definition, a measurement collects information about all processes running on a
particular processor. Not all processes necessarily belong to the same user. Therefore it is possible
to extract information that would otherwise not be visible to the owner of the monitoring application.
One solution would be to filter out the processes which cannot be accessed when they are running
on the monitored processor but that would defeat the purpose of the system-wide mode. Instead, the
interface provides a way of controlling the creation of system-wide contexts.

The interface allows a system administrator to restrict the creation of a system-wide context to a group
of users. The group is specified with the PFM_SET_CONFIG command. The identification is passed in
the cf _sys group field of the pfarg _config _t structure. Only users from the group are allowed to
create a system-wide context.

By default, there is no group restrictions for a system-wide context.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 1 13

4.3 Protection of the user

In this section, we describe the security features provided by the interface to protect the privacy of the
users. Note that the mechanisms described here may be in addition to the regular operating system
protections.

4.3.1 Identification of contexts

Each context is uniquely identified with a file descriptor. The validity of the descriptor follows the
regular semantics of the operating system. On a POSIX-based system, a file descriptor is valid in
the process that created it, its children processes and all of its threads. Similarly, the file descriptor
remains valid across the exec() system call unless explicitely closed. A process may also receive a
descriptor from another process via an explicit transmission in which case the sender is responsible
for security.

Outside of this scope, the descriptor has no meaning and therefore it cannot be used to gain access to
the perfmon context.

4.3.2 PMU machine state

The PMU state includes the values of the PMC and PMD registers and potentially other machine regis-
ters. The values stored in the PMC and PMD registers could reveal what an application is measuring.
Some PMD registers may contain code and data addresses. As such they must be protected to avoid
leaking unauthorized information from one thread to another or from the kernel to a user application.

There are two aspects to this problem:

¢ reading the hardware PMU registers directly

* reading the software-maintained state of the PMU

Accessing the hardware PMU registers

The interface guarantees that it is not possible to read the values of the PMD registers of a monitored
thread when the controlling process does not allow it.

In per-thread mode, it is not possible to access the actual PMU registers of the monitored thread while
it is running. When a thread is inactive, the PMU state is also protected. Similarly, once the thread has
died it is impossible to read the leftover state in the actual PMU hardware. A self-monitored thread
should be allowed to access its own PMU registers. On some architecture it may even be possible to do
so without calling into the kernel by directly using a machine instruction.

In system-wide mode, the behavior is equivalent to self-monitoring by construction with the exception
that any thread with access to the file descriptor and running on the monitored processor core can
effectively access the PMU registers either by calling into the kernel or by directly using a machine
instruction if the architecture supports it.

Depending on the capability of the hardware, it may be necessary to clear the PMU registers on context
switch. However for most architectures reading the PMU registers is a privileged operation therefore
this should not be necessary. For those which do allow reading there is typically a provision to disable
that feature. Reading from the most privileged level is always possible, hence access must be controlled
by software.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 1 14

Accessing the PMU software state

The kernel must maintain the state of the PMU in software. To a bare minimum, it is necessary to
provide some storage area to save the PMU state during a context switch.

Getting access to the context requires getting access to the file descriptor that identifies it. Without
the file descriptor, the interface guarantees that no access is possible.

In system-wide mode, there is an additional restriction because the caller must run on the processor
that is being monitored with the context.

4.3.3 The sampling buffer

Depending on which sampling buffer format is used, the interface may be able to re-map the sampling
buffer into the address space of the controlling process. Sampling buffer formats may chose not to use
the interface buffer allocation and re-mapping services, in which case, it is important to refer to the
appropriate documentation for security related issues. The default format does use the allocation and
re-mapping services.

The re-mapping is private to the process that creates the context. However the normal POSIX se-
mantics do apply on fork() and pthread_create(). The mapping is inherited across fork(), therefore the
buffer is visible in the children processes. It is important to note that the buffer is always re-mapped
as read-only. If the buffer should not be visible in a child process, it is always possible to explicitly
remove the mapping via a call to munmap().

For all threads inside a process, by construction, the buffer is always visible because the address space
is shared.

On exec(), the whole address space is torn down and recreated, therefore the buffer is not visible after
the call.

4.4 Protecting the system

In this section we describe how the system as a whole is protected against applications using the
interface as a way to compromise the integrity of a machine.

4.4.1 Visibility of kernel level information

Normally, kernel level information is never leaked to an application unless it is safe to do so. In the
context of performance monitoring, some information about kernel level execution of a process may
become visible to an application. Here are some typical examples:

* it is possible to extract kernel level instruction pointer (IP) when sampling is enabled

¢ some PMU implementations have the ability to capture branches including source and destina-
tion, code and data cache misses addresses

¢ for many PMU implementations, it is possible to control the privilege level at which qualified
events are captured.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 1 15

All of this can be valuable information to tune an application or the kernel. As such, monitoring kernel
level execution should not be forbidden by default.

However in certain security sensitive environments this may be required. The interface does not have
provision to limit the privilege level at which events can be monitored. It is too fine grain and would
require extended knowledge of the structure of PMC registers at the kernel level.

Each PMU implementation may provide additional information which may be considered potentially
sensitive. There is no way to predict what can be extracted by the PMU in the future. Therefore the
interface uses a different approach. By default, the information is available to all users, however in
security sensitive environments, the creation of a context can be restricted to groups of trusted users.
Details on this protection mechanism are given in section 4.2.

4.4.2 The vector arguments

Many commands take a vector of arguments. Typically the vector is copied from the user address space
to the kernel address space for security purposes. This implies that a kernel buffer is allocated to copy
the vector into. That buffer could have any size because it needs to accommodate the vector. This could
be dangerous because the buffer could consume a lot of system memory.

To counter such an attack, the interface provides a parameter to limit the size of the vector argu-
ments. The maximum size is expressed in bytes and is set in the cf _arg _size _max field of the
pfarg _config _t structure passed for the PFM_SET_CONFIG command. This limit is checked for all
commands which take a vector argument.

4.4.3 The size of the sampling buffer

In this section, we assume the use of the default sampling format.

The interface of the default format does not impose a particular size limitation on the allocated buffer.
The sampling buffer requires non-pageable physical memory therefore it can be quite taxing on the
resources of a system. Each implementation must check the size of the buffer against certain resource
limits. For instance, on Linux, it is possible to check against the resource limits provided by the
getrlimit() system call. In particular, an implementation could check against the RLIMIT_-MEMLOCK
threshold. Of course, this is not a complete protection because these resource limits are per-process.

To overcome this difficulty, the interface provides a global parameter to limit the overall memory used
by all sampling buffers. This is a system-wide limit which includes all the sampling buffers active at
any one time. The limit is set the PFM_SET_CONFIG command and the cf _smpl _buf _size _maxfield of
the pfarg _config _t structure.

The size limit is checked when the buffer is allocated and not when the context is attached, i.e., during
PFM_CREATE_CONTEXT and not during PFM_LOAD_CONTEXT.

4.4.4 Throttling PMU interrupts

The interface does not impose minimal thresholds on the sampling rates because that would require
kernel knowledge about each event. Different events happen at different rates. The kernel would have
to know what a reasonable rate would be for every possible event. That is clearly unrealistic.

Having a sampling period of one, could potentially overload the system especially when coupled with
high frequency events such as the one counting elapsed cycles, for instance. Basically for every cycle,

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 1 16

there would be a counter overflow leading to an interrupt. In practice however, this kind of extreme
measurement may be mitigated by implementation dependencies. For instance, operating system ker-
nels have periods of time where all interrrupts are masked and that would keep the PMU interrupts
pending and thereby lower their rate.

However this can only mitigate the problem and not really solve it. There are two ways to possibly
limit the damages:

® restrict access to a trusted group of users who know what they are doing

¢ throttle the rate at which interrupts are generated

The second solution looks more flexible but the difficulty is to determine what is a reasonable rate
really to ensure forward progress. As for the first solution, it is too coarse, it certainly prevents the
random user from causing problems, yet even the most expert users make mistakes.

One solution is to rate-limit based on time and not on the number of occurrences of an event. For
instance, the threshold could be set to no more than 1000 PMU interrupts per second. In the PMU
interrupt handler and on a per thread basis, each interrupt would be time-stamped. A new time-stamp
would be compared to the time-stamp of the previous interrupt. If the difference between the two is
less than an administrator specified threshold, monitoring could be masked until an application issues
a PFM_RESTART command. Without notification, such approach would require some sort of polling on
the part of the application.

This solution needs more thoughts. Especially in system-wide mode. More to come in this section...

4.4.5 Custom sampling formats
Any code added to the operating system kernel is a potential risk. Typically all operating systems
require special privileges to insert a new module into the kernel.

There is not much the perfmon core can do to verify that a module is not malicious or buggy. In this
area, the interface relies entirely on the operating system or administrator to ensure that only users
with the right set of permissions can register a custom sampling buffer format.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 1 1 7

Chapter 5

Itanium Processor Family specific
interface

In this chapter we describe the features to the interface that are specific to the Itanium Processor
Family (IPF).

By convention, all model-specific constants have the ITA prefix in their name. This allows for fast
recognition between generic and model-specific constants.

5.1 Itanium specific register mappings

perfmon view = —— — _______ PMeS o o
(logical view) 0 1 ‘ 2 ‘ ,,,,,,,, ‘ 255 ‘ 256 ‘ ,,,,‘ 263 ‘ 264 ‘,,,, ‘ 271 ‘
actual view ‘ o ‘ . ‘ . ‘ 7777777777777777 @
PMCS ‘ 0 ‘77J 7 ‘
IBRS o | | 7]
DBRS
. _ PMDS
perfmon view —— .
(logical view) ‘ 0 ‘ 1 ‘ 2 ‘ ,,,,,,,, 255
actual view ‘ o ‘ . ‘ . ‘ 7777777777777777 @
PMDS

Figure 5.1: Itanium PMU register mappings.

118

The Itanium architecture is very nice in that is defines the framework in which the PMU can be
implemented. The framework defines the minimum and maximum number of PMC and PMD registers
that can ever be implemented. The role of each PMC/PMD can still fluctuate yet there is enough
information to build a generic mapping for all existing and future Itanium processors.

The PMC and PMD registers naming used by the interface maps directly onto the actual PMD and
PMC registers used by the Itanium PMU. The architecture specifies that up to 256 PMC and 256 PMD
registers can be implemented. As such, the mapping is trivial as PMCz maps to the actual PMCx
registers, same thing with the PMD registers.

The interface defines extra PMC registers to access the debug registers which are used on some Ita-
nium PMU models to implement code and data range restrictions, see section 5.6.

Figure 5.1 shows a global view of the register mappings for all Itanium processors.

5.2 Privileged versus user monitors

The Itanium architecture supports two types of monitors: user and privileged. Each counting PMC
register, and possibly model-specific extensions, such as the Data Event Registers on Itanium® 2, can
be configured for one type or the other via the PMC.pmfield.

Starting and stopping each type of monitors is controlled by two distinct bits in the psr register:
psr.up and psr.pp . This potentially, allows simultaneous distinct measurements to start and stop in-
dependently of each other. Privileged monitors also offer extended settings for dealing with interrupt-
triggered execution via the dcr.pp bit.

The interface is designed such that user monitors are selected for all per-thread contexts and privileged
monitors for all system-wide contexts.

The PMC.pmbit is automatically set depending on the type of context. Applications are not required
to set the bit. No error is generated when the bit set by an application does not match the type of the
context.

5.3 Secure monitoring

The Itanium architecture provides a bit, psr.sp , to control access to the PMD registers and the
psr.up bit for code running at a non-zero privilege level. When this bit is cleared, it is possible to
read the PMD registers via a simple mov instruction. Similarly, it is possible to start and stop mon-
itoring of user monitors with the rum/sum instructions. When the bit is set, reading a PMD register
with a movinstruction returns O and rum and sum instructions have no effect on psr.up . This bit has
no effect on privileged monitors. Being able to read a counter, start and stop monitoring with a simple
instruction is very interesting when measuring small sections of code where monitoring overhead must
be minimized. This is typically the case for programs that are monitoring themselves.

By default, the interface sets psr.sp to 1, i.e., in secure monitoring mode, except for self-monitoring
per-thread context. This is where it could be very useful to monitor small sections of code and where
overhead must be minimized, i.e., no system call to start and stop monitoring. However when monitor-
ing another thread, it may also be interesting to allow insecure monitoring because it becomes possible
to use rum and sum instructions in the monitored program to measure specific portions of code. In
many cases, it may be much easier to inject rum/sum instructions into a binary than to modify the
source code to construct a self-monitoring program.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 1 19

5.4 Context flags

In this section, we describe the context flags that are specific to the Itanium Processor Family (IPF).

5.4.1 The PFM.ITA FL_INSECURE flag

The PFM_ITA_FL_INSECURE flag overrides secure monitoring for non-self monitoring contexts. It is only
useful for per-thread contexts using user monitors. This flag is invalid for a system-wide context.

5.5 Event set flags

The following Itanium-specific set flags are defined.

5.5.1 The PFM_ITA _SETFL_EXCL_INTR flag

The PFM_ITA_SETFL_EXCL_INTR flag is used to exclude interrupt-triggered execution from monitoring. In-
terrupts include external interrupts but also software interrupts such as those triggered by break.i
This flag does not have any influence if all the events in the set are programmed to monitor at non zero
privilege level. This flag only affects monitoring if the PMC registers of the set are setup as privileged
monitors. Any attempt to set this flag when user monitors are selected will return an error. By default,
this flag is not set, i.e., interrupt-triggered execution is monitored.

Interaction with the PFM_SETFL_EXCL_IDLE flag

The flag can be used in conjunction with PFM_SETFL_EXCL_IDLE. In that case this means that the idle
thread is not monitored and that interrupts processed during its execution are not monitored either.
In other words while the idle thread is active, nothing is monitored and when it is not active only non
interrupt-triggered kernel level execution is monitored.

When only the PFM_SETFL_EXCL_IDLE flag is specified, interrupt-triggered execution is monitored when
the idle thread is active. This is motivated by the fact that the system cannot be considered idle when
it is processing interrupts.

5.5.2 The PFM_ITA SETFL_INTR_ONLY flag

the PFML_ITA_SETFL_INTR_ONLY flag is used to monitor only interrupt-triggered execution. Interrupts
include external interrupts but also software interrupts such as those triggered by break.i . This
flag does not have any influence if all the events in the set are programmed to monitor only non zero
privilege level. This flag only affects monitoring if the PMC registers of the set are setup as privileged
monitors. Any attempt to set this flag when user monitors are selected will return an error. By default,
this flag is not set, i.e., interrupt-triggered execution is monitored.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 120

Interaction with the PFM_SETFL_EXCL_IDLE flag

Both flags can be specified at the same time. The PFM_SETFL_EXCL_IDLE flag excludes the idle thread
from active monitoring. This flag monitors only during interrupt-triggered execution. While execut-
ing in the idle thread, interrupts can be processed and will be monitored. Non interrupt processing
execution of the idle thread is not monitored.

Interaction with the PFM_ITA_SETFL_EXCL_INTR flag

Both flags cannot be used at the same time, i.e., for the same set.

5.6 Support for code and data range restrictions

Both the Itanium® [7] and Itanium® 2 [9] processors include a nice PMU feature, called range restric-
tion, which uses registers outside the set of hardware PMC and PMD registers. For both processors,
it is possible to restrict monitoring to a certain range of code or data addresses. This feature uses the
debug registers to describe the address ranges. Obviously those registers are normally used for debug-
ging applications. On Linux, they are setup with the ptrace() system call, other operating system have
equivalent system calls.

Given that it is never possible for a thread to debug itself, the existing kernel interface requires a
second thread, usually in the parent process, for the setup and control of debugging. However it
is totally reasonable for a self-monitoring thread to use address range restrictions. Similarly, some
operating systems may restrict the addresses that can be stored in a debug register. For instance, it
is likely that setting a breakpoint in the kernel is forbidden. Yet for monitoring purposes, it may be
useful to restrict monitoring to an address range in the kernel address space.

In order to provide access to the debug registers for monitoring purposes, the number of logical PMC
registers presented by the interface was extended to cover the eight code debug registers and the eight
data debug registers. To program range restrictions, the PMU configuration registers and the debug
registers can be modified using the PFM_WRITE_LPMCS command.

5.6.1 Debug registers mappings

An application can access the debug registers through a set of logical PMC registers. Table 5.1 shows
the mapping that is used by the interface. The Itanium architecture guarantees there will never be
more than 256 PMC registers. As such, the interface allocated a range between 256 and 271 for the
debug registers.

The range restriction feature may not be implemented on all Itanium PMU models. The interface
guarantees that this range is dedicated for the debug registers. When the feature is not present,
PMC256-PMC271 are not implemented.

It is possible to use PFM_GETINFO_PMCS to retrieve the mapping in the other direction, i.e., from PMC
to IBR or DBR. See section 3.1.13 for more details.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 12 1

| debug register | PMC register |

IBRO PMC256
IBR1 PMC257
IBR2 PMC258
IBR3 PMC259
IBR4 PMC260
IBR5 PMC261
IBR6 PMC262
IBR7 PMC263
DBRO PMC264
DBR1 PMC265
DBR2 PMC266
DBR3 PMC267
DBR4 PMC268
DBR5 PMC269
DBR6 PMC270
DBR7 PMC271

Table 5.1: Mapping of the debug registers to PMC for the Itanium Processor Family.

5.6.2 Interactions with debugging

For code debug registers, if the ibr.x is set, then the debug register pair is not used by the PMU and
is considered an active debug breakpoint. Conversely, if ibr.x is cleared, the breakpoint is considered
inactive but its content is valid for range restriction. The same behavior exists for data debug registers.
The dbr.r and dbr.w field must be cleared for the register to be used by the PMU otherwise it is
considered as an active breakpoint. In other words the PMU implementation allows a thread to be
debugged and monitored with range restriction at the same time, subject to both subsystem using
distinct debug registers.

However, there are certain operating system issues which limit this degree of freedom, in particular,
the existing ptrace interface used to setup breakpoints. It is not possible to modify this interface
used by debuggers. It is perfectly valid for a debugger to clear ibr.x or dbr.r or dbr.w to inactivate
a breakpoint. But that should not be interpreted as a valid PMU range restriction. Conversely, the
perfmon implementation cannot simply clear all debug registers as soon as it detects that they are
used for range restrictions.

To prevent picking up stale debug registers state for range restriction, the interface ensures that it is
not possible to use the debug registers for both debugging and performance monitoring at the same
time. Such restriction applies to a system-wide context as well. It this case, the following rules are
used:

¢ the PFM_LOAD_CONTEXT command fails if any thread across the entire system is using the debug
registers for debugging. This constraint is necessary because processes can migrate from one
CPU core to another.

¢ for a loaded context, writing a debug register with PFM_WRITE_LPMCS fails if there is at least one
thread using the debug registers for debugging across the entire system.

In both cases, if the operating system can detect that the debug registers are no longer used for debug-
ging, then it becomes possible to use range restrictions.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 122

5.6.3 Using PFM_WRITE PMCS with the debug registers

The command is used just like for an actual PMC register, see section 3.1.2 for details. However the
pfarg _pmc.t data structure is used as follows:

* reg _num: the PMC register index (in the range [256:271])

* reg _set : the event set for the PMC register.

* reg value : the raw value of the corresponding debug register.

e reg flags : there is no specific flag supported on input for a debug register. The bits which are
not defined are reserved and must be cleared. It is only possible to set bits that are defined. Upon
return, the field may be updated to reflect possible error conditions (see section 3.1.2).

e reg _smpl _pmds : ignored for debug registers.

® reg reset _pmds: ignored for debug registers.

* reg _smpl _eventid : ignored for debug registers.
The value of a code debug register is checked for PMC257, PMC259, PMC261and PMC263, such that
ibr.x is cleared. This is necessary to avoid using the interface to set rogue code breakpoints. Similarly,

the value of a data debug register is checked PMC265, PMC267, PMC269 and PMC271 such that
dbr.r and dbr.w Dbits are cleared.

5.7 Calling perfmonctl() from signal handlers

The interface supports perfmonctl() calls made from POSIX signal handler. It is possible to create,
program, control and destroy a context from a signal handler. On an Itanium system, however, there is
a small difficulty for certain commands due to the behavior of signal handler with regards to the ma-
chine state. The Processor Status Register, psr , may be modified during the execution of the handler.
However, it is systematically restored upon return from that handler. This means that if an application
modifies the psr in the handler, these modifications are lost outside of it. This affects the behavior of
a per-thread context for the following commands:

e PFM_START: this command sets the user level psr.up bit.
e PFM_STOP : this command clears the user level psr.up bit.

e PFM_UNLOAD: this command stops monitoring and therefore invokes PFM_STOP internally. As
such it clears psr.up

® close() : this commands stops monitoring and therefore it may call PFM_UNLOAD internally. As
such it may clear psr.up

* rum/sum : when insecure monitoring is enabled, these instructions toggle the value of psr.up

For all these, the modification to psr is lost when execution resumes after the signal.

In order for the modification to survive beyond the signal handler, it is necessary to propagate it
using the sigcontext argument of the handler. This data structure contains part of the machine
state that the user can modify. Upon return from the handler, the machine state described in the

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 123

sigcontext is copied back to the user level machine state. As such, it is possible to propagate some
of the modifications to the normal execution of the program. The modifications to psr.up must be
replicated in the sc _.um the user mask, field of the sigcontext structure. The psr.up bit corresponds
to bit 2 of sc _.um

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 124

Chapter 6

Future extensions

In this chapter, we describe the extensions that are considered for the next revisions of the interface.

6.1 Alternative system call interface

As alluded to in section 3.1, for some operating systems, such as Linux, it is preferable to decompose
the commands of the interface into multiple system calls. This approach offers several advantages
such as:

* better type-checking of the parameters

* possibly faster implementation, because no demultiplexing is needed in the kernel
But it also has some disadvantages such as:

* potentially less code reuse and more code duplication

* more difficulties to extend interface while maintaining backward compatibility

In any case, the following sections present the conversion of each command into the corresponding
system call. The conversion preserves all functionalities of the original interface.

6.1.1 Creation the perfmon context
The PFM_CREATE_CONTEXT command is converted into the following system call:
int pfm _create _context(pfarg _Ctx _t *ctx, int n);

The call behaves exactly as described in section 3.1.1. The second argument n must be 1. It is provided
to ensure that in the future we would be able to create multiple contexts in one call, should this become
useful. The pfarg _ctx _t structure is identical to that described in section 3.1.1.

125

6.1.2 Accessing the PMC registers
The PFM_WRITE_.PMCS command is converted into the following system call:
int pfm _write _pmcs(int fd, pfarg _pmc_t *pmcs, int n);

The call behaves exactly as described in section 3.1.2.

The PFM_GETINFO_PMCS command is converted into the following system call:
int pfm _getinfo _pmcs(pfarg _pmcinfo _t *pmcs, int n);

The call behaves exactly as described in section 3.1.13.

6.1.3 Accessing the PMD registers
The PFM_WRITE_PMDS command is converted into the following system call:
int pfm _write _pmds(int fd, pfarg _pmd.t *pmds, int n);

The call behaves exactly as described in section 3.1.3.

The PFM_READ_PMDS command is converted into the following system call:
int pfm _read _pmds(int fd, pfarg _pmd.t *pmds, int n);

The call behaves exactly as described in section 3.1.4.

The PFM_GETINFO_PMDS command is converted into the following system call:
int pfm _getinfo _pmds(pfarg _pmdinfo _t *pmds, int n);

The call behaves exactly like the PFM_GETINFO_PMDS command, see section 3.1.14.

6.1.4 Starting and stopping monitoring
The PFM_START command is converted into the following system call:
int pfm _start(int fd, pfarg _start _t *start);

The start argument is optional, when not used the parameter must be NULL The call behaves exactly
as described in section 3.1.5.

The PFM_STOP command is converted into the following system call:
int pfm _stop(int fd);

The call behaves exactly like the PFM_STOP command, see section 3.1.6.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 126

6.1.5 Attaching and detach a context
The PFM_LOAD_CONTEXT command is converted into the following system call:
int pfm _load _context(int fd, pfarg _load _t *load);

Only one context can be loaded at a time. The call behaves exactly as described in section 3.1.7.
The PFM_UNLOAD_CONTEXT command is converted into the following system call:

int pfm _unload _context(int fd);

The call behaves exactly as described in section 3.1.8.

6.1.6 Resuming monitoring
The PFM_RESTART command is converted into the following system call:
int pfm _restart(int fd);

The call behaves exactly as described in section 3.1.9.

6.1.7 Operating on event sets
The PFM_CREATE_EVTSETS command is converted into the following system call:
int pfm _create _evtsets(int fd, pfarg _setdesc _t *setdesc, int n);

The call behaves exactly as described in section 3.1.10.
The PFM_DELETE _EVTSETS command is converted into the following system call:

int pfm _delete _evtsets(int fd, pfarg _setdesc _t *setdesc, int n);

The call behaves exactly as described in section 3.1.11.
The PFM_GETINFO_EVTSETS command is converted into the following system call:

int pfm _getinfo _evtsets(int fd, pfarg _setdesc _t *setdesc, int n);

The call behaves exactly as described in section 3.1.12.

6.1.8 Configuring the perfmon interface
The PFM_GET_CONFIG command is converted into the following system call:
int pfm _get _config(pfarg _config _t *cfg);

The call behaves exactly like the PFM_GET_CONFIG command, see section 3.1.17.
The PFM_SET_CONFIG command is converted into the following system call:

int pfm _set _config(pfarg _config _t *cfg);

The call behaves exactly like the PFM_SET_CONFIG command, see section 3.1.16.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 12 7

6.2 Command Extensions

6.2.1 The PFM_REGFL NO 64BIT EMUL flag

The PFM_REGFL_NO_64BIT_ EMUL flag would be added to the PFM_WRITE_LPMCS command. It would
indicate that no 64-bit emulation is necessary on the associated counting PMD register. This can be
useful if emulation is not necessary for certain measurements. This flag is ignored for non counting
PMD registers.

6.2.2 The PFM_REGFL READ RESET flag

The PFM_REGFL_READ _RESET flag would be added to the PFM_READ_PMDS command. It would force a
long reset of the PMD register during a PFM_READ_PMDS command. The flag is useful when polling
the value at some interval of time. It would avoid having to issue a PFM_WRITE_.PMDS command to
reset the counter to zero. The PMD registers in the reg _smpl _reset field would also be reset.

6.2.3 The PFM_SETFL_.EXCL_KERNEL_ONLY_THREADS flag

The PFM_SETFL_EXCL_KERNEL_ONLY_THREADS flag would be passed when the event set is created or
changed. It would exclude all kernel only threads from active monitoring for a system-wide context. It
would not be supported for pre-thread contexts. A kernel thread is defined as a thread created inside
the kernel which has no user level machine state, i.e. lives only at the most privileged execution level.
Such threads, sometimes called kernel daemons, are typically used to process kernel background jobs,
such as flushing the buffer cache. The most famous kernel thread is the idle thread which runs when
nothing else can. The nature and numbers of kernel threads depends on the kernel and potentially
from the architecture. As such, it may be possible that for some kernels there would be nothing to
exclude.

The effects of the flag are identical to that of the PFM_SETFL_EXCL_IDLE flag described in this document.
It is simply more generic and therefore it is mutually exclusive with it.

6.3 Sampling support

6.3.1 Double-buffering sampling format

The default sampling format could be extended to support double-buffering. Such format would be
implemented as a separate kernel module with its own UUID. This is motivated by the fact that:

* backward compatibility must be maintained for the default sampling format

* to keep the code fairly simple.
The buffer area is split into to two halves. Samples are written to the first half. When it becomes
full, a notification is sent but monitoring remains active and samples are written in the second half of

the buffer. The motivation behind double-buffering is to minimize blind spots. This is not necessarily
bullet-proof and there are some side effects. For instance, in system-wide mode, the risk is to monitor

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 128

the performance tool itself as it is processing its half of the buffer. However, it is fairly easy to filter
out the samples coming from the tool by using the pid stored in each sample header.

Compared to the default sampling format, the buffer header would be quite different to maintain
information about each half. The sample header would remain identical to the one used by the default
sampling format.

Once the first half becomes full, a notification is sent to the controlling process but monitoring is not
masked. Overflowed PMD registers and associated PMD registers of interest are reset using their
short reset periods. Then samples are written into the second half. Once the tool is done processing its
half, it invokes the PFM_RESTART command which invokes the fmt _restart call-back. The first half is
marked as free. When the second half becomes full, a notification is sent and the format switches to
the first half.

In case of the tool does not invoke the PFM_RESTART command before the other half fills up there are
two possible modes:

¢ cycle in the half of the buffer owned by the format

* saturate

The default behavior is to cycle in the half owned by the format. This can be altered with a format-
specific flag:

* DOUBLE_FMT_MASK_WHEN_FULL: this flag forces saturation. Monitoring is masked until a con-
trolling thread invokes the PFM_RESTART command.

This sampling format would be present by default in the kernel. Extensions to more than more than
2-way are possible.

6.3.2 Support for correlation of samples

In system-wide mode and for sampling measurements, it is very useful to correlate the information
recorded in a sample to the actual program that generated it. In particular, it is interesting to corre-
lated the pid to an actual binary to possibly gain access to source level information.

The default sampling format does not currently store enough information to make the correlation
possible.

On Linux, tools may, instead, use the information provided by the /proc file-system. A common
technique is to take snapshots of the /proc tree whenever there is an overflow notification or at some
interval of time. The /proc snapshot contains information about each running process including
names and mappings of shared libraries. Yet the issue with this technique is that it may miss short-
lived processes which may generate samples. Depending on the workload this may be a significant
problem to interpret the samples.

The default format could be extended, via a new format or possibly with a new flag to include sample
correlation information. On Linux, it may be possible to use some of the existing hooks on exec()
and mmap() to store useful information. It may also be possible to leverage the correlation support
implemented by the OProfile [3] subsystem.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 129

6.4 Extensions specific to the Itanium Processor Family

In this section, we describe the potential extensions that are specific to the Itanium Processor Family
(IPF).

6.4.1 The PFM._ITA FL_PRIV_MONITORS flag

As described in section 5.2, the interface selects, by default, user monitors for all per-thread contexts
and privileged for all system-wide contexts. This is good enough for 90% of the measurements.

For very specific measurements, it is beneficial to use privileged monitors for a per-thread session. In
particular it is interesting when privilege level 0 execution must be broken down between interrupt
and non-interrupt triggered. This could easily be achieved by leveraging the dcr.pp and psr.pp
mechanism whereby psr.pp receives the value of dcr.pp on interrupt.

This new flag, PFM_ITA_FL_PRIV_MONITORS, would override the default behavior of the interface and
enable the use of privileged monitors for a per-thread context. In this mode, it becomes possible to
enable the PFM_ITA_SETFL_EXCL_INTR or PFM_ITA_SETFL_INTR_ONLY flags on an event sets to tweak inter-
rupt level monitoring.

There is no real benefit in using user monitors for a system-wide context, as such it is not possible to
override the use of privileged monitors for this type of context.

6.5 Support for PMU preemption

As alluded to in the description of the PFM_LOAD_CONTEXT command, when the PMU cannot be shared
between system-wide and per-thread contexts, the interface enforces mutual exclusion.

However exclusion may be too strong a policy for certain environments where a class of users or ap-
plications would be denied access to the PMU resource. When the PMU is needed for temporary
measurements, that may be acceptable. However it is likely that future applications and managed
runtimes, such as Java, will use the PMU to collect profiling information to adjust just-in-time opti-
mizations each time they run. It would not be possible to deny them access to the PMU just because a
system-wide monitoring tool is running in the background all the time.

The interface must provide some kind of preemption mechanism whereby an application could preempt
the PMU from another one. The problem with this approach is that some tools and measurements
may rely on the fact that they effectively run during a known period of time. As such, the preemption
must be implemented as a cooperative preemption where an application indicates that it accepts to
be preempted for some time. In exchange, it would receive detailed information when its access is
restored, allowing the measurement to account for the blind spot.

© Copyright (c) 2004-2005 Hewlett-Packard Development Company, L.P 130

Chapter 7

References

We would like to thank Curt Wolgemuth, Eric Gouriou, Dan Truong, David Mosberger, Dick Fowles,
Jim Callister, Brad Chen, Hugh Caffey, and Bryan Wilkerson for their feedback on this interface spec-
ification.

131

Bibliography

[1] David F. Carta. Two fast implementations of the minimal standard random number generator.
Com. of the ACM, 33(1):87-88, 1990. http://doi.acm.org/10.1145/76372.76379.

[2] J. Anderson et al. Continuous profiling: Where have all the cycles gone, 1997.
http://citeseer.ist.psu.edu/anderson97continuous.html.

[3] John Levon et al. Oprofile. http://oprofile.sf.net/.
[4] Robert Cohn et al. The PIN tool. http://rogue.colorado.edu/Pin/.

[56] Forschungszentrum dJuelich GmbH. The Performance Counter Library (pcl). http://www.fz-
juelich.de/zam/PCL/PCLcontent.html.

[6] Hewlett-Packard Company. The Caliper performance analyzer. http:/www.hp.com/go/caliper/.

[7] Intel. Intel Itanium Processor Reference Manual for Software Development and Optimization,
November 2001. http://www.intel.com/design/itanium/documentation.htm.

[8] Intel. The IA-64 Architecture Software Developer’s Manual, October 2002.
http://www.intel.com/design/itanium/documentation.htm.

[9] Intel. Intel Itanium 2 Processor Reference Manual for Software Development and Optimization,
April 2003. http://www.intel.com/design/itanium/documentation.htm.

[10] Intel. IA-32 Intel Architecture Software Developers’ Manual: System programming Guide, 2004.
http://developer.intel.com/design/pentium4/manuals/index_new.htm.

[11] Intel Corp. The VTune™ performance analyzer. http://www.intel.com/software/products/vtune/.
[12] Mikael Pettersson. the Perfctr interface. http:/user.it.uu.se/ mikpe/linux/perfetr/.
[13] Alex Tsariounov. The Prospect monitoring tool. http:/prospect.sf.net/.

[14] University of Tenessee, Knoxville. Performance Application Programming Interface(PAPI)
project. http://icl.cs.utk.edu/papi/.

[15] University of Tenessee, Knoxville. Performance Application Programming Interface(PAPI)
project. http://icl.cs.utk.edu/papi/.

[16] University of Wisconcin, Madison. The Paradyn project. http://www.paradyn.org/index.html.

[17] POSIX working group. Portable Operating System Interface (POSIX) — Part 1: System Applica-
tion Program Interface (API), Amendment 2: Threads Extension (C Language). IEEE/ANSI Std
1003.1¢-1995, 1995.

132

	Document revision history
	Important Warning
	Revision summary

	Introduction
	Goals of the interface
	Design choices
	Logical PMU
	Basic operations on PMU registers
	System call interface
	System-wide support
	Sampling support
	Event sets and multiplexing

	Perfmon Terminology
	Processor, CPU, and core
	The PMU
	The PMU registers
	Threads, Processes, and tasks
	Perfmon context
	Perfmon session
	Reserved fields and bits

	The interface
	The perfmonctl() system call
	The PFM_CREATE_CONTEXT command
	The PFM_WRITE_PMCS command
	The PFM_WRITE_PMDS command
	The PFM_READ_PMDS command
	The PFM_START command
	The PFM_STOP command
	The PFM_LOAD_CONTEXT command
	The PFM_UNLOAD_CONTEXT command
	The PFM_RESTART command
	The PFM_CREATE_EVTSETS command
	The PFM_DELETE_EVTSETS command
	The PFM_GETINFO_EVTSETS command
	The PFM_GETINFO_PMCS command
	The PFM_GETINFO_PMDS command
	Destroying a context with close()
	The PFM_SET_CONFIG command
	The PFM_GET_CONFIG command

	PMU register mappings
	Logical versus actual PMU registers
	Extending to virtual PMD registers
	Access to mappings
	Mapping to the logical view

	Event notifications
	The message queue
	The message structure
	Extracting messages
	Size of the message queue
	Message queue reset
	Termination notifications
	Asynchronous notifications
	Waiting on multiple contexts
	Extensibility of the notification interface

	Support for sampling
	Setting sampling periods
	Randomization of sampling periods
	Counter Overflow notifications

	Support for kernel level sampling formats
	Custom sampling format interfaces
	Identification of sampling formats
	Passing arguments to a sampling format
	Accessing the sampling buffer
	Buffer initialization
	Buffer content
	Kernel level interface overview
	The pfm_register_buffer_fmt() function
	The pfm_unregister_buffer_fmt() function
	The fmt_validate() function
	The fmt_getsize() function
	The fmt_init() function
	The fmt_exit() function
	The fmt_handler() function
	The pfm_restart() function

	The default sampling format
	Identification of the default format
	Format specific parameters
	The buffer header
	Structure of a sample
	Overflow and restart behaviors

	Support for event sets and multiplexing
	Definition of an event set
	Motivations
	Why a kernel-level interface?
	Operating on event sets
	Creating event sets
	Set switching
	Event Sets and sampling

	Security
	Introduction
	Accessing the interface
	Protection of the user
	Identification of contexts
	PMU machine state
	The sampling buffer

	Protecting the system
	Visibility of kernel level information
	The vector arguments
	The size of the sampling buffer
	Throttling PMU interrupts
	Custom sampling formats

	Itanium Processor Family specific interface
	Itanium specific register mappings
	Privileged versus user monitors
	Secure monitoring
	Context flags
	The PFM_ITA_FL_INSECURE flag

	Event set flags
	The PFM_ITA_SETFL_EXCL_INTR flag
	The PFM_ITA_SETFL_INTR_ONLY flag

	Support for code and data range restrictions
	Debug registers mappings
	Interactions with debugging
	Using PFM_WRITE_PMCS with the debug registers

	Calling perfmonctl() from signal handlers

	Future extensions
	Alternative system call interface
	Creation the perfmon context
	Accessing the PMC registers
	Accessing the PMD registers
	Starting and stopping monitoring
	Attaching and detach a context
	Resuming monitoring
	Operating on event sets
	Configuring the perfmon interface

	Command Extensions
	The PFM_REGFL_NO_64BIT_EMUL flag
	The PFM_REGFL_READ_RESET flag
	The PFM_SETFL_EXCL_KERNEL_ONLY_THREADS flag

	Sampling support
	Double-buffering sampling format
	Support for correlation of samples

	Extensions specific to the Itanium Processor Family
	The PFM_ITA_FL_PRIV_MONITORS flag

	Support for PMU preemption

	References

