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Abstract

Clusters of commodity servers are increasingly the plat-
form of choice for running computationally intensive
jobs in a variety of industries. Computations such as
wind-tunnel simulations, gene and protein analysis, drug
discovery, and CGA rendering are run on commodity
computers with very successful results. At the same
time most cluster environments employ a highly hetero-
geneous set of machines due to the natural cycle of up-
grades and purchases followed by most organizations.
In such environments it is likely that some applications
may be better suited for one type of machine over an-
other and that the placement of jobs on machines can
have a large impact on throughput and job completion
time. This paper argues that using profile information
to guide scheduling decisions can yield substantial per-
formance improvements over a simple FCFS scheduling
policy. In particular we look at a real-world job mix of
genomic analysis applications and examine a number of
scheduling algorithms that take profile information into
account. Our results indicate that the benefits of profile-
driven scheduling vary significantly based on the degree
of heterogeneity available in the cluster and the variance
in execution times of different job types across cluster
machines. In addition, we have discovered that affinity
effects can also play an important role in improving per-
formance, but plain affinity scheduling is not sufficient
in achieving those benefits.

1 Introduction

Clusters of commodity computers are a very successful
platform for a large number of enterprises with extensive
computational needs. Furthermore, they form the natural
building blocks for grid systems [1, 2] which are rapidly
gaining acceptance as the preferred way to organize an
institution’s computing resources. Such environments
make it possible to consolidate computing resources into

a small number of data centers, share the infrastructure
costs across many departments, and reduce the IT man-
agement and maintenance overheads.

Computations submitted to these kinds of environ-
ments range widely from wind-tunnel simulations, to
gene and protein analysis, to CGA rendering and many
others. While the spectrum of potential applications
is large, it is quite common for a particular cluster to
see the same application submitted multiple times with
slightly different inputs for every run. This behavior re-
sults from the nature of the computations that users want
to see done, which include parametric studies, multiple
simulations with different initial conditions, or search-
ing for matches of multiple query strings against a large
database. Such user needs imply that the same appli-
cation will be run multiple times with very similar in-
puts. In some extreme cases the system administrator for
a cluster may actually restrict the executables that can be
run on the cluster to a small set offering a specific ser-
vice (i.e. the Blast service from the National Center for
Biotechnology Information [3]).

While the use of clusters as compute resources con-
tinues to expand, market forces dictate that most clus-
ter environments will employ a highly heterogeneous set
of machines. Most companies upgrade their IT infras-
tructure piecemeal thus making it commonplace for ma-
chines with widely different computational capabilities
to coexist within a single cluster environment. Even
when a company decides to standardize on a particular
architecture, machines from different generations of that
architecture will almost certainly coexist.

The combination of a small number of repeatable jobs
and a heterogeneous cluster environment leads naturally
to the realization that different jobs may be better suited
to different machine types. Previous work [4, 5] has ex-
amined the impact of scheduling heuristics on heteroge-
neous distributed systems and has found them to provide
substantial benefits for artificial workloads. Our work
extends these findings by looking at a real-world work-
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Machine Type Cpu Speed Memory Size Disk Type
Type 1 733Mhz 256Mbytes IDE (40MB/s)
Type 2 2.8Ghz 1.5Gbytes IDE (40MB/s)
Type 3 2.8Ghz 256Mbytes IDE (40MB/s)
Type 4 2.8Ghz 1.5Gbytes SCSI (60MB/s)
Type 5 2.8Ghz 256Mbytes SCSI (60MB/s)
Type 6 525Mhz 8Gbytes SCSI (60MB/s)

Table 1: Machine types available for experiments.

load and also examining the interplay of affinity effects
on such a heterogeneous environment.

In particular this paper analyzes a workload from the
National Center for Biotechnology Information that is
based on the popular Blast application suite [6] and that
captures the complete set of jobs run on their cluster over
the course of a day. We then examine the execution pro-
files of the applications on a variety of machine types
and discover that indeed different jobs exhibit varying
amounts of sensitivity to machine characteristics. Cer-
tain jobs are CPU bound and thus depend primarily on
CPU speed, while they see little or no benefit from larger
memories and better disk subsystems. Other jobs are
more I/O bound and are thus less sensitive to CPU speed
and more so to the capabilities of the disk subsystem.
Finally, we discover that affinity scheduling can play an
important role for certain job types but only when the
working dataset can fit in a machine’s file buffer cache.
Given these findings, we proceed to examine a variety
of scheduling algorithms that try to address different as-
pects of the problems. Our simplest strawman algo-
rithm is plain first-come first-served (FCFS) scheduling.
We also present an algorithm that attempts to maximize
affinity, one that attempts to optimize minimum comple-
tion time [4], and two variations on this last algorithm
that attempt to minimize completion while taking affinity
effects into account. The main difference between these
last two variations is that one assumes a priori knowl-
edge of job runtimes on each machine type, while the
other goes through a discovery phase to learn the rele-
vant information.

Our results indicate that focusing on affinity alone in
a heterogeneous environment results in a deterioration of
performance when compared to FCFS scheduling. The
algorithm that optimizes minimum completion time pro-
vides a modest reduction of up to 10% in average job
completion time over FCFS, while the last two algo-
rithms that attempt to minimize completion time while
taking affinity effects into account perform the best, with
average completion times improving by up to 20% over
FCFS scheduling. We also find that the discovery phase
has no material impact on average completion times,
with the performance between the last two variations of

the minimum completion time algorithm being practi-
cally indistinguishable.

It it not the intention of this paper to come up with an
optimal algorithm for scheduling based on profile data.
Rather, we want to advocate the principle of collecting
profile information as jobs run, provide a simple method
for collecting such profile information for an important
application class, and then show how to use this informa-
tion to guide future scheduling decisions. We also want
to demonstrate that affinity effects need to be consid-
ered when scheduling for heterogeneous environments
but they should not be the primary focus of the sched-
uler as that can be detrimental. We have therefore settled
for simple, easy to explain scheduling algorithms that
demonstrate the principles and still provide significant
performance advantages over typical schedulers that do
not take profile information into account.

The rest of this paper is organized as follows. Sec-
tion 2 presents the different flavors of Blast, our data
collection methodology, and the simulation environment
used to evaluate the different scheduling policies. Sec-
tion 3 analyzes the properties of the NCBI Blast work-
load and its constituent applications, while section 4
presents the scheduling algorithms we evaluated against
this workload. We discuss the performance ramifications
of the various scheduling algorithms in section 5. The
final two sections (6 and 7) discuss related work, sum-
marize our conclusions, and outline future research di-
rections in this area.

2 Methodology

In order to evaluate our premise we have started with
a workload from the National Center for Biotechnology
Information. For each different application in this work-
load we collected profile data of multiple runs on six dif-
ferent types of machines. We then used this collected
runtime data to drive a simulation engine that evaluated
the performance of different scheduling policies on our
workload on a variety of cluster configurations.

Our workload consists of the popular Blast application
suite used by biologists to perform searches of nucleotide
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and protein databases. There are five applications in the
Blast suite, although it is constantly being expanded and
refined to add new functionality. The five applications
found in our workload are:

• blastn: A tool for comparing a nucleotide query se-
quence against a nucleotide sequence database.

• blastp: A tool for comparing an aminoacid query
sequence against a protein sequence database.

• blastx: A tool that compares the six-frame con-
ceptual translation products of a nucleotide query
sequence (both strands) against a protein sequence
database.

• tblastn: A tool that compares a protein query se-
quence against a nucleotide sequence database dy-
namically translated in all six reading frames (both
strands).

• tblastx: A tool that compares the six-frame trans-
lations of a nucleotide query sequence against the
six-frame translations of a nucleotide sequence
database. Typically used when trying to deduce
connections between nucleotide sequences of dif-
ferent organisms by comparing the proteins that
those sequences produce.

A complete description of the algorithmic properties
for all five Blast applications can be found in [6]. From
a systems design perspective those applications exhibit
large variations on the amount of computation they per-
form relative to the amount of I/O they incur. They
also show significant variation on their sensitivity to the
amount of memory available on the machine. This makes
them good candidates for profile-driven scheduling since
different applications require different types of resources
from a machine.

Of equal significance to the executable is the database
against which the comparison is run. Clearly, larger
databases will results in higher I/O demands from the
applications and longer execution times. As it turns out
the database space is dominated by two databases nr and
nt, which are the non-redundant, all-inclusive databases
of all known protein (nr) and nucleotide (nt) sequences.
The (nr) database is used by the blastp and blastx exe-
cutables, while blastn, tblastn, and tblastx searches are
run against the nt database. Those two databases ac-
count for well over 80% of all searches. The remaining
databases have significantly lower frequencies of access
and significantly lower runtimes since by definition they
have to be smaller than the all inclusive ones. For the
purpose of clarity, we have removed the small number of
searches against those smaller databases from our trace.

Once we had determined the workload for evaluating
our algorithms we had to decide the cluster environment
on which to do the evaluation. Rather then picking a
single environment, we decided to use simulation and
evaluate a number of possible environments with differ-
ing degrees of heterogeneity. To that extent we devel-
oped a trace-driven, discrete event simulator. The sim-
ulator reads in the profile information for every job type
and machine type combination, the cluster configuration,
and the arrival times of every job in our trace. It then
schedules these jobs on machines of our simulated clus-
ter based on a user-defined scheduling policy. We eval-
uated four different scheduling policies although many
more are possible. Our schedulers include:

• FCSC: a standard first-come first serve scheduler,

• Affinity: a competitive scheduler that attempts to
maximize database affinity (i.e. schedule a job ac-
cessing a particular database on a machine where
that database was last accessed),

• Greedy-1: a greedy scheduler that attempts to place
jobs on the best possible machine for each job based
on profile data,

• Greedy-2: a variation on the greedy scheduler that
also takes affinity effects into account, and

• Greedy-3: a further variation to the Greedy-2 sched-
uler that attempts to learn the profile information
based on the outcome of its scheduling decisions.

The last three schedulers are very similar in nature and
are all based on the minimum cost scheduler of [4, 7].
Their differences are explained in detail in section 4.

One of the most important problems that we had to
solve was collecting profile information for every job and
machine type combination. One approach would be to
try and get a job profile that is machine independent and
then extrapolate how the job would run on different ma-
chine types based on a projection of the job profile and
certain salient machine characteristics. This is akin to
application-specific benchmarking [8]. A separate ap-
proach, which we have chosen instead, is to come up
with a small number of salient characteristics that can
be used to classify machines into machine types. We
can then simply run each job type on every machine
type and collect information on job execution times as
the jobs complete. It is important to choose a relatively
small number of machine characteristics that identify a
machine type in order to avoid having to collect an ex-
tremely large amount of profile data. It is equally impor-
tant to identify the arguments to an executable that have
an impact on runtime in order to come up with a minimal
distinct number of job types. Once both machine types
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Figure 1: CPU and I/O components of blastn on different
classes of machines.
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Figure 2: CPU and I/O components of blastp on different
classes of machines.

and job types have been correctly identified we can then
build a lookup table that the scheduler can consult be-
fore making scheduling decisions. For the learning ver-
sion of our scheduling algorithms this table can be popu-
lated based on the outcome of previous scheduling deci-
sions. This technique has been used successfully in other
scheduling-problem settings like disk scheduling [9].

For our study we have decided to classify machines
based on the CPU speed, the amount of memory avail-
able, and the type of disk present in the machine. These
characteristics are sufficient for differentiating one ma-
chine from another for our application suite. Additional
characteristics may need to be taken into account for
other applications/workloads. Examples of such addi-
tional characteristics may include processor cache size,
floating point rating of the processor, and network card
characteristics. On the application side the only relevant
arguments are the executable name and the database be-
ing used. Given that the vast majority of our searches
involve a single database for any given executable, the

dimensionality of the application space is reduced to a
single dimension.

Based on the simple classification scheme described
above, we collected profile information for six different
types of machines with varying CPU, memory, and disk
characteristics. Our machines had CPU speeds between
525Mhz and 2.8Ghz, memory sizes between 256Mbytes
and 8Gbytes, and disk subsystems capable of transfer
rates between 40Mbytes/sec and 60MBytes/sec. The
complete list of available machine types is listed in Ta-
ble 1.

3 Application and Workload Properties

3.1 Application Profiles

We have collected profile information for each of the ap-
plications in our workload against all six types of ma-
chines that were available to us. Our method for collect-
ing profile information has been to run each job on every
machine type multiple times and verify that the variance
between successive runs is small. This is indeed the case
for all job and machine type combinations in our work-
load. We then look at the statistics aggregated by the
kernel under /proc(8), in order to determine total ex-
ecution time, time spent in user and kernel space (also
known as CPU time), and time spent performing I/O op-
erations. Obviously the sum of CPU and I/O time needs
to be equal to the total execution time for the application.
Additional statistics (i.e. the number of I/O operation and
whether they hit in the buffer cache or not) are available
but we did not use them for the purposes of this study.

Figure 1 shows the breakdown in execution time be-
tween CPU and I/O components for blastn. Blastn has
a significant I/O component which can range anywhere
between 19% and 74% of total execution time depending
on the relative speeds of the CPU and I/O subsystems.
I/O is least significant for the machines with the slow-
est processor and fast SCSI disk subsystems, while it has
the greatest impact on the fast processor machines with
IDE disk drives. The amount of memory available to the
application has a smaller, but still significant impact on
performance, with larger memory sizes resulting in better
runtimes. The reason for the relatively large I/O compo-
nent is that the application has to find a match of a rela-
tively simple query string against a very large database.
The raw database file is a little over 11Gbytes while the
various index files used to speed up the search occupy
almost 4Gbytes of space. This implies scanning large
amounts of on-disk data while performing relatively lit-
tle computation for each piece of data being fetched from
disk.

Blastp ranks second with respect to I/O usage in our
application suite. Once again the impact of I/O on to-
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Figure 3: CPU and I/O components of blastx on different
classes of machines.
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Figure 4: CPU and I/O components of tblastn on differ-
ent classes of machines.

tal execution time depends on the relative capabilities of
the CPU and I/O subsystems. I/O contribution to total
execution time ranges from as little as 3% for machine
type 6 (see table 1) to as high as 45% for machine type
3. Interestingly enough the amount of time spend in I/O
is heavily influenced by the amount of memory available
on the machine. This can be explained by looking at the
on-disk size of the protein database being searched. The
all-inclusive protein database used in the vast majority
of searches occupies 1Gbytes of space, while the indices
used to speed up the search account for 1.3Gbytes of disk
space. The larger memory machines have enough mem-
ory to hold almost all of this data in memory and a lot of
disk accesses are being replaced by hits in the file buffer
cache. The runtimes and their breakdown in CPU and
I/O components for blastp are summarized in figure 2.

Blastx is similar to blastp in that it operates on the
same protein database. Therefore we expect to see a sim-
ilar behavior across machines with memory sizes having
a significant impact on runtimes. There exist substantial
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Figure 5: CPU and I/O components of tblastx on differ-
ent classes of machines.

differences however, with the most important one being
that I/O times are never more than 30% of total execu-
tion time. This is explained by the more expensive com-
putation that the application performs which includes
the translation of the nucleotide query string into mul-
tiple peptide strings which are then compared against the
database. As a consequence blastx has to perform multi-
ple comparisons against each incoming piece of data, and
this reduces the relative importance of I/O when com-
pared to blastp. The runtimes and their breakdown in
CPU and I/O categories for this application are summa-
rized in figure 3.

The final two application (see figures 4 and 5) are sig-
nificantly more CPU-intensive and their execution time
is dominated by the CPU-speed characteristic of the ma-
chine. This can be seen by the small variations in execu-
tion time for the machines that have the same CPU speed
but differ in memory and disk configurations (machine
types 2,3,4, and 5). The explanation for this behavior
lies in the computationally expensive operations associ-
ated with translating the nucleotide database to the multi-
ple peptide strings that are used in comparisons. Further-
more those translated strings cannot take advantage of
indices (those indices cannot precomputed as is the case
for the first three application) and thus result in more ex-
haustive searches. As a consequence tblastn and tblastx
take an order of magnitude longer to complete than their
counterparts. The reason they do not completely domi-
nate our workload is that they are used infrequently rela-
tive to the first three applications.

3.2 The Impact of Affinity Scheduling

In addition to understanding how particular applications
behave on certain classes of machines, another factor
that affects performance is whether the application has
built data affinity on a particular machine or not. Affin-
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Figure 6: Runtimes for blastn in the presence and ab-
sence of affinity scheduling.
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Figure 7: Runtimes for blastp in the presence and ab-
sence of affinity scheduling.

ity scheduling can have a large impact on an applica-
tion’s runtime, but only if a number of constraints are
satisfied. First and foremost the application needs to
have a significant I/O component that can be reduced
by caching the data it needs to access in the machine’s
file buffer cache. This implies that in our application
suite, blastn and blastp are the most likely candidates for
affinity-derived benefits. Second, the machine’s memory
and consequently the file buffer cache needs to be large
enough to hold the data being accessed across runs. We
devised an experiment in order to determine if any of
our applications would benefit from affinity scheduling
on any of the machine types available to us. The experi-
ment consists of wiping the buffer cache on the machine
clean, by mmapping(2) a large enough file into mem-
ory. Then we run the targeted application twice in suc-
cession and look at the difference in runtime between the
first and second run. Any reduction in runtime is due to
affinity effects. Each such experiment is repeated multi-
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trace.

ple times to ensure that results are deterministic and re-
peatable.

Figures 6 and 7 show the impact of affinity scheduling
for our two most I/O intensive applications on all classes
of machines. Unfortunately for our machine classes and
applications, affinity scheduling seems to only have a
limited impact. For most of our machine types the avail-
able amount of memory is not sufficient to effectively
cache the working set of the applications. There are two
exceptions to this observation. One is that machine type
6 has enough memory to cache the necessary data for
blastn with performance improving by 21% when the file
buffer cache is warm when the application is run. The
other is machine type 2 with blastp. In this case the ma-
chine has enough memory to cache the data and its I/O
system is bad enough that caching provides substantial
benefits. The performance improvement due to affinity
effects is 12.5%. For the remaining applications and ma-
chine types either the I/O component was not significant
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Application Percentage
blastn 55.8%
blastp 18.8%
blastx 21.2%
tblastn 1.4%
tblastx 2.8%

Table 2: Percentages of each job type in the NCBI trace.

enough, or the machine configuration was such that affin-
ity effects were not noticeable. We have also looked at
other, smaller genomic databases that fit in the memory
of machines with fast CPUs and slow I/O systems and
have indeed verified that in those cases, affinity is an im-
portant factor that the cluster scheduler should take into
account.

3.3 Workload Description

The workload used for the majority of our simulations
was derived from a 25 hour trace of blast jobs submit-
ted to NCBI. The trace starts at 1:00pm of a day and
ends at 2:00pm the following day. As was noted ear-
lier, jobs accessing minor databases (UniVec, Mito, etc)
were removed from the trace for simplicity as the nt and
nr database jobs dominated both the job percentages and
the total compute time. Table 2 shows the percentage of
each type of job in the trace.

As would be expected of a job mix arriving from many
sources to a single service, the jobs are independent and
their inter-arrival times are approximately exponentially
distributed with a job arriving, on average, every 1.14
secs. Figure 8 shows the distribution of inter-arrival
times over the entire twenty four hours of the trace. As
can be seen most jobs have an inter-arrival time of one
second or less, but the actual distribution has a relatively
long tail with some jobs having inter-arrival gaps of as
long as fifteen seconds. The shape of the distribution of
inter-arrival times within each hour in the twenty four
hour period is very similar. What changes across hours
is the mean of the inter-arrival times. As a consequence,
a relatively precise model of the job mix can be a Pois-
son process with time-varying inter-arrival times. Fig-
ure 9 shows the variation of the inter-arrival times over
the whole 24 hours.

While our trace represents a real world job mix, we
wanted to ensure that our results were stable across mi-
nor variations in the order and rate of job arrival. In or-
der to achieve this we also generated ten synthetic job
traces with approximately the same length and charac-
teristics of the NCBI trace. Our trace generator simply
used the job percentages and hourly inter-arrival times of
the NCBI trace to drive a simulated Poisson process with

different initial random seeds. We then verified that our
results hold true across these artificially generated traces,
even though we only report results from the real NCBI
trace.

4 Scheduling Algorithms

In this section we describe the heuristic algorithms we
have tried in the context of profile driven scheduling. All
of our algorithms assume that the times of job arrivals
are unknown to the algorithm and all scheduling deci-
sions have to be made online as jobs enter and leave the
system. Three of those algorithms assume that profile in-
formation for the arriving jobs is known a priori. For lack
of better term we will call these algorithms offline-profile
algorithms. The fourth algorithm is an online variation
of one of the offline-profile versions, which makes no
assumption about runtimes but learns the profile infor-
mation as jobs arrive and are scheduled into the system.

Scheduling based on profile information can be shown
to be NP-complete even for the complete offline case
where arrival times and profile information is known
ahead of time, by reducing it to one of the many NP-
complete scheduling problems [10]. Therefore an exact
algorithm is unlikely to be time effective and heuristics
have to be employed. Online algorithms where job ar-
rival times are unknown a priori have similar complexity
properties to their offline brethren [11]. In addition any
online algorithm attempting to learn the profile informa-
tion, requires the scheduler to come up with a schedule
for the learning phase which can be a challenging task
on its own. However, if the number of machine types is
small and the number of jobs per job type is large this
last part can be finessed through exhaustive search. By
assigning each job type to each machine type once we
can acquire the relevant profile information in a short
amount of time relative to the length of the whole execu-
tion schedule. Fortunately, even the most heterogeneous
clusters rarely have more than a small number of ma-
chine types, thus making the exhaustive search approach
for learning profile data a reasonable choice.

We have experimented with four different heuristic al-
gorithmics with promising results. The first of those al-
gorithms (greedy-1) is depicted in figure 10 and is fol-
lowing a greedy technique of assigning jobs to machines
in the cluster.

The basic rational of the greedy algorithm is to try and
assign each job to the machine which would run it the
fastest, as indicated by the profile data. This will natu-
rally lead to conflicts as more than one job will prefer
the same machine, especially since some machines will
be more powerful than others. In order to break those
conflicts the algorithm decides to assign a job to a ma-
chine based on the benefit it would see over its second
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foreach job in Queue {
foreach mach in free Machines {

Cost[job][mach].cost = getProfileData(job, mach);
Cost[job][mach].mach = mach;

}
sort Cost[job] on cost;

}
foreach job in Queue {

Prefs[0].job = job;
Prefs[0].mach = Cost[job][0].mach;
Prefs[0].benefit = Cost[job][0].cost - Cost[job][1].cost;
numConflicts = 0;
foreach job1!=job in Queue {

if (Cost[job1][0].mach == Cost[job][0].mach) {
numConflicts++;
Prefs[numConflicts].job = job;
Prefs[numConflicts].mach = Cost[job][0].mach;
Prefs[numConflicts].benefit =

Cost[job][0].cost - Cost[job][1].cost;
}

}
prefJob = max(Prefs) according to benefit;
mach = prefJob.mach;
assign(prefJob.job, mach);
remove(prefJob.job, Queue);

}

Figure 10: A greedy profile-driven scheduling algorithm

foreach job in Queue {
foreach free machine in Cluster {

if (machine.hitsCache(job) {
assign(job, machine);

remove(job, Queue);
}

}
}
// Remaining jobs in Queue did not hit in machine caches
if (machinesAvailable()) { // If there are still free machines

foreach job in Queue {
foreach free machine in Cluster {

penalty = cachePenalty(job, machine);
if (penalty <= curTime - job.submissionTime)

assign(job, machine);
remove(job, Queue);

}
}

}
}

Figure 11: An affinity-based profile-driven scheduling algorithm
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best choice. The benefit is computed as an absolute dif-
ference in runtime, rather than a percentage difference.
This would allocate long running jobs favorably to fast
machines since even small percentage improvements can
result in substantial absolute runtime reductions. The
downside of this algorithm is that it does a relatively poor
job of taking affinity issues into account.

An alternate algorithm we considered (known with the
term affinity scheduler), is one that seeks to optimize
affinity scheduling only. We did not expect this algo-
rithm to provide much benefit for our default workload
and we mainly wanted to demonstrate that taking affin-
ity issues into account is not sufficient for heterogeneous
environments. The algorithm is presented in pseudocode
in figure 11.

The basic rationale behind the affinity algorithm is
to assign a job to a machine if that machine had previ-
ously run a job of a similar type and thus would benefit
from affinity effects. When no such machine is avail-
able then the algorithm determines a penalty associated
with the assignment. This penalty is expressed by the for-
mula 0.5∗(curJobCold−curJobHot)+(prevJobCold−
prevJobHot) which tries to balance the benefit the cur-
rent job would accrue from acquiring affinity vs. the ben-
efit that the previously run job had accrued. This penalty
is then compared with current waiting of the job in the
queue. If the waiting time exceeds the penalty then the
job is considered to have waited long enough and is as-
signed to the available machine. Otherwise the job re-
mains in the queue until either a machine with appropri-
ate cache contents becomes available, or until the job has
aged the right amount of time. It can be shown that for
a simple case with only two job types and one machine
type this algorithm has a competitive ratio of two relative
to an optimal algorithm. Since our interest is in examin-
ing the behavior of this algorithm on a realistic workload,
rather than coming up with worst case scenarios we will
not examine its theoretical properties any further.

We also examined a variation to greedy-1 which be-
haves in a similar fashion but augments the number of
machine types by taking into account affinity informa-
tion. Under this algorithm the job profile information
table gets an additional dimension which is based on the
type of job that was last run on a machine. This way the
algorithm takes into account not only the machine char-
acteristics of CPU, memory size, and disk type, but also
the kind of job and database that was last accessed on that
machine. The algorithm does not attempt to maximize
affinity but will take advantage of it when it is available
and it results in reduced job completion times. We term
this algorithm greedy-2.

Finally, we looked into converting the greedy-2 algo-
rithm that takes affinity information into account, into
one that learns the profile information online. The con-

version is relatively straightforward and requires min-
imal changes to the version with a priori knowledge.
Looking at the algorithm in figure 10 we can see that
it consists of two phases; the first phase where the cost
of running a job on each machine is computed, and the
second phase where the job to machine assignment is
calculated based on these costs. All we need to do to
convert it to an online-profile algorithm is assign a low
cost to job/machine combinations in phase one of the al-
gorithm when the true cost is unknown. Then when a
job completes, we can update the profile information ta-
ble with the newly collected information. This approach
will force the algorithm to quickly explore the machine
space since unknown machines to each job type will be
seen as preferred due to their artificially low initial cost.
Once the exploration phase is over the algorithm simply
behaves like the offline-profile greedy algorithm. We call
this last algorithm greedy-3.

5 Performance Results

In this section we present performance results for our
schedulers and a strawman first-come first-serve sched-
uler, that simply assigns an incoming job to the first avail-
able machine in the cluster. We have experimented with
multiple different cluster configurations and job traces in
order to understand the interaction of our schedulers in
the presence of differing amounts of heterogeneity, job
arrival rates, and variety in the types of jobs coming into
the system. We present results for two types of clusters
and two different jobs traces for a total of four possible
combinations.

Our first cluster configuration consists of an equal
number of machines from every machine type presented
in table 1, while the second configuration is a completely
homogeneous cluster with “type 6” machines. The rea-
son that we have included a homogeneous cluster in our
results is to demonstrate that our algorithms do not im-
pose any significant burden in the absence of heterogene-
ity. Our first job trace consists of the dominant exe-
cutable/database pairs from the NCBI job trace. We have
omitted a small percentage (approximately 15% of the
total) of the original trace since it consisted of small jobs
whose execution times were less than a few seconds.
Such jobs would have no impact on the behavior of our
schedulers and would simply make presenting the results
cumbersome. The second job trace selected only the jobs
associated with the blastn and blastp executables out of
the full trace. The reasons behind this selection was that
these jobs exhibited the greatest benefits from affinity
scheduling and we were interested in seeing how well an
affinity scheduler would perform when compared to our
greedy schedulers in such a job mix. For this same reason
our homogeneous cluster consists of the large-memory
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Figure 12: Average Job Completion Time for the full NCBI trace, on heterogeneous and homogeneous cluster config-
urations using different schedulers

machines since this is the one machine type for which
affinity effects are most pronounced.

In order to determine the appropriate size for our clus-
ter type/job trace combinations we run several simulation
experiments with different cluster sizes using the FCFS
scheduler. Our goal was to discover the cluster size at
which FCFS scheduling could keep up with the rate of
job arrival in each job trace. Once that size was deter-
mined we simply run the additional schedulers using the
same cluster size and compared the schedulers based on
the average job completion time. This is only one of the
possible ways for comparing the performance of differ-
ent schedulers. An attractive alternative is to determine
the minimum cluster size that can keep up with a particu-
lar job trace for each scheduling algorithm. We only run
a few experiments for this alternative in order to confirm
our intuition that shorter job completion times also imply
that you can keep up with a particular job trace using a
smaller cluster size. This is indeed the case, although the
actual connection between average job completion time
and needed cluster size is not linear. We will not focus
on the “cluster size” metric for the rest of the section. We
simply mention it here, since one of the attractions of our
proposed scheduling policies is reduced cost to the clus-
ter operator for the same job throughput.

Figure 12 shows the average job completion time for
our different schedulers on the full NCBI trace for both
a heterogeneous and a homogeneous cluster. Comple-
tion time is broken down to time spend running and time
spent waiting in the cluster queue to be assigned to a ma-
chine. Since we selected our clusters to be of an appro-
priate size for the FCFS scheduler we expect the queue
time to be small which is born out by the data. Our ho-
mogeneous cluster shows relatively small differences be-
tween the different schedulers with the Affinity scheduler

being 9.8% worse on average than FCFS. The greedy-
1 scheduler that does not take affinity information into
account is almost indistinguishable to FCFS, while the
remaining two greedy schedulers improve performance
by 4.6%. The greedy-3 scheduler tracks the performance
of the offline greedy-2 version extremely closely and is
practically indistinguishable from it.

Almost all the deterioration of the Affinity Sched-
uler stems from its policy of waiting for an affinity-
appropriate machine for a certain amount of time before
assigning a job to any available machine. As a matter
of fact when examined closely, the actual runtime of the
jobs decreases but the increase in queue waiting time
overwhelms any benefits from the decreased runtime.
The affinity-conscious greedy algorithms benefit from a
reduction in both execution and queueing times with ap-
proximately two thirds of the total improvement coming
from a reduction in queue time. Looking at the individual
jobs most of the improvements come from blastn which
experiences a 6% reduction in average execution time,
while the remaining programs’ execution times improve
anywhere between 1% and 3%.

Moving to a heterogeneous cluster amplified the dif-
ferences between the different schedulers dramatically.
The competitive scheduler becomes 13% worse on aver-
age from FCFS, the affinity-oblivious greedy scheduler
improves performance by 10.5%, while the performance
advantage of the affinity-conscious greedy algorithms
over FCFS increases to 19%. This is somewhat expected.
First and foremost the heterogeneous cluster offers less
opportunities for affinity scheduling than the homoge-
neous cluster did. Many of the machine/application pairs
offer no advantage for affinity scheduling and as such
are expected to see little benefit from trying to achieve
it. This ends up hurting the affinity scheduler since it
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Figure 13: Average Job Completion Time for the reduced trace on heterogeneous and homogeneous cluster configu-
rations using different schedulers

prioritizes affinity scheduling over everything else. On
the other hand as we saw in section 3, our application
suite shows remarkable variability of execution time on
the different machine types. The greedy schedulers ex-
ploit this variability well by assigning jobs to their best-
matched machines. As it turns out there is some ad-
ditional benefit to be had by paying attention to affin-
ity, as is shown by the further improvement in execution
times achieved by the affinity-conscious greedy sched-
ulers over their affinity-oblivious counterpart.

Looking into the detailed job statistics for the affinity-
conscious greedy schedulers we see that individual job-
type performance improvements range from as little as
8.5% for tblastn to as high as 24.5% for blastp. The
remaining three applications see performance improve-
ments between 18.5% and 19%. The percentage im-
provement correlates well with the variance in execution
time seen by each job type across the different machine
types. Blastp has the highest variance, while tblastn has
the lowest. The remaining applications fall somewhere
in between. Intuitively, higher variance in execution time
implies more opportunities for a profile driven scheduler
to outperform one which does not take expected runtimes
into account.

We were also interested to see how our various profile-
driven schedulers would perform on a job mix that could
derive benefits from affinity scheduling. In particular
we were interested in figuring out whether the affinity-
conscious greedy scheduler would discover affinity ef-
fects and how well it would take advantage of such ef-
fects when compared to the Affinity scheduler that tar-
gets affinity effects explicitly. To that extent we modified
our job trace to only include the jobs associated with the
blastn and blastp executables. Those two executables see
the greatest benefits from affinity scheduling and a job

mix containing only those would be expected to favor
our affinity scheduler. Our results are summarized in fig-
ure 13.

On the heterogeneous cluster we see that the affin-
ity scheduler improves performance over FCFS schedul-
ing by a small amount (approximately 2%), but contin-
ues to underperform the greedy schedulers which im-
prove performance by 12%, 20%, and 20% for greedy1,
greedy2, and greedy3 respectively. The main reason be-
hing this behavior is that the majority of machines pro-
vide no benefits for affinity scheduling and thus the wait-
ing time in the queue associated with the affinity sched-
uler overwhelms the benefits derived by affinity. Sim-
ilar to the full trace we see that the affinity-conscious
greedy schedulers derive an additional performance im-
provement over their affinity-oblivious counterpart, and
the cost of discovering profile information incurred by
greedy3 has no impact on performance.

On the homogeneous cluster we finally have a configu-
ration that favors the affinity scheduler. Indeed, the affin-
ity scheduler improves performance over FCFS by 6%.
Interestingly enough the exact same performance im-
provement is achieved by the affinity-conscious greedy
schedulers. However the affinity-oblivious greedy sched-
uler fails to achieve any performance improvements and
simply tracks the performance of FCFS.

We have also run additional simulations on job traces
that are modeled against the real job trace obtained from
NCBI. The main reason for these additional runs was to
establish that our results were not sensitive to small vari-
ations in job interarrival times, order of job arrival, and
the exact proportions of each job type in the mix. We
have verified that our results hold true across ten differ-
ent traces that were generated to have similar properties
to the original trace, although the actual order, frequency
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of job arrival and job mix composition vary from trace to
trace.

6 Related Work

Scheduling for clusters of computers has received a con-
siderable amount of attention in the literature for both the
offline and online [11] versions of the problem, including
the case where runtimes need to be learned through sys-
tem observation [12]. Our goals in this paper are quite
different from this work, since we are more interested in
understanding the behavior of certain simple algorithms
for a real-world workload rather than improving on well
known theoretical bounds.

In addition to the theoretical work, at least three sys-
tems for cluster scheduling have been commercially de-
veloped; the Platfrom Load Sharing Facility [13], the
Portable Batch System [14], and the Condor Project [15,
16]. Most of those systems are concerned with discovery
of computing resources, ensuring fairness of scheduling,
restarting jobs upon failures, and managing user access,
quota, and other issues of a cluster environment. Those
are incredibly important issues and every cluster schedul-
ing environment needs to address them. Our work seeks
to build on top of those environments and to provide
scheduling policies based on profile information, that can
enhance the throughput of cluster systems.

Scheduling for networks or clusters of workstations
has primarily focused on the issue of load balancing and
load sharing [17, 18, 19, 20], or on the issue of fairness
and proportional resource allocation [21]. We are will-
ing to tolerate some umount of unfairness in our work, in
order to maximize overall job throughput. However, our
work can easily be set in the context of schedulers that
pay attention to load balancing and fairness. In that con-
text our profile driven job placement would be circum-
scribed by the constraints of the higher level scheduler
that resolved the load balancing and fairness constraints.

Affinity scheduling for cluster systems has also re-
ceived attention in the past [22, 23, 24] with proposals
that trade off between affinity-based and load balancing-
based scheduling. While affinity is a dimension that our
profile driven scheduler takes into account it is not the
only one. If a job can build affinity on a cluster node,
then our profile data would indicate this and our sched-
uler would take it into account. However, many jobs do
not benefit from affinity scheduling as our profile data
indicates and enforcing affinity scheduling for those jobs
would prove counterproductive. Our scheduling policies
have no built in assumptions about what constitutes a
good job placement decision. They simply try to learn
based on observations and affinity is just another dimen-
sion to which they pay attention.

Scheduling for heterogeneous systems [4, 5, 7] is an
extremely active field with many researchers trying to
find the best way to use disparate pieces of computing
infrastructure. Our work builds on the ideas presented
in this community by showing what kind of performance
improvements one can expect to get over a realistic work-
load. Furthermore, we examine the impact of affinity
scheduling on heterogeneous systems and show that at
least for our workload, taking affinity effects into account
can provide additional benefit but only if it is consid-
ered as a secondary effect in the context of heterogeneous
scheduling.

Profiling applications in order to infer their perfor-
mance on a particular machine type has received less
attention than the problem of scheduling itself. Sodhi
and Subhlok [25] discuss the use of skeletons in order
to infer the performance of an application on a particular
machine. This approach could greatly reduce the length
of the data collection phase of our algorithm (especially
if the number of different node types is large) and lead
to more efficient online algorithms. Similarly Seltzer et
al [8] discuss how performance of a particular computer
can only be determined with respect to the application
one is interested in running on it and present a method-
ology for collecting performance profiles of applications
on different computers. Mutka and Livny [26] discuss
the use of profiling on workstations. However their goal
is not to deduce how appropriate a particular machine is
for a certain job, but rather to discover which machines
in a multi-use environment are available for batch job ex-
ecution at any point in time.

7 Conclusions and Future Work

In this paper we have examined the performance im-
pact of a number of scheduling algorithms on a real-
world workload in the context of a heterogeneous ma-
chine cluster. We have found that simple greedy heuris-
tics can offer tangible performance benefits over simple
first-come first-serve scheduling. Furthermore, we have
discovered that augmenting those heuristics to take affin-
ity effects into account can further reduce average job
completion times, even though pure affinity-based sched-
ulers actually hurt rather than help performance in most
cases. We have also shown that our heuristics need not
know job profile information ahead of time. This infor-
mation can be learned as part of the regular scheduling
process. It is important however, to reduce the learn-
ing space by carefully deciding the machine character-
istics and job arguments that uniquely identify distinct
machine and job types.

The problem we have examined is not unique to Blast
or the NCBI cluster. We are aware of other environments
that run different application suites that have very sim-
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ilar properties to the application suite examined in this
paper. Such environments include proteomics discov-
ery facilities which run an entirely different application
suite on a variety of databases containing protein spec-
tra, and computer animation enterprises that need to ren-
der scenes against a variety of lighting backdrops, obsta-
cles and other artifacts, using a small number of different
rendering algorithms. One important difference between
those workloads and the one we examined is the pres-
ence of dependencies between jobs. Our workload con-
tained purely independent jobs that could be run in any
order, while the other workloads we are aware of, im-
pose constraints on the order that jobs can be run. We
also expect to see workloads where some jobs may need
to be co-scheduled in order to achieve good performance.
For example, we expect co-scheduling issues to arise for
some of the latest version of Blast that splits databases in
smaller overlapping chunks that can be searched in par-
allel. The partial results can then be stitched together in
a final aggregation phase.

We are interested in further exploring this space in the
context of real workloads, in order to better understand
the impact of inter-job dependencies and co-scheduling
constraints to heterogeneous scheduling. We are also
interested in understanding how profile information can
help guide cluster upgrade decisions with respect to the
balance of CPU, memory, and I/O subsystem character-
istics that new machines need to have in order achieve
a good balance for a particular workload. Finally, we
would very much like to see if we can design a system
that can take into account all possible machine charac-
teristics and all job arguments in defining its machine
and job types, but can then use a small number of exeri-
ments to quickly collapse the search space by determin-
ing which machine characteristics and which job argu-
ments are actually relevant to application performance.
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