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A natural extension of the maximum flow problem is the parametric 
maximum flow problem, in which some of the arc capacities in the 
network are functions of a single parameter λ . Previous approaches to 
the problem compute the maximum flow for a given sequence of 
parameter values sequentially taking advantage of the solution at the 
previous parameter value to speed up the computation at the next. In this 
paper, we present a new Simultaneous Parametric Maximum Flow 
(SPMF) algorithm that finds the maximum flow and a minimum cut of an 
important class of parametric networks for all values of parameter λ
simultaneously. Instead of working with the original parametric network, 
a new non-parametric network is derived from the original and the SPMF 
gives a particular state of the flows in the derived network, from which 
the nested minimum-cuts under all λ -values are derived in a single scan 
of the vertices in a sorted order. SPMF simultaneously discovers all
breakpoints of λ where the maximum flow as a step-function of λ jumps. 
The maximum flows at these λ -values are calculated in O(m) time from 
the minimum-cuts; m is the number of arcs. Generalization beyond 
bipartite networks is also shown. 
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Abstract.  A Simultaneous Parametric Maximum-flow (SPM) algorithm finds the 
maximum-flow and a min-cut of a bipartite parametric maximum-flow network 
simultaneously for all values of parameter .λ  Instead of working with the original 
parametric network, a new network is derived from the original and the SPM gives a 
particular state of the flows in the derived network, from which the nested min-cuts under 
all lambda values is derived in a single scan of the nodes in a sorted order.  All 
breakpoints of λ  where the maximum-flow as a step-function of λ  jumps is discovered 
by the SPM.  The maximum flows at these λ -values are calculated in O(m) time from the 
min-cuts; m is the number of arcs.  Generalization beyond bipartite networks is also 
shown.   
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1. Introduction 
 
A network is a finite directed graph G=(N,E) with capacity constraints C and flows F on 
the arcs – summarized in a notation { , , , }N E C FΩ = .  One important class of network 
flow problems is to find the maximum flow under the capacity constraints, solved by two 
well known algorithms – the augmenting-path algorithm by Ford & Fulkerson (1956) and 
Elias et al (1956), and the Preflow-Push/Relabel algorithm by Goldberg & Tarjan (1986).  
The later is much faster.   
 The well-known maximum-flow min-cut theorem of Ford and Fulkerson states that 
the max-flow is equal to the sum of the capacities of the arcs at the boundary of a min-cut 
(see Section 1.3).   

Gallo at. el. (1989) generalized the preflow-push algorithm to a class of parametric 
bipartite networks which has nested min-cuts under different parameter values.  Taking 
advantage of the nested min-cut structure, they used the flows (truncated if necessary) 
under one parameter value as the initialization to the problem at the next parameter value.  
They proved that the worst-case complexity for a given sequence of parameter values is 
only larger by a constant factor than the worst-case complexity of the non-parametric 
preflow-push algorithm.  A number of applications of the parametric max-flow network 
were presented in their paper.   
   



 
1.1 Contributions of This Paper 
 
The simultaneous parametric maximum-flow algorithm presented in this paper solves the 
maximum-flow problem of a parametric network at all parameter values simultaneously.  
It returns the complete sequence of maximum-flows and the nested min-cuts at all 
parameter values where the max-flow as a step-function jumps.  This complete sequence 
of parameter values is discovered by the algorithm.  We are not aware any algorithm 
published before that can do this.  The paper by Gallo at. el. (1989) takes a sequence of 
parameter values as input.   

The new algorithm is different from all previous published network flow algorithms.  
The new algorithm does not work directly with the original parametric network.  Instead, 
it works on a derived network which no longer depends on the parameter (See Section 2).  
The new algorithm does not try to find the maximum-flow of the derived network instead 
it finds a particular state of the flows from which the maximum-flow and a min-cut of the 
original network under any parameter value can be derived.  The new algorithm does not 
use preflows; there is never any excess at any node other than the source and the flow 
balance equations hold at all nodes at all times (except at the source and target).  No 
labels of the nodes are used.  The new algorithm is not the augmenting-path algorithm 
because it does not try to find the maximum-flow of the derived network; it may not push 
flow up to the full residue capacity of an augmenting-path; and it does not push flow 
along all augmenting paths.   
 
 
1.2 A Few Basic Concepts and Terminologies 
 
A number of basic notations and definitions are reviewed in this section for readability of 
the paper but may not be completely spelled out (see Ahuja, Magnanti & Orlin’s book for 
more details).  

Network and Flow: A network { , , , }N E C FΩ =  consists of an underlying finite 
directed graph ( , )G N E , a set ,{ 0 | ; , 1,..., }i jC c i j i j n= ≥ ≠ =  of capacities of the arcs in E  and 
a set of flows ,{ |i jF f=  , , 0; ; , 1,..., }i j i jc f i j i j n≥ ≥ ≠ =  through the arcs.  Often a missing arc 
between an ordered pair of nodes is equalized with a zero capacity for mathematical 
analysis (but not for algorithmic discussions and implementation); with this 
understanding, E  is not necessary in the network notation --  { , , }N C FΩ = .  Sometimes it 
is more convenient to sub-index capacities and flows by nodes directly, like , 'w wc  or , ' .w wf    

Flows are balanced at each node other than s and t: , '
'

0w w
w w

f
≠

=∑  for \{ , }.w N s t∀ ∈    

1{ , } { }n
i iN s t w == ∪  contains two special nodes -- the source s with only outgoing arcs 

and the target t with only incoming arcs.   
No multiarcs (arcs with the same head and the same tail) and loops are in E .   
Residue Capacity:  Working with increments of flows, it is more convenient to look 

at the remaining capacity of an arc, , , ,î j i j i jc c f= − , called residue capacity.  When an arc 
( , )i jw w  carries a positive flow, reducing that flow is the same as adding a reversed flow to 
it; the maximum amount of reversed flow allowed is equal to the current forward flow, 



which is called the residue capacity of the reversed arc: , ,ˆ .j i i jc f=   ,
ˆ ˆ{ | , 1,..., }i jC c i j n= = , the 

set of residue capacities.   
Residue Network: A residue network is the network ˆˆ { , , },N C FΩ =  with , ,j i i jf f− = , a 

somewhat confusing notation, which means that adding a positive flow in the reversed 
direction of an arc is to subtract that amount of flow from the existing forward flow.  A 
residue arc is an ordered pair of nodes ( , )i jw w  with positive residue capacity ,ˆ 0

i jw wc > .  A 
path in the residue network is called a residue path.  The capacity along a residue path is 
the minimum residue capacity of the residue arcs in the path.   

Augmenting-Path is a path from the source to the target with positive residue 
capacity in the residue network.  Augmenting path maximum flow algorithm is the most 
intuitive maximum flow algorithm; it keeps finding augmenting paths to increase the total 
flow from s to t until no more augmenting paths left.   

s-t-Cut, Min-Cut and Maximum flow: A s-t-cut is a partition of N  into two disjoint 
subsets, an s-partition containing s and an t-partition containing t.  The capacity of an s-t-
cut is the sum of the capacities of the arcs from a node in s-partition to a node in t-
partition.  A min-cut is an s-t-cut with minimum capacity among all s-t-cuts.  The 
maximum flow of a network is the maximum amount of flow possible from the source to 
the target.  The maximum-flow min-cut theorem of Ford and Fulkerson states that the 
max-flow is equal to the capacity of a min-cut.   

Preflow-Push-Relabel Algorithm is a faster algorithm for finding maximum-flow in 
a network than the augmenting path algorithm.  Instead of pushing flow along a complete 
augmenting path, it allows flows to be pushed along one arc at a time up to the capacity 
of the arc. Excess of flows at a node is allowed; flow balance equations become “total 
incoming flows ≥  total outgoing flows”.  The excess flows are pushed in the direction 
controlled by a height-label assigned to each node.  Flows can be pushed only from nodes 
at higher heights to nodes at lower heights.  When a node with excess has no lower-
height-nodes to push to, its height is raised by a minimum increment to turn the situation 
around.  For details, see the original paper by Goldberg & Tarjan (1986).   

 
 The rest of the paper is organized in 3 sections.  In Section 2, the generic version of 
the simultaneous parametric max-flow (SPM) algorithm on bipartite networks is 
introduced.  Its convergence, correctness and completeness are proven.  In Section 3, 
generalization beyond bipartite networks is shown.  Section 4 concludes the paper with 
suggestions of next steps.   
 
 
2. A Simultaneous Parametric Maximum Flow Algorithm that Gives the Complete 

Nested Chain of Min-Cuts 
 

We first work with bipartite networks because of their simpler structure.   
A parametric network model { , , , }N E C FλΩ =  is a network with some of its capacities 

depending on a parameter. Two disjoint subsets of nodes are sometimes named separately 
as 1{ | 1,..., }iU u i n= =  and 2{ | 1,..., }lV v l n= = .  { , }N s t W= ∪  and W = U V∪ .  



An arc exists from s to every node in U and from every node in V to t.  Arcs between 
U and V may go in either direction.  1 2

1 1{( , )} {( , )} {( , ')n n
i i j jE s u v t w w= == ∪ ∪ | w∈ ,U  'w ∈  

;V or ' , }w U w V∈ ∈ . 
Capacities , [0, ]i jc ∈ +∞ , , , 1,...,i j i j n≠ = .  Capacity from s to any u U∈  is a 

continuous monotone increasing function of λ , and from any v V∈  to t a continuous 
monotone decreasing function of λ , where [ , ]a bλ∈ , if a = −∞  and/or b = +∞ , the 
value of the capacity at infinity is defined by the limit, which exists and can be infinity.  
Under these assumptions, the inverse functions of the capacities exist, are continuous and 
monotone.   

Based on the maximum-flow/min-cut theorem, the maximum-flow under a fixed λ  is 
equal to the capacity of a min-cut ( , )s tN N .  Fig. 1 shows an aggregated view of a max-
flow/min-cut solution.   

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  The diagram shows an aggregated view of a min-cut.  Each big circle is the aggregate 
of a set of nodes.  The directed arcs are the aggregates of all directed arcs from one entity to 
another.  This picture shows that there is no augmenting path from s to t.   

 
 

Instead of working with the original parametric network, a new network 
{ , , , }N E C FΩ =  is derived from the original.  The SPM algorithm, developed in Section 

2.2, gives a particular state of the flows in Ω , which allows a min-cut of the original 
network under any λ  be derived in a single scan of the nodes.  If the nodes are sorted by 
a particular key, shown later, the complete chain of nested min-cuts under all λ  can be 
derived from a single scan of the nodes.  Sorting takes O(nlog(n)) time.  All breakpoints 
of λ  where the maximum-flow as a step-function jumps are discovered by the SPM.  The 
maximum flows at these λ -values are calculated in O(m) time from the min-cuts; m is 
the number of arcs.   

 
 

2.1  Removing the capacity constraints on the arcs from the source or to the target 
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The new network { , , , }N E C FΩ =  is derived from the original network Ω  by keeping 
the same underlying graph and the capacity constraints on any arc between two nodes in 
W, but replacing all the capacity constraints by +∞ on the arcs from the source s or to the 
target t (See Fig. 2).  In the derived network, flows through these arcs are allowed to take 
any value in [0, )+∞ .  What value they will take is determined by the SPM algorithm.   
 Ω  does not depend on λ  after removing all λ -dependent capacities in Ω .  A set of 
lambda values are calculated from the flows in Ω  using the inverse capacity functions of 
the original network: 
  
 1

, , , 1( ), 1,...,s i s i s ic f i nλ −= =    and  1
, , , 2( ), 1,...,l t l t l tc f l nλ −= = .   (2.1) 

 
The inverse functions exist because of monotocity of , ()s ic  and , ()l tc .  The use of these 
lambda values becomes clear in the next sub-section.   
 
 
2.2  The rules for altering flows in the derived network { , , , }N E C FΩ =  
 
We call a path of this type i ls u v t→ → →  a simple residue path if one of the two cases 
is true: case a) , ,s i l tλ λ<  and  ˆ 0

i lu vc → >  or case b) , ,s i l tλ λ>  and ,ˆ 0
l iv uc > .  ,ˆ

i lu vc  and ,ˆ
l iv uc  

are the residue capacities of the directed arc in the residue network.   
The generic version of the Simultaneous Parametric Maximum-flow (SPM) algorithm: 
 

Initialization: Any feasible flow of Ω  will do.  Starting with completely zero flows is 
allowed -- all , 1, 1,...,s i i nλ =  are at their minimum, all , 2, 1,...,l t l nλ =  are at their 
maximum.   
 Main Algorithm: Repeat the following operation until no more simple residue path 
left.   
 One operation: for (any) a simple residue path i ls u v t→ → → , do: 

a) if , ,s i l tλ λ< , pushing , ,ˆmin{ , }
i lu v i lflow c fδ δ=  from s to t through the path; 

b) if , ,s i l tλ λ> , pushing , ,ˆmin{ , }
l iv u i lflow c fδ δ= −  from t to s through the reversed 

residue path ( , 0i lfδ <  in this case). 

,i lfδ  is the amount of flow that makes the two new lambda values equal after the push if 
the push is not constrained by the residue capacity:   
 
   1 1

, , , , , ,( ) ( )s i s i i l l t l t i lc f f c f fδ δ− −+ = + .    (2.2) 
 
After pushing the flow, update the two lambda values according to the new flows:  
    
   ' 1

, , ,( )s i s i s ic f flowλ δ−= +  and ' 1
, , ,( )l t l t l tc f flowλ δ−= + .    (2.3) 

 



Equation (2.2) always has a solution ,i lfδ  because as ,i lfδ  starts from zero and moving in 

the direction that makes 1
, , ,( ) [ , ]s i s i i lc f f a bδ− + ∈  and 1

, , ,( ) [ , ]l t l t i lc f f a bδ− + ∈  closer, the  
smaller number approaches b and the larger number approaches a (<b).  There must exist 
a ,i lfδ  satisfying (2.2).   
 The flow is always pushed from the end with a smaller lambda value to the end with a 
larger lambda value and one of the following inequality holds with the new lambda 
values '

,s iλ  and '
,l tλ : 

Case a)  if , ,s i l tλ λ< , ' '
, , , ,s i s i l t l tλ λ λ λ< ≤ <  or  

Case b)  if , ,s i l tλ λ> , ' '
, , , ,s i s i l t l tλ λ λ λ> ≥ > .      (2.4) 

 After each operation, either the residue capacity from the end with lower lambda 
value to the end with higher lambda value becomes zero or the two new lambda values 
become the same.  A single operation will never reverse the order of the two lambda 
values even though the order could be reversed in the future by other operations.  (See 
Fig. 2 & 3.) 
 

 
 

Figure 2.  Case a)  , ,s i l tλ λ< :  Left – before push 0fδ = ; middle – after push the residue 
capacity becomes zero;  right – after push, , ,s i l tλ λ=  but residue capacity of the path may not be 
zero. 

 

 
Figure 3.  Case b)  , ,s i l tλ λ> :  Left – before push 0fδ = ; middle – after push the residue 
capacity becomes zero;  right – after push, , ,s i l tλ λ=  but the residue capacity may not be zero. 

 
Propert A:  When SPM stops (a proof is given later), there is no more augmenting path 
(or even an arc with positive residue capacity) going from a node with lower lambda 
value to a node with higher lambda value.   
 
 This property allows us to easily derive min-cuts of the original network under all 
values of λ . 
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2.3  Deriving min-cuts of the original parametric maximum-flow problem 
 
Using the derived network { , , , }N E C FΩ =  with the flows given by the SPM algorithm, 
a min-cut of { , , , }N E C FλΩ =  under any λ  value is derived in a single linear scan of the 
nodes.  Partition nodes N  into , ,( , )s tN Nλ λ  as follows  
 

1 1
, , , , , , ,{ } { | ( ) } { | ( ) }s i s i s i s i l l t l t l tN s u c f v c fλ λ λ λ λ− −= = < = <∪ ∪  and , ,\t sN N Nλ λ= .  (2.5) 

 
From Property A in the previous section, there is no augmenting path from ,sN λ  to ,tN λ  
in the derived network.   

Putting the capacity constraints , 1{ ( ) | 1,..., }s ic i nλ =  and , 2{ ( ) | 1,..., }l tc l nλ =  back to 

{ , , , }N E C FΩ =  by truncating the flows where the constraint is violated, we recover the 
original network at parameter value λ  with the maximum flow.  For ,i tu U λ∈ with 

,s iλ λ≤ , , , , ,( ) ( )s i s i s i s ic c fλ λ≤ =  because , ( )s ic λ  is non-decreasing;  these flows ,s if  are 
truncated.  Without changing the flows from , \{ }sN sλ  to ,tN λ , the truncated flows can be 
rebalanced at ,tU λ  by reducing the flows from ,tU λ  to ,tV λ  and rebalanced again at ,tV λ  
by reducing flows from ,tV λ  to t (trivial to prove using flow balance equations at each 
node.  See Fig. 4 and Fig. 6).   
 

 
 

Figure 4.  Flow rebalancing caused by truncation of flows from the source to U. 
 
 

Similarly, for ,l sv V λ∈  with ,l tλ λ> , , , , ,( ) ( )l t l t l t l tc c fλ λ≤ =  because , ( )l tc λ is non-

increasing;  these flows ,l tf  are truncated.  Without changing the flows from ,sN λ  to 

, \{ }tN tλ , the truncated flows can be rebalanced at ,sV λ  by reducing the flows from ,sU λ  
to ,sV λ  and rebalanced again at ,sU λ  by reducing flows from s to ,sU λ  (See Fig. 5 and Fig. 
6).   

 

 
Figure 5.  Flow rebalancing caused by truncation of flows from V to the target. 
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After the truncations and rebalancing, a maximum flow in the original network with 

min-cut , ,( , )s tN Nλ λ  is achieved (See Fig. 6 and compare it with Fig. 1). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.  Putting the capacity constraints , ( )s ic λ  and , ( )l tc λ  back by truncating the flows that 
violate the constraints, we get { , , , }N E C FλΩ =  back with a max-flow from the truncated flows 
and a min-cut , ,( , )s tN Nλ λ .   The black double-dotted arcs are the only (aggregated) arcs with 
flows possibly changed by rebalancing.  The red solid arcs have flow up to the maximum capacity.  
The green dash arcs have zero flow.   

 
 

For the purpose of finding a min-cut and the maximum-flow under λ , there is no 
need to carry out the truncations and rebalancing, which are only for proving the 
correctness of the SPM algorithm.  A single scan of the nodes in N in the increasing order 
of their associated λ  values gives all min-cuts as monotone increasing step set-function 

,sN λ  of λ  and the λ  values at which the sizes of the min-cut partitions change.  Sorting 
the nodes by their associated lambda value takes ( log( ))O n n  time.   

The min-cuts are nested, which has been shown before in Gallo at. el. (1989), is also a 
by-product of this proof.   

All maximum flow values of the original network as a step function of λ  can be 
calculated in ( )O m  time, where m is the number of arcs, if the arcs are also scanned 
along with the scanning of the nodes to get the capacities of the min-cuts.  Since the min-
cuts are nested, each arc is scanned twice – once when one of its ends changes 
membership (from t-partition to s-partition) and its capacity from ,sN λ  to ,tN λ  is added to 
the maximum-flow; and the second time when the other end changes its membership and 
its (previous) capacity from ,sN λ  to ,tN λ is subtracted from the maximum-flow.  The 
complete procedure for getting all min-cuts and the naximum-flows is summarized in the 
Post_Processing Algorithm:  
(There is no need to distinguish lambda values associated with a node in U or a node in V.  
We use the simpler notation { | 1,..., }i i nλ =  for the set of lambda values.) 

s t 
Min--Cut

full from 
truncation 

full from
truncation

, , ,{ }s s sN s U Vλ λ λ= ∪ ∪

, , ,{ }t t tN t U Vλ λ λ= ∪ ∪
,sU λ

f=0   full

,tU λ

,sV λ

,tV λ

s t 
Min--Cut

full from 
truncation 

full from
truncation

, , ,{ }s s sN s U Vλ λ λ= ∪ ∪

, , ,{ }t t tN t U Vλ λ λ= ∪ ∪

, , ,{ }s s sN s U Vλ λ λ= ∪ ∪

, , ,{ }t t tN t U Vλ λ λ= ∪ ∪
,sU λ

f=0   full

,tU λ

,sV λ

,tV λ

,sU λ

f=0   full

,tU λ,tU λ

,sV λ,sV λ

,tV λ,tV λ



Input:  The derived network { , , , }N E C FΩ =  with F  given by the SPM.   
Step 1:  Sort the nodes in \{ , }N s t  by their associated lambda values iλ , i=1,…,n.  For 

convenience, assume that 1 ... nλ λ≤ ≤ . 
Step 2:  Set i=1, , { }

isN sλ = , , ,\
i it sN N Nλ λ= , max 0flow = . 

Step 3: { | }i w iw W λ λ∆ = ∈ = . 
 For iw∀ ∈∆  and , ',' { ' | ' & 0 }

is w ww w w N cλ∀ ∈ ∈ > , max max ',w wflow flow c= − ;   
 For iw∀ ∈∆  and , , '' { ' | ' \ & 0 }

it i w ww w w N cλ∀ ∈ ∈ ∆ > , max maxflow flow= + , 'w wc ; 
 

1, ,i is s iN Nλ λ+
= ∆∪ , 

1 1, ,\
i it sN N Nλ λ+ +
= ;  

 output: maxflow  and i∆  (or 
1 1, ,( , )

i is tN Nλ λ+ +
), the maximum flow and a min-cut for 

1( , )i iλ λ λ +∈ . 
 If 1i i n= + ≤ , go to the beginning of Step 3. else DONE.  
 
 
2.4  The completeness of the solution 
 
Completeness means that for every λ  value, the maximum flow and a min-cut of the 
original network is found.  It follows the proof in the previous section immediately.   
 
 
2.5  The convergence of the SPM algorithm 
 
The “Main Algorithm” given above formula (2.2) tells what to do mathematically.  In any 
implementation of the generic algorithm, a particular order of scanning the simple residue 
paths has to be specified which in general will have an impact on the runtime cost of the 
algorithm.  We want the proof of convergence to be independent of such implementation 
details.  
 To complete the proof, we need a number of definitions and results from calculus.  
They (Lemma 1 to Lemma 5) are included in Appendix A. 
 
Assumption A:  Let ( , )i jλ λ and ' '( , )i jλ λ  be an old and a new pair of lambdas before and 
after an operation on a simple residue path.  For any sequence of such pairs, a finite 

amount of total upward movements '

1
| |i i

i
λ λ

+∞

=

− < +∞∑  is always match with a finite 

amount of total downward movements '

1

| |j j
j

λ λ
+∞

=

− < +∞∑ .   

 

Lemma: A sufficient condition for Assumption A to hold is ,
1

()
0, 1,..., ,s idc

i n
d

δ
λ

∆ ≥ ≥ > =  

and ,
2

()
0, 1,..., ,l tdc

l n
d

δ
λ

∆ ≥ ≥ > =  for some constants ,δ∆ . 



Proof: Assume that it is case a) , ,s i l tλ λ< ;  the order case can be proved similarly.   From 
(2.2) and , ,ˆmin{ , }i l i lflow cδ δ= ± , 
 
  ' 1

, , ,( )s i s i s ic f flowλ δ−= +  and ' 1
, , ,( )l t l t l tc f flowλ δ−= +    (2.6) 

 
Invert the second one in (2.6) and use the fact , , ,( )l t l t l tf c λ= , 
 
  '

, , , ,( ) ( )l t l t l t l tflow c cδ λ λ= −       (2.7) 
 
Combining the first one in (2.5) and (2.7), 
 

  

' 1 ' 1
, , , , , , , , , ,

' '
, , , , , ,

| | | ( ( ) ( )) ( ) |
1 | ( ) ( ) | | |

s i s i s i s i l t l t l t l t s i s i

l t l t l t l t l t l t

c f c c c f

c c

λ λ λ λ

λ λ λ λ
δ δ

− −− = + − −

∆
≤ − ≤ −

   (2.8) 

 
Similarly, we have 
 

  ' 1 ' 1 '
, , , , , , , , , , , ,| | | ( ( ) ( )) ( ) | | |l t l t l t l t s i s i s i s i l t l t s i s ic f c c c fλ λ λ λ λ λ

δ
− − ∆

− = + − − ≤ −  (2.9) 

•   
 
Convergence Theorem:  Let 1 2, ,..., ,...kO O O  be a sequence of operations happened in a 
run of the generic algorithm.  Under Assumption A, the set of lambda values after the kth 
operation  ( ) ( ){ |k k

iλΛ =  1,..., }i n=  converges as a sorted sequence.  The convergence is 
defined as for 0ε∀ > , 0K∃ > , for 1 2,k k K∀ >  and  j=1,…,n, the difference between the jth 
number in the sorted sequence of 1( )kΛ  and the jth number in the sorted sequence of 2( )kΛ  
is smaller than ε . 
 An even stronger result holds: the convergence is absolute in the sense that the sum 
of the absolute values of the changes at the jth position of the sorted sequence is finite for 
any j=1,…,n. 
Proof: Let ( ) ( )

min,0 mink kλ = Λ .  (1) (2) ( )
min,0 min,0 min,0... ...kλ λ λ≤ ≤ ≤ ≤  is a non-decreasing sequence 

and bounded above from (2.4).  It is absolutely convergent (see Lemma 1 in Appendix A).  

For any 0ε >  there exists a 1 0K >  such that ( ) ( ) ( 1) ( )
min,0 min,0 min,0 min,0

' 1
| lim | | |k k k k

k k k
λ λ λ λ ε

+∞
+

→∞
= +

− = − <∑  for 

all 1k K> .  Let ( )
1

kΛ = ( ) ( )
min,0\{ }k kλΛ , if there are more than one lambda that equal to ( )

min,0
kλ , 

pick any one.  The size of ( )
1

kΛ  is n-1 for any k.  Let ( ) ( )
min,1 1mink kλ = Λ .  ( )

min,1 1{ }k
kλ +∞
=  is a 

semi-increasing sequence because all downward movements have to be matched with 
( )
min,0

kλ ’s upward movement, the sum of which is bounded.  Following Lemma 4, ( )
min,1 1{ }k

kλ +∞
=  

is absolutely convergent.  There exists a 2 1K K>  such that 
2

( ) ( 1)
min,1 min,1| |k k

k K
λ λ ε

+∞
+

=

− <∑ .  The same 



procedure can be repeated to ( )
2
kΛ = ( ) ( )

1 min,1\{ }k kλΛ  (if multiple lambda equal to the min, 

pick any one); and the semi-increasing sequence ( ) ( )
min,2 2mink kλ = Λ ,  every downward step 

of which is matched with a upward step of one of the earlier min-lambdas ( ) ( )
min,0 min,1,k kλ λ , 

which are absolutely convergent.  Therefore ( )
min,2 1{ }k

kλ +∞
=  is absolutely convergent by 

Lemma 4.  Repeating this process n times, we have all n sequences ( )
min, 1{ }k

i kλ +∞
= , i=0…,n-1, 

are absolutely convergent.  There is only finite number of such sequences, a common 
K>0 can be chosen. •  
 The proof can be done using the ( )

max,
k

iλ  defined similarly. 
 For any computer implementation, the lambda values are rational numbers, they will 
stop changing when 0ε >  is smaller than the machine precision. 
 
 
3. Generalization to General Networks 
 
The SPM algorithm can be generalized to networks with the type of graph illustrated in 
Fig. 7.   { , }N s t U W V= ∪ ∪ ∪ .  There are no arcs between nodes within U or nodes within 
V.  
 

 
Figure 7.  A More General Network. 

 
 
A simple residue path is, 

 
1

...
ri k k ls u w w v t→ → → → → →     (3.1) 

 
satisfying one of the two:  
case a) , ,s i l tλ λ<  and ˆ 0pathc >  ( ˆpathc  is the residue capacity of the path) or  
case b) , ,s i l tλ λ>  and _ˆ 0reversed pathc > .   
There may not be any w-nodes in a simple residue path.  For parametric maximum-flow 
problems on a non-bipartite graph, a few changes have to be made to the algorithm.  
 
SPM Algorithm: For any simple residue path, 

1
...

ri k k ls u w w v t→ → → → → → , do  

,s if
,l tf

, ( )s ic λ ↑ , ( )l tc λ ↓

s t

W

. 

. 

. 
U .

.

.

V



a) if , ,s i l tλ λ< , pushing ,ˆmin{ , }path i lflow c fδ δ=  from s to t through the augmenting 
path; or  

b) if , ,s i l tλ λ> , pushing _ ,ˆmin{ , }reversed path i lflow c fδ δ= −  from t to s through the 
reversed path ( , 0i lfδ <  in this case). 

,i lfδ  is the amount of flow that makes the two new lambda values equal after the push if 
the push is not constrained by the residue capacity:  
 
  1 1

, , , , , ,( ) ( )s i s i i l l t l t i lc f f c f fδ δ− −+ = + .     (3.2) 
 

,i lfδ  depends only on the two ends and independent of the middle part of the path.  After 
pushing flowδ , update the lambda values according to the new flow values.   
 
  

 
 

Figure 8.  Flows are full to its capacity along all red solid arcs, which are all the directed arcs 
from the s-partition to the t-partition; zero flow along all green dash arcs, which are all the directed 
arcs from the t-partition to the s-partition.  Flows along the black double-dash arcs are the only 
arcs that might be affected by truncation or rebalancing, which never go across the s-t-partitions.   

 
 
 
 When the SPM algorithm stops, for any [ , ]a bλ ∈ , there is no simple residue path from 

, , , , ,{ | } { | }s s s s u v tN U V u vλ λ λ λ λ λ λ= = < <∪ ∪  to , , , , ,{ | } { |t t t s u v tN U V u vλ λ λ λ λ λ= = ≥ ≥∪ ∪ }λ .   
 Putting all the capacities , ( )s ic λ , , ( )l tc λ  back and truncate the flows that violates the 
capacity constraint, a min-cut , , , ,( , )s s t tN W N Wλ λ λ λ∪ ∪  can be generated from , ,( , )s tN Nλ λ  in 
the same way as before (see Fig. 8).   

The proof of convergence is the same as the proof in bipartite case.   
 
 
4. Conclusions and Future Work 



  
The SPM algorithm was implemented for a particular problem.  On all large data sets we 
experimented with, it took SPM algorithm less time to get the complete curve than the 
time needed by the Preflow-Push algorithm to find the solution at a single lambda value.   
 We have not provided an analysis of complexity of the SPM algorithm.  We would 
certainly like to see this is done in the future.   
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Appendix A:   
 

Definition 1: 1{ }k kα +∞
=  is absolutely convergent to a finite limit if 1

1

| |k k
k

α α
+∞

+
=

− < +∞∑ . 

Lemma  1: A bounded non-decreasing (or increasing) sequence is absolutely convergent.   
Lemma 2: Let 1{ }k kα +∞

=  and 1{ }k kβ +∞
=  be two non-decreasing sequences with  lim kk

α α
→∞

=  
and lim kk

β β
→∞

= < +∞  then lim( )k kk
β α α β

→∞
− = − , where α  can be +∞ .   

Definition 2: 1{ }k kα +∞
=  is semi-increasing if

1

1( )
k k

k k
a a

a a
+

+
>

− < +∞∑ ; i.e. total decreasing 

movements is finite.  1{ }k kα +∞
=  is semi-decreasing if 

1

1( )
k k

k k
a a

a a
+

+
<

− > −∞∑ .   

Lemma 3: A semi-increasing (or decreasing) sequence converges (to a finite or infinite 
number).   
Lemma 4:  A bounded semi-increasing (decreasing) sequence 1{ }k kγ +∞

=  is also semi-
decreasing (increasing).  It is absolutely convergent.   
Proof: Define 

' ' 1

' ' 1

' 1

( )
k k

k k k

k k
γ γ

δ γ γ
+

+
>
+ ≤

= −∑ .   1{ }k kδ +∞
=  is bounded non-decreasing and absolutely 

convergent (Lemma 1).  
1

1 1
( )

[( ) ( )]
k k

k k k k
γ γ

γ γ δ δ
+

+ +
<

− + −∑ =0 by the definition of kδ .   

1 1 1

1 1 1 1
( )

( ) ( ) [( ) ( )]
k k k k k k

k k k k k k k k
γ γ γ γ γ γ

γ γ γ γ γ γ δ δ
+ + +

+ + + +
> > <

− = − + − + −∑ ∑ ∑   (A.1) 

First term in (A.1) 
1

1( )
k k

k k
γ γ

γ γ
+

+
>

− < +∞∑  because 1{ }k kγ +∞
=  is semi-increasing.   Second term 

in (A.1) 1 1
1

[( ) ( )]k k k k
k

γ δ γ δ
+∞

+ +
=

+ − + < +∞∑  because 1{ }k k kγ δ +∞
=+  is a bounded non-decreasing 

sequence and absolutely convergent.   Therefore, 

  
1

1( )
k k

k k
γ γ

γ γ
+

+
>

− < +∞∑ .       (A.2) 

Finally, 

1 1

1 1 1
1
| | ( ) ( )

k k k k

k k k k k k
k γ γ γ γ

γ γ γ γ γ γ
+ +

+∞

+ + +
= > >

− = − + − < +∞∑ ∑ ∑ .   (A.3) 

•  
 


