A

invent

Complexity and Emergent Behaviour in ICT Systems

Seth Bullock®, Dave Cliff
Digital Media Systems Laboratory

HP Laboratories Bristol

HPL-2004-187

October 27, 2004*

E-mail: firsthame.lastname@hp.com

complex systems,
emergent
behaviour, ICT,
DTI, foresight

Information and Communication Technology (ICT) practitioners are now
readily able to create systems of such interconnected complexity that
predicting the effects that small changes (such as minor component
failures) will have on overall system performance may become very
difficult or perhaps impossible. The notion that systemlevel behaviour
"emerges' from paralel nonlinear interaction of multiple components in
ways that are difficult or impossible to predict is explored in this
document with reference to the UK's ICT investments and assets. We
conclude that while it is true that there are currently limits to our ability
to understand the ICT systems that we are capable of creating,
nevertheless there are ways forward, including new ways of structuring
and approaching software engineering, and teaching IT. This 25,000-
word report is a briefing document commissioned by the Foresight
Programme within the Office of Science and Technology of the UK
Government's Department of Trade and Industry. Its findings are
independent of government and do not constitute UK Government policy.

* Internal Accession Date Only
School of Computing, University of Leeds, UK

Approved for External Publication

a Copyright Hewlett-Packard Company 2004



Complexity and Emergent Behaviour in ICT Systems*

Seth Bullock
School of Computing
University of Leeds, UK
sethO@comp.leeds.ac.uk

Executive Summary

e The management and design problems facing mod-
ern ICT practitioners are critically concerned with
ensuring reliability, usability, robustness, efficiency,
effectiveness, security, and evolvability in the in-
terconnected ICT systems upon which societies and
economies increasingly rely.

e As our world becomes an ever more interconnected
place, so-called “systems” ideas and perspectives be-
come increasingly important. A central issue is the
emergent behaviour of complex systems.

e In complex systems, non-linear interactions between
component parts give rise to high-level “emergent”
organisation that is not straightforward to explain.
Workable definitions and measures of complexity and
emergence remain elusive, however.

e Issues that sometimes appear to place complex sys-
tems beyond science and engineering (subjectivity,
unpredictability, inexplicability) are often miscon-
ceived. Complexity is more than mere complicated-
ness and is not equivalent to unpredictability. Emer-
gence is not equivalent to inexplicability. Complex
systems and emergent behaviour are valid topics of
scientific enquiry.

e Understanding adaptation in complex systems is a
key problem; one that motivates an attention to bio-
logical systems and processes, because many biolog-
ical systems exhibit characteristics desirable in engi-
neered systems.

e A wide range of diverse stakeholders are implicated
in complexity research: academics with varied back-
grounds, industrialists from across many sectors, and
many different funding agencies.

e The profile of the complexity science community is
largely unknown; however, it is clear that few “com-
plexity researchers” have enjoyed explicit or extensive
training in complex systems ideas and methods.
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Achieving and maintaining effective interdisciplinary
collaboration, especially between stakeholder groups,
is identified as key to successfully mobilising this di-
verse and fragmented community.

Academic complexity research that is relevant to 1CT
is extremely diverse. The UK is a key player in certain
aspects of this field.

We review here relevant industrial activity, examin-
ing the research of large 1CT companies, large non-1cT
companies, and small & medium-sized enterprises.

Open research agendas in complex systems are many
and varied, and include: fundamental research into
characterising complexity and emergence; practical
work on building effective simulation methodologies;
theoretical exploration of the effects of spatiality,
coupling, development, adaptation, and evolvabil-
ity in complex systems. More specifically, open-
standards software methodologies, the new scientific
study of networks, resource management for grid
computing, evolutionary and adaptive computing,
network security, usability and interoperability, peer-
to-peer systems, and even nano-scale ICT engineering
are all domains in which complex systems research is
likely to have (or continue to have) a significant im-
pact.

Open challenges that must be faced by the complex
systems community include overcoming institutional
and cultural obstacles to interdisciplinarity and in-
dustrial involvement in complexity research. For the
UK in particular, most computer science undergrad-
uate degree programmes currently have a manifest
lack of formal training in complexity ideas and tech-
niques: especially simulation modelling methods, ex-
periment design, and statistical data analysis. This
is an omission that should be rectified as a matter of
urgency. Computer Science graduates should actu-
ally be trained as scientists.

The Uk is well-placed to meet these challenges and
potentially to benefit enormously from a combination

of its high-quality complex systems research and its
innovative ICT industry.
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1. Introduction

1.1 Background

It is not controversial to observe that we are living in
an increasingly joined-up world. Processes of globali-
sation continue to drive ever-increasing levels of inter-
connectedness, encouraging greater population mobility
and resultant economic and cultural exchange. What
may be less apparent is that for such flows of goods,
services, and capital, at regional, national, and interna-
tional levels (and even for international terrorism and
consequent homeland security issues) the many faces of
modern globalisation have been underwritten by inno-
vation in information and communications technology
(1cT).

Indeed, 1CT crucially underpins these activities at all
levels: from manufacturing, logistics, retail, finance,
and entertainment to healthcare, education, government,
transport, and the provision of utilities such as water,
electricity, and gas. As these 1CT systems have experi-
enced a largely unplanned and unregulated increase in
interconnectedness they have begun to suffer from atten-
dant growth in problems of design, management, main-
tenance, and decommissioning. As the effects of intro-
ducing a new component, making a new connection, or
(more drastically) attempting to improve a protocol or
impose a control, continue to become increasingly diffi-
cult to predict or understand, how can we ensure reliabil-
ity, usability, robustness, efficiency, effectiveness, secu-
rity, and evolvability in the interconnected systems that
we all increasingly rely upon?

For instance, institutional inability to swiftly and ef-
fectively deal with the catastrophic 2001 outbreak of foot
and mouth disease cost the UK economy approximately
£8bn (National Audit Office, 2002). A poor understand-
ing of the causal interconnectedness of livestock trans-
portation, disease behaviour, and vaccination, coupled
with bureaucratic delays and poor co-ordination, cre-
ated a rapacious epidemic. Hundreds of farmers lost
their livelihoods, millions of animals were destroyed, ru-
ral and tourism industries were decimated. Last year’s
high-profile infrastructural power failures on both US
seaboards, in Italy, and in south London are evidence
of similar problems in the context of electricity trans-
mission — a technology more than a hundred years old.
With respect to 1CT, as the scale and interconnected-
ness of required systems explodes, the ability to deliver
working solutions tailored to particular requirements has
stalled — software development stagnates, interoperabil-
ity erodes, and reliability and robustness can no longer
be guaranteed. Recent reports suggest that the UK gov-
ernment has “squandered” £1.5bn on failed IT projects
since 1998 (Arnott, 2003).

Consider the implications for the widely-shared vision
of a near-future Europe permeated by a new kind of com-

putational infrastructure: a pervasive, ad hoc, decen-
tralised, ubiquitous, dynamic computing network sub-
serving commerce, government, health care, transport,
manufacturing, education, and so on. Effectively and
efficiently managing this kind of architecture and the
critical processes that are supported by it is the overrid-
ing challenge faced by today’s ICT research communities.
Guarding against systemic failures of the kind exempli-
fied by foot and mouth, or sudden catastrophic black-
outs caused by the effects of minor component failures
rippling through an electricity network, will be crucial
to Europe’s success and quality of life.

How did we arrive at this situation, and how does this
challenge compare to those that have been faced by the
ICT industry in the past?

1.2 History

Over the past fifty years, the dominant mode of com-
mercial provision of information technology (IT) and
computing equipment has undergone a number of sig-
nificant “step” changes, and history shows that those
changes occur roughly once every ten years. The 1960s
saw the sale of physically huge “mainframe” computers,
housed in air-conditioned rooms, which created a large
and profitable global business for a previously inconspic-
uous company called International Business Machines
Corp. (IBM). In the 1970s, mainframes were increasingly
supplanted by the more robust, compact, and affordable
“mini” computers, where disruptive technology advances
were exploited by newly-formed companies such as Dig-
ital Equipment Corp. (DEC), who developed their Ppp
and VAX range of minicomputers to the point that DEC
came to threaten IBM’s dominance of the industry; and
long-established electronics companies such as Hewlett-
Packard (HP) also commenced commercial production
of their own minicomputers. Approximately a decade
after the initial commercialisation of minicomputers, ad-
vances in semiconductor technology (i.e., the develop-
ment of single-chip microprocessors) made the provision
of even cheaper and smaller single-user “personal” com-
puters (PCs) economically viable, and again new compa-
nies such as Apple, Compagq, and Dell came to exploit
this technology advance and in doing so these new ar-
rivals threatened incumbents such as IBM and DEC, the
latter of which was eventually acquired by Compaq.

In the 1980’s, advances in computer communications
and local-area networks allowed PC-sized computers to
be connected together for cheap and reliable data inter-
change; this not only allowed expensive resources such
as laser-printers or modems to be shared by a number
of users, but also created a hardware base on which new
forms of operating system could be developed and de-
ployed, such as the client-server model of distributed net-
work computing. Again, new companies achieved promi-
nence or dominance by exploiting these disruptive tech-



nology advances, most notably Sun Microsystems, whose
marketing slogan “the network is the computer” neatly
summarised the vision motivating that transition.

Then, again roughly ten years later, the most recent
transition occurred. This one was facilitated at least in
part by a global shift toward deregulation and adoption
of digital technology in the telecommunications industry:
the mid-1990s saw the widespread adoption of internet
communications protocols and document mark-up stan-
dards, which fostered the creation and truly astonishing
growth of the World Wide Web. Again new companies,
such as Cisco Systems, profitably exploited the demand
for the newly disruptive technology. The entwining of
information technology with communications technology
has become so deeply embedded and accepted that the
acronym “ICT” is now a commonplace replacement for
“17”. The irrational exuberance in the equity markets
which swelled and then burst the web-enabled dot-com
bubble saw the elimination of many new ICT companies
with more fanciful business plans, and the following eco-
nomic downturn in the 1CT industry also led to a period
of consolidation marked by the merger of industry giants
HP and Compagq.

Within the computer industry, there are now clear in-
dications that the next transition is currently underway.
Major global computer companies such as HP, IBM, and
Sun have all announced current or imminent commer-
cial offerings which represent step-changes in the pro-
vision of computing, of equal or greater magnitude to
the previous step-changes outlined above. The under-
lying vision offered by these three vendors is strikingly
similar, despite the differences in terminology used by
each. Sun talk of their “N1 Strategy”; IBM talk of
“on-demand” and “autonomic” computing; while HP
refer to “utility computing” and “adaptive enterprise”
systems. The common vision is to create centralised
compute facilities housing many thousands of computer
“nodes”, where each node is itself a very powerful PC con-
nected to a high-speed high-bandwidth network within
that facility. Sub-networks consisting of some num-
ber of nodes and the necessary network connections
between them can be assembled and disassembled re-
motely, via software commands rather than requiring
human operators to physically alter switches or wiring.
Thus, users can access these vast parallel computers re-
motely, via high-speed high-bandwidth telecommunica-
tions links, uploading software applications and hard-
ware requirements, and receiving the results back down
the telecomms link.

For most users, the cost of owning and operating such
a facility would be prohibitive, but by sharing the usage
of the facility over a large number of users, and thereby
running all the nodes at close to 100% capacity for close
to 100% of their lifetimes, significant economies of scale
can be exploited. Thus, the cost of constructing and

maintaining the facility is spread over all users over the
lifetime of the facility, and by spreading the costs in this
way the users gain access to huge increases in computer
power per unit cost. This new mode of computing pro-
vision is increasingly referred to as “utility” computing,
because the intention is that use of the centralised facil-
ities is accessed via a transmission network and charged
to the users on a metered per-second or per-hour basis,
in much the same was as other utilities such as electric-
ity, water, or gas are supplied. Any one provider of such
utility computing facilities would probably build mul-
tiple centres around the world, and there is likely to be
more than one such provider, so (providing interoperabil-
ity standards and protocols can be agreed) the current
view is that there will soon be a federated global net-
work of utility computing fabric, providing a hardware
base for new modes of commercial provisioning of com-
puter resources. This is unlikely to replace desktop or
laptop PCs, but the availability of low-cost access to eas-
ily reconfigurable super-computing systems may change
many businesses, either by lowering existing barriers to
entry, or by enabling the application of new approaches
which are currently too compute-intensive to be practi-
cable.

However, there is a growing suspicion that traditional
engineering techniques may not be well suited to the con-
struction of artefacts as complex as federated global net-
works of massive utility computing facilities containing
many tens of thousands of computing nodes. In part this
is because traditional decompositional “divide and con-
quer” engineering techniques result in hierarchically or-
ganised designs, with a single overall executive controller
situated at the top of the control hierarchy. Apart from
the obvious vulnerability that loss of this central node
presents, having such a single point of overall control in-
troduces some problems which rapidly grow in severity
as the number of nodes reporting up the hierarchy in-
creases: simply gathering and routing all the necessary
data up through the hierarchy can swamp the available
network bandwidth and can often introduce significant
delays. These delays, compounded by any noise or uncer-
tainty in the data, can lead to incorrect actions or com-
mands being issued by the master control node. Recog-
nition of these problems has led to research aimed at de-
veloping reliable and robust decentralised control mecha-
nisms, which could be distributed across large computer
facilities, thereby reducing the delays and eliminating
the single point of vulnerability, but still giving coherent
overall behaviour.

These problems are not limited to the construction of
utility-scale computing facilities. As just about every in-
dustry in advanced economies rushes to take advantage
of the commercial and economic possibilities offered by
current ICT systems, so every such industry is increas-
ingly having to face problems caused by the unforeseen



behaviour, or poor scaling, of networks of interconnected
components.

1.3  Complezity and Emergence

It seems unarguable that the key challenge facing mod-
ern ICT is the management of a transition from systems
comprising many relatively isolated, small-scale elements
to large-scale, massively interconnected systems that are
physically distributed yet must remain secure, robust,
and efficient. We in the UK are already surrounded
by systems that are attempting to achieve this transi-
tion: from e-government and the digital NHS, multina-
tional infrastructures and virtual universities, to peer-to-
peer communities, grid computing and e-science, mobile,
amorphous and pervasive computing, ad-hoc networks,
and mass-scale RFID-tagging.

As noted above, it is widely suspected that tradi-
tional decompositional (divide-and-conquer) engineering
approaches will not scale to solve this kind of problem
because they are geared to the production of modular,
hierarchical, and ultimately centralised command-and-
control regimes. Consequently, engineering large-scale,
integrated 1CT systems can be a (hap)hazardous and
wasteful enterprise. Is there any alternative? The be-
haviour of certain naturally-occurring systems suggests
that there may be. Examples of such systems include
animal brains, immune systems, colonies of ants and
other social insects, and even economic markets, all of
which comprise enormous numbers of simple elements
that combine to achieve sophisticated, robust aggregate
behaviour.

Indeed, the natural world is full of systems that, at
one level of analysis, can be described as being composed
of many components that are individually “simple” and
that interact with each other in relatively “simple” ways,
often only directly influencing neighbouring components,
yet simultaneously, at another level of analysis, are
able to exhibit some “complex” overall system-level be-
haviour. In broad terms, it is those systems that ex-
hibit this “emergent” globally-complex-behaviour-from-
simple-components that we refer to as “complex sys-
tems”; and the prospect that the system-as-a-whole
needs to be considered as something more than simply
the sum of its parts is perhaps the most basic articula-
tion of the notion of “systems thinking”, which stands
in contrast to the traditional reductive/decompositional
“componential” concepts and viewpoints that have dom-
inated engineering and science for most of the last two
hundred years. These notions of emergence, complexity,
and systems thinking are revisited and expanded upon
in the rest of this document.

A large class of natural complex systems are of par-
ticular interest because they exhibit attractive aggregate
(emergent) properties that allow them to adapt to chang-
ing circumstances in an efficient and effective manner,

despite lacking any central authority or control respon-
sible for this ability — i.e., they adaptively self-organise.
As a result, such systems can be both extremely robust
to perturbation and also behaviourally agile: properties
that 10T engineers would like to design into their tech-
nological systems. This class of systems is generally re-
ferred to as complex adaptive systems (CAS), and the
natural world is packed with them. Here are four exam-
ples:

e An individual nerve cell (i.e., a neuron) is a relatively
simple device. In brief, a neuron is a cell body with
plant-like branches emanating from it. It integrates
electrical impulses received on its “input” branches
over some period of time, and if that integral reaches
a sufficiently high value then it fires an impulse down
its “output” branches, which typically connect to the
input branches of many other neurons. Yet attach
enough neurons together with the right connectivity,
and expose them to the right environmental stimuli
for long enough, and the result is a brain capable of
coordinating the sensory inputs and motor outputs of
an adult animal, sufficient for the animal to survive in
an unpredictable and unforgiving environment until
it can meet a mate and reproduce. For a social animal
as complex as a human, successfully mating and then
raising the resulting offspring can require the brain to
generate extremely subtle and sophisticated outputs
over many years. More’s the pity.

e Although the behavioural repertoire of an individ-
ual ant is relatively simple, and its behaviour may
indeed appear to an untrained eye to be largely ran-
dom, colonies of ants can nevertheless be observed to
engage in collective behaviours that are globally co-
herent and highly effective at achieving some goal. A
widely-quoted example is the path-laying and path-
following behaviour exhibited by many species of
ant while they forage for food. As ants walk over
the ground, they can excrete trails of inert marker-
chemicals called pheromones, which once deposited
will decay over time as they evaporate and diffuse.
Ants returning to the nest from a source of food
will typically lay a pheromone trail that other ants
may then follow on their outward journey from the
nest to the food, and ants tend to prefer trails with
stronger pheromone trails to weaker ones. Different
ants may follow different paths back from the food,
or may occasionally randomly deviate from an estab-
lished pheromone trail, but the shortest paths will
always tend to have the freshest pheromone deposits,
and hence will attract the most ant traffic, which will
help to reinforce these as the paths with the strongest
concentration of pheromone deposit. Thus, without
any central synchronisation or control, colonies of for-
aging ants will quickly and reliably find the short-



est navigable path from food-source to nest, and if
that path ceases to be navigable, then the colony
will dynamically adjust to find a new shortest navi-
gable path, again without central synchronisation or
control.

e In a population of animals we can characterise each
individual animal as a simple device attempting to
survive long enough in its ecological niche for it to
reproduce and create viable offspring; but different
niches place different demands on their inhabitants.
Over a large number of generations, the compound
effects of random genetic variation plus directed se-
lection (i.e.: Darwinian natural selection’s “survival
of the fittest” and/or sexual selection’s “survival of
the prettiest”) can create populations or species of
organisms that are exquisitely tailored to their eco-
logical niche, despite the absence of any centralised
controller or designer.

e In economic markets, it is often the case that the
actions and interactions of individual traders can be
characterised in simple terms, yet the overall market
dynamics that arise from the trader interactions can
be subtle and sophisticated, in ways that are hard
to relate back to the underlying simple interactions
of the traders. For example, in commodity markets,
buyers typically want to purchase units at the low-
est price they can get and sellers want to offload at
the highest price the market can bear. Bringing such
rapaciously motivated traders together in the appro-
priate market institution (that is, making them in-
teract via the right type of auction mechanism) can
yield highly desirable overall market dynamics; i.e.,
the markets can consistently show a rapid and stable
convergence of transaction prices to the market’s un-
derlying theoretical equilibrium price,! despite none
of the traders having any prior knowledge of what the
equilibrium price actually is, and despite their being
no central auctioneer or coordinator. That is, the
traders in the market collectively discover the best
price for the transactions, without any central con-
trol, and despite the fact that they are all acting out
of raw self-interest.

Almost all such naturally occurring systems are bio-
logical in origin, and increasingly researchers in advanced
engineering are turning to biology for inspiration: over
the last twenty years, a growing number of researchers
from disparate academic disciplines have studied com-
plex systems in general, and CAS in particular. Exam-

n a nutshell, the equilibrium price for a particular commodity
in a market is the price that best matches the quantity demanded
by the buyers with the quantity supplied by the sellers; if transac-
tions consistently take place either above or below the equilibrium
price, then respectively either the buyers or the sellers are consis-
tently being ripped off.

ples of natural complex adaptive systems that have in-
spired modern ICT engineering techniques include: the
human immune system, which is being used as inspira-
tion for new anti-virus approaches to computer security
(e.g., Sana Security [I-066]; de Castro & Timmis, 2002);
animal nervous systems, which have inspired the devel-
opment of artificial neural networks (parallel distributed
computing techniques that can perform powerful statisti-
cal computations for data recognition and classification,
Rumelhart & McClelland, 1986); insect colonies, which
have inspired “swarm intelligence” algorithms for, e.g.,
data mining (Bonabeau, Dorigo, & Théraulaz, 1999);
evolving populations, which have been the inspiration for
new kinds of evolutionary search and design algorithms
(Goldberg, 1989; Mitchell, 1996); and even markets or
auctions, which have inspired new computer resource-
allocation systems in which ideas from free-market eco-
nomics are used to automate the dynamic matching of
the supply of scarce computer system resources (such as
CPU time, memory space, or network bandwidth) to the
demand for those resources from some number of users
or applications, while the quantities of resource supplied
and demanded vary in real time — so-called “market-
based control” (Huberman, 1988; Clearwater, 1996).2

In response to the growing need for scientists and engi-
neers skilled in dealing with such systems, in recent years
a number of top UK university computer science schools
or informatics departments have started to offer success-
ful postgraduate courses in natural computation [A-001],
evolutionary and adaptive systems [A-002], bio-inspired
computing [A-003] and in biosystems-based multidisci-
plinary informatics [A-004]; and other universities are
known to have similar initiatives under development.

Thus, systems concepts such as complexity and emer-
gent behaviour are increasingly being recognised as cen-
trally important to meeting current urgent engineering
goals. However, as yet there is no established design
methodology capable of rigorously supporting their use
in industrial-scale ICT engineering.

1.4/ Qverview

In this document we present a review of the state of
research into these topics, informed by interviews with
leading complexity science practitioners and other mul-
tidisciplinary scientists, core ICT researchers, ICT indus-
trialists, representatives of relevant funding bodies, pol-
icy makers and educators. Nevertheless, the resulting
overview will necessarily be selective due to limitations

2In June 2004, The Uk’s Engineering and Physical Science Re-
search Council (EPSRC: the primary government funding agency
for computer science research) announced a £1.6m grant to a con-
sortium of researchers working on the application of automated
optimisation to exactly this problem. The consortium involves
researchers from the universities of Southampton, Liverpool, and
Birmingham; and from industrial research labs operated by HP,
BT, BAE Systems, and IBM.



of space, the biases of us the authors, and the particular
interests of those consulted.

We will first discuss issues arising from the diversity
of terminology and conceptual frameworks generated by
complexity research, before assaying the large number
of interested parties contributing to the evolution of
these ideas and the complicated relationships between
them. Subsequently we will outline some of the rel-
evant leading-edge complexity-related research and de-
velopment activity currently being undertaken and the
open research questions that remain. Finally, an assess-
ment of the challenges to future progress in this area is
presented, before the paper concludes.

Before proceeding, an extended metaphor employed
by Lord Robert May, current president of The Royal So-
ciety and former chief scientific adviser to the British
government, will serve as a précis for the document as a
whole. In his opening talk at a recent meeting? on com-
plexity research, May suggested that, like most scientific
activities, the state of complexity research could be as-
sessed by comparison with a path stretching from Ty-
cho Brahe’s increasingly accurate observations of plan-
etary motion, through Johannes Kepler’s discovery of
patterns in this data, to Isaac Newton’s eventual deriva-
tion of general laws that could account for these patterns
and more besides. By analogy with this sequence, May
asserted, complexity science can be regarded as on the
cusp of a transition from the Brahe stage to the Kepler
stage. That is, complexity researchers are just begin-
ning to discover and describe coherent patterns in the
increasing volume of accurate data gathered from com-
plex systems, but they are still mostly “stamp collect-
ing” and have some way to go before the formulation of
a general framework of “laws” with which to account for
these patterns. This position resonates with the opinion
of many observers, and one goal of this paper will be
to identify ways in which the progress required can be
encouraged.

2. Conceptual Landscape

In this section, we describe the conceptual diversity run-
ning through the complexity literature and explore some
of the key issues for understanding how concepts of com-
plexity and emergence can be applied in an ICT context.

It is widely acknowledged that the notions of com-
plexity and emergence employed across a wide range of
communities are poorly and multiply defined, if they are
defined at all. Informally, the term complez can be a syn-
onym for challenging, interesting, complicated, or just
large, while emergent is often used to convey the sur-
prising, inexplicable, or mysterious nature of a system’s
behaviour. One might hear that “as software developers
attempt to deliver ever more complex systems, our diffi-

3 Complezity Science & 21st Century Issues, London School of
Economics, March 25-26, 2004.

culty in guarding against unwanted emergent behaviour
becomes an increasingly pressing concern”. Where at-
tempts have been made to formalise these kinds of no-
tion, a plethora of definitions, interpretations and per-
spectives have been generated.

In a recent selective review article, Adami (2002) dis-
tinguishes between several approaches to defining and
measuring complexity: computational vs. statistical,
structural vs. functional, sequential, hierarchical, etc.
He further describes a handful of existing definitions,
from “algorithmic complexity”, “Kolomogorov complex-
ity”, and “minimum description length”, through mea-
sures of fractal dimension and entropy, to “effective mea-
sure complexity” and “effective complexity”, before in-
troducing his own candidate: “physical complexity”. An
exhaustive review would have had to consider upwards of
three dozen distinct but inter-related attempts at defin-
ing complexity (Horgan, 1995) drawing upon informa-
tion theory, computer science, statistical physics, evolu-
tionary theory, and so on.

The motivation driving all this activity is to provide an
account that successfully underwrites an intuitive notion
of complexity, refined in the following manner. Grouped
at one end of the complexity continuum are static, regu-
lar or random systems. These are “simple” organisa-
tions with straightforward aggregate behaviours (e.g.,
periodic motion in a swinging pendulum, or Brownian
motion in a gas). At the opposite extreme are complex
systems that are much more difficult to understand, pre-
dict, control or explain due to the “entwined” nature of
their multiple components, which limits the success of a
standard divided-and-conquer approach to explanation.
Of course, much hinges on whether these notions of ex-
planatory “straightforwardness” or “difficulty” can be
formalised in some way. Until they are, to claim that
one system is more complex than another is simply to
claim that we currently find it harder to explain (Ed-
monds, 1999).

Formal measures of predictability or irregularity such
as Kolomogorov complexity* cannot help us here as they
distinguish ordered systems from disordered systems.
That is, they attribute low scores to homogeneous or
static systems, higher scores to those exhibiting some
regularity or periodicity, even higher scores to complex
or chaotic systems, and highest scores to completely ran-
dom or irregular systems. From such a perspective, it is
the intermediate systems that are challenging or interest-
ing — the behaviour of completely ordered systems can
be explained through traditional methods, while that of
completely disordered systems can be explained statisti-
cally through the law of large numbers.

In summary, while complex systems often exhibit
system-level organisation that is interesting and some-

4The Kolomogorov complexity of a system is, crudely, a mea-
sure of the length of the shortest algorithm that captures the sys-
tem’s behaviour.



times attractive (e.g., the robust, efficient, adaptive be-
haviour of an ant colony), it is not clear how this high-
level systematic behaviour is brought about by interac-
tions between the system’s components (e.g., the be-
havioural tendencies of individual ants). Such system
behaviour can reasonably be termed emergent insofar as
it “emerges” from the system’s low-level atomic interac-
tions in a non-trivial manner. But in discussions of the
meaning and utility of the notion of emergence, much
hinges on the nature of this “non-triviality”.

As Clark (2001) points out, when the collective be-
haviour of a system derives straightforwardly from the
contributions of each individual (as when a collection of
small weights tips a balance) then we gain little by tag-
ging this behaviour emergent. However, reserving the
term emergence to describe only systems that are cur-
rently unexplained or perhaps systems that are some-
how inherently inexplicable “robs the notion of immedi-
ate scientific interest”. Clark considers four “prominent”
attempts to pin down the notion of emergence: collective
self-organisation; un-programmed functionality; interac-
tive complexity; and incompressible unfolding.

It is beyond the scope of this paper to fully review all
four here, but predictably each of them drive at different
ways in which the opacity in the relationship between
the low-level behaviour of a system’s components and
the high-level aggregate behaviour of the same system
might come about. Simplifying the picture somewhat,
to the extent that a system’s low-level interactions are
non-linear, a successful account of their impact on global
system properties will be increasingly involved. This
non-linearity comes in many flavours, tending to occur
when a system’s interactions are multiple, ecologically
embedded, non-additive, inseparable, heterogeneous, in-
teractive, asynchronous, lagged, or delayed.

At one extreme, simple, homogeneous, linear interac-
tions between identical particles give rise to aggregate
properties that are relatively straightforward to char-
acterise (e.g., temperature, pressure, weight, etc.), and
perhaps do not even deserve to be classed as emergent
at all. At the opposite extreme are systems for which
there may never be an adequate theory accounting for
the global effects of local interactions. The simplest de-
scription of such “uncompressible” systems is a full ac-
count (perhaps a simulation) of the interactions involved.
Predicting a protein’s three-dimensional structure from
its linear amino acid sequence was once suggested by
Marr (1977) as one possible example of such a problem.

Again, for complexity scientists it is the intermedi-
ate systems that are most interesting: systems that ex-
hibit regularities or systematicities in the relationships
between different levels of description, but where these
relationships are not straightforward. One might term
the behaviour of these systems as moderately emergent
(see Figure 1).
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Figure 1: The aggregate, high-level behaviour of a system
is likely to be strongly emergent when it arises from low-
level interactions that are non-linear. By contrast, where
these interactions are linear, aggregate behaviour may only
be weakly emergent. In such cases, the term emergent may
even appear superfluous. Systems may of course lie between
these two extremes in which case their behaviour may be

moderately emergent.

It is worth noting that many of these ideas are not new.
On the contrary, they stretch back at least to the middle
of the last century and have been repeatedly invented,
challenged, discredited, and rediscovered in movements
such as systems biology, cybernetics, systems science,
catastrophe theory, artificial life, and complexity science.
Given this history, can we expect significant progress any
time soon? Before addressing this question, we will con-
sider a number of problematic issues that can often arise
in discussion of how ideas of complexity and emergence
can apply in an 1CT context. These are: the plurality
and subjectivity of complex systems ideas and defini-
tions; the unpredictability of complex systems; the dis-
tinction between complexity and complicatedness; and
the phenomenon of adaptation in complex systems.

2.1 Plurality

The fact that there is little apparent consensus on def-
initions of complexity or emergence, and that different
approaches are hotly debated and contested, is some-
times taken to reflect poorly on the field. However, we
might expect diverse communities to arrive at multiple
definitions of concepts as wide-reaching as these. The
formulation of a single, tightly defined concept to replace
the current plurality of ideas may simply not be possible
or desirable. On the other hand, it might reasonably be
expected that they share a “centre of gravity” that can
be explicated (with some effort). Increasing interdisci-
plinarity should accelerate this explication, as it exposes
researchers to multiple approaches both current and his-



torical, and discourages isolated activity. Indeed there is
some evidence that recent treatments of complexity are
more sophisticated in this respect, and more integrative
as a result (Clark, 2001; Adami, 2002).

2.2 Subjectivity

If concepts of complexity and emergence are inherently
subjective (“behaviour is emergent if it surprises us”; “a
system is complex if we find it hard to understand”) then
this limits their scientific utility. If researchers and prac-
titioners cannot find more objective or operational defi-
nitions of these words, complexity science will be severely
damaged, if not entirely undermined. The identification
of non-linearity, a well-characterised formal notion, as
the central root of complexity ideas has begun to account
for the surprising, counter-intuitive and challenging na-
ture of complex systems. The fact that, despite advances
in understanding complex systems, they remain counter-
intuitive does not imply that complexity and emergence
are necessarily subjective or non-scientific concepts.

2.3  Predictability

Complex systems are often described as unpredictable.
This is sometimes taken to imply that they are untrust-
worthy, or that it is inadvisable to employ a complex
mechanism in an engineering context. For instance, a
complex-systems approach to managing stock control
might be vetoed on the grounds that stock control must
be reliable and hence the system responsible for it must
be predictable.

In what sense are complex systems unpredictable in a
way that simple systems are not? It is true that com-
plex systems are sometimes stochastic. A simulation of
a foraging ant colony might model each ant as an es-
sentially random process biased by local environmental
cues. However, simple systems may also be stochastic.
A model of an ideal gas may assume that molecules ori-
ent randomly after collision. In both cases, the low level
entities that comprise the system are stochastic, and in
both cases the statistical or aggregate behaviour of the
system is predictable or regular. In the case of an ideal
gas, we can predict properties like average pressure and
average temperature with confidence despite being un-
able to predict the trajectories of individual molecules,
while in the case of the ant colony, we can predict (a
posteriori) the average rate at which different sources of
food will be depleted despite being unable to predict the
trajectories of individual ants.

In terms of stock control, it may be perfectly accept-
able to make use of a stochastic process (a robot arm
that picks items from a bin might take variable time;
the exact retail outlet that a particular stock item will be
sent to might be indeterminate) so long as the statistical
properties of this process are reasonable and appropriate.

What distinguishes simple from complex systems is not
that the aggregate behaviour of the former is regular and
predictable, whereas that of the latter is irregular, un-
predictable, random, or even chaotic. Rather, whereas
explaining the statistical, aggregate behaviour of sim-
ple systems is relatively straightforward, doing the same
for complex systems is much harder. We have a well-
established canon of statistical techniques, modelling ap-
proaches, and well-understood simplifying assumptions
that can be deployed in the former case, but not in the
latter.

It is this difficulty in forming rigorous causal charac-
terisations of the aggregate behaviour of a complex sys-
tem (rather than the absence of regularity or predictabil-
ity in this aggregate behaviour) that is the more legit-
imate barrier to adopting complex-systems approaches
in an 1CT engineering context. Without a grasp of how
the system’s configuration gives rise to its aggregate be-
haviour, it is difficult to understand how a small change
to that configuration will affect the system’s aggregate
behaviour. This inability is compounded by the fact that
while small changes to the configuration of simple sys-
tems tend to result in proportionately small changes in
aggregate behaviour (as when more gas molecules are
added to a container), similarly small changes to the
configuration of a complex system (whether stochastic
or deterministic) may have anything from a very minor
to a very major impact on the character of the aggre-
gate behaviour (e.g., removing a few ants from a colony
may have little or no impact, or it might possibly destroy
the colony’s ability to forage). The mismatch between
these issues and the needs of traditional approaches to
quality assurance in engineered systems is stark: in the
absence of theoretical or analytic quality-assurance tech-
niques for engineered complex systems, the obvious ex-
haustive empirical approach is to make all possible small
changes to the system under test, noting which changes
have no effect, which have negligible effects, and which
(if any) have a major effect. The problem with such an
approach is that the number of change-tests that need
to be performed can grow hideously large very quickly.®

One way in which this sensitivity to small changes re-
veals itself in complex systems has been termed “path-
dependence”. Particular local events in a system’s his-
tory may strongly influence the subsequent global state
of the system, as when a rat population learns an aver-
sion to a type of food, or a social custom sweeps through
a teenage population, or positive feedback amplifies an
initial random fluctuation in a stock price. These trends
and tendencies are evidence of a kind of systemic “mem-

5The combinatorics are poor because of the need for exploring
the possible interactions between different small changes (i.e., per-
forming change-tests involving different combinations or sequences
of the individual small changes), and the need on each change-
test for exploring responses under different test-environment con-
ditions (i.e., controlling for variations in the system’s free param-
eters and/or for different initial conditions).



ory” that is not present in simple organisations such as
a gas in a container.

Complex systems researchers sometimes rely upon rel-
atively detailed simulation in order to construct a post-
hoc pseudo-empirical account of the system’s aggregate
behaviour, as when an ant colony model is simulated over
arange of foraging tasks in order to estimate its efficiency
or sensitivity to parameters. Unfortunately, even if our
simulations were sufficiently accurate, we would have to
collect results from every conceivable scenario in order
to grasp the full implications of system configuration for
system behaviour. Even this “grasp” will remain weak
in the absence of analytical accounts relating low-level
interactions to high-level behaviour.

What are the prospects for the development of such
analytical techniques for complex systems, the “Kepler”
activity alluded to by Lord May, as described in this pa-
per’s introduction? An analogy with Kepler-like activity
in chemistry may clarify the situation. The properties of
a bar of gold at room temperature (heavy, shiny, solid)
are predictable, but difficult to derive from knowledge
of the properties of a gold atom. Moreover, adding a
single proton to each atom in the bar of gold has a se-
ries of “surprising” and “unpredictable” effects on its
aggregate properties. The bar of gold changes from a
solid metal to a liquid “transition metal” (an isotope of
mercury). While the periodic table of the elements or-
ganises and labels these surprising transitions, it does
not, on its own, account for them. Complexity scientists
are just beginning to build their own “periodic table”.
For example, a strand of research papers are beginning
to reveal commonalities in the impact of moving from
synchronous to asynchronous update across a range of
complex systems (crudely, intricate patterns that may
be exhibited under synchronous update are often lost
when synchrony is relaxed (Nowak & May, 1992; Hu-
berman & Glance, 1993; Harvey & Bossomaier, 1997));
and researchers analysing networks of interaction in a
diverse range of natural and artificial systems are find-
ing surprising commonalities in the underlying network
topologies and dynamics (Barabdsi, 2002). It will take
truly “Newtonian” insight to make sense of the patterns
that such a “periodic table of complexity” might exhibit.

2.4  Complicated vs. Complex Systems

Complex systems are often distinguished from those that
are merely complicated. The distinction is made on the
following grounds: while a complicated system (e.g., a
car) may be difficult to understand as a result of the
interactions between its many components, unlike com-
plex systems, complicated systems eventually succumb
to a divide-and-conquer decompositional explanation be-
cause they are inherently modular.

For example, the turning circle of a car (an aggregate
property) is largely determined by the properties of its

wheels in relation to one another (i.e., simple relation-
ships between a few sub-components). The ability of a
car to withstand collision is also largely a result of prop-
erties of specific parts of the car designed to enable it to
do so: bumpers, crumple zones, side impact bars, etc.

By contrast, the emergent properties of a complex sys-
tem cannot be explained in this way. Hofstadter (Hofs-
tadter, 1979, p.308-309) gives an example in terms of a
multi-user time-share CPU system that begins to thrash®
when dealing with more than 35 users. Hofstadter jok-
ingly asks why the computer engineers don’t just find
where the number “35” is stored in the computer’s op-
erating system, and change it to “60”. But there is no
system module or parameter (or handful of parameters)
that corresponds to a “thrashing number”. The sys-
tem’s thrashing behaviour arises from a complex inter-
action between many or all of its subcomponents; in Hof-
stadter’s words: “The point is, of course, that there is
no such place. Where, then, does the critical number (35
users) come from? The answer is: It is a visible conse-
quence of the overall system organization” (Hofstadter,
1979, p.308, original emphasis).

While reaching an understanding of very large and in-
tricate complicated systems may be time-consuming, it
will not require the development of new modes of think-
ing or analysis. Divide-and-conquer will remain the cor-
rect approach to such problems. As such, decreasing a
car’s turning circle should perhaps be a far easier task
than fixing the network thrashing problem. All it re-
quires is a relocation of the wheels or an alteration to the
angle through which individual wheels are able to turn.
In a well-designed car, the implications of these alter-
ations will be easy to calculate due to the limited num-
ber of well-defined interactions between tightly-specified
component modules.

However, altering a complicated system is not always
straightforward. Despite the car’s apparent modular-
ity, alterations to components or their configuration may
have multiple and compound influences on a range of sys-
temic properties. For instance, a shorter wheel-base may
decrease a car’s turning circle, but simultaneously alter
its aerodynamics, stability, aesthetics, etc. Indeed, for
many complicated systems, it is very hard to exhaus-
tively specify the inter-relations between components.
Newly designed cars are still occasionally recalled as
a result of some unforeseen problem arising from un-
planned interactions between components that compro-
mise the car’s safety or efficiency. Even entirely mod-
ular complicated systems, such as large pieces of well-
engineered software, may exhibit “unprogrammed func-
tionality” (i.e., emergent behaviour) when coupled with

6Loosely speaking, “thrashing” refers to the situation where a
multi-user computer system spends almost all of its time deciding
which user to deal with next and dealing with the swap-over from
one user to the next, rather than doing what it is actually intended
to do — i.e., doing proper computing for each of the users.



a (perhaps untrained and evolving) user community.

Conversely, truly complex systems may come to ex-
hibit the properties of complicated systems. Consider
the human body with its musculo-skeletal system; its
separate organs of respiration, digestion, and reproduc-
tion; and its systems of circulation, regulation, and com-
munication. Or an ant colony with its caste system of
workers, soldiers, queens and reproductive males; or the
partially independent exchanges and marketplaces that
emerge in major financial centres. In each of these cases
stable modular structure has arisen (emerged) as a re-
sult of complex interactions. Understanding the manner
in which this type of emergent modularity comes about
is a key challenge in complex systems science (Dawkins,
1986; Maynard Smith & Szathmary, 1995).

As such, while the complex-complicated distinction is
often assumed to be clear cut, it is not. In particular,
while ICT engineering typically involves building compli-
cated systems, these systems are unlikely to be free from
complexity. Simultaneously, while complex natural sys-
tems have not been designed to be modular, they often
appear to exhibit complicatedness in the form of com-
partmental or quasi-hierarchical structure or function-
ality. While it is clear that much is to be gained from
initially focusing on the study of uncomplicated complex
systems, if we are to derive useful design principles from
studying natural complex systems, the relationship be-
tween complexity and complication needs to be explored
seriously rather than taken to be a distinction separating
complex systems research from traditional engineering.

2.5 Adaptive Behaviour and Adaptation

While the engineering design and management issues
presented by increasingly complex systems tend to cast
complexity as a pressing problem that must be coped
with, there is a sense in which complexity research also
holds the key to potential solutions. Some complex sys-
tems, principally evolved biological ones, exhibit kinds of
emergent behaviour that would be extremely attractive
features of engineered systems. Where large-scale inte-
grated engineered systems can suffer from brittleness,
stagnation, swamping, or inefficiency, organisms and bi-
ological organisations balance robustness (resilience, sta-
bility, fault-tolerance, graceful degradation, etc.) against
flexibility (evolvability, creativity, adaptability, agility,
etc.) through processes of adaptation (evolution, learn-
ing, homeostasis, and habituation) in order to achieve
a range of properties (self-organisation, self-regulation,
self-repair, self-calibration, self-decommissioning) which
are now widely recognised (under the banner “self-*”) as
desirable aims in future ICT systems [I-047, I-048].
Examples of such naturally occurring complex adap-
tive systems include single cells, organs, nervous sys-
tems, immune systems, whole organisms, insect colonies,
evolving populations, families, crowds, markets, lan-
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guages, and cultures. What makes these systems notable
and relevant is that they solve some of the problems asso-
ciated with large-scale complex engineered systems with-
out recourse to sophisticated centralised control mecha-
nisms.

IcT engineers can learn lessons from biology in sev-
eral distinct ways. First, particular low-level biological
mechanisms can act as inspiration for the design of sys-
tem components. The neuron is a key example in arti-
ficial intelligence: its study having led to the develop-
ment of neural computing systems (Rumelhart & Mc-
Clelland, 1986; Haykin, 1998; Stone, 2004). Second, the
configuration of engineered components can take inspi-
ration from particular kinds of biological organisation.
Insect societies are a key example, having been used
as models for optimisation algorithms (Schoonderwoerd,
Holland, Bruten, & Rothkrantz, 1997; Bonabeau et al.,
1999). Third, biological processes such as learning or
evolution can serve as inspiration for engineered artefacts
and processes (Holland, 1975; Goldberg, 1989; Mitchell,
1996; Sutton & Barto, 1998; Arkin, 1998; Brooks, 1999).
In each of these cases biologists have a reasonable un-
derstanding of what kinds of properties are associated
with each biological system. However, large questions
remain unanswered. In particular: what aspects of com-
plex adaptive systems underpin their attractive aggre-
gate properties? Which are contingent or coincidental
and which are fundamental?

Advocating the use of biologically-inspired approaches
to ICT engineering is not to say that biological systems
are perfect. To assume so is a form of the so-called “nat-
uralistic fallacy”: the assumption that the way a nat-
ural system actually is, indicates the way that similar
systems ought to be. The fact that nature appears to
solve a particular problem in a particular way does not
make that solution right or optimal. Natural systems
have not arisen to solve our problems. However, despite
this, we are quite happy to work with them where their
natural abilities, propensities or capacities can be turned
to our advantage (“good bacteria”, brewer’s yeast, food
crops, cash crops, domestic farm animals, sheepdogs and
sniffer-dogs, even our human co-workers).

Indeed, the distinction between organism and machine
has been eroding for some time. Advances in genetics
and biotechnology are colouring our perception of organ-
isms, casting them as controllable and machine-like in
several ways. Simultaneously, our exposure to new kinds
of decentralised technologies is increasingly encouraging
us to treat machines as “organic”. Our interactions with
the internet, peer-to-peer file-sharing, mobile telephony
systems, and even the operating system of a modern PC
are now founded on expectations of patchy functionality
and performance coupled with deep impenetrability. We
do not “rely” on these machines in the way that we rely
on a spoon or a pair of scissors or even a car (where we



demand a strong sense of control). We rely on them in
the way that we rely on a colleague or a community. De-
spite these developments, the signs are that significant
cultural change will be required of engineers and other
industrialists (and complexity researchers) before work-
ing with bio-inspired systems, solutions, and services is
entirely acceptable.

3. Stakeholder Landscape

The diversity of ideas and approaches represented by re-
search into complexity and emergent behaviour is com-
pounded by the variety of (for want of a better word)
stakeholder groups implicated in this activity. Here we
describe the makeup of this stakeholder landscape and
identify some of the consequent issues for complex sys-
tems ICT research. We consider three sectors: academia,
industry, and funding bodies; before addressing some is-
sues arising from their interactions.

3.1 Academia

A large number of established domains have begun to
develop specialised, poorly defined, esoteric (and some-
times short-lived) sub-fields interested in exploring and
exploiting complexity ideas. Despite this, only a small,
transient, and fragmented community would label them-
selves “complexity researchers”. Figure 2 represents an
attempt to further characterise the diverse activity in
complexity research. In the absence of systematic stud-
ies exploring the character of complexity research, we
have no objective data on the exact distribution of this
activity, who is undertaking it, how effective it is, or
how it is being funded. However, here we present some
subjective impressions of the current situation.

The pyramidal form of Figure 2 reflects the relative
abundance of activity concerned with domain-specific
questions addressing relatively concrete issues in partic-
ular disciplines: biologists characterising the complexity
of bird-song repertoires, or the structure of evolved neu-
ral network circuits; engineers studying the effects of 1CT
network topology on performance; town-planners simu-
lating congestion in a traffic system; or national security
advisers evaluating resilience to attack in a telecommu-
nications network. The domains involved here are many
and varied, spanning the physical and life sciences, var-
ious kinds of engineering, and the humanities. In addi-
tion to the disciplines listed across the bottom of Fig-
ure 2, linguistics, social science, biochemistry, and even
art could be included. By comparison, there is a rel-
atively small amount of “complexity science” activity
addressing domain-general, abstract, theoretical issues,
such as, what is the nature of adaptation, or emergence,
or homeostasis, etc. Note that the actual distribution
of activity is unknown, and that it alters to reflect re-
searchers’ changing interests and changes in funding ini-
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tiatives, rather than being fixed in some way.

Where do complexity researchers come from? What
are their backgrounds? What are they trained in? Fig-
ure 2 depicts the influx and outflux of complexity re-
searchers by a series of peripheral double-headed arrows
below and to the right of the pyramid. Two types of
intake are identified. First, a diverse range of domain-
specific researchers, each trained in a single discipline be-
come involved in complexity-related research questions
relevant to their own discipline. This type of intake is
supplemented by an influx of researchers trained in more
abstract theoretical tools from physics, philosophy, biol-
ogy, mathematics and 1CT. Researchers also leave com-
plexity research by similar routes, returning to the study
of more mainstream domain-specific questions or alter-
native theoretical problems. Our informal survey sug-
gests that the turnover of complexity researchers is rel-
atively high, with few academics establishing a career
in “complexity” per se. However, we can only guess at
the motivations driving individuals to join and, perhaps
more importantly, to leave this activity. The general ab-
sence of complexity modules and courses from university
curricula preclude significant direct intake of “complex-
ity scientists” from degree programmes. This ensures
that researchers are rarely trained in the abstract theo-
retical tools and ideas of complexity theory. Rather these
ideas and tools are obtained at post-graduate level, and
tend to either be self-taught or taught by a self-taught
PhD supervisor.

Within the pyramidal structure of Figure 2, the work
of a single researcher cannot usually be represented by a
single point. Rather, the fact that individual researchers
pursue a range of questions implicates a number of scat-
tered points (the small crosses in Figure 2). Migration,
collaboration and communication across the space of re-
search activities (represented by arrows within the pyra-
mid) is limited by methodological and terminological
barriers separating theoretical from empirical work (hor-
izontal dashed lines) and separating disciplines from one
another (vertical dashed lines). These barriers are en-
shrined in the mono-disciplinary departmental organisa-
tion of universities, funding bodies, professional bodies,
etc., ensuring that there are also social, spatial, and po-
litical barriers separating different communities so that
they rarely come into meaningful contact with one an-
other. As such, a researcher’s initial training and point
of entry into complexity science is a significant deter-
mining factor for their subsequent research work. Note
that, ideally, barriers between disciplines should become
less significant as increasingly theoretical questions are
addressed. The extent to which this is actually true in
practice is unclear.
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3.2 Industry

In addition to the complexity-related research taking
place within industry (some of which is detailed be-
low), industrial influence on academic complexity re-
search comes in a variety of forms. From inputs to the
strategic decision making that informs funding initia-
tives, to shaping the job market that strongly influences
the makeup of undergraduate degree programs. Be-
yond core ICT companies, current interest in complexity-
related research appears to span the transport, manu-
facturing, retail, finance, defence, aerospace, and utili-
ties sectors. In particular, many research-led companies
are actively involved in complex ICT research, includ-
ing multinationals with their own significant in-house
research and development activities. Interest from small
to medium enterprises (SMEs) is less evident, although
some early-adopter SMEs and start-ups in “bleeding-
edge” areas (biotechnology, nanotechnology, software
agents, etc.) have shown interest. Finally, governmen-
tal organisations are a significant driver in the form of
initiatives within the NHS, MobD, etc. However, the man-
ner in which these interests impact on academic research
is unclear. While “coping with complexity” may be a
widely-voiced industrial aim, there are certainly mixed
opinions within industry concerning the applicability of
academic complexity research to real world problems.

3.8  Funding Bodies

Across UK funding bodies, the range of activity support-
ing and promoting complexity research is extensive. In
particular, recent calls from the EPSRC, and collabora-
tive activities with the BBSRC, have targeted complex-
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ity issues in the context of novel computation, e-Science,
and the mathematics underpinning the life sciences. The
European Commission, as part of their Information So-
ciety Technologies activity, has recently pursued various
initiatives including extensive complex systems funding
under the Future and Emerging Technologies program.
UK charities such as the Leverhulme Foundation have
also recently targeted complexity research, investing con-
siderable funds in what are perceived to be projects with
significant impact on quality of life in the UK

3.4 Interdisciplinarity Issues

It is difficult to satisfy or co-ordinate the varied and
wide-ranging suite of interested parties outlined above.
In particular, while there is wide agreement that genuine
progress can best be achieved through effective inter-
disciplinary collaboration involving academics working
closely with industrialists, it is unclear how best to fos-
ter this type of collaboration. A few of the issues relevant
to the UK are briefly outlined below.
Communication: This is recognised as the key prob-
lem facing the complexity community, applying at all
levels and particularly between stakeholder groups (e.g.,
between academia and industry).

Coherence: Currently there appears to be relatively
little integration or co-ordination at the level of (i)
academic research communities, (ii) national and inter-
national research funding initiatives, (iii) education and
training opportunities, (iv) industrial representation.
Quality Control: Ensuring rigour at interdisciplinary
boundaries is fraught with difficulty. Like an executive
with two offices who can always claim to have been “in
my other office” if someone comes calling, research ac-



tivity that attempts to connect two separate disciplines
can end up satisfying neither. As a result, interdisci-
plinary research is often perceived as of dubious qual-
ity. This can lead to infighting as academics attempt
to distance themselves from what they perceive as mis-
guided or sloppy work. Even the long-established pro-
cess of peer review is not an infallible safeguard of qual-
ity control: once a sub-field reaches a certain critical
mass, where there are enough researchers (nationally or
internationally) to form a circle of people all “patting
each other on the back” (i.e., writing positive reports as
grant-reviewers and paper-referees for each other), there
is a very real danger that the community of practice
thus created continues to perform research that is inter-
nally consistent relative to the norms of that sub-field’s
community of practice, but which steadily diminishes in
relevance to the reality that the sub-field was originally
intended to address, or indeed to any reality at all.”
Transience: Without a natural centre of gravity, the
turnover of ideas, personnel, and “brand” identities is
rapid. For example, the first decade of research in Arti-
ficial Life (a multi-disciplinary effort to engage comput-
ing, biology and other disciplines in the simulation and
synthesis of life-like systems) saw the inception of an ex-
plosion of slightly different “disciplines” aimed at apply-
ing simulation modelling to biological problems (“digi-
tal biology”, “computational neuroethology”, “synthetic
ethology”, “synthetic behavioural ecology”, etc.). Very
few of these labels are in common usage today, and many
of the researchers who coined them have moved on to
different questions or fields of enquiry. Relatedly, long-
lasting complexity projects, research groups, institutes,
or other structures are few and far between.

Resource Demands: Interdisciplinary research can
be more resource-hungry than that adopting an estab-
lished mono-disciplinary methodology. Time and effort
are required to instigate and then maintain any effec-
tive collaboration, more so when collaboration spans dis-
ciplinary boundaries. Project researchers drawn from
mono-disciplinary backgrounds must be trained and ed-
ucated considerably before they can commence produc-
tive interdisciplinary work. Novel techniques, tools, and
methodologies must be developed before useful results
can be generated. With novelty comes risk, and the
prospect of dead-ends, failed projects, and disappoint-
ing outcomes.

Career Pressures: The above-listed factors coupled
with many institutional barriers to interdisciplinarity
(see “Challenges to Progress” in Section 6 below) mit-
igate against a career at disciplinary boundaries. Cur-
rently, most of the risk of pursuing this type of research
is borne disproportionately by young research students
supervised by established, tenured academics. Given the

"No names no packdrill. Most academics will be able to name
at least one field or sub-field (not their own, of course) in which
this has clearly happened.
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reality of pressures on modern academics, especially at
the outset of their careers, it is perhaps remarkable that
we see as much interdisciplinary activity as we currently
do.

4. Current Activity

Continuing falls in the real costs of processor power, disk
space and RAM, coupled with increasing telecommunica-
tions bandwidth and speed, have led to a situation where
computational tools and techniques that were academic
curiosities a decade ago are now readily deployable in a
number of real-world problems of very high significance
both to developers and to end-users of 1CT systems. One
such set of technologies involves complex adaptive sys-
tems (CAS) that are massively parallel, decentralised and
distributed, and which are inspired to some extent by
naturally-occurring adaptive systems such as immune
systems, nervous systems, evolving populations, social
structures, and economic markets. Examples include
artificial neural networks and parallel distributed pro-
cessing; evolutionary computation (e.g., genetic algo-
rithms, genetic programming, and artificial immune sys-
tems); adaptive artificial autonomous agents for colony-
based computation systems; and adaptive artificial au-
tonomous agents as artificial traders for e-commerce,
business modelling, and market-based control.

This section gives a selective and partial review first of
some of the relevant major academic and non-profit CAS
research institutes around the world, and then gives a
similarly selective and partial review of the CAS research
activities of commercial companies.® Since the activ-
ity of academic groups is in general much more trans-
parent and easier to find out about than industrial re-
search and development, we have biased our coverage in
favour of industrial activity, which we divide into three
sections: large blue-chip companies in the ICT sector;
large non-1CT companies; and small or medium-sized en-
terprises (SMEs) which range in size from around 300
employees down to start-ups and consultancies with em-
ployee numbers in single figures. For the large compa-
nies, we describe what research efforts are underway,
and what products are offered. The SMEs are cate-
gorised by domain (consulting/software; hardware; busi-
ness simulation; business operations systems; and enter-
tainment/media), and details of each enterprise’s origin,
customers and products are given.

Additional information on relevant activity within the
UK can be found on the webpage of the Natural Com-
putation Applications Forum (NCAF) an informal consor-
tium of interested parties from British commerce, indus-
try, and academia [I-044]. NCAF is currently chaired by

8 As this report was commissioned by the UK Government’s De-
partment of Trade and Industry, we have deliberately taken a UK-
centric view here rather than attempt a comprehensive country-
independent global survey.



Graham Hesketh, who works at Rolls-Royce’s Strategic
Research Centre in Derby.

Recall also that this paper is addressing complexity
and emergence with specific reference to ICT systems,
and hence our review of academic activity concentrates
on research in departments of computer science and elec-
tronic engineering; there are of course other such insti-
tutions housing talented and productive researchers that
are omitted from our lists, and furthermore we know of
related (but perhaps less immediately 1CT-relevant) work
in departments of mathematics, physics, biology, and so-
cial science, all of which could be included in a more com-
prehensive review, but which is beyond the scope of this
document. For example, Chris Budd in the Mathemat-
ics Department at the University of Bath has recently
been awarded a major grant to create the Bath Institute
for Complex Systems: the funding (approx £1m) coming
jointly from EPSRC and BBSRC sources.

As a final caveat, we note that although biologically-
inspired or CAs-based approaches in computer science
and electronic engineering can reasonably be described
as novel, in the sense that they are non-traditional and
relatively recent developments, they are increasingly be-
ing assimilated into the mainstream armoury of ICT engi-
neers, in some cases largely replacing the previous main-
stream methods. For this reason it is a somewhat ar-
bitrary choice as to where to draw the line in decid-
ing which companies should be included in the review
of industrial activity presented here: there are proba-
bly many hundreds or thousands of companies of vari-
ous sizes who now routinely use such techniques. Once
again, the intention here is not to provide an exhaustive
review but rather to provide an illustrative overview.

4.1 Academic and Non-Profit Research

Here we provide brief overviews of the major university
and non-profit research centres where significant group-
ings of CAS researchers work. We have divided the review
into two sections: research groups in the UK; and those
in the rest of the world, which we deal with first. Both
lists are presented in alphabetical order.

4.1.1 The Rest of the World

ATR Kyoto employed Tom Ray, developer of the
award-winning Tierra and NetTierra artificial life
systems [A-005].

Brussels (Université Libre de Bruxelles and Vrije Uni-
versiteit Brussel) has been a site of world-class re-
search in artificial intelligence (AI), cybernetics, com-
plex systems and systems biology for many years
[A-006]. ULB is home to Marco Dorigo, who has
pioneered research into new computer optimization
techniques inspired by ant colonies. VUB is home to
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Luc Steels, an early pioneer of biologically-inspired Al
who has in recent years concentrated his research on
the evolution of linguistic communication systems.

CalTech houses Chris Adami, responsible for the Avida
artificial life system and also author of the first text-
book on Artificial Life. Adami works within a nuclear
physics group here [A-007].

Case Western Reserve University in  Cleveland,
Ohio, employs Randall Beer, who for many years has
been applying CAS tools and techniques to better
understand sensory-motor control and cognitive
functioning in real animals and in synthetic systems.

Ecole Polytechnique Fédérale de Lausanne
EPFL houses an Autonomous Systems Lab where
lead researchers Dario Floreano and Aude Billard
explore issues in biologically-inspired and CAS
approaches to robotics, biology, and developmental
psychology.

Los Alamos National Labs in New Mexico is nearby
to the Santa Fe Institute (SFI; see below). Much
of the research carried out at the Santa Fe Institute
has been in collaboration with LANL, which has often
employed SFI fellows [A-008].

MIT Artificial Intelligence Lab was recently reor-
ganised under the title of “Combined Computer Sci-
ence and Artificial Intelligence Laboratory”, the MI1T
Al Lab has since the mid-1980’s been responsible
for major advances in biologically-inspired Al and
robotics primarily under the guidance of its direc-
tor Rod Brooks (see the discussion of iRobot in the
review of industrial activity, below) [A-009]; with ex-
pertise in machine learning coming from Leslie Pack
Kaelbling and from Paul Viola, and in evolutionary
computation from Una-May O’Reilly. The MIT Al
Lab also houses the Amorphous Computing group
founded by Hal Abelson, Tom Knight, and Gerry
Sussman, which draws inspiration from cellular and
developmental biology in the design of new massively
parallel computing systems, and which is also explor-
ing using biological substrates (such as bacterial ge-
netic regulatory networks) for new computing archi-
tectures [I-118].

MIT Media Lab researchers such as Pattie Maes,
Mitch Resnick, Cynthia Breazel and Bruce Blumberg
have generated considerable CAs-style research on au-

tonomous software and hardware agents of various
kinds [A-010].

New England Complex Systems Institute
(NECSI) hosts an annual international conference
on Complex Systems, and also various workshops
and tutorial courses. Coming to be seen by some as
a de facto “Santa Fe Institute East” [A-011].



University of New Mexico employs Stephanie For-
rest, a prominent researcher in evolutionary compu-
tation for many years, who has pioneered the devel-
opment, of computer security systems inspired by the
actions of animal immune systems.

Santa Fe Institute (SFI) has been home over the
years to many prominent complex adaptive systems
researchers including Brian Arthur, Stuart Kauff-
man, and Chris Langton. For an excellent and in-
forming account of the establishment and early ac-
tivity of the SFI1 [A-012], see Waldrop’s (1994) book,
Complezity: The Emerging Science at the Edge of
Order and Chaos.

University of Southern California employs faculty
such as Michael Arbib, George Bekey, Maja Matarié,
and Stefan Schaal, who pursue novel approaches to
Al in the form of behaviour-based robotics and com-
putational neuroscience [A-013].

University of Zurich has an Artificial Intelligence
Lab run by Rolf Pfeiffer, which for many years been a
centre for research into biologically-inspired artificial
intelligence and CAS approaches.

4.1.2 UK Unwversities

University of Birmingham run a research group spe-
cialising in nature-inspired computation, led by Xin
Yao [A-014]; commercial exploitation and dissemi-
nation of the expertise of this group is now han-
dled by a special institute, the Centre of Excellence
for Research in Computational Intelligence and Ap-
plications (CERCIA) created with the assistance of
Birmingham’s regional development agency Advan-
tage West Midlands.

University of Edinburgh contributed strongly to the
development of biologically-inspired A1 during the
1980s and 90s through the work of roboticists such
as Tim Smithers, Chris Malcolm and John Hallam;
and computational neuroscientists such as David
Willshaw. More recent work has included Barbara
Webb’s bio-mimetic robotics within the Institute for
Adaptive and Neural Computation [A-015], and Si-
mon Kirby’s work on the evolution of human lan-
guages.

University of Essex recently recruited Owen Holland
and Ulrich Nehmzow who are involved in a number
of autonomous robotics research activities involving
CcAS concepts; Ricardo Polli is a noted evolutionary
computation researcher; while Edward Tsang and
Sheri Markose (among others) are involved in a new
center for computational finance and economic agents
[A-017].

University of Exeter has recently appointed a num-
ber of new faculty members who pursue CAs-related
research: Martyn Amos is an expert in molecular and
cellular computation; David Corne works in evolu-
tionary computation; and Todd Kaplan is an experi-
mental economist who wrote one of the most success-
ful early trading-agent algorithms [A-016].

University of Leeds hosts Seth Bullock, Jason Noble
and Netta Cohen who work on bio-inspired comput-
ing and biological modelling within the Biosystems
group, and ran a recent EPSRC-funded 12-month re-

search cluster on Simple Models of Complex Networks
[A-018].

University of Liverpool Department of Computer
Science has a BioComputing and Computational Bi-
ology group whose membership includes Ray Paton
(specialist in cellular computing) and Peter McBur-
ney (specialist in CAS approaches to multi-agent sys-
tems).

London School of Economics hosts the Complezity
Programme, directed by Eve Mitleton-Kelly, which
celebrated its 10-year anniversary this year [A-019].

University of Oxford features work on complexity
in biological, cultural and socio-economic systems
through the work of researchers such as Janet Ef-
stathiou, Neil Johnson, Felix Reed-Tsochas and Ge-
sine Reinert, who ran a recent EPSRC-funded 6-month
research cluster on Complex Agent-based Dynamic
Networks [A-020].

University of Southampton School of FElectronics
and Computer Science (Ecs) has a recently-formed
“Bio@ECS” research group which gathers together
the 26 faculty members who have active interests in
biologically-inspired complex adaptive systems and
related issues. Notable researchers in this initiative
are John Shawe-Taylor and Nigel Shadbolt.

University of Sussex has been a centre for complex
adaptive systems research for roughly 15 years. Their
Centre for Computational Neuroscience and Robotics
is run by Phil Husbands and Mick O’Shea, and in-
volves, amongst others, Ezequiel Di Paolo, Inman
Harvey, Emmet Spier, and Adrian Thompson, all
of whom work on adaptive biological and computa-
tional systems [A-021]. Harvey also co-directs Sus-
sex’s Centre for the Study of Fwvolution which ex-
plores natural and artificial evolutionary processes
from a CAS perspective.

University of the West of England has long-
standing research activity in autonomous robotics
(Chris Melhuish), non-linear computational media
(Andrew Adamatsky), and adaptive computation
(Larry Bull) [A-022].



University of York has caAs-related research under-
way both in its Department of Computer Science,
where Jim Austin leads a large group of neural net-
work researchers and Susan Stepney works on ar-
tificial life and evolutionary computation; and also
in its Department of Electronic Engineering where
Andy Tyrrell, Julian Miller, and others work on
biologically-inspired approaches to electronic hard-
ware design and implementation, drawing inspiration
from embryology and from evolution.

4.2 Industry: Global ICT Companies

Blue-chip 1CT companies are generally big and conse-
quently have diverse business interests, and the deploy-
ment of CAS techniques are not a dominant or central
theme for any of them. However, some do have CAs-
related products, and some ICT corporate research labs
conduct work in this area. The following sections de-
scribe the research and products of (in alphabetic order):
BT, HP, IBM, Intel, Microsoft, Mitsubishi, NEC, Oracle,
PARc, Sony, and Sun.

Of these, Microsoft and IBM have the most clear CAS
research agenda and have a number of CAs-related prod-
ucts; while BT, NEC, and PARC are more research-
focused; Oracle is more product-focused; and Intel and
Sun have relatively little investments in the area as far
as we can determine. Sony and HP sit in the middle of
this range, with some relevant research and some rele-
vant products.

4.2.1 British Telecom

BT Labs has a long history of working in cas-related
areas, primarily from a perspective of applications in
telecommunications, but also with significant involve-
ment in funding more blue-sky research in several UK
universities. British Telecom’s Labs currently operate
using the name BTExact [I-022]. Core CAS researchers
and team-leaders at BTExact include Mark Shackle-
ton, Fabrice Saffre, Paul Marrow, Sverrir Olaffson, and
Robert Ghanea-Hercock. A recent issue of the BT Tech-
nology Journal [I-023] provides an overview of work at
BT on cAS related areas. From the BTExact website,
it is apparent that this work is divided into a number of
areas:

Complexity research [I-024]. This group seeks to de-
velop new approaches to the analysis and the mod-
elling of large and complex network systems using
methods drawn from statistical mechanics, chaos the-
ory and non-linear dynamical systems. They study
the dynamic properties of various network systems
with particular focus on aspects of complexity as it
emerges in data networks, distributed filing systems
and access systems. Particular emphasis is on the
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modelling of rapid performance deterioration and its
predictability within probabilistic frameworks.

Emerging technologies [I-025]. This group is inter-
ested in ad-hoc working, parasitic networks, futures-
pace (flexible workplace environments) and smart in-
terfaces.

Evolutionary algorithms [[-026]. EoS is a software
platform developed by BT’s Future Technologies
Group that is similar to Swarm [I-027], an agent-
based modelling framework developed at the Santa
Fe Institute. EOS supports research and rapid im-
plementation of evolutionary algorithms, ecosystem
simulations and hybrid models. It also supports fast
prototyping of industrial applications that use these
technologies.

Future technologies [I-028]: The Future Technologies
group is interested in nature-inspired computing, new
approaches to computation, mobile software agents
(both malicious and benign) and information ecosys-
tems,

Intelligent agents [I-029]: BT’s Agent Research
group is concerned with the development and anal-
ysis of sophisticated artificial intelligence problem-
solving and control architectures for both single-
agent and multiple-agent systems.  Current re-
search themes include multi-agent coordination
and negotiation protocols, cooperative and non-
cooperative multi-agent systems, organisational self-
design, multi-agent adaptation of coordination
strategies, computational economics as well as multi-
agent building platform. This group has developed
the Zeus agent-building toolkit

Intelligent business systems [I-030]. This group has
done work on scheduling for repair personnel, ex-
ploiting information assets and competing in elec-
tronic markets. They have particular expertise in
agent based systems, agent platform development,
ontology management and self-organising adaptive
systems. Currently the repair personnel scheduling
system is the best example of BT leveraging this re-
search activity in their business.

4.2.2  Hewlett-Packard

HP Labs have headquarters in Palo Alto, California, and
a European base in Bristol, UK. The Bristol site is home
to HP’s Complex Adaptive Systems research group [I-
036], founded by Dave Cliff [I-037]. Clift’s work for HP
has included research on adaptive trader-agents and au-
tomated market-mechanism design [I-038], and although
the results of this research are primarily intended for
market-based control of complex 1CT systems, a num-
ber of major institutions in the global financial markets



have taken a keen interest in this strand of research.
Other work in the HP cAs group, by Matt Williamson
[I-039], has explored CAS approaches to computer secu-
rity [I-040; I-041] resulting in the development of “virus
throttling”, a method that limits the spread of “mal-
ware” (mobile malicious code such as computer viruses
and worms) [I-042]. Additional projects recently con-
ducted by the HP Labs cAs group include the develop-
ment of document-classification mechanisms inspired by
the human immune system, evolutionary optimisation of
print-layout problems, and automated design and opti-
misation of storage area networks (SANs) using methods
inspired by ant foraging and by Darwinian evolution.
Members of the HP CAS group work with a number
of external companies on research collaborations (cur-
rently focusing on partnerships developing applications
in financial markets and investment banking, and in the
energy industry). HP’s Palo Alto Labs are home to the
Information Dynamics Laboratory, led by Bernardo Hu-
berman, where a number of CAS-relevant projects are
also underway [I-043].

Other cAs-type research conducted at HP Labs in-
cludes work by Barry Shackelford on using evolved con-
figurations of field programmable gate arrays in order
to predict protein conformation; Ira Cohen’s work on
Bayesian Networks [I-044]; Evan Kirshenbaum’s work
on genetic programming [I-045]. As part of its Open-
View product line, HP has since 1999 been offering “self-
healing servers” [I-050], and more recently has been pro-
moting a suite of Adaptive Enterprise technologies; both
of which are broadly similar to IBM’s Autonomic Com-
puting initiative, discussed further below.

4.2.3 IBM

IBM is involved in a number of cAs-related research
activities: The Information Economies Group [I-009]
worked for several years on trading agents, exploring
techniques developed at IBM and also at HP Labs. Sev-
eral of IBM’s researchers involved in this project, Jim
Hanson, Raja Das and Jeff Kephart have all previously
worked at the Santa Fe Institute [I-010]. The work of the
anti-virus group [I-011] is also relevant, although that re-
search appears to have terminated some time ago. IBM
are also interested in novel ways of processing text and
information [I-012]: for example the Clever project [I-
013] explored collaborative filtering and hypertext clas-
sification for applications such as bookmark clustering.
Other research areas include using optimisation to solve
constraint based factory scheduling problems and the
Quest data-mining group [I-014].

IBM are now deploying CAS techniques in several prod-
ucts. Their premier database product DB2 now incorpo-
rates plug-ins that can perform image query-by-example
[I-015] and audio query-by-example [I-016]. They also
sell one of the premier data mining tools, Intelligent
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Miner [I-017] which can be applied to data or text [[-018]
for identifying and extracting business intelligence from
data assets. Lotus Discovery Server [I-019] is a web-
based knowledge management tool that provides text
sharing, searching, classification and expertise location.
Their eLiza self-healing servers [I-020] are also relevant.

In 2001, IBM announced their major Autonomic Com-
puting initiative that encompasses both research and
product development, and which[I-021] proposes to take
biological inspiration in order to provide server systems
that are self-organising, self-managing/self-regulating,
and self-healing. IBM’s stated reason for using the term
“autonomic” is because “[a computer system] must act
like our autonomic nervous systems. It must provide an
unprecedented level of self-regulation while hiding com-
plexity from the user. And it will be a radical shift in the
way we conceive and develop computing systems today.
This will call for more than retooling old systems — au-
tonomic computing calls for a whole new area of study.”
[I-046].

Since launching their autonomic computing initiative,
IBM have actively sought to foster global collaboration
and cooperation on relevant work in both the academic
and the industrial research communities. IBM have
staged a number of informal meetings to encourage such
interactions,® and IBM researchers have also led the or-
ganization of the first international conference on auto-
nomic computing (Icac-04) [I-047]. Some quarters of
the academic community have shown a resistance to de-
scribing their work as “autonomic computing”, in the
belief that it is somehow too closely associated with the
one big computer company; the phrase “self-star” com-
puting is commonly used as a vendor-neutral term when
organising conferences and workshops (e.g., [I-048].)

4.2.4  Intel

Intel, as far as we can see, has neither a large invest-
ment in CAS research and nor does it offer any cas-based
products. They have done some work on technologies
for text processing, information extraction, retrieval and
classification. They have aimed this work specifically at
the Pocket pC platform. An Evaluator Toolkit [I-054] is
available that uses a vector-classifier based on the vector
space model for performing categorisation tasks [I-045].

4.2.5 Microsoft

Microsoft Research has been investigating a variety of
CAS techniques. They have organised this work into
three areas:

The Adaptive Systems & Interaction (AsT) group [I-
001] is working on automated reasoning, adaptation and
human-computer interaction. ASI also does research on

9For example, IBM hosted a one-day meeting on Autonomics at
the IEE’s offices in London, in November 2003.



information retrieval and management, including work
in automated text classification and clustering.

The Data Management, Exploration and Mining
group [I-002] works on exploiting data mining tech-
niques, i.e., applying statistical and machine learning
techniques to detect patterns in databases.

The Machine Learning and Applied Statistics [I-003]
group is focused on learning from data and data min-
ing. By building software that automatically learns from
data, they enable applications that perform intelligent
tasks such as handwriting recognition and natural lan-
guage processing, and help human data analysts explore
and better understand their data more easily.

In addition Microsoft are also conducting research on
collaborative filtering [I-004], natural language process-
ing [I-005] and face detection and recognition [I-006].

The work on adaptive systems and interaction has led
to the Microsoft Agent toolkit [I-007]. Work from the
data management, exploration and mining work was re-
cently incorporated into Microsoft SQL. Microsoft uses
Bayesian networks (a machine learning technique) for
several applications including the printer trouble-shooter
in Windows, Office Assistant, and the Microsoft cus-
tomer support line. They are also investigating other
machine learning techniques such as Support Vector Ma-
chines [I-085] for use within their information manage-
ment tool Sharepoint [I-008].

4.2.6  Mitsubishi

Mitsubishi Electric Research Laboratories (MERL) [I-
059] are the North American arm of the central R&D or-
ganisation of the Mitsubishi Electric Company. MERL’s
artificial intelligence research has pursued very few
projects that can reasonably be described as having CAs
as a central theme. In collaboration with the Bran-
deis University DEMO Lab [I-060] one MERL researcher
worked on evolutionary optimisation of 3D machines and
mechanisms through simulation studies [I-061], but this
project concluded some years ago.

4.2.7 NEC

NEC Corp. [I-062] operates research laboratories in
Japan, UsA, Europe, and China, the best known of
which is their Us operation: NEC Labs America Inc.
which was created in November 2002 by the merger of
the Princeton (New Jersey) based NEC Research Insti-
tute and the Cupertino (California) based NEc Com-
puter and Communications Research Lab. Major areas
of research interest with relevance to CAS include: Ma-
chine Learning (specifically, advancing the state of the
art in support vector machines); Bioinformatics (exper-
imental and computational approaches to discover new
protein folds or to synthesise proteins with new folds);
Robust and Secure Computer Systems (discovering new
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‘cognitive’ learning techniques that are unsupervised,
distributed, deal with dynamic environments, and learn
on-line so that computer systems can adapt and evolve
to better levels of robustness or security through au-
tonomous learning and reasoning); and Broadband and
Mobile Networks (self-organising ad hoc communication
networks). NEC Labs’ website states that “The primary
focus is on technology research and early market vali-
dation in support of NEC’s core businesses.”, but little
information is available regarding what inventions from
NEcC Labs have fed into NEC’s products or businesses.
The NEC Labs website includes a web-page entitled “Li-
censable Technologies” which, at the time of writing
this document, contained the single sentence “Informa-
tion to come”. In academic ICT circles, probably the
most famous output from NEC Labs is CiteSeer, a set of
scientific-literature digital library tools that indexes re-
search articles on the web, and which most notably per-
forms autonomous citation indexing so that researchers
can track how many times a particular paper is cited,
and by whom it is cited [I-063].

4.2.8 Oracle

Oracle appears to be doing little in the way of CAS re-
lated research. However as it is the leading provider
of database software, and because data mining is very
strongly tied to databases, it is natural that they would
have some interest in this area. Therefore Oracle do sell
a number of products that use CAs-related techniques
for business intelligence [[-034] both for performing on-
line analytical processing, i.e., identifying credit card
fraud in real time or offline data mining [I-035]. Their
data-mining product, DARWIN, was originally created
by Thinking Machines, the company responsible for the
Connection Machine massively parallel computer that
was a brief commercial success in the late 1980’s.

4.2.9 PARC

PaRrc [I-031] (formerly Xerox PARC) is one of the most
famous computer science corporate research labs in the
world. A recent review [I-032] by Jacob Nielsen noted
that PARC is the only corporate research lab to feature
in the top three computer science research labs in each of
the past three decades. However despite being a noted
success from a research perspective, Xerox was not al-
ways successful in commercialising the research under-
taken at PARC, and PARC was recently spun-off as an
independent research facility. It is currently undertak-
ing projects in three areas: smart matter, which en-
compasses micro scale devices and integrated systems;
knowledge ecologies, which encompasses analysing docu-
ment content; and sensemaking and community networks
& documents, which encompasses image processing and
mobile or wireless computing. Previous CAS work at



PARc included seminal work on market based control [I-
033] undertaken by Bernado Huberman and Tad Hogg
who are both now research staff at HP Labs in Palo Alto.

4.2.10 Sony

Sony is primarily a manufacturer of consumer electron-
ics with a product range including pcCs, handheld com-
puters, and their hugely successful PlayStation series of
games consoles, yet they also have a well-publicised in-
terest in consumer robotics. Early CAS related research
at Sony was concentrated on A1BO [I-055], a robotic dog,
which was initially demonstrated as a prototype in 1995.
Recently Sony developed an impressive humanoid robot
prototype [I-056, I-057]. Equipped with video cameras
and seven microphones, it recognises faces and gestures,
and has a 60,000 word vocabulary. For many years Sony
has a operated a dedicated research facility in Japan but
more recently it also set up a European centre: Sony
Computer Science Lab Paris [I-058]. The Paris Lab is
investigating computational approaches to language and
evolutionary linguistics that has led to a research project
on robot language-formation called Talking Heads. The
other main area of study in the lab is music, specifically
the creation of adaptive listening environments. Luc
Steels, an academic with a long history of world-class
research in biologically-inspired robotics and artificial in-
telligence, is a prominent employee of CSL.

The AIBO dog robot has been made commercially
available. However the commercial versions are slightly
simpler than the research versions, and are compara-
tively expensive consumer electronics items.

4.2.11  Sun Microsystems

Sun, despite their well-publicised interest in technical
and grid computing, have not been involved in CAS re-
lated research as far as we can determine.

4.3 Industry: Large non-ICT Companies
4.3.1 BAFE Systems

BAE Systems [I-086] is a major European defence con-
tractor, based in the UK. BAE Systems has its primary
roots in the old British Aerospace company, but it now
owns companies such as Vickers (submarines) and Royal
Ordnance (tanks/artillery). They have a considerable
history of research involvement in biologically-inspired
CAS approaches to a variety of problems, from evolution-
ary design of components, through automated assembly
in manufacturing via autonomous robots, to distributed
and decentralised systems for minefield clearance and for
battlefield asset management.

One notable non-1ICT example of biological inspira-
tion in BAE research is their exploration of microvor-
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tex aerodynamic permeable skins for variable-dynamics
fixed-geometry airfoils. This work is inspired by the
skin of sharks, which can alter its local hydrodynamic
smoothness/roughness via muscular control of small
scaly patches on the skin. BAE is experimenting with
aerodynamic surfaces (aircraft wings) that incorporate
a high-density mesh of very small vents that each exit
on the outer surface of the wing. Compressed air can be
pumped through the vents, creating small vortices that
disrupt laminar airflow over the outer surface. Varying
the distribution and magnitude of the compressed air
flows to the vents alters the aerodynamics of the wing in
desirable ways, without the need for any moving metal
surfaces.

BAE also have an interest in CAS approaches to bat-
tlefield asset management. This is a response to a per-
ceived desire in BAE System’s customers for alterna-
tives to AWACs-style!® centralised command-and-control
systems. The desire is for alternatives that are dis-
tributed/decentralised, and potentially that also have
a higher degree of autonomy, requiring less second-by-
second control from human operatives. One exemplar
application in particular that has received significant
research attention (in academic labs, at least) is auto-
mated/autonomous clearance of landmines by swarms
of cheap disposable (i.e., sacrificial) robots, where there
is a danger that humans may be injured or killed.

Like HP, BT, and IBM, BAE Systems has an interest
in self-healing, self-regulated distributed dynamic con-
trol; they are a partner in the recently-announced major
Epsrc-funded project mentioned previously in this re-
port (see Footnote 2). BAE Systems have also explored
the use of teams of autonomous robots for assembly and
repair of complex products (e.g. combat aircraft). This
is necessary because computer aided engineering tech-
niques can design very efficient airplanes but such de-
signs often have the problem that the airplanes are very
hard to assemble and/or to repair. One way to avoid
this problem is to use autonomous robots in place of
tool-wielding humans to perform the assembly and re-
pair tasks. BAE Systems have also funded more abstract
theoretical studies in areas such as ecology and game the-
ory. Researchers at BAE Systems Advanced Technology
Center with active interest in CAS approaches include
Hector Figueiredo and Andy Wright.

4.3.2 NCR

The National Cash Register [[-087] company’s primary
business is supporting other companies when they in-
teract with customers across the counter, by telephone,
at a kiosk, at an ATM machine or over the Internet. As
they have a clear business interest in consumer behaviour
they are interested in areas such as data warehousing and

10 Awacs: Airborne Warning and Control System.



data mining [I-088]. They have also done some work on
agent based modelling of retail environments. In the mid
1990s, NCR set up a specialist research lab in London
called KnowledgeLab [I-089]. KnowledgeLab carried out
research on intelligent appliances such as bank-access via
games consoles, and also (somewhat bizarrely) internet-
enabled microwave ovens [I-090]. NCR also has a ma-
chine learning research group that has strong links with
researchers from the Neural Computing research group
at Aston University, UK.

4.3.8  Unilever

Unilever is a large multinational company that sells
food, home-care and personal-care products with ap-
proximately 270,000 employees worldwide. They have
several research facilities but the Adaptive Computation
Group at Unilever Research Port Sunlight (UK) in partic-
ular has a history both in artificial intelligence research
and in CAs-related research. This group has applied CAS
techniques to several different areas including:

Product Design: There was a three year project at
Unilever to develop software based on Bayesian Neu-
ral Networks and Genetic Algorithms to evolve prod-
uct formulations for domains such as washing pow-
der. These techniques were also used in the formula-
tion of margarine, because the cost of its ingredients
can vary drastically on a monthly basis requiring con-
stant product reformulation in order to achieve cost
efficiency.

Consumer Understanding: Unilever has a consid-
erable investment in “Consumer Science” (studies
of human-computer interaction and cognitive er-
gonomics). Unilever’s Adaptive Computation group
has applied a number of CAs-related techniques
to mining data obtained from consumers including
graphical models and neurofuzzy modelling.

Natural Language Understanding: As Unilever is a
multi-national company comprising of many localised
operating units, there is considerable interest in au-
tomatic machine translation. There is also interest
in using classification and searching techniques such
as Latent Semantic Analysis in order to analyse tex-
tual information obtained from consumers discussing
products.

Supply Chain Optimisation: Unilever has complex,
highly diversified multi-national supply chains. This
diversity can be advantageous, but increasingly ma-
jor customers such as WalMart want very fast re-
sponse to product stocking requests. This requires
a high level of supply chain optimisation so Unilever
has been investigating using agent based modelling
in order to optimise supply chains.
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Unfortunately there is little published material about
this work outside Unilever, but one interesting paper
discusses how evolutionary algorithms can be used to
generate patents for bactericidal peptides (Patel, Scott,
Bhakoo, & Elliott, 1998).

4.4 Industry: SMFEs

There are a host of smaller companies with CAS-style
product or service offerings. For the purposes of this
report, the companies can be collected into five rough
groupings by topic area. These are Hardware, for com-
panies with an emphasis on physical (electronic and elec-
tromechanical) products; Business Simulation, where the
focus is simulating the ramifications of strategic or tac-
tical decisions in order to aid planning; Business Opera-
tions, which include companies offering on-line data pro-
cessing systems for businesses; Entertainment, which is
primarily animation and computer games; and Consult-
ing/Software services. One again, the intention here is
not to produce an exhaustive directory of relevant SMEs,
but rather to list the activity of some notable exemplar
companies.

4.4.1 Agorics

Company Type: Consulting and software development.
Location: Los Altos, California. Formation: Founded in
1994 by Ann C. Hardy and Mark S. Miller, et al. Tar-
get Industries: Secure e-Business Solutions. Customers:
Sun Microsystems. Technologies: Market-based resource
allocation; secure e-mail systems.

At the time of their founding, Agorics [I-104] were
centred on developing Market-Based Control (MBC) sys-
tems, working on a major project for MBC of network
quality-of-service with Sun Microsystems. One high-
profile Agorics co-founder was Mark Miller, who co-
authored (with K. Eric Drexler) three papers on MBC
(which Miller and Drexler referred to as Agoric Compu-
tation) in Bernardo Huberman’s influential 1988 edited
collection The Ecology of Computation. On the current
Agorics website, these three papers (and others on auc-
tions and markets) are listed in their “Tech Library”,
but the only current product offered is a secure corpo-
rate email management system. Thus it would appear
that Agorics have either not been able to turn their MBC
expertise into profitable products, or that they are un-
able to publicise any such success.

4.4.2  Apama

Company Type: Software development and consultancy
company. Location: Cambridge, UK. Formation: Spin-
off from research at Cambridge University. Target In-
dustries: Financial, Telecoms, Mobile location based
services, Customer Relationship Management, Supply



Chain Management. Customers: several investment
banks, plus alliances with Oracle and Sun. Technolo-
gies: Distributed computing.

Apama [I-101], like Searchspace, provide on-line pro-
cessing solutions that continually monitor streams of
data for complex patterns of events, and provide real-
time alerts when a match is found. Their software plat-
form, the Apama Engine, indexes ‘monitors’ used to
specify patterns of events to be watched for, and checks
them against incoming data streams. The Apama En-
gine is a general-purpose technology; it can be applied to
a range of applications. It is particularly well suited for
applications in which data is constantly changing, where
there is significant value in being able to react quickly
to those changes, and where systems must operate on a
large scale.

4.4.8 Autonomy

Company Type: Software development company. Loca-
tion: Cambridge UK. Formation: Set up by Mike Lynch
from Cambridge University. Target Industries: Tele-
coms, Energy, Public Sector, Technology, Life Sciences,
New Media, Professional Services. Customers: Ericsson,
Astra Zeneca, Unilever, ZkB, Pfizer, Novartis, Sonera,
BAE, McGraw Hill. Technologies: Bayesian probability
and Shannon’s information theory.

Autonomy [I-103] is a software development company
that sells various products that perform text classifica-
tion and search. Autonomy products can perform au-
tomatic categorisation, hyper-linking, retrieval and pro-
filing of unstructured information, thereby enabling the
automatic delivery of large volumes of personalised in-
formation. This can be used for enterprise portals,
e-commerce, business intelligence, consumers accessing
mobile or digital TV portals, knowledge management or
customer and relationship management.

4.4.4  BiosGroup

Company Type: Consulting and software development,
company. Location: Sante Fe, New Mexico, Us. Euro-
pean subsidiary, EuroBios, based in London and Paris.
Formation: Joint venture between the Centre for Busi-
ness Innovation of Ernst & Young (now Cap Gemini
Ernst & Young) and Stuart Kauffman [I-105]. Target
Industries: Food industry, airlines, automotive industry,
energy, entertainment, financial services, army, manu-
facturing industry, telecoms. Customers: BT, Unilever,
Procter and Gamble, Air Liquide, Cap Gemini, Ford Mo-
tor Company, Honda, Ivensys, SAP, Southwest Airlines,
NAsDAQ Stock Market. Technologies: Agent based mod-
elling and multi-objective optimisation.

BiosGroup [I-106] claim to have pioneered the use of
complexity science to solve complex business problems
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and to now be the world leader in applying the tech-
niques of this emerging science to large commercial ap-
plications. The Company’s European subsidiary, Euro-
Bios [I-107] has locations in Paris and London, and was
originally founded by Eric Bonabeau, who had previ-
ously published research on new optimisation techniques
inspired by collective behaviour in ants. BiosGroup spe-
cialise in the techniques of agent-based modelling and
multi-objective optimisation. They apply these tech-
niques to supply networks and e-procurement, market
analysis and planning, adaptive scheduling and routing,
decision support, risk analysis and strategic and tactical
simulation. In the past year, the Us-based BiosGroup
was acquired by NuTech Solutions Inc. [I-064], leaving
EuroBios as an independent entity. Bonabeau remains
as EuroBios’s Principal Scientific Advisor, but is now
also Chairman and Chief Scientific Officer of a US com-
pany called Icosystem [I-065] which offers broadly similar
solutions and services as EuroBios. Currently the Presi-
dent and CEO of EuroBios UK is Vince Darley, while the
President and CEO of EuroBios Paris is Hervé Zwim.

4.4.5 Cambridge Neurodynamics

Company Type: Software development and consultancy
company. Location: Cambridge, UK. Formation: Set up
by Mike Lynch from Cambridge University. Target In-
dustries: Security, Surveillance, Biometrics, Intelligence
Gathering. Customers: Yorkshire Police Force. Tech-
nologies: Bayesian probability, neural networks, Shan-
non’s information theory and wavelet coding.

Cambridge Neurodynamics [I-093] is software develop-
ment and consulting company founded by Mike Lynch
(who also founded Autonomy) that specialises in the de-
velopment of recognition systems. The company is or-
ganised into three groups: advanced systems, biometrics
and witness. The Advanced Systems Group investigates
the application of technologies such as Bayesian prob-
ability, neural networks, Shannon’s information theory
and wavelet coding. They also work on problems involv-
ing pattern recognition, image and audio processing, tex-
ture analysis and synthesis and three dimensional pro-
cessing and imaging. The Biometrics Group works on
applying the techniques developed by the ASG to prob-
lems such as fingerprint recognition or face recognition
for security systems. The Witness Group is concerned
with security and surveillance. It produces solutions for
car number plate recognition or very large scale (250+
cameras) surveillance systems.

4.4.6 Forio

Company Type: Software consultancy. Location: San
Francisco, UsA. Formation: Set up by two MIT gradu-
ates. Technologies: Business Flight Simulators.



Forio [I-095] is a company based in San Francisco that
produces business simulations that allow managers to
“learn through experience without the cost of experi-
ence”. Firstly they have created a simulation that inves-
tigates the competition in pricing between HP /Compaq
and Dell [I-096]. They have also created a simulation
called PDASim [I-097] that allows managers to manage
a portfolio of PDA products across multiple product life-
cycles. This simulation allows managers to learn how
to use financial data to make pricing and product line
decisions and experience how decisions can have conse-
quences many years into the future. Forio maintain an
interesting set of resources on simulation [I-098]. Their
main business is writing simulations but they also host
simulations, offer training via simulations, and partner
with training or consulting organisations to deliver ser-
vices to clients.

4.4.7  Gameware Development

Company Type: Entertainment software. Location:
Cambridge, UK. Technologies: Game software archi-
tecture using neural networks, genetic algorithms and
biochemical control.

Gameware Development is the company formed after
a previous incarnation, CreatureLabs [[-114], went into
liquidation. Gameware create games using a develop-
ment environment conceived by Steve Grand (who now
operates as a sole-trader inventor, under the name Cy-
berlife Research) that is a bottom-up, agent-oriented,
software architecture incorporating powerful biochemi-
cal, neural network and genetics modelling systems, ca-
pable of creating artificial intelligent systems and be-
lievable life-forms. Creature Labs can produce life-like
virtual organisms in a wide range of simulated environ-
ments, producing persistent environments that can be
indefinitely upgraded and expanded by exchanging, cre-
ating and deleting the agents that make up the simu-
lation. Gameware’s highest-profile project to date was
providing the artificial life and 3D creature-modelling for
a groundbreaking children’s TV format called Bamzooki,
first broadcast by the BBC in early 2004 (with a new
series currently in production).

4.4.8 GMAP

Company Type: Software development and consultancy.
Location: Leeds, UK. Formation: Spin-off from Univer-
sity of Leeds. Target Industries: Retailing, Forecourt,
Financial and Automotive. Customers: Ikea, Dixons,
Asda-WalMart, Exon-Mobile, BP, Abbey National, Al-
liance and Leicester, Ford, Jaguar and Mazda. Technolo-
gies: Geo-mathematical and statistical models to rep-
resent given markets using geodemographics, consumer
demand, travel patterns and competition data obtained
from real-life sources.
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GMAP [I-094] build simulators that help companies
answer questions such as where to build their next su-
perstore. They specialise in providing market intelli-
gence and decision support solutions to global retail or-
ganisations that are looking to improve the efficiency
of their network, their sales territories and their chan-
nels to market. These programs use geo-mathematical
and statistical models in order to represent given mar-
kets using geodemographics, consumer demand, travel
patterns and competition data obtained from real-life
sources. This allows companies to determine “what is ac-
tually happening” within the market, “what might hap-
pen” given certain scenarios and “what should happen”
within an optimal situation, enabling organisations to
develop highly efficient networks and channels to mar-
ket for each of their products.

4.4.9 Icosystem

Company Type: Software development and consul-
tancy. Location: Boston, Massachusetts; Paris. Forma-
tion: founded in 2000 by Eric Bonabeau, noted swarm-
intelligence and complex adaptive systems researcher.
Target Industries: pharmaceuticals, energy, consumer
packaged goods and software. Technologies: Agent-
based business modelling for strategic scenario evalua-
tion and optimisation.

TIcosystem’s [I-099] business model is to act as a novel
source of strategic analysis, exploration, evaluation, and
exploitation for client companies that are typically mar-
ket or sector leaders, and fairly large (i.e. Fortune 500 or
similar). The Icosystem website stresses that Icosystem
is not a consultancy company in the traditional sense,
and that they “...avoid the temptation of trying to repli-
cate anything that works with any and all companies in
a sector. On the contrary, Icosystem does not normally
work on similar projects for competing organizations”.
Icosystem’s main mode of operation is to create a be-
spoke agent-based software simulation model of the rel-
evant aspects of a client’s business, which replicates the
behaviours of the key business participants and captures
the interactions between them; then to use that simu-
lation model for exploring “what if” questions concern-
ing possible alternative strategies; followed by evaluation
and exploitation of the most promising strategic alterna-
tives that were identified in the exploration phase.

4.4.10 iRobot
Company Type: Robot development company. Lo-
cation: Somerville, Massachusetts. Formation: Co-

founded by Prof. Rodney Brooks, Director of the MIT
Artificial Intelligence Lab. Target Industries: De-
fence, civilian disaster search/recovery, space explo-
ration, industrial maintenance, domestic assistance, and



entertainment. Customers: DARPA, Hasbro, Univer-
sities. Technologies: Biologically-inspired autonomous
robotics.

iRobot was co-founded by Rodney Brooks, Direc-
tor of the MIT Computer Science and Artificial Intel-
ligence Laboratory. From the mid 1980’s to the mid
1990’s, Brooks provoked a radical re-appraisal of es-
tablished artificial intelligence (AI) practices in the de-
sign of control systems for autonomous mobile robots.
In a series of papers (often describing working proto-
type robots) he argued, by reference to the evolved “de-
signs” of the “controllers” (i.e., nervous systems) of sim-
ple creatures such as insects, that it should be possible
to avoid the then-traditional complex centralised and
hierarchical Al robot-controller architectures; replacing
them with simple decentralised and heterarchical lay-
ered control architectures instead. In doing so, Brooks
and his students made major contributions toward estab-
lishing the approach now known as biologically-inspired
or behaviour-based AI, which today is widely (if still
somewhat begrudgingly, in certain quarters) accepted as
a viable alternative to the longer-established traditional
approaches, and indeed is frequently seen as providing
tools and techniques that are significantly better than
those provided by the traditional methods.

The iRobot [I-092] company was set up by Brooks in
order to commercially exploit his research on biologically
inspired robotics. Their robots are designed for a variety
of applications such as defence, civilian disaster, space
exploration, industrial maintenance, entertainment, and
domestic assistance. iRobot produce a standard plat-
form for developers to create value-added robotic appli-
cations. They produce products such as Coworker, a
wireless, mobile, remote telepresence platform that pro-
vides control of video, audio and movement through any
internet browser without additional hardware or soft-
ware, Microrig, a conveyance device for carrying sensor
payloads and tools down into oil-well bores and My Real
Baby, a toy aimed at young girls. Two of their more
successful products are Packbot and Roomba. Packbot is
a portable semi-autonomous tracked ground-vehicle for
surveillance and access to hostile environments, used by
recovery teams at the site of the two collapsed New York
World Trade Center towers, and by US armed forces in
the subsequent military action in Afghanistan. Roomba
is a small autonomous vacuum-cleaner robot suitable for
domestic homes, which sold in huge numbers in the run-
up to Christmas 2003, no doubt aided by its receipt of a
“seal of approval” from Good Housekeeping magazine.

As well as producing standard robots, iRobot is also
engaged in a number of research projects such as Damp,
Distributed acoustic mobile positioning; Swarm, dis-
tributed programming of robots; Gecko, a wall climb-
ing robot; and MuMS, the micro unattended mobility
system. More details of these and other projects are
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available on the iRobot website [I-092].

4.4.11 Lostwax

Company Type: Software development and consulting.
Location: Surrey. Formation: Co-founded by Nick Jen-
nings, a leading researcher in field of agent technology.
Target Industries: E-Commerce. Customers: General
Motors, British Airways, Egg Financial Services, City
Index, MoneyeXtra, Sony, Psion, Orange, Prudential.
Technologies: Software agents.

Lostwax [I-111] is a software development and con-
sulting company. Agent Technology is the latest ap-
proach to analysing, designing and building software.
Agents create smart adaptable solutions that are partic-
ularly suited to complex; changing environments. Lost-
wax build e-commerce and portal systems on J2EE and
.NET frameworks using agent architectures. They are
members of two associations for agent technology: Fipa
and AgentLink.

4.4.12  Natural Selection

Company Type: Software development and consultancy.
Location: La Jolla, CA. Formation: L.J. Fogel, founder,
invented Evolutionary Programming. Target Industries:
Defense, Medical (diagnostic, and drug design), Finance.
Customers: None named. Technologies: Evolutionary
Algorithms, Neural Networks, Fuzzy Systems.

NSI [I-113] concentrates on the use of biologically-
inspired algorithms for optimisation, signal processing,
and control applications industry, medicine, and De-
fense. Their website is non-specific about client com-
panies, stating that “Natural Selection, Inc. assists cor-
porations and government entities in the areas of produc-
tion and transportation scheduling, signal detection and
pattern recognition, financial forecasting, mission and
path planning, inventory control, bioinformatics, and
computational drug design, as well as other applications
that demand the rapid solution of difficult combinato-
rial and temporal optimisation problems” but without
naming names. They were founded in 1993.

4.4.13  Mazxis

Company Type: Entertainment software. Technologies:
Business Simulators.

Electronic Arts [I-115] produce entertainment soft-
ware, specifically the “Sim” family of simulations: The
Sims, Sim City, Sim Coaster and Sim Golf. Al-
though they no longer work on business simulations,
they launched a spin-off enterprise called Thinking Tools
Incorporated [I-116] that produced a simulator called
Telesim [I-117] in 1994 that generated a lot of industry
interest. Although TTI no longer exist, companies such



as BiosGroup, Forio, or IcoSystem are currently active
and offering similar services.

4.4.14 Norkom

Company Type: Software development and consultancy
company. Location: Dublin, Ireland. Target Industries:
Telecoms, Financial Services and Insurance. Customers:
ING Direct, HsBCc Bank, Vhi Healthcare, British Air-
ways, Esat Digifone, Actel Direct. Technologies: Pre-
dictive modelling.

Norkom [I-102], like Searchspace and Apama, provides
software and services for on-line processing. However
their software has a much stronger bias towards pattern
recognition via predictive modelling, unlike Apama and
Searchspace where the focus is very fast online process-
ing. Norkom targets problems such as customer relation-
ship management by creating predictive models that can
be used to help client retention, cross-sell, up-sell, acqui-
sition, churn and channel migration. They sell a software
platform called Norkom Alchemist that allows integra-
tion with third party tools and models (e.g., data min-
ing tools) as well as independent data (e.g., demographic
data and other internal information systems etc).

4.4.15 Sana Security

Company Type: Software development and consultancy.
Location: San Mateo, California. Formation: Start-
up from research at University of New Mexico. Tar-
get Industry: computer security. Customers: IT service
providers, global investment firms, nationwide multi-
channel retailers, major government agencies. Technolo-
gies: Biologically-inspired computer security systems.

Sana Security [I-066] develops and markets “host-
based intrusion prevention software” (HIPS) that protects
computer systems from known and unknown attacks,
with low and predictable operating costs. Sana was es-
tablished to commercialize “Adaptive Profiling Technol-
ogy”, developed by Sana’s founder Steven Hofmeyr who
was a PhD student of Stephanie Forrest at the University
of New Mexico, and Forrest is a member of Sana’s Ad-
visory Board. Sana have also recently recruited Matt
Willamson, the inventor of virus throttling, from HP
Labs.

Sana claim that their first product, Primary Response,
protects the broadest range of platforms and applica-
tions, and requires fewer resources to manage, deploy
and scale. It does this by eliminating the need for con-
stant updating and management by security experts.
Sana state that Primary Response is the world’s only
security software approach based upon the principles of
the human immune system, and that the solution pro-
vides customers with out-of-the-box code-injection sup-
pression, proactive vulnerability exploitation detection,
and real-time prevention from attacks by worms and
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hackers. Code injections are the largest class of vulner-
ability attacks on computer systems and applications.
Deployments of Primary Response in organizations re-
duce or eliminate the need for frequent “patching” of
fixes to flaws in security systems.

4.4.16  Searchspace

Company Type: Software development and consultancy.
Location: London, UK. Formation: Spin-off from
University College London Intelligent Systems Group.
Target Industries: Banking, Security Broking, Tele-
coms, Securities Exchanges. Customers: Bank of New
York, London Stock Exchange, Royal Bank of Scotland,
Archipelago. Technologies: Machine Learning.

Searchspace [I-100] produce online processing Al-
enabled infrastructure that already handles over $400
trillion worth of business by automating fraud control,
compliance reporting, risk management and customer
service. They use a collection of “agents” known as sen-
tinels that are capable of automating key business tasks
— ranging from anti-money laundering detection, cheque
fraud detection, real-time audit, debit card fraud, opera-
tional risk, individual customer profitability, price man-
agement through to contact management. Searchspace
apply this technology within banking, security broking,
telecommunications and exchanges.

For example within banking they currently have sen-
tinels aimed at detection of: money laundering, cheque
fraud, debit card fraud, credit card fraud, and payment
fraud; and calculating operational risk and customer
profitability. Searchspace argue that their sentinel ap-
proach delivers the best performance of any product on
the market — and that this translates into bigger savings
for fraud detection and comprehensive risk management
for compliance. Searchspace sponsor research at Uni-
versity College London, Sussex University and the New
Jersey Institute of Technology.

4.4.17 Xilinz

Company Type: Semiconductor company. Location:
San Jose. Formation: Xilinx invented the world’s first
field programmable gate array (FPGA) in 1984, one of
the fastest growing segments of the semiconductor indus-
try. Target Industries: Computer and electronic hard-
ware. Technologies: Applying evolutionary algorithms
to adaptable FPGA hardware.

Fraas are adaptable integrated circuits, and are often
used as basis of evolvable hardware experiments, where
evolutionary computation techniques are used to design
electronic circuits (Thompson, 1998). Xilinx have done
some CAs-related work on using evolutionary computa-
tion techniques for fault tolerance and also for built-in
self-test, a process that can be very difficult on complex
chips.



5. Open Research Questions

For a field as diverse and dispersed as complexity re-
search, there are too many live avenues of enquiry to
explore them all in detail in this document. Rather than
attempt to cover a representative sample, we identify
some important themes and detail a small number of spe-
cific but idiosyncratic examples of upcoming complexity
research relevant to ICT.

As outlined in the “Conceptual Landscape” section,
one fundamental challenge confronting the complex
systems community is the generation of consensually
agreed-upon unifying theories of complexity and emer-
gence, i.e., genuine “Newtonian” activity. As yet it is
unclear what shape such theories will take, or how close
to formulating them we may be. However, we can stip-
ulate what a successful theory would achieve.

First, it would account for (rather than merely de-
scribe) what is common to complex systems across many
domains, and as a result provide criteria for formally
characterising (rather than merely identifying) complex-
ity and emergence. Perhaps more importantly such
a theory could underwrite a fundamentally stronger
grasp of wider related processes such as adaptation,
self-organisation, etc., thereby locating or reconciling
complex systems with respect to simple linear systems,
bringing their study within the remit of Khun’s “normal
science” (Kuhn, 1962). It is perhaps only a minor ex-
aggeration to compare the impact that such an account
would have with that achieved by Darwin’s theory of evo-
lution by natural selection, which similarly managed to
organise a previously mysterious and a-scientific natural
world under a single scientific account.

A more practical and perhaps more readily achiev-
able goal centres on the formulation of a widely-adopted,
robust, effective and legitimate simulation modelling
methodology. Currently, simulation approaches often
appear to be the only practicable option open to re-
searchers exploring many kinds of complex system.
While our ability to construct tractable mathematical
models through simplifying assumptions is improving,
simulation will remain an important tool for the fore-
seeable future. Unfortunately, as yet, despite the preva-
lence of simulation modelling across many branches of
science and engineering, its role is remarkably poorly
understood.

For some complex systems researchers, simulations are
a valuable source of additional empirical data on systems
that are difficult or impossible to experiment on (e.g.,
Ray, 1994). While one cannot literally re-wind and re-
run the earth’s evolutionary history, or re-wire the neu-
ral systems of free-living mammals, or manipulate real
large-scale social organisations such as stock exchanges,
the internet, languages, religions, etc., one can perhaps
simulate these scenarios (Bedau, 1998). However, while
these simulations are eminently manipulable, that they
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can act as sources of empirical data is extremely debat-
able.

How could one settle an empirical question by appeal
to a simulation model of a system that we currently do
not understand? Consider the question “Is there life
on Mars?”. A simulation of Martian evolution would
surely not convince one way or the other. We have in-
sufficient data to adequately constrain any such simu-
lation, and no established grounds upon which to base
such a simulation. Less fancifully, consider What im-
pact would introducing traffic congestion charges to Leeds
have? Could we rely on a detailed simulation of Leeds
in order to answer this question? To what extent would
we have to accurately capture the decision-making pro-
cesses of individual drivers? How could we be sure that
our model accurately captured the way in which any
initial impact of congestion charges on traffic behaviour
would go on to influence the subsequent decision making
of drivers, or retailers, or employers? More mundanely,
what if TCP/IP were altered to cope differently with lost
packets, what impact would there be on internet conges-
tion? Have we the wherewithal to adequately simulate
even this relatively limited scenario? Surely the same
issues that complicated the automotive traffic model are
equally relevant here?

By contrast, if I want to know whether my new desk
can be manoeuvred up the staircase leading to my office,
a simulation of the situation would seem to be a good
way of settling the matter before purchasing the furni-
ture. The difference between this example and those
in the previous paragraph is that we have extremely
high confidence in our ability to model the behaviour
of medium-scale solid objects as they are rotated and
translated in 3d space, but much less confidence in our
ability to model veridically and in detail the complex sys-
tems mentioned above. Until we are able to increase this
confidence, it is unclear to what extent simulation mod-
els can be relied upon to produce detailed predictions
of real-world complex system behaviour (Silverman and
Bullock, in press).

Less controversially, simulations are good sources of
insights into our ¢deas about complex systems. Even a
simulation of Martian ecology and evolution might be
a useful way to shed light on our current assumptions
concerning biological adaptation. Such simulations can
serve as intuition pumps, proofs of concept, hypothe-
sis generators, or “computational thought experiments”
(Bedau, 1999; Di Paolo, Noble, & Bullock, 2000). How
best to mobilise simulation techniques in order to achieve
these ends is currently an under-explored question.

Relatedly, there is a growing need for an inferential
statistics tailored to the analysis of complex systems.
While descriptive statistics drawn from graph theory are
being used to characterise complex networks, there is
currently no equivalent to the enormously useful body of



inferential statistics that has become associated with the
normal curve. We require an analogous suite of statisti-
cal methods to organise around systems that are better
described by power laws than Gaussian distributions. In
particular, measures of significance and statistical power
are currently largely absent from accounts of the struc-
ture or dynamics of complex systems. Such tools would
enable us to assess the extent to which a complex sys-
tem is modular or hierarchical or decomposable in its
behaviour or structure, to further identify these sub-
components and characterise the coupling between them,
and to compare these answers to what would be expected
as a base-line for systems of the type we are considering
(e.g., Tononi, Sporns, & Edelman, 1994; Seth & Edel-
man, 2004).

Aside from methodological questions, there are many
general properties of complex systems that deserve more
extensive consideration. For example, the role that
spatiality plays in underpinning complex adaptive be-
haviour is poorly understood. Many complex systems
exhibit spatial organisation that appears to bear cru-
cially on their ability to remain robust, or to achieve
sophisticated behaviours. For example, neural net-
works and cities both rely upon or exploit a number of
spatio-temporally constrained processes (neurotransmis-
sion and neuromodulation; traffic and pedestrian flows),
and employ spatial plasticity in order to organise adap-
tively (Changeux, 1993; Holscher, 1997; Fujita, Krug-
man, & Venables, 1999). More generally, we have little
understanding of how to model coupling between com-
plex systems, and between them and their environments
(and those environments may of course themselves be
composed of multiple coupled complex systems). Ex-
amples of such couplings include those between the in-
ternet and its user community; the health service and
the pharmaceutical industry, or between ad-hoc wireless
and fixed wired networks (Ottino, 2004). Moreover, the
ways in which the structure and functionality of complex
adaptive systems are constrained by processes of growth
and development are also under-explored. Increased un-
derstanding of the way in which biological development
is influenced by genes and environment could enable us
to grow engineered systems rather than specify and fab-
ricate then in explicit detail. Finally, the evolvability
of complex systems (their ability to profit from small
changes) is only recently beginning to be explored. Com-
plex adaptive systems often appear to be able to avoid
the lock-in or fragility exhibited by large engineered sys-
tems in favour of a balance between robustness and flexi-
bility (Wagner & Altenberg, 1996; Kirschner & Gerhart,
1998). It is clear that there is considerable scope to ex-
ploit our understanding of all four of these issues in the
design and management of engineered complex systems.

Turning to examples of more specific questions, com-
plexity and emergent behaviour issues are relevant across
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a wide range of ICT systems and at every level. In terms
of strategic 1CT management, large-scale development
projects are running into complexity related problems
that require circumventing. For example, how can an
effective digital NHS be deployed and run? Here, is-
sues range from the technological (effectively maintain-
ing and integrating massive data sets) through socio-
technological (data protection issues and security and
trust) to social (overcoming cultural inertia in an en-
trenched user population). A key issue is discovering
“open-standards” software development methodologies
that can cope with the scale of the systems envisaged.
How can massive pieces of software be engineered to
deadlines in such a way that they remain under bud-
get, on schedule, fit-for-purpose, usable, maintainable,
extensible, robust and resilient, and so on? Here there
may be scope for developmental approaches inspired by
natural systems that exploit self-organisation, etc., in
order to circumvent the same problems.

At an architectural level, opportunities are presented
by the recently-documented apparent ubiquity of cer-
tain kinds of network structure (small worlds, or scale-
free networks, for instance) in natural and technological
contexts (Albert & Barabdsi, 2002; Newman, 2003). Re-
searchers are already exploring whether these naturally
existing structures can be exploited in ways that do work
for us. For instance, BT are currently exploring whether
the small-world structure of social networks can be use-
fully exploited by communications technologies.

Moreover, resource allocation issues are likely to be-
come critical as infrastructural 1CT networks grow and
interconnect. How can we manage grid computing archi-
tectures such that they maintain quality of service with-
out relying on centralised controls that will not scale to
cope with large, dynamic, heterogeneous ICT systems.
One approach suggested by complex systems ideas is to
design a topology that supports efficient co-allocation
of resources via the action of one or more decentralised
artificial market-economies. Such a mechanism, it is ar-
gued, could manage resources effectively without the re-
quirement of a central executive (Cliff & Bruten, 1998;
Byde, Salle, & Bartolini, 2003; Davy, Djemame, & No-
ble, 2003).

Considering this kind of complex systems design prob-
lem more generally, how can we use automatic processes
such as those employed in evolutionary and adaptive
computing to configure or optimise the organisation of
complex systems? Here we might exploit the problem-
solving abilities of adaptive populations to discover so-
lutions that are not only high quality, but robust to per-
turbations and easily tuneable. For example, designing
attack-resistant topologies for computational infrastruc-
tures might be recast as a problem that does not require
a single topology to be discovered (itself a difficult task),
but rather a space of topologies that can be rapidly and



easily re-worked to resist new kinds of directed or undi-
rected attack (Thompson, 1998; Layzell, 2001). This
emphasis begins to shift the burden of design from a
“right-first-time” stance to one of “continuous-redesign”
(i.e., adaptation) in the face of changing circumstances.
This relaxes traditional requirements of provably cor-
rect and robust designs that are required to solve fixed
problems for all time, in favour of methodologies that
are maximally responsive to failures that are consid-
ered an unavoidable fact of life (an approach sometimes
termed “satisficing” rather than “optimising”, Simon,
1981). Similar approaches could perhaps be developed
to cope with spam, worms, viruses, and system incom-
patibilities or conflicts, etc. Here the self-healing or self-
repair abilities of natural complex adaptive systems are
a direct inspiration.

Can ICT systems remain usable as their complexity
increases? Workable interfaces, and interoperability be-
tween multiple complex ICT systems remains an out-
standing challenge, especially given the rates of change
in the functionality and make-up of those ICT systems
and the variability and growing antipathy of user pop-
ulations towards reading or consulting manuals for the
ICT products that they use. Here the prospect of sys-
tems that are able to adaptively reconfigure themselves
to cope with their changing environment (i.e., their part-
ner systems and users) is attractive, but as yet untested.
New forms of responsive, dynamic ICT support might
exploit users’ growing reliance on organic on-line com-
munities rather than fixed manuals or help pages.

Relatedly, how can we establish 1CT software and mid-
dleware that efficiently support and encourage light-
weight peer-to-peer communities, and in what contexts
can they provide a workable substrate for commercial
or business activity? Currently peer-to-peer activity is
most closely associated with potentially illegal file shar-
ing that swallows significant bandwidth. However, there
may be scope for similar legitimate systems if problems
of co-ordination, licensing and infrastructural load can
be resolved (Saffre, 2004).

Finally, how can we effectively exploit continuing
progress in the production of simple light-weight, low-
power computational devices? Highly respected com-
puter science researchers of long standing have been
(for some years now) seriously considering the compu-
tational problems and opportunities arising from likely
future developments in the cheap mass-fabrication of
micro-electro-mechanical systems and nano-scale com-
puter systems: extremely small, simple, slow, and unre-
liable computer processor units, each with its own very-
low-range wireless communication transmitter/receiver
capabilities, could be produced at extremely low cost
per unit (e.g., literally ten-a-penny). Hundreds of thou-
sands of such units could be randomly scattered over
some space, and each unit could then be required to es-
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tablish communication contact with nearby units and
for the whole connected network of units to then coop-
erate on some globally coherent computation. All the
current indications are that such amorphous computing
networks are likely to require biologically-inspired self-
organisation processes for development and ongoing reg-
ulation, and indeed the leading amorphous computing
research group has vigorously pursued such biological
inspiration from the outset [I-118].

6. Challenges to Progress

In this final section, we review some of the main obsta-
cles that currently confront attempts to advance com-
plex systems research in the UK. We review factors
that prevent or limit interdisciplinarity, cultural barriers
that curtail industrial uptake of results and ideas from
complex systems research, and the limitations of current
training for 1CT complexity researchers.

6.1 Obstacles to Interdisciplinarity

Perhaps the key threat to the long-term prospects of
complex systems research is the instability of interdisci-
plinary research. At many levels, there is an increasing
recognition of the value of interdisciplinarity in collabo-
rative research. In particular there is an increased aware-
ness of particular disciplinary interfaces (bioinformatics,
geographic information systems, etc.) which has led to
the employment and development of relevant faculty, the
establishment of research groups, and the targeting of
specific funding initiatives. However, the oft-stated more
general assertion that “interdisciplinarity is important”
has yet to translate into many institutional structures
that support and promote work that genuinely spans dis-
ciplinary boundaries.!!

First and foremost, it is widely perceived that the re-
search assessment exercise (RAE), designed to rate the
quality of UK university research activity and thereby
encourage excellence across the board, has inhibited and
restricted interdisciplinarity. As yet, the extent to which
the next round of assessment will continue this trend
or remedy it is unclear. What is apparent is that an
approach that divides individual researchers into a lim-
ited number of units of assessment organised along dis-
ciplinary lines will tend to let genuinely interdisciplinary
research fall between the cracks. This tendency could
be redressed in future assessment exercises by institut-
ing explicit mechanisms for assessing research regarded

Tndeed, we note with sadness the recent demise of the School
of Cognitive & Computing Sciences (CoGS) at the University of
Sussex. CoGS was for many years the UK’s only truly interdisci-
plinary centre for research in artificial intelligence and the cognitive
sciences, and from the late 1980’s onwards it became the nucleus
of the UK academic community for biologically-inspired complex
adaptive systems research. In general it takes many years to cre-
ate an interdisciplinary institution as intellectually rich and fertile
as Coas was, but only a small amount of time to break one up.



to be “non-standard” by the criteria of a particular unit
of assessment, and, crucially, by convincing the relevant
academic institutions that these mechanisms will actu-
ally reward interdisciplinarity. Without both measures in
place, university appointment panels will probably con-
tinue to regard the employment of interdisciplinary re-
searchers as a risk.

Along similar lines, interdisciplinary grant proposals
are perceived by academics to suffer from a higher than
average risk of rejection as a direct result of current peer-
review mechanisms. While it may be true that research
funding bodies are improving their ability to judge the
quality of interdisciplinary proposals, a widespread per-
ception within complex systems research is that achiev-
ing funding for this type of work remains difficult. Even
funding initiatives explicitly designed to target complex
systems research are prone to misfire if panels are com-
prised of individuals who cannot work together to iden-
tify high-quality proposals that may appear to be very
different in content from the panellists’ own research.
Such panels can tend to be multi-disciplinary rather than
interdisciplinary, in that they are comprised of domain
specialists from several fields, rather than researchers
who work at disciplinary boundaries and interfaces. As
a result, consensus building can be particularly difficult.
The same problem is presented by peer-review for main-
stream journals and conferences, and departmental job
panels.

The impact of review mechanisms on interdisciplinar-
ity might be acceptable if it served to simply raise the
bar, demanding higher quality of interdisciplinary ac-
tivity than might be required of more standard job ap-
plicants, grant proposals, or research papers. However,
there is no evidence that it is only high-quality inter-
disciplinary activity that survives peer-review. In fact,
activity at interdisciplinary boundaries is perceived to
be of very patchy quality, with sloppy, misguided or
trivial work proposed, funded and published at higher-
than-average rates compared to mono-disciplinary stan-
dards. In particular, the reinvention of established ideas
and techniques, and the glib, content-free, exploitation
of hype and fashion are frequently complained of both
within the complexity research community and outside
it. Indeed, it is these perceptions that fuel the tendency
for panels to subject interdisciplinary work to increased
scrutiny.

Opinions on how to address these problems differ, with
some researchers believing that there are inherent diffi-
culties in assessing routine interdisciplinary research (let
alone ground-breaking work) that cannot be avoided,
that such work will always be risky, slow, of patchy qual-
ity and that a degree of disenfranchisement is a fact of
life for interdisciplinary researchers. While there is some
disagreement over the accuracy of this picture, few dis-
pute that the ability of institutional structures to cope
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with and promote interdisciplinarity could be improved
significantly.

6.2 Obstacles to Industrial Involvement

While industrial interest in exploiting complex systems
ideas and methods may be growing, there remain signifi-
cant cultural differences between industrial ICT engineer-
ing and the study of complex systems within academia.
In particular, the real-world problems of specifying, de-
signing, manufacturing and deploying systems that solve
real problems and thereby save or make money for busi-
nesses are often perceived to not be the problems that
academics are interested in solving. Complexity research
can appear to focus on what seem to be arbitrary nat-
ural systems (e.g., avalanches on sandpiles) or mathe-
matically abstruse problems (e.g., random networks, or
Conway’s “game of life” (Gardner, 1970; Poundstone,
1985)) and to pursue questions with little relevance to
the pressing problems facing industry; seeking a theory
of everything, rather than theories of particular some-
things. Conversely, industrialists can appear wedded to
a traditional design and engineering paradigm that has
little or no room for non-standard solutions, especially
where those solutions rely on emergent (i.e., mysteri-
ous) properties of complex (i.e., impenetrable) systems.
Several common properties of complex adaptive systems
tend to raise concerns: a frequent strong reliance on the
aggregate behaviour of essentially random elements; the
lack of a single, central authority or executive; an in-
ability to provably demonstrate robustness; and worst-
case scenarios that can range from poor to catastrophic.
These communication problems are surmountable, but
they require considerable effort on the part of both com-
munities.

6.3 Training

While there has been recent growth in complexity re-
search, and also in the recognition of the relevance of
complexity research to 1CT, there has not so far been
a proportional growth in related training and educa-
tion opportunities to create the required human capi-
tal (i.e., appropriately-skilled researchers). Discussion of
Figure 2 earlier in this paper highlighted the diversity of
backgrounds experienced by complexity researchers, but
also drew attention to the relatively unprepared state in
which most enter the field. As far as we are aware, nei-
ther the notions of complexity and emergent behaviour,
nor the tools and techniques with which complex sys-
tems can be studied, are included in standard computer
science curricula at any level in UK education. While
there are a handful of advanced undergraduate modules
and a small number of masters degree programs that
target complexity among a number of issues, these are
in the minority. Where such ideas are actually encoun-



tered in ICT degree programs, their treatment is often
brief and as a result necessarily superficial. There are
few, if any, 1CT-relevant complex adaptive systems text-
books or educational primers alongside the profusion of
popular science treatments.

If the complex systems community are correct in ar-
guing that issues of complexity and emergent behaviour
will become increasingly significant factors for ICT in the
near future, they should perhaps be increasingly con-
cerned with both conveying these ideas to ICT practition-
ers in general, and explicitly supporting a new generation
of scientists and engineers equipped to develop and ex-
tend those ideas. At minimum, the absence of complex-
ity from core-curriculum 1CT modules denies the aver-
age student both an awareness of the complexity-related
problems that beset modern computational infrastruc-
tures, and also an ability to make informed choices with
respect to the techniques and ideas being developed by
complexity researchers. To the extent that these prob-
lems and ideas may rapidly become central to modern
ICT practice, they should certainly not be taught as pe-
ripheral, optional, specialist, and esoteric.

As noted previously in this document, many signif-
icant factors mitigate against opting for an academic
research career in interdisciplinary complex systems sci-
ence. Trusting that significantly many bright researchers
will continue to take this gamble is perhaps unwise.
Moreover, even if sufficient numbers choose to pursue
questions of complexity and 1CT, the educational struc-
tures that are currently in place may fail them.

In particular, current educational trends are likely to
increase the rate at which poorly-understood, compli-
cated, detailed, simulation models are built and relied
upon as “realistic” in some way. Three factors are in-
volved. First, the above-noted lack of significant ex-
posure to ideas of complexity and emergent behaviour
at primary, secondary and tertiary levels results in a
naivety with respect to the problems of modelling com-
plex systems. Second, the increasing attention paid to
1cT and programming skills across many diverse de-
gree programs equips students with the relatively lim-
ited computing skills required to build a simulation, but
not the other skills that are needed; this is a situation
in which a little knowledge really can be a dangerous
thing. Third, and most importantly, the continuing fall
in numbers of students taking mathematics qualifica-
tions prior to their university degree, and the consequent
erosion of both mathematics undergraduate programs,
and mathematics content in 1CT degrees is producing
a math-poor student cohort unable to underwrite their
simulation building activity with a relevant mathemati-
cal foundation, or to design appropriate experiments and
controls, or to rigorously statistically analyse the results
that their simulations generate.

Simulation modelling is an increasingly important
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skill, and one that should be being taught carefully on
many undergraduate courses. If this is to happen, it
must not occur at the expense of teaching the mathe-
matical skills that necessarily underpin their proper use.
It has always been difficult to keep 1CT education abreast
of what is a very fast changing area. However, there is a
real risk that failing to incorporate simulation modelling
skills rapidly into computing curricula will lead to signifi-
cant problems. The public’s perception of statistics as an
illegitimate activity that is used by politicians, scientists,
management, and other lowlife, to artificially support
dubious lines of argument could soon be augmented by
a similar attitude to simulation. Computational models
are increasingly being used to predict and control real-
world scenarios such as intervention in traffic systems,
the ecological impact of genetically modified crops, the
ability of our armed forces to achieve military targets,
and similar examples in many other fields. Without the
establishment of good practice in complex agent-based
simulation modelling, “simulation” could rapidly join or
even replace “statistics” alongside “lies” and “damned
lies”.

7. Conclusion

The UK is very well-positioned to benefit enormously
from a combination of its high-quality complex systems
research and its innovative ICT industry. Innovation at
the intersection between these two activities is likely to
be crucial to the future prosperity of the world’s comput-
ing industry and the myriad activities that 1CT under-
pins. In particular, the problems posed by increasingly
networked systems demand complex systems approaches
that must be developed quickly through collaboration
between multiple disciplines and industrial sectors. Ef-
fectively facilitating this kind of collaboration is a major
challenge facing institutions at all levels: government
bodies and funding agencies; professional organisations;
industrial research and development labs; and univer-
sities, both as centres of research and as providers of
education and training.
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‘Web Resources

[A-001] University of Birmingham’s Natural Computation MSc,
http://www.cs.bham.ac.uk/study/postgraduate-taught/msc-nc/

[A-002] University of Sussex’s Evolutionary and Adaptive Systems MSc, http://www.informatics.susx.ac.uk/easy/MSc/

[A-003] University of Southampton’s upcoming Bio-inspired Computing MSc, http://www.ecs.soton.ac.uk/

[A-004] University of Leeds’ Multidisciplinary Informatics MSc,
http://www.informatics.leeds.ac.uk/msc-multidisciplinary-informatics/

[A-005] ATR Kyoto, http://www.atr.co.jp

[A-006] Free University of Brussels, http://pespmcl.vub.ac.be/VUBULB.html

[A-007] Caltech, http://www.caltech.edu

[A-008] Los Alamos National Labs, http://wuw.lanl.gov

[A-009] MiIT AI Lab, http://www.ai.mit.edu

[A-010] MIT Media Lab, http://www.media.mit.edu

[A-011] New England Complex Systems Institute (NECSI), http://necsi.org

[A-012] Santa Fe Institute (SFI), http://www.santafe.edu

[A-013] University of Southern California (Usc), http://robotics.usc.edu/interaction

[A-014] Birmingham University, Natural Computation, http://www.cs.bham.ac.uk/research/NC

[A-015] Edinburgh University, Institute for Adaptive and Neural Computing http://www.inf.ed.ac.uk/research/ianc

[A-016] University of Exeter, Complexity Network, http://www.dcs.ex.ac.uk/research/complexity

[A-017] University of Essex, http://cswww.essex.ac.uk/Research/

[A-018] Leeds University, http://www.comp.leeds.ac.uk/seth, http://www.comp.leeds.ac.uk/jasonn,
http://www.comp.leeds.ac.uk/netta

[A-019] London School of Economics (LsE), Complexity Research Programme http://www.psych.lse.ac.uk/complexity/

[A-020] Oxford University, Complex Agent-based Dynamic Networks (CABDYN) research cluster
http://sbs-xnet.sbs.ox.ac.uk/complexity/

[A-021] Sussex University, Centre for Computational Neuroscience and Robotics (CCNR)
http://www.cogs.susx.ac.uk/ccnr/

- niversity of the West of England, Intelligent Autonomous ents Laborator WE), http://www.ias.uwe.ac.uk,

A-022] University of the Wi f England, Intelligent A Ag Lab y (U p:// i
Larry Bull http://wuw.cems.uwe.ac.uk/ lbull/

- 1crosoft Research, aptive Systems and Interaction, http://research.microsoft.com/adapt
I-001] Mi ft R h, Adaptive Sy dI i p:// i /adapt/
[I-002] Microsoft Research, Data management, exploration and mining, http://research.microsoft.com/dmx/
[I-003] Microsoft Research, Machine learning and applied statistics, http://research.microsoft.com/mlas/

- icrosoft Researc ollaborative Filtering, http://research.microsoft.com/users/breese/cfalgs.html
1-004] Mi ft R, h, Collaborative Filtering, p:// / / / g
[I-005] Microsoft Research, Natural Language Processing, http://research.microsoft.com/nlp/

[I-006] Microsoft Research, Face Detection and Recognition,
http://research.microsoft.com/ szli/FaceGroup/default.asp

- icrosoft ent Toolkit, http://msdn.microsoft.com/library/default.asp?url=/library/en-

1-007] Mi ft Agent Toolkit, http:// / y/ p / y/
us/msagent/agentstartpage_7gdh.asp

- upport Vector Machines used in Microsoft arepoint, http://www.informationweek.com, microsoft.htm
1-008] S Vi Machi d in Mi ft Sh i p:// i i /828/mi
[I-009] IBM Research, Information Economies, http://www.research.ibm.com/infoecon/

[I-010] Sante Fe Institute http://www.santafe.edu/
[I-011] IBM Anti-virus group http://www.research.ibm.com/antivirus/
[I-012] IBM Research Text and Information, http://www.almaden.ibm.com/cs/k53/ir.html

- BM Researc ever Search, http://www.almaden.ibm.com/cs/k53/clever.html
[I-013] IBM R« h, Cl Search, p:// i /cs/k53/

- BM Researc uest Data Mining Group, http://www.almaden.ibm.com/cs/quest
1-014] IBM R« h, Data Mining Group, p:// /cs/q /

- BM mage Extender, http://www-3.ibm.com/software/data/db2/extenders/image.htm
1-015] Ism, DB2 Image E der, p:// / / /db2/ /imag
1-016] Ism, DB2 Audio Extender, http://www-3.ibm.com/software/data/db2/extenders/audio.htm

) ) P
[I-017] IBM, Intelligent Miner, http://www-3.ibm.com/software/data/iminer
[I-018] IBM, Intelligent Miner for Text, http://www-3.ibm.com/software/data/iminer/fortext/
[I-019] IBM, Lotus Discovery Server, http://www.lotus.com/products/discserver.nsf/
[I-020] IBM, eLiza Project http://www-1.ibm.com/servers/eserver/introducing/eliza/
[I-021] IBM, Autonomic Computing, http://www.research.ibm.com/autonomic/
[I-022] BTExact, http://www.btexact.com
[I-023] BT Technology Journal Issue on Biologically Inspired Work, http://www.bt.com/bttj/vol18no4
[I-024] BT Complexity Research, http://www.btexact.com/projects/complexity.htm
[I-025] BT Emerging Technologies, http://www.btexact.com/projects/lab7.htm
[I-026] BT Eos, http://www.btexact.com/projects/eos.htm
[I-027] Swarm, http://www.swarm. org
[I-028] BT Future Technologies Group, http://www.btexact.com/projects/ftg/index.htm
[I-029] BT Intelligent Agents, http://www.btexact.com/projects/agents.htm
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[I-030] BT Intelligent Business Systems, http://www.btexact.com/projects/ibsr.htm

[I-031] PARC, http://www.parc.xerox.com/

[I-032] Top Research Laboratories in Human Computer Interaction, http://www.useit.com/alertbox/20020331.html

[I-033] Market Based Control, Edited By Scott Clearwater, World Scientific 1996
http://www.wspc.com/books/chaos/2741.html

[I-034] Oracle, Business Intelligence Tools, http://www.oracle.com/ip/analyze/warehouse/bus_intell/

[I-035] Oracle, Data Mining, http://www.oracle.com/ip/analyze/warehouse/datamining/

[I-036] HP Labs, BicAs, http://ginger .HP1.HP.com/research/bicas/

[I-037] HP Labs, Dave Cliff, http://www.HP1.HP.co.uk/people/dave_cliff/

[I-038] HP Labs, zIP traders http://www-uk.HP1.HP.com/people/dave_cliff/traders.htm

[I-039] HP Labs, Matthew Williamson http://www.HP1.HP.co.uk/people/matwil/

[I-040] Biological Approaches to Computer Security, http://1ib.HP1.HP.com/tecHPubs/2002/HPL-2002-131.html

[I-041] Virus throttling (HP Labs Technical Report) http://www.hpl.hp.com/techreports/2003/HPL-2003-69.html

[I-042] HP, Article on Barry Shackelford, http://web.HP1.HP.com:8080/news/shackleford.html

[I-043] HP, Information Dynamics Lab, http://www.HP1.HP.com/research/idl

[I-044] NcaF, Natural Computation Applications Forum, http://wuw.ncaf.co.uk

[I-045] Vector Space Model tutorial,http://isp.imm.dtu.dk/thor/projects/multimedia/textmining/node5.html

[I-046] IBM, Autonomic Computing, http://www.research.ibm.com/autonomic/research

[I-047] International Conference on Autonomic Computing (IcAC-04), http://www.caip.rutgers.edu/ parashar/ac2004/

[I-048] Self-Star: International Workshop on Self-* Properties in Complex Information Systems,
http://www.cs.unibo.it/self-star

[I-049] Modelling Disk Arrays Using Genetic Programming http://1ib.HP1.HP.com/tecHPubs/2002/HPL-2002-20.html

[I-050] HP Self-healing servers, http://www.hp.com/hpinfo/newsroom/press/2003/030506c.html

[I-051] Pharmacopeia, http://www.pharmacopeia.com/

[I-052] Compaq Research Publications, http://src-www.pa.dec.com/CRL/publications/crl-papers.html

[I-053] Compaq Software Download Site, http://research.compaq.com/downloads.html

[I-054] Intel DeveloperWorks, http://www.intel.com/pca/developernetwork/

[I-055] Sony, AIBO, http://www.aibo.com/

[I-056] Sony, EE Times article on Human AIBO, http://www.eetimes.com/story/0EG20010111S0019

[I-057] Sony, Pictures of Human AIBO prototype, http://asia.cnn.com/2000/TECH/computing/11/22/sdr3.idg/

[I-058] Sony, CsL Paris, http://www.csl.sony.fr/

[I-059] Mitsubishi Electric Research Laboratory, http://www.merl.com/

[I-060] Brandeis DEMO Lab, http://demo.cs.brandeis.edu/index.html

[I-061] Mitsubishi Electric Research Laboratory, Evolutionary Optimisation http://www.merl.com/projects/evOpt/

[I-062] NEC Labs, http://www.nec-labs.com

[I-063] CiteSeer, http://citeseer.ist.psu.edu/cs

[I-064] NuTech Solutions Inc., http://www.nutechsolutons.com

[I-065] Icosystem, http://wuw.icosystem.com

[I-066] Sana Security, http://www.sanasecurity.com

[I-085] Support Vector Machines, http://www.support-vector.net

[I-086] BAE Systems, http://www.baesystems.com/overview/ourevolution.htm

[I-087] NCR, http://www.ncr.com

[I-088] Ncr Data Mining Services, http://www.ncr.com/services/dw_des minser.htm

[I-089] Ncr KnowledgeLab, http://ncr.knowledgelab. com/

[I-090] MiT Technology Review article on KnowledgeLab, http://www.techreview.com/articles/carter0999.asp

[I-091] Xilinx, http://www.xilinix.com/

[I-092] IRobot, http://www.irobot.com/home/default .asp

[I-093] Cambridge Neurodynamics, http://www.neurodynamics.com/

[I-094] GMAP, http://www.gmap.co.uk/

[I-095] Forio, http://www.forio.com/index.htm

[I-096] HP Compagq vs. Dell pricing simulation, http://www.forio.com/pricing20010912.htm

[I-097] PDASim, http://www.forio.com/pdasim/index. jsp

[I-098] Forio Resources on Simulation, http://www.forio.com/resources.htm

[I-099] Icosystem, http://www.icosystem.com/

[I-100] Searchspace, http://www.searchspace.com/

[I-101] Apama, http://www.apama.com/

[I-102] Norkom, http://www.norkom. com/

[I-103] Autonomy, http://www.autonomy.com/autonomy_v3/

[I-104] Agorics Inc, http://www.agorics.com

[I-105] Stuart Kauffman, http://www.santafe.edu/sfi/People/kauffman/
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[I-106] Bios Group, http://www.biosgroup.com/

[I-107] EuroBios, http://uww.eurobios.com/flash/gb/eurobios.html

[I-111] LostWax, http://www.lostwax.com/index.htm

[I-112] MASA, http://www.animaths.com/

[I-113] Natural Selection, Inc. http://www.natural-selection.com/

[I-114] CreatureLabs, http://www.creaturelabs.com/

[I-115] Electronic Arts, http://thesims.ea.com/

[I-116] Article on Thinking Tools Incorporated, http://www.prweb.com/releases/1999/3/prueb7478.pHP

[I-117] SFI article on Telesim, http://www.santafe.edu/sfi/publications/Bulletins/bulletin-spr95/4beyond.html
[I-118] MiT Amorphous Computing, www.swiss.ai.mit.edu/projects/amorphous
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