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Two important capabilities in media streaming are (1) adapting the media 
for the time-varying available network bandwidth and diverse client 
capabilities, and (2) protecting the security of the media. Providing both 
end-to-end security and adapting at a (potentially untrusted) sender or 
mid-network node or proxy can be solved via a framework called Secure 
Scalable Streaming (SSS) which provides the ability to transcode the 
content without requiring decryption. In addition, this enables secure 
transcoding to be performed in a R-D optimized manner. The original 
SSS work was performed for scalably coded media. This paper examines 
its potential application to non-scalable media. Specifically, we examine 
the problems of how to scale non-scalable H.264/MPEG-4 AVC video 
and how to do it securely. We first show, perhaps surprisingly, that the 
importance of different P-frames in a sequence can vary by two orders of 
magnitude. Then we propose two approaches for securely streaming and 
adapting encrypted H.264 video streams in an R-D optimized manner 
using (1) Secure-Media R-D Hint Tracks, and (2) Secure Scalable 
Packets. While we can not scale the bit rate of encrypted non-scalable 
H.264 to the same extent possible for scalably coded media, our method 
does provide some scaling capability and more importantly provides 4-8 
dB gain compared to conventional approaches. 
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ABSTRACT

Two important capabilities in media streaming are (1) adapting
the media for the time-varying available network bandwidth and
diverse client capabilities, and (2) protecting the security of the
media. Providing both end-to-end security and adapting at a (po-
tentially untrusted) sender or mid-network node or proxy can be
solved via a framework called Secure Scalable Streaming (SSS)
which provides the ability to transcode the content without requir-
ing decryption. In addition, this enables secure transcoding to be
performed in a R-D optimized manner. The original SSS work
was performed for scalably coded media. This paper examines
its potential application to non-scalable media. Specifically, we
examine the problems of how to scale non-scalable H.264/MPEG-
4 AVC video and how to do it securely. We first show, perhaps
surprisingly, that the importance of different P-frames in a se-
quence can vary by two orders of magnitude. Then we propose two
approaches for securely streaming and adapting encrypted H.264
video streams in an R-D optimized manner using (1) Secure-Media
R-D Hint Tracks, and (2) Secure Scalable Packets. While we can
not scale the bit rate of encrypted non-scalable H.264 to the same
extent possible for scalably coded media, our method does pro-
vide some scaling capability and more importantly provides 4-8
dB gain compared to conventional approaches.

1. INTRODUCTION

Two important desired capabilities for media streaming are me-
dia transcoding or adaptation and end-to-end security, and an im-
portant challenge lies in simultaneously enabling both capabili-
ties. For example, it is beneficial to be able to efficiently stream
and adapt encrypted media content at potentially untrusted nodes
without breaking the end-to-end security. This may be desirable at
a potentially untrusted (or vulnerable) streaming server, as shown
in Figure 2, or at a potentially untrusted mid-network node or
proxy which may need to adapt the incoming media stream to
match the down-stream network and client capabilities, as shown
in Figure 3. To maximize the security the media should be en-
crypted by the content creator and decrypted by the content con-
sumer, and everywhere in-between the media should remain in en-
crypted form, referred to as end-to-end security. The conventional
approach for transcoding in the network poses a security threat
because transcoding encrypted streams would require giving the
node the key, decrypting the stream, transcoding the decrypted
stream, and re-encrypting the result – an unacceptable solution as
it breaks the end-to-end security.
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The above problem is solved via a framework referred to as
Secure Scalable Streaming (SSS) [1, 2], which supports end-to-
end delivery of encrypted media content while enabling adaptive
streaming and transcoding to be performed at intermediate, pos-
sibly untrusted, nodes without requiring decryption and therefore
without compromising the end-to-end security of the system. We
refer to this capability as Secure Transcoding to stress that the
transcoding is performed without requiring decryption and there-
fore preserving the end-to-end security. SSS encodes media into
secure scalable packets using jointly designed scalable coding, pro-
gressive encryption, and packetization techniques. This combi-
nation allows potentially untrusted nodes to perform transcoding
operations such as bitrate reduction and spatial downsampling by
simply truncating or discarding packets, and without decrypting
the data. Secure scalable packets have unencrypted headers that
provide R-D hints such as optimal truncation points which down-
stream transcoders can use to perform R-D-optimized transcod-
ing. The SSS framework can in principle be used with any scal-
able media coder, e.g. speech, audio, image, video. For example,
SSS has been examine in the context of JPEG-2000 coded im-
ages [3], and is being standardized as part of JPEG-2000 Part-8
Security (JPSEC) [4] (JPSEC supports a number of security ser-
vices, e.g. [5]). SSS builds on well-studied cryptographic prim-
itives, such as Advanced Encryption Standard (AES) for encryp-
tion, and the novelty lies in using these cryptographic primitives in
a different manner from how they have been used before.

The prior work has largely focused on secure streaming and
secure transcoding for scalably coded content. While it is evident
that the SSS framework is applicable to any scalable coder, in this
paper we show its applicability to non-scalable coders. This per-
haps non-intuitive capability essentially results because all (lossy)
media coders inherently produce compressed bits where some bits
are more important than other bits. This suggests the idea of re-
ducing the bit rate by deliberately dropping the less important bits.

To examine SSS with a non-scalable coder, we consider the
newest video compression standard H.264/MPEG-4 Part 10 Ad-
vanced Video Coding (AVC). Specifically, we consider when the
video is coded with an initial I-frame followed by all P-frames,
and no B-frames. Since the coded video consists of all P frames,
it does not suggest a natural prioritization of frames (besides for
the earlier P-frames being more important than the later ones).
Nonetheless, we show that we can prioritize different P-frames in a
surprisingly beneficial manner. We examine two specific examples
of SSS with non-scalable H.264: (1) the use of a Secure Media R-
D Hint Track for secure adaptive streaming (an extension of [6]),
and (2) the use of Secure Scalable Packets for secure mid-network
adaptation [1, 2]. In each case the R-D information for each frame
or packet is derived and left unencrypted to enable the efficient R-



D optimized streaming and adaptation, while the coded media data
is encrypted.

The closest related work that we are aware of is the recent [7]
where the streaming server switches between multiple encrypted
copies of the same content compressed at different bit rates (mul-
tiple file switching) to adapt to the available bandwidth. However,
that work is limited to multiple-stream switching and does not
consider the case of adapting a single compressed and encrypted
stream as discussed in [1, 2, 3], nor does it consider adapting the
stream at a mid-network node.

2. SSS AND NON-SCALABLE VIDEO

In SSS, adaptation is performed while preserving the end-to-end
security by viewing the adaptation operation as an intelligent (R-D
optimized) select/discard/truncate operation. In addition to avoid-
ing decryption, this approach has the additional benefit of requir-
ing low-complexity. The key steps in performing secure streaming
and secure transcoding or adaptation of media are:

1. Understand/analyze the coded media

2. Create (unencrypted) R-D information for maximizing the
quality of streaming and transcoding the encrypted media

3. Encrypt media to facilitate easy access

4. Organize/packetize to enable easy access

The above approach is equally applicable for encrypted or unen-
crypted content, where for unencrypted content the third step (en-
cryption) is not performed. For unencrypted content it provides the
benefits of low-complexity R-D optimized streaming and adapta-
tion. Furthermore, the fact that this approach is generically ap-
plicable to both encrypted and unencrypted content can be quite
useful. The R-D information may be produced during encoding,
or can also be derived from pre-encoded content.

Different applications require different levels of security, and
in some applications it is important to consider the potential leak-
age of information. With SSS, the leakage is given by the unen-
crypted R-D information, and of course by the attributes of the
encrypted data itself, e.g. encrypted packet sizes. Therefore, when
designing the R-D information it may be useful to consider not
only performance and size, but also limiting the potential leakage.

The two basic questions for non-scalable video are: (1) How
do we scale non-scalable video? (2) How do we do it securely?
Scaling in this context corresponds to reducing the bit rate, or re-
ducing the packet rate or frame rate. Clearly, non-scalable media
can not be scaled to the same extent as scalable media. However,
it is interesting to understand to what extent it can be scaled.

3. BIT RATE SCALING OF NON-SCALABLE H.264
VIDEO: NOT ALL P-FRAMES ARE EQUAL

A basic property of compressed video that has been exploited over
the years is that different coded frames, and associated transmis-
sion packets, may have different importance, e.g. I-frames are more
important that P-frames which are more important than B-frames,
where importance in our context is in terms of the total mean-
squared-error (MSE) distortion that is incurred if that frame is lost.
This property of IPB frame coding, and also of scalable coding, is
widely used to provide unequal (prioritized) treatment to the coded
data and thereby provide improved performance. In particular, this
property is exploited in R-D optimized streaming.

H.264 currently does not provide scalablity aside from the pos-
sible use of B-frames (temporal scalability). Furthermore, many
H.264 applications do not use B-frames because of latency or mem-
ory constraints. To examine the use of SSS with non-scalable
H.264, we consider when the video is coded with an initial I-frame
followed by all P-frames, and no B frames. It is known that dif-
ferent P-frames have different importance, where, for example, the
later P-frames in an MPEG Group of Pictures (GOP) typically are
less important then the earlier P-frames in the GOP. However, a
somewhat surprising observation is that P-frames can also differ in
importance by a very significant amount. This is important since
many applications primarily use P-frames, with very few I-frames,
no B-frames, and no scalable coding. Therefore, by identifying
and exploiting the varying importance of different P-frames in a
sequence we can achieve improved performance. This approach
extends trivially to include I and B frames.

All experiments are performed using JM 2.0 of the H.264/MPEG-
4 AVC video compression standard. Four standard test sequences
in QCIF format are used, Carphone, Foreman, Mother & Daughter
(MthrDhter), and Salesman. Each is coded at a constant quantiza-
tion level for an average PSNR of about 36 dB, at 30 fps, and has at
least 350 frames. The first frame of each sequence is intra-coded,
followed by all P-frames. Every 4 frames a slice is intra updated
to improve error-resilience by reducing error propagation (as rec-
ommended in JM 2.0), corresponding to an intra update period of
� � �� � � �� frames. Every P-frame fits within a single 1500
byte packet, hence in these experiments the loss of one packet cor-
responds to the loss of one P-frame. Every lost frame is replaced
by the last correctly received frame, and distortion is measured af-
ter decoder error concealment. We assume that the initial I-frame
is always correctly received to simplify the analysis.

The importance of each P-frame in each of the four sequences
is shown in Figure 1. The total distortion that results for losing
only a single isolated frame � is plotted, as the lost frame � varies
from 2 to 300. The total distortion is the distortion that afflicts
frame � and all subsequent frames from error propagation. It is
clear from the plots that there is a significant amount of variabil-
ity in the distortion that arises. The cumulative distribution func-
tion (CDF) of the distortion is also plotted for each sequence. The
CDF identifies that there is a long tail, i.e. a sizable number of
frames which produce considerably more distortion than the aver-
age frame. This observation is examined in more detail in Table 1,
where various statistics are computed for each sequence. The me-
dian distortion is chosen to represent the distortion that is incurred
for the loss of a typical P-frame. A very interesting observation is
the relationship between the maximum and minimum distortions
to the typical (median) distortion for each sequence. The impor-
tance of the various P-frames in a sequence varies by two orders
of magnitude, where some packets lead to an order of magnitude
more distortion than the median packet, and the median packet
leads to an order of magnitude more distortion than the least im-
portant packets. This two-orders of magnitude difference in the
max-to-min total distortions for P-frames within a sequence sig-
nifies that considerable gain can be achieved by identifying and
exploiting the unequal importance of different P-frames and their
associated packets.

3.1. R-D Optimized Processing of P-frames

The great diversity in importance of different P-frames can be
exploited by placing the R-D information for each P-frame into
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Fig. 1. Total distortion that results for losing any single P-frame,
as a function of the lost frame (left) and corresponding CDF (right)
for (top to bottom) Carphone, Foreman, MthrDhtr, and Salesman.

its packet header [1, 2], or in a R-D Hint Track (RDHT) asso-
ciated with the coded video (and the additional storage available
may support more information and sophisticated R-D optimization
techniques [6]).

The prior discussion focused on the total distortion produced
by a single lost/dropped packet, including the effects of all er-
ror propagation. The total distortion produced by simultaneously
dropping multiple packets may be approximated as the sum of the
distortions that result for losing each packet alone. This additive
model for distortion ignores the important interdependencies that
result from the loss of multiple packets within an intra-refresh pe-
riod (e.g. a burst loss generally leads to more distortion than an
equal number of isolated losses [8]). However, the additive dis-
tortion model is a reasonable first-order approximation (note that
this additive model explicitly accounts for the great diversity in im-
portance of different P-frames, in contrast to some prior additive
models which assume a homogeneous model of the video). This
approach also requires significantly less R-D information, which is
an important consideration when placing R-D hints in each packet
(but of lesser importance for R-D hints stored on a server). Further-
more, this simple model of additive distortion is generally applica-
ble for a variety of different types of coders and types of media.

Assuming the additive model for total distortion, the optimal
method for selecting among packets can be determined by associ-

Sequence Carphone Foreman MthDhtr Salesman

Mean ���� ���� ���� ����
Median 	��� ��
� ��	� ��	


Max ����� ����� 	�
	 	��

Min ���	� ���	� ���	� ���	�
���

������
	��
� ����	 		��
 ����

������
���

���� 	���� 		��� 	����
���
���

		��
� ��
��� 	����� 	�����

Table 1. Total distortion for losing a single packet (single P-
frame). Some P-frame packets are worth an order of magnitude
more than the typical (median) packet in terms of the total distor-
tion incurred if they are lost, and some are an order of magnitude
less important — thus some P-frames are two orders of magnitude
more important than other P-frames within the same sequence.

ating for every packet � a corresponding utility measured in terms
of distortion per bit, defined as �� � ���������. For example,
if the total available bit rate is less than the video rate, a decision
must be made as to which packets to transmit and which to drop, in
order to minimize the total distortion while simultaneously satisfy-
ing the rate constraint. This problem is straightforwardedly solved
by rank ordering the packets based on their utility and transmitting
those with higher utility while dropping those with lower utility.

4. SECURE ADAPTIVE STREAMING USING A
SECURE-MEDIA RATE-DISTORTION HINT TRACK

This section proposes a technique based on a Secure-Media Rate-
Distortion Hint Track (SM-RDHT), for designing and operating
media streaming systems that can perform R-D optimized stream-
ing with low complexity and while preserving the content security.

As background, the popular MPEG-4 File Format (MP4) in-
corporates a “hint track” which contains information about media
type, packet framing, and timing information. This MP4 hint track
provides “hints” to the streaming system that greatly simplifies the
streaming. This is because the streamer no longer needs to (1) un-
derstand the compressed media syntax, and (2) analyze the media
data in real time for packet framing and timing information.

The Secure-Media R-D Hint Track provides two important ex-
tensions of conventional MP4 hint tracks: (1) the R-D attributes for
the media are derived and summarized in the hint track to enable
low-complexity R-D optimized streaming [6], and (2) the R-D hint
track is stored unencrypted (similar to the unencrypted headers in
the secure scalable packets) while the media itself is encrypted.
The SM-RDHT therefore enables a sender to read the unencrypted
R-D hints and perform low-complexity R-D optimized streaming
of the media – without having knowledge of the actual media.

The performance of a SM-RDHT system is shown in Figure 2,
where the transmitted bit rate for the Foreman sequence is reduced
below the original coded bit rate. The conventional system does
not distinguish between P frames, and therefore randomly selects
packets to drop, while the SM-RDHT system intelligently deter-
mines which packets to drop to maximize the quality while meet-
ing the available bandwidth constraint. Note that non-scalable
H.264 provides limited ability to scale the bit rate as compared
to a scalable coder, however it is also clear that the SM-RDHT
system provides dramatic improvements in quality over a conven-
tional system when scaling is necessary.
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Fig. 2. Goal: Enable an untrusted sender to securely stream
and adapt encrypted content for the available bandwidth without
knowning what the content is. Performance of secure adaptive
streaming using SM-RDHT versus conventional approach.

5. SECURE TRANSCODING AT A MID-NETWORK
NODE USING SECURE SCALABLE PACKETS

In this example, non-scalable H.264 video is packetized into se-
cure scalable packets with unencrypted packet headers that provide
R-D information about the importance of each packet. This infor-
mation provides hints for the downstream transcoders. Preliminary
investigation suggests that one byte of information in the unen-
crypted packet header may be sufficient, however this depends on
the specific capabilities required. Mid-network transcoders read
the unencrypted headers of each packet and select or discard each
packet based on its importance and the network constraints. An
important attribute of this approach is that the mid-network transcoder
can perform R-D optimized adaptation across multiple packets of
a single stream or across packets of multiple different streams.

The performance of this system is illustrated in Figure 3, where
a large number of streams simultaneously pass through a node
with limited output bandwidth, requiring the node to transcode the
streams. Some of the non-scalable H.264 video streams are en-
crypted and some are not (but every packet includes transcoding
hints) in order to highlight that both encrypted and unencrypted
streams can be processed using the same low-complexity R-D op-
timization techniques.

To illustrate the potential benefits of diversity gain from transcod-
ing across multiple streams we consider the following somewhat
artificial experiment which nevertheless highlights the key points.
This plot shows an estimated upper bound on performance (esti-
mated using the additive model and the derived R-D information),
where all four test sequences are simulated to be streamed at all
possible phases relative to each other. In this manner we simu-
late a much larger number of test sequences than are available,
or alternatively this is equivalent to streaming the four sequences
and the transcoder examining the entire 10 sec length of each se-
quence to determine which packets to drop. The transcoder exam-
ines all packets from all sequences within a time window and se-
lects which packets to transmit and which to discard based on the
importance of each packet and the output bandwidth constraint.
This is achieved by reading the unencrypted header of each packet
in the window, sorting the results (a partial sort is sufficient), and
selecting/discarding based on the priority.

The performance in Figure 3 is better than that in Figure 2 as
is evident by the smaller drop in PSNR. This is due to the diversity
gain from processing across streams. Specifically, by transcod-
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Fig. 3. Secure R-D optimized mid-network adaptation: a mid-
network transcoder can securely adapt across a large number of
streams to satisfy an output bandwidth constraint; the diversity
gain from processing across many streams is evident.

ing across streams we can exploit the fact that many frames of
MthrDthr and Salesman are of lesser importance than those of
Foreman, and hence can be preferentially dropped. Therefore, the
secure transcoder is attempting to maximize the quality (minimize
the total distortion) across all of the streams.

6. SUMMARY

This paper examined the problem of how to efficiently stream and
adapt encrypted non-scalable media, while preserving end-to-end
security. We showed that the Secure Scalable Streaming frame-
work could be applied to non-scalable H.264 coded video, by iden-
tifying and intelligently distinguishing the importance of different
P-frames. Specifically, we identified over two orders of magnitude
difference in the importance of P-frames within a single sequence,
and an even large difference can exist between multiple sequences.
We examined two techniques where the media is encrypted and as-
sociated R-D information is placed in unencrypted packet headers
or in the Secure Media RDHT enabling efficient R-D optimized
streaming and adaptation at the sender, or at a mid-network node or
proxy, for non-scalable H.264 video. Furthermore, this approach
for R-D optimized streaming and adaptation is useful for stream-
ing both encrypted and unencrypted content.
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