

Semantic Classification1

Anastasia Krithara2
Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2004-182
October 20, 2004*

semantic web,
machine learning,
document
classification

A key challenge in the semantic web is the mapping between different
concepts. Many techniques for such mapping exist, but most of them
induce a one-to-one mapping, which does not seem to correspond to real
world problems. This project proposes a new approach, which tries to use
the power of machine learning, and in particular classification algorithms,
to solve the mapping task. It introduces a new semantic similarity metric
which is used with semantic metadata and classification algorithms. The
approach is tested in a real world dataset. Pre-processing of the dataset
took place, and in particular feature selection, extraction and
representation was implemented, for both content-based and semantic
features. The documents of the dataset were classified using the content-
based features, the semantic ones, and their combination. The results
were compared and they gave us an insight of how semantic features can
affect classifiers and traditional features.

* Internal Accession Date Only
 1MSc dissertation submitted to the University of Bristol
 2University of Bristol, Bristol, UK Approved for External Publication
 Copyright Hewlett-Packard Company 2004

Abstract

A key challenge in the semantic web is the mapping between different concepts.
Many techniques for such mapping exist, but most of them induce a one-to-one
mapping, which does not seem to correspond to real world problems. This project
proposes a new approach, which tries to use the power of machine learning, and in
particular classification algorithms, to solve the mapping task. It introduces a new
semantic similarity metric which is used with semantic metadata and classification
algorithms. The approach is tested in a real world dataset. Pre-processing of the
dataset took place, and in particular feature selection, extraction and representation
was implemented, for both content-based and semantic features. The documents of the
dataset were classified using the content-based features, the semantic ones, and their
combination. The results were compared and they gave as an insight of how semantic
features can affect classifiers and traditional features.

 i

Acknowledgements

At this point, I would like to thank all the people who provided me their support
during the last 6 months. Firstly, I want to thank my family for their invaluable
support. I would like to thank BICAS (Biologically Inspired Complex Adaptive
Systems) group, in HP Labs in Bristol, headed by Dr Dave Cliff, who gave me this
great opportunity. Special thanks go to Dr. Steve Cayzer who was a great supervisor
and was always there to answer all my questions. His help was proved indispensable.

 ii

Declaration

This dissertation is submitted to the University of Bristol in accordance with
the requirements of the degree of Master of Science in the Faculty of
Engineering. It has not been submitted for any other degree or diploma of any
examining body. Except where specifically acknowledged, it is all the work of
the Author.

 Anastasia Krithara, September 2004

 iii

Tables of Contents

Introduction... 1

Literature Review ... 3

2.1 Machine Learning and Classification ..3
2.2 Classification techniques ...4

2.2.1 Bayesian Classifier ...4
2.2.2 Decision Trees ..5
2.2.3 Support Vector Machines (SVMs)...6
2.2.4 k-Nearest Neighbor Learning (kNN) ..7
2.2.5 AIRS - A Resource Limited Immune Classifier ...7

2.3 Information Extraction...7
2.4 Semantic Web ..8
2.5 Schema matching ...9

2.5.1 Current Approaches of Schema Matching..10
2.5.2 Semantic similarity measures ...12

Implementation ... 14

3.1 Dataset..14
3.2 Matching between different schemas in the dataset ..16

3.2.1 Pre-process of the dataset...16
3.2.2 Results of matching ...17

3.3 Classifiers and Classification procedure..18
3.3.1 Classification using content-based features ...19
3.3.2 Classification using semantic features..23
3.3.3 Combination of content-based and semantic features26

3.4 “Semantic” Error metric ..27

Results and Analysis ... 30

4.1 Accuracy results...30
4.2 “Semantic” Error metric results ...38

Discussion and Future Directions.. 40

5.1 Discussion ..40
5.2 Future Directions ...42

Conclusions .. 43

References .. 44

Appendix A .. 47

The categories of each schema ..47

Appendix B .. 50

One-to-one schema mapping: algorithms, results..50
B.1 Algorithm for Optimal 1:1 Mapping ...50
B.2 Results of 1:1 mapping (the most representative ones).................................51

Appendix C .. 53

 iv

Some parts of the implemented code (Java and Bash Scripts)53
C.1 Bash script : extraction of schema information form the XML files53
C.2 Configuration file for AIRS ...61
C.3 Code: creates the semantic vector for the “counting edges” approach64

 v

Chapter 1

Introduction

Nowadays, an explosion of information has taken place, which opens up new
horizons in the acquisition of knowledge in a wide variety of subjects. However, the
huge amount of available data is very difficult to handle. A representative example is
the World Wide Web where the search of useful information in a particular subject is
very difficult. This is the reason why, several ways to solve this problem have been
attempted. One of them, which seems to gain ground, is the use of ontologies [29].

Ontologies are used to describe the semantics of descriptive data (metadata).

In other words, ontologies are collections of information. They generally have a
taxonomy and a set of inference rules. “The taxonomy defines classes of objects and
relations among them.” “Inference rules in ontologies supply further power” [29]. One
problem that occurs is that more than one ontology may be used to describe the same
domain, and it is difficult, if not impossible, to make everyone to agree on a particular
ontology. So, a way must be found in order to map the ontologies that are
semantically related. This procedure is known as ontology mapping. The problem of
ontology mapping is a key research area for the semantic web. The latter hopes to be
an “extension of the current web in which information is given well defined meaning,
better enabling computers and people to work in cooperation” [17].

 Although many techniques exist for inducing a one to one mapping between

concepts, the correspondence is unlikely to be this clear cut for real world data.
Machine Learning techniques are well suited to dealing with semantic fuzziness, yet
typically use mainly content based features, and not, for example, semantic metadata.
In this project an investigation of a hybrid approach takes place, constructing and
using semantic features as rich inputs to a machine learner. This approach is tested on
a real world dataset.

The question we want to answer is if a similarity measure would help in the

classification process. We want to find out if fuzziness is better than 1:1 matching.
The objectives of this project are to try semantic features to a number of machine
learners and then evaluate the results. More than one similarity measure will be tested
in order to check their performance.

In other words, we want to achieve three goals:
1. Provide a novel and useful semantic similarity metric for use with semantic

metadata and machine learning algorithms.
2. Provide some insight as how semantic similarity metrics can be useful, how

they affect machine learners, and how to combine them with traditional
features.

 1

Semantic Classification Anastasia Krithara

3. Use our approach to solve a real world problem.

This thesis is constructed as follows: Charter 2 gives the background information
that was needed in order to implement the particular project. More specifically, in the
first section a description of classification is given and some of the most known
classifiers are presented. In the second section, a brief introduction in Semantic web is
given, and then in last section, some of the current approaches of schema matching
are presented. Chapter 3 outlines all the necessary details for the implementation
procedure. The experimental results are reported in Chapter 4 and in Chapter 5 a
discussion of the results takes place. The latter also includes the future work that
could extend the particular project. Finally, Chapter 7 includes the conclusion of the
project. In the Appendixes there are some parts of the code which was implemented
for the purposes of this project and some tables with the achieved results.

 2

Chapter 2

Literature Review

 Before describing the work that has been done for the project, in order to
understand the key concepts of the project and the proposed solutions, it is necessary
to present the work that already has been done in some particular research areas. More
specifically, the concepts of machine learning and classification will be presented.
Some of the well known classifiers will be explained in more details. Also, the
concept of schema mapping will be introduced and its current approaches will be
explained.

2.1 Machine Learning and Classification

 From the invention of computers, a high interest was showed by scientists, in
constructing computer programs that can “automatically improve with experience”.
Since then, many algorithms have been invented in this field of computer science
which is known as Machine Learning. Classification is a subfield of machine learning
and therefore, the techniques that are used in the latter are a subset of the general
techniques of machine learning tasks.

 Classification can be described as a function that maps (classifies) a data item
into one of the several predefined classes [1]. A well-defined set of classes and a
training set of pre-classified examples characterize the classification. So, the
classification process is a 2-step procedure:

• Training. In this step a model is being constructed, describing a predefined set
of data classes. The training data are analyzed by a classification algorithm in
order the model to be constructed.

Figure 1: Training

Classification Classification
model algorithm Training set

 3

Semantic Classification Anastasia Krithara

• Classification. In this step testing data are used in order to calculate the
model accuracy. There are several methods to estimate the classifier
accuracy. The test data are selected randomly and they are independent
from each other. The model classifies the test data and then the known
class label is compared with the model prediction about the class. The
model accuracy in a specified test dataset is the percentage of the test
dataset which has been classified correctly by the learning model.

Figure 2: Classification

 If the accuracy of the model is acceptable, the model can then be used to
classify other data items. So, we could say that the goal of the classification is to
induce a model that can be used to classify future data items whose classification is
unknown [1].

2.2 Classification techniques

 A number of classification techniques have been developed. We now review
some of these techniques, such as: Bayesian classifier, Decision Trees, AIRS
(Resource Limited Immune Classifier System), k-Nearest Neighbor and Support
Vector Machines. All of them are used in the project in conjunction with our semantic
similarity metrics.

2.2.1 Bayesian Classifier

 Bayesian Classifier is among the most effective known algorithms for text
document classification. It is based on Bayesian statistical classification theory. The
aim is to classify a sample x in one of the known classes C1, C2… Cn, using a
probability model defined according to Bayes theory. Each category is characterized

Test Dataset New Data

Evaluation of
classification

results

Classification
model

Classification model
accuracy

 4

Semantic Classification Anastasia Krithara

by a prior probability of observing the category Ci. Also, we assume that a given
sample x belongs to a category Ci with the conditional probability density function
p(x|Ci)∈[0,1]. Then, using the above definitions and based on Bayes formula, we
define the posterior probability:

p(Ci|x) =
)
)(

)(|(
xp
pxp cc ii

An input pattern is classified into a category with the highest posterior

probability [2].
 The simplest Bayesian Classifier is the Naïve Bayes Classifier. “The Naïve
Bayes Classifier is based on the simplifying assumption that the attribute values are
conditionally independent given the target value. The assumption is that given the
target value of the instance, the probability of observing the conjunction α1, α2... αn is
just the product of the probabilities for the individual attributes: p(α1, α2... αn |uj) =

p(α∏i 1|uj) ” [2]. So, the target value output by Naïve Bayes Classifier (uNB) is:

V
NB

u j

u
∈

= maxarg)(u j
p ∏

i
ji up)|(α

Theoretically, Bayesian Classifiers have the lowest error percentage in

comparison with all classifiers. In practice, however, this is not always true, because
of the conditional independence assumption which has been made and the lack of
available data for the accurate calculation of the conditional probabilities.
Nevertheless, researches have shown that Naïve Bayes Classifier is competitive with
other well known classifiers, such as Decision Trees and Neural Networks [3].

2.2.2 Decision Trees

 Decision Trees are one of the widely used techniques for classification and
prediction. A number of popular classifiers construct decision trees to generate
classification models.

 A decision tree is constructed based on a training set of pre-classified data.
Each internal node of the decision tree specifies a test of an attribute of the instance
and each branch descending of that node corresponds to one of the possible values for
this attribute. Also, each leaf corresponds to one of the defined classes. The procedure
to classify a new instance using a decision tree is as follows: starting at the root of the
tree and testing the attribute specified by this node, successive internal nodes are
visited until a leaf is reached. At each internal node, the test of the node is applied to
the instance. The outcome of this test at an internal node determines the branch
traversed and the next node visited. The class for the instance is the class of the final
leaf node [2].

 5

Semantic Classification Anastasia Krithara

Root node

Figure 3: Decision Tree

Several algorithms for constructing decision trees have been developed. Some

of the most widely known algorithms are: ID3 [2], C4.5 [4], SPRINT [5] etc. In
general terms, most of the algorithms have two distinct phases, a building phase and a
pruning phase [2]. In the building phase, the training data set is recursively partitioned
until all the instances in a partition have the same class. The result of this procedure is
a tree that classifies every data item from the training set. However, the tree
constructed may be sensitive to statistical irregularities of the training set. Thus, most
of the algorithms perform a pruning phase after a building phase, in which nodes are
pruned to prevent overfitting and to obtain a tree with higher accuracy.

The algorithms ID3 [2] and C4.5 [4] are based on a statistical property, called

information gain, in order to select the attribute to be tested at each node in the tree.
The measure definition is based on entropy used in information theory, “which
characterizes the (im)purity of an arbitrary collection of examples” [2].

2.2.3 Support Vector Machines (SVMs)

 Support Vector Machines provide a powerful methodology for solving
problems in nonlinear classification.The theory of Support Vector Machines (SVMs)
was first introduced by Vapnik and was developed from the theory of Structural Risk
Minimization [7]. “SVMs learn the boundary regions between samples belonging to
two classes by mapping the input samples into a high dimensional space, and seeking
a separating hyperplane in this space. The separating hyperplane is chosen in such a
way as to maximize its distance from the closest training samples” [8]. SVMs have
been proved very effective for text categorization because of their property of learning
independently of the dimensionality of the feature space [9]. Furthermore, Kivinen et
al. [10] have proved both in theory and in practice that SVMs can handle problems
with dense concepts and sparse instances, which are often seen in documents vectors.

Internal node Internal node

Leaf node Leaf node Leaf node Leaf node

Set of possible
answers

Set of possible
answers

Set of possible
answers

Branches

Set of possible
answers

 6

Semantic Classification Anastasia Krithara

In addition, SVMs do not need parameter tuning, as they have an automatic way to
find good parameters.

2.2.4 k-Nearest Neighbor Learning (kNN)

All the above learning methods are called eager methods because they give an
explicit description of the target function on the whole training set. On the other hand
there are the instance-based methods which are called lazy methods, because the
classification model is not built a priori. In their learning procedure they just store all
the training instances and in the classification procedure they assign the target
function to a new instance. The k-Nearest Neighbor learning (kNN) is the most basic
of the instance-based methods. The kNN algorithm stores all available examples and
classifies new instances of the example language based on similarity measure. The
classification of an instance is most similar to the classification of other instances that
are nearby in the vector space, usually in terms of the Euclidean distance [2].

2.2.5 AIRS - A Resource Limited Immune Classifier

 AIRS (Artificial Immune Recognition System) is a particular type of artificial
immune system, specifically designed for supervised classification tasks. Artificial
Immune Systems are inspired by natural Immune Systems. In other words, natural
Immune Systems serve as metaphors in Computational Systems [11]. Further details
about which aspects of natural Immune Systems are used as metaphors for the
Artificial ones can be find in the work of Timmis et al. [13].

AIRS, which is based on kNN, has some properties which make it attractive as
a classification system. Firstly, it does not expect from the user to find an appropriate
architecture for the system, because it can use its resources according to the data that
have been given to it. Secondly, it is capable or generalization. A very important
property of AIRS is that the occurring classification system after the training can be
significantly smaller than the training set. In addition, it has a number of parameters
which can be adjusted by the user according to a specific problem, but as Watkins
[14] claims, in most cases the default parameter values give very good results and this
can be seen as an advantage of AIRS as it is not necessary for the user to try to find
out the best values for them.

All the above properties make the AIRS a very good classifier, which can be

compared with many well-known classifiers [11], for example the ones that have been
mentioned earlier.

2.3 Information Extraction

 In order to apply the above classification methods, we must first extract the
information needed from the data we want to classify (XML documents in our case).

 7

Semantic Classification Anastasia Krithara

This is a very important part of the classification process, because if the extracted
information is poor and it does not represent the content of the document fairly well,
the classification accuracy results will be also poor. The extracted information is
generally represented by a feature vector.

 We first have to select the features we will extract from the documents. This
requires a text processing, depending on the format of the document. In the case of
XML documents, the text processing includes the removal of tags, and of some,
irrelevant with the content, information that may include. There are also some
stemming algorithms, which reduce the number of extracting words if there are two or
more that have the same root. For example, if in the documents there are the words,
“describe”, “descriptive” and “description”, the stemming algorithm will reduce these
words to only one: “descri” which is the root of all the above three.

 After the extraction of the features, we have to choose which of them we are
going to use in the feature vector. In general, the number of the extracted features is
very big and also some of them are not informative at all. So, we have to find a way to
select the most representative ones. There are several methods which perform this
task. One of them, which was used for the project, is called information gain. Given
the features, using the information gain we can choose the most useful features. More
details about information gain are given in Chapter 3.

 Finally, a way to represent the chosen features has to be decided. A common
one, which is also used in this project, is the use of a boolean vector, where each
feature has the value zero if the particular feature exists in the document, one
otherwise.

2.4 Semantic Web

Up to this point, we have given an overview of the classification process and
we have introduced some well-known machine learners. An important point about
current machine learners is the fact that they are able to deal only with content based
features. In order to understand why the latter could be a problem we should first
introduce the idea of Semantic Web.

The idea of Semantic Web is “an extension of the current web in which
information is given well-defined meaning, better enabling computers and people to
work in cooperation” [15]. In order Semantic Web to implement that, it gives
structure to data and it uses ontologies to describe the semantics of the data. Semantic
Web is a promising idea but it also has many difficult challenges. A key challenge in
creating Semantic Web is the semantic mapping among the ontologies [16]. Trying to
implement Semantic Web, different ontologies will be created, and some of them may
describe similar domains but use different terminologies. So, we must find a way to
know the semantic correspondences between their elements [15, 18].

Semantic Web introduces the problem of ontology mapping. There are many

techniques which try to solve the above problem by implementing one-to-one
mapping between concepts, but these solutions do not seem to be applicable in real

 8

Semantic Classification Anastasia Krithara

world data, as it is rather rare to have exactly one-to-one mapping. On the other hand,
machine learner, as mentioned earlier, may seem a good solution to the problem but
they do not deal with semantic metadata.

In the following chapters, we give a more detailed presentation of the schema

mapping problem, we introduce a number of solutions that have taken place and we
present our own approach to this problem.

2.5 Schema matching

“An ontology specifies a conceptualization of a domain in terms of concepts,
attributes, and relations. The concepts provided model entities of interest in the
domain. They are typically organized into a taxonomy tree where each node
represents a concept and each concept is a specialization of its parent“ [16]. In other
words, ontology can be seen as the schema of the particular concept. So, instead of the
term ontology mapping we can use the term schema matching which is more widely
used. In the particular project, we concentrate in taxonomies and not in whole
ontologies.

Schema matching could be described as the process “which takes two schemas

as input and produces a mapping between elements of the two schemas that
correspond semantically to each other” [16].

On this point, we present the reason why schema matching is important for

this project and also the several domains that it is needed in order to understand its
importance.

Schema matching gives us the possibility to have different views of the same

data. It would be very useful to have the option to choose how the data are going to be
presented. Everybody is used to a particular view of some data, so it would be very
helpful to have the possibility to change the way some data are represented to the way
someone is used to. In order to succeed it, we must know the schema in which the
data are represented, the schema we want to be represented and of course have the
possibility to match the two schemas. This possibility is the one that has inspired the
particular project.

Some other domains where schema matching is helpful are also worth

mentioning. A very important problem is schema integration: Given a set of
independently developed schemas, construct a global view [17]. Because the schemas
are developed independently, it is obvious that they have different structure and
terminology. So, on this point schema matching is needed so that the relationship
between the schemas will be found and then the integration will take place. Also,
schema matching is very useful in data warehouses. “Data warehouse is a decision
support database that it is extracted from a set of data sources” [16]. So, we need a
way to transform data from the data source format into the data warehouse format.
Another domain where schema matching is useful is E-commerce. The participants to
a transaction exchange messages between each other. It is almost impossible everyone
to use the same message schema. So, schema matching is useful in order to give to the

 9

Semantic Classification Anastasia Krithara

participants the possibility to communicate. Finally, it would be very useful for a user
to have the possibility to specify the output of a query and the system can find out
how this output could be produced. So, the system should be able to map the user’s
output to schema elements and then find out the qualification that gives the semantics
of the mapping. In order to succeed this, we need, as in the previous cases, schema
matching.

From all the above, we can conclude that schema matching is really important
and solutions for automatic schema matching should be developed.

2.5.1 Current Approaches of Schema Matching

A review of current approaches and their evaluation can be found in both the

works of Rahm and Bernstein [18] and Hong-Hai, Rahm and Melnik [24]. Below, we
present an approach that employs machine learning techniques and contrast our
proposal with it.

AnHai Doan and colleagues [16] have created a system named GLUE which

applies machine learning techniques to semi-automatically create semantic mapping.
In the above figure (figure 6) we can see the architecture of GLUE system.

Figure 4: The GLUE architecture
From [16, Figure 2]

As we can see, it takes as an input two taxonomies. A number of machine
learning techniques are then applied to compute the joint probability distributions of
every pair of concepts (A є O

1
, B є O

2
). A meta-learner is used in order to combine

the predictions of the different learners. The reason for using a meta-learner instead of
a single one is that the majority of the learners are good for particular tasks. So, the
use of a meta-learner extends GLUE capability.

 10

Semantic Classification Anastasia Krithara

The computed joint probability distributions are used as an input in the second
step of GLUE, the similarity estimator. In this step, the user has the possibility to
choose which similarity measure wants to use. On the one hand, the used similarity
measure should be able to be computed using only the joint probability distributions
as this is the input it has. This restricts the number of the similarity measures that the
user has the possibility to use. On the other hand, the user does have the possibility to
choose between a number (even if it is restricted) of similarity measures, which is
very useful, because the applicability of every measure depends on the occasion and
there is one that could be considered as the best for every occasion. So, the Similarity
Estimator gives as an output a similarity matrix between the concepts in the two
taxonomies.

The last step of the GLUE architecture is the Relaxation Labeler, which takes
as input the similarity matrix and exploits several constraint and heuristics to improve
matching. The output of this step is a 1:1 mapping between the two taxonomies. A
more detailed description of the above system can be found in [16]. This approach is
different comparing to ours, because in our case, we want to examine not a 1:1
mapping between two different schemas but a classification of the documents in the
one schema, given information about the classification in the other.

There are several other approaches for 1:1 schema matching. In the figure

below (figure 7) a classification of the current approaches is given. The general
procedure that is common for all of them is the following: They take two schemas as
input and they give as output a 1:1 mapping between the elements of these schemas.
The mapping is implemented according to the particular matching each approach
uses. A survey of such approaches can be found in Rahm’s work [18].

Figure 5: Classification of schema matching approaches

From [18, figure 2]

Another interesting work is that of Fausto Giunchiglia, Pavel Shvaiko et al.
[26, 27, 28]. They present a new approach for schema matching, called semantic
matching. More particularly, their method takes into account not only the labels of the
nodes of the schemas they want to match, but also “the semantic relations between the
concepts assigned to nodes” [27]. For example, some concepts can be equivalent, or
one can be more general than the other.

 11

Semantic Classification Anastasia Krithara

As mentioned earlier, these approaches map each element of the one schema
to the element of the other schema with the highest similarity, which results a 1:1
mapping [16] and this is not applicable in the most of the cases of real world data, as
it is difficult for the data to have exactly one-to-one mapping.

Worth mentioning also is the work of Sarawagi, Chakrabarti and Godbole

[25]. They present a new approach, called cross-training, which use sample
documents from one taxonomy in order to improve the classification in another
taxonomy. They assume that the taxonomy is a flat set of class labels. They present
two algorithms. One is probabilistic and it is based on EM (Expectation
Maximization) and the second is discriminative and it is based on SVMs (Support
Vector Machines). Their results show that these methods are better than the baseline
classifiers.

The latter approach is closer to the one we examine. The main difference is

that, as mentioned earlier, they do not take into account the hierarchy and they
consider the taxonomy as flat. In contrary, in our approach we use two-level
hierarchies.

In this project, the aim is to find a fuzzy, context sensitive mapping between

two schemas by combining semantic features and context-based features and using
them as an input in a machine learner.

2.5.2 Semantic similarity measures

In order to match two schemata and create the semantic features, we need a
notion of similarity. So, we are interested in semantic similarity measures. There are
several similarity measures that can be used. Before we discuss them, it is worth
mentioning some principles that we must take into consideration when constructing a
tree similarity measure.

Principles for Tree Similarity Measure Construction

 According to Tom Morrison [22], the most important principles that we must
consider before construct a tree similarity measure are:

1. Matching at categories lower down the tree structure should count more to the
measure than matching higher up, because this indicates a more precise match.

2. Matches at the top level of the tree should not count at all.
3. Matching counting should be reduced when they are not exactly on the same

category and this reduction should be proportional to the generational distance.
4. The matching metric should be normalized so that it ranges from 0 to 1.
5. The matching metric should take into account all possible matches between the

two schemata.

 12

Semantic Classification Anastasia Krithara

Approaches of semantic similarity measures

 As mentioned earlier, there are several semantic similarity measures that can
be used as a notion for similarity. Three of them have been used for the purposes of
the project.

 The first one is our own similarity measure. The idea is the following: for each
concept on the tree, we calculate the distance from any other concept of the tree. More
particular, we count the number of edges from each of the other concepts and we
construct a sort of a taxonomic vector. This vector is normalized before is used.

The inspiration of the second similarity measure was given by the work of P.
W. Lord et Al. [23]. The idea is to use the probability of the least subsumer. Last
subsumer is the node that subsumes A and B (where A and B are nodes on the tree)
and there is no other node lower down which also subsumes A and B. Each node on
the tree has a probability. So the similarity of A and B depends on the probability of
the node that least subsumes both A and B. Like in the previous case, we normalize
the vector before we use it.

As a third similarity measure, a simple method is followed. All nodes are

represented as a boolean vector. The node to which the document belongs has value 1;
all other nodes have the value 0. Using these values we create the feature vector.

More details about the above approaches are given in Chapter 3(3.3.2) of the

present report.

 13

Chapter 3

Implementation

 In this chapter all the details of the implementation are given. The chapter is
organised as follows: At first, a description of the dataset is given. Then, the one-to-
one schema matching that was implemented is presented. The procedure for the
content-based classification is described. More particularly, we present the extraction
of the features, their selection and their representation. Also, the tools and the
classifiers used are presented. The description of the semantic features is following, in
other words, the similarity measures used and the representation of the features. Then,
the combination of content-based with the semantic features is taking place and all the
details about this procedure are given. Finally, the “semantic” error metric is
explained, a measure used for the evaluation of the results.

3.1 Dataset

 The dataset which was used is about problem and solution descriptions for HP
and Compaq products. The dataset consists of 1864 XML documents. Each is tagged
with category data from a number of simple 2-level hierarchies. An example of a part
of a hierarchy in which the documents are categorized is given below (Figure 6):

Content Topic

Component

… Compatibility Firmware/BIOS

Warranty

Specifications

… …Product

Figure 6: Some of the values of the hierarchy “Content Topic”

 14

Semantic Classification Anastasia Krithara

In the following table, a description of all the hierarchies is given:

Categorization Metadata Description

content_topic
The main topic of the content; it is the parent of <content_topic_details>.
This property is single-valued and is required. A question to ask that may
help determine what value should be selected is: What one topic of the
product is this content about?

Environments The user’s environment. In addition to software, this property can apply to
technology and applications. This property is multi-valued.

Main_component
The primary component of the product. A component value should only be
selected when a component of the product directly relates to the topic. This
property is multi-valued.

Minor_component1 See main_component.

Minor_component2 See main_component.

Product_function
The function of the product discussed in the content – whether the function is
operating properly or part of a fix problem document. This property is the
parent of <product_function_details> and is single-valued. It is only relevant
if the content describes the function, or requires the function to occur.

Software_topic Software applications being described in the content. This property is single-
valued. It does not apply to operating systems, hardware, or drivers.

Symptom
The symptom that led to the problem discussed in the content. This property
is only available if fix problem is selected as the <user_task>. This property
is single-valued.

User_task

The major task that best represents the intent of the document, and the
reason why a customer would be interested in reading the document.
(Usually the task is part of the title.) The property <user_task> is single-
valued, which means only one value can be assigned. It is common in a
support document to discuss more than one task, but use this property to
assign

Table 1: schemas description

 Each of these categories has a number of values. Further details about these
values of the above hierarchies can be found in the Appendix A.

 Having a document classified to a category of one of the above hierarchies
(hierarchy A in figure 6), we want to determine if the use of that information plus the
content-based features can give us better results in the classification of the document
in another one of the above hierarchies (hierarchy B in figure 6) than using only
content-based features. In other words, we want to classify the document in hierarchy
B, using information about its position in hierarchy A and content-based features.

 15

Semantic Classification Anastasia Krithara

Hierarchy A

Doc Doc

 Hierarchy B

Figure 7: Having a document classified in hierarchy A

 try to correctly classify it in hierarchy B

3.2 Matching between different schemas in the dataset

In order to determine if the dataset described earlier was suitable for the purposes
of the particular project, a one-to-one mapping between the hierarchies mentioned
above took place. In particular, this mapping gave us the possibility to examine two
characteristics. Firstly, the possibility to determine if there is an exact one-to-one
mapping, in which case the dataset will be proven unsuitable, as the particular project,
as mentioned earlier, focuses in the cases where one-to-one mapping is not enough.
Secondly, the possibility to discover if any decent mapping between two particular
schemas exists. If there is no connection at all between two schemas then our
approach cannot be performed in the particular dataset.

3.2.1 Pre-process of the dataset

 As mentioned above, the data was available in XML documents, so some pre-
process had to take place in order to implement the mapping.

 A bash script was implemented in order to extract the information needed
from the dataset (the code can be found in the Appendix C.1). The output of the script
was a file with the following format:

DocID,Content Topic,Content Topic Detail,Environment,Symptom,…

CN0093W,software,software_operating system,NA,error message,…
CN0082W,component,component_firmware/BIOS,NA,NA,…
BU021216_EW01,security,NA,Unix,performance,…
OT011107_EW02,component,NA,NA,performance,…
…

 The first line contains the names of all the categories of the schemas. Each of
the rest lines corresponds to a document and contains the values of the categories,
respectively with the first line (e.g. the first value is the DocID, the second one is the
Content Topic, the third one is the Content Topic Detail and so forth).

 16

Semantic Classification Anastasia Krithara

This file was then given as an input to a java program. The latter, created a

similarity table between the categories of two particular schemas (the user can choose
any two schemas among the available ones). The values in the table represent the
number of documents that belong in both the respective categories of the two
schemas.

This table is then used in order to find an optimal mapping between the chosen

schemas. The program maps each category of the one schema with a category of the
second schema according to the values on the table. In order to make that more clear,
we present below the pseudocode of the algorithm:

FOR (index = 0; index<cats1.length; index++)
 FIND cats2 [j]

WHERE similarity (cats1 [index], cats2 [j]) is maximum
ENDFOR

Where cats1 [] and cats2 [] are the two schemas and similarity (cats1 [i],

cats2 [j]) is the value in the similarity table which represents the number of
documents classified in category i from the first schema and in category j from the
second one.

The above allows the mapping of one category from the first schema with a

category of the second schema that may have already been mapped with another one,
in other words it allows many-to-one mapping. This allows mapping where the
number of categories between the different schemas is not the same, so some
categories would stay unmatched.

At first, another attempt for one-to-one mapping (see Appendix B.1 for

details) was made but it was thrust aside for two reasons: firstly, it was
computationally expensive and secondly the output was restricted to one-to-one
mapping (in opposition to the algorithm described earlier). In other words, if a
category from the one schema has been matched with a category from the other
schema, then it cannot be match with any other category. But in our approach there
isn’t any restriction of this kind.

3.2.2 Results of matching

 The most representative results of the mapping can be found in Appendix B.2.
Experiments have taken place for all the possible combinations of the available
schemas.

 The number and the percentage of the correctly and incorrectly classified
documents are given. In addition, the correspondence between the categories of the
two schemas is given. To be more specific, the number of the categories from the first
schemas that corresponds to each category of the second schema is given. This
information is important, because we want to know if the correspondences are well

 17

Semantic Classification Anastasia Krithara

spread (we don’t want, for example, all the categories from the first schema to be
corresponded in only one category of the second one).

 From the above results, considering the characteristics we want the mapping to
have as mentioned earlier, we can conclude that: Firstly, there is no exact one-to-one
mapping between any pair of the different schemas. Secondly, we can remark some
good correspondences between some pairs of schemas. This means that the dataset
seems to be suitable for the purposes of the project.

 Having determined that the dataset is suitable, we had then to choose also the
suitable pairs of schemas in which our approach was tested. The total number of
available pair of schemas comes up to 72 and as a result is not possible (in terms of
time restrictions, as the whole procedure followed in order to test our approach is
time-consuming) to test them all. This is why we had to select the ones that were
given us the most suitable matching results.

 The pairs of schemas which were chosen are presented in the table below (in
the table, Schema A Schema B means that we have already the documents
classified in Schema A and we want to classify them in Schema B):

Schema A Schema B
Minor Component 1 Content Topic
Content Topic Minor Component 1
Minor Component 1 Symptom
 Symptom Minor Component 1
Content Topic Minor Component 2
Minor Component 2 Content Topic

Table 2: Selected pairs of schemas

3.3 Classifiers and Classification procedure

 Using the selected pairs of schemas, the classification experiments took place,
using two tools: WEKA and AIRS classifier.

 “The Waikato Environment for Knowledge Analysis (WEKA) is a
comprehensive suite of Java class libraries that implement many state-of-the-art
machine learning and data mining algorithms” [19]. It is available on the World-
Wide-Web. It contains tools for data pre-processing, classification, regression,
clustering, association rules and visualization. We are going to use WEKA for
classification using the classification models mentioned in chapter 2 (except from
AIRS, for which WEKA has no algorithm).

For the AIRS classifier, the source code of Andrew Watkins [14, 20, and 21]
will be used.

 18

Semantic Classification Anastasia Krithara

 The experiments that took place for this project can be divided in three main
steps. In the first, only content-based features were used for the classification. In the
second, semantic features were developed and used and in the third a combination of
content-based and semantic features took place. In the following sections a detailed
description of the above steps is given.

3.3.1 Classification using content-based features

 As mentioned above, at first classification took place using only content-based
features. In the diagram below, the procedure which was followed is described.

Figure 8: The classification process

 We first have to select the documents which are categorized in both the
selected schemas. As we use a real world dataset, there are many NA (Not Available)
values, so not all the documents are categorized in all schemas. Nevertheless, from the
matching we performed, described in section 3.2, we found out that the pairs of
schemas we selected have a decent number of documents. More particular, the
number of documents for the pair of schemas we have selected is approximately
between 80 and 420, which seems to be a reasonable amount of documents for an
accurate classification.

 After selecting the documents, we divided them in training and test set. In
order to have more accurate results, we use 5 times a 10-fold validation procedure.
According to the latter, for each of the 5 times we do the following: we shuffle the

 19

Semantic Classification Anastasia Krithara

order of the documents in the dataset and we divide it in 10 portions. The 9 are used
as training set and the remaining one as test set. The portion which was used as a test
set is rotated so that at the end all the 10 portions have been used as test set. To make
it clear, in figure 9 a diagram of the process is given. In order to calculate the final
result, we average all the predictions produced during the above procedure. In
particular, we take the average of the 50 produced results (5 times * 10-fold
validation).

…Time 1 Time 4 Time 5

… … … Fold 1 Fold 2 Fold 10

Figure 9: Structure of files

 From the training set we select the features we want. A detailed description of
the selection and representation of the features is given in the next paragraphs. The
reason we use only the training set is to avoid information bleed. In other words, we
want the feature vector to be different in each fold of the 10-fold validation for more
accurate results (if we were using also the test set-which is changing in each fold- the
extracted features would always be the same) .Using these features, we create the
features vectors for both the training and the test set.

 In order to give them as input to the classifiers, we have to create the files in
the format that WEKA and AIRS accept them. WEKA uses arff files (one for the test
and one for the training set) in which first the attributes (features) and their values are
written and then the data vectors. Below, an example is presented.

@RELATION ContentTopic--MinComp1

@ATTRIBUTE upgrad {0,1}
@ATTRIBUTE firmwar {0,1}
@ATTRIBUTE insight {0,1}
@ATTRIBUTE manag {0,1}
@ATTRIBUTE server {0,1}
@ATTRIBUTE download {0,1}
…
@ATTRIBUTE class {component,component_compatibility,…}

@DATA
0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,component
0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,component
0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,component
0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,component
...
0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,1,1,software_compatibility

Test
set

Training
set …

 20

Semantic Classification Anastasia Krithara

0,0,0,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,0,1,software_compatibility
0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,software_compatibility
0,0,1,0,0,1,1,0,1,0,1,0,1,1,1,1,1,1,0,1,software_compatibility
0,software_compatibility
…

 AIRS accepts two files (one for the test and one for the training set) with just
the data vectors, in the following format:

0 0 0 1 0 0 0 0 0 1 0
1 0 0 0 1 1 1 0 0 0 0
1 1 1 0 1 1 1 0 1 0 2
1 1 0 1 1 1 1 1 0 0 2
0 0 1 1 1 0 1 0 0 0 9
1 0 1 1 1 1 1 1 0 0 9
1 0 1 0 1 1 0 0 0 0 10

 As we can notice, AIRS does not accept the name of the classes as strings, so
we have to correlate each value of the class with a number.

 It also needs a configuration file in which information about the parameters of
AIRS is given. An example of the configuration files that was used in the project can
be found in Appendix C.2.

Features extraction, selection and representation

 Having selected the training set, we have to extract the information we want
from these XML documents, in order to use it for the creation of the feature vector. It
would be possible to use all the words contained in all of the documents as features,
however it is more sensible to perform some process of features selection for two
reasons: On the one hand, many words in the documents are present for purposes of
XML tags, so they are useless in sense of the classification process. On the other
hand, in the documents there is also the information for the schemas and the
categories they belong. Using all the available words of the documents, we would use
also this information, but as mentioned before, the purposes of this part of
classification is to use only the content-based features.

 For the above reasons, we decided to extract only the words which are
contained in the body of the XML documents, excluding all the special characters. A
Java program and a script were implemented in order to extract these features. The
output of this program is a file for each document, which contains the list of words
which exist in the body of the particular XML document. In order to enhance the
classification accuracy, a stemming algorithm was also used. In particular a porter
stemming algorithm was used, implemented by John Keyes, fully described in [30].

 Using all the words extracted by the above procedure, the performance of the
classifiers is not expected to be good enough, as they are too many, and in addition to
that, we have dimensionality limitations. So, a selection of the most informative
words is recommended. The concept used in the particular project for the reduction of
the number of features is information gain. The latter is a concept which is based in

 21

Semantic Classification Anastasia Krithara

the entropy measure which is “a measure of the impurity in a collection of training
examples” [2]. Information gain gives us a measure of how informative an attribute is,
in classifying the training data. In other words, what information gain aims is the
reduction of the entropy which is caused by classifying the examples according to this
attribute [2].

 The following example will make the concept of information gain more
understandable. Imagine we have 4 documents which are classified in a set of classes
and they contain a number of words, as shown below:

 Hardware Memory Disk Problem CLASS
Doc 1 1 0 1 1 A
Doc 2 1 1 0 1 A
Doc 3 0 0 0 1 B

 The word “Hardware” exists in both Doc 1 and Doc 2 and not in Doc 3, which
means that is specific for class A (in which only Doc 1 and Doc 2 belong), so it has a
high information gain. In contrast, the word “Problem” exists in all three Docs, so it
has a low information gain, as no information about the classification in classes A and
B can be derived. The words “Memory” and “Disk” have intermediate values of
information gain.

 More precisely, the formula with which we can calculate information gain of a
word A in a collection of documents S is the following:

() () ()
()

∑
∈

−≡
AValuesu

u
u SS Entropy

S
SEntropyASGain ,

 and ∑
=

−≡
c

i
ii ppSEntropy

1
2log)(

where Values(A) is the set of all the possible values of A and { }usASsSu =∈=)(| .

 For the calculation of the information gain, 2 scripts and one program
implemented by Julie GreenSmith [32] were modified for the specific dataset. The
program uses Laplace modifier to avoid arithmetic overflow (in the case we have
log20).

 After having calculated the information gain for all the words extracted from
the documents, we then selected the k most informative ones. Different values for k
were tested in order to find the one which gives us the better results. Finally, the
number 50 seems to give the more representative results, so this is the one that was
used. Using the selected words we created the feature vectors. Each word represents a
feature and has two values: 1 if the document contains that word, 0 otherwise. After
creating the suitable files for the classifiers, as described earlier in this section,
everything is set to go. The above procedure is taking place, as mention earlier 5 *10

 22

Semantic Classification Anastasia Krithara

times (5 times *10-fold validation). The average of these results was calculated. The
results are discussed in chapter 4.

3.3.2 Classification using semantic features

 In this section a description of the procedure followed for the classification
using semantic features will be given. In this case, as we have mentioned earlier, we
want, using the information of the categorization in one schema, to classify the
documents in another schema. In order to represent the features according to the
classification in one of the schemas we need a notion of similarity. There are several
similarity measures that can be used. We are interesting in semantic similarity
measures. Below, the three semantic similarity measures, mentioned in Chapter 2
(2.5.2), that was used for the purposes of the project are described.

 The procedure is similar to the one followed for the content-based features, in
terms of using 5 times 10-fold validation and of using the same classifiers. The
difference consists in the selection of the features, as in the present case we do not
care about the content, but only about the categorization to the schemas.

“Counting edges” approach

 Our first attempt was to use our own similarity measure. For each concept on
the tree, we count the number of edges from each of the other concepts and we
construct a sort of a taxonomic vector.

For example, imagine the following 6 node hierarchy, where d
1

to d
4

are
classified documents (figure 10):

A B C D
d1 d2 d4 d3

 d4

Figure 10: Example of the naïve approach

We create then a vector {(distance from A), (distance from B), (distance from
C), (distance from D)}. So, for each of the above nodes, we count the number of
edges and we have the results:

 23

Semantic Classification Anastasia Krithara

A = (0, 2, 4, 4)
B = (2, 0, 4, 4)
C = (4, 4, 0, 2)
D = (4, 4, 2, 0)

 Using these results, we create the following vector (Table 3), which is then
normalized. The suitable files required from the classifiers, described earlier, are
created according to this vector and are given as input to them:

 Normalize

 A B C D
d1 0 2 4 4
d2 2 0 4 4
d3 4 4 0 2
d4 4 4 0 2
d4 4 4 2 0

 A B C D
d1 0 0.5 1 1
d2 0.5 0 1 1
d3 1 1 0 0.5
d4 1 1 0 0.5
d4 1 1 0.5 0

Table 3: The vector created using the method of counting edges
before and after it was normalized

 As we can see from the table above (Table 3) we assume that if a document is
classified in more than one category of one schema, we have multiple entries of this
document in the vector (respectively to the number of categories it is classified). This
assumption was applied to all three methods, described in the present section.

Probability of the least Subsumer

 In addition to the method described earlier (counting edges), a more refined
similarity measure was used. The idea was inspired by the work of P. W. Lord et Al.
[23]. They used the concept of the probability of the least subsumer.

All the measurements are taking place using the information content, which is
defined as “the number of times each term, or any child term, occurs in the corpus”
[26]. Each node of the tree has a probability. The lower down on the tree structure, the
less information content a node has. The root’s information content equals to 1. In the
example in figure 11, if we want to find the similarity between A and B, we have to
find the node that least subsumes both nodes. Least subsumer is the node that
subsumes A and B and there is no other node lower down which also subsumes A and
B. So, in the above example, the red node subsumes A and B but it is not the least
subsumer. The black node is the least subsumer. So, the similarity of A and B depends
on the probability of the black node. A low probability of the black node implies a
high similarity of the concepts (A and B).

 24

Semantic Classification Anastasia Krithara

 11/11

 9/11 2/11

2/11 D

 7/11
d3

A

BC

d4

d1 3/11 4/11
 d2

d4

Figure 11: Example of Probability of the least subsumer Figure 11: Example of Probability of the least subsumer

As probability for each node on the tree, we used the number of documents
classified in the particular node (category) or below divided by the total number of
documents in the tree (# (docs in the node or below) / (total #docs)).

As probability for each node on the tree, we used the number of documents
classified in the particular node (category) or below divided by the total number of
documents in the tree (# (docs in the node or below) / (total #docs)).

The distance between A and B is calculated by the following equation

(
The distance between A and B is calculated by the following equation

(),(BA),(BApms
is the probability of the least subsumer of A and B):

() ())(ln)(ln,ln2),(BpApBABAdist pms

+−=

where { })(),(min),(CpBA BAScmsp ∈

=

Imagine in the example of figure 11 the total number of documents is 11. The

numbers in red in the figure are the probabilities of each node. Using the equations
described above we can create the following vector (after, the table is normalized as in
the previous approach):

 A B C D

d1 0 2.315007613 2.602689685 3.409496184
d2 2.602689685 1.406913648 0 3.004031076
d3 3.409496184 2.716349004 3.00403107 0
d4 2.315007613 0 1.406913648 2.716349004
d4 2.602689685 1.406913648 0 3.004031076

Table 4: The vector created using the method of probability of the least subsumer

 “Simple” approach

 The third approach we used is the simplest one. The idea is to represent the
nodes as a boolean vector. The node that the document belongs takes the value 1; all
the other nodes take the value 0. For example, the vector that is created from the tree
in figure 12 is the following:

 25

Semantic Classification Anastasia Krithara

 A B C D
d1 1 0 0 0
d2 0 1 0 0
d3 0 0 1 0
d4 0 0 1 0
d4 0 0 0 1

A B C D
d1 d2 d4 d3

 d4

Figure 12: Example of the Simple approach

 This approach, does not take into consideration the hierarchy. Nevertheless,
we wanted to compare this method with the previous two, in order to find out how the
information about the hierarchy can help the classification process. The representation
of the features using this method is very close to the format that the classifiers are
used to accept the features. More particular, the format follows the same concept as in
the content-based features: 1 if the documents belong to that node and o otherwise,
while in content-based features we have 1 if the word exists in the document, o
otherwise.

 In order to implement these three approaches we just discussed, three java
programs were written which create the respective vector for each approach and use it
for creating the suitable files, which was then given as input to the classifiers.

3.3.3 Combination of content-based and semantic features

 After having classified the documents using only content-based and only
semantic features, our goal was to combine the above features and try to find out if
this could improve the accuracy of the classifiers.

Imagine we have the following table:

 X Y Z W A B C D

d1 1 0 1 1 0 0.5 1 1
d2 0 1 1 1 0.5 0 1 1
d3 1 1 0 0 1 1 0 0.5
d4 1 0 0 1 1 1 0 0.5
d4 1 0 0 1 1 1 0.5 0

Table 5: Combination of content-based and semantic features

The first part of the table is a standard keyword vector where 1 indicates that
di has, for example, a particular word (X, Y, Z or W in the current example) and 0

 26

Semantic Classification Anastasia Krithara

otherwise. The second part of the table is the same (Table 3) used in the example
described in figure 10, for the counting edges approach.

 Current approaches indicate that a machine learner gets as input only the first
part of the table (the keyword vector). This is what we did in the classification using
content-based features. On the other hand, if we use only the second part of the table
(semantic vector), the best results we can obtain is the optimal 1:1 mapping. This is
what the three approaches described in 3.3.2 did.

 What we did next, was to use both keyword and semantic vectors. In order to
combine them we gave as input to the classifiers a long vector as the one in table 5,
which concatenates all the features.

 In order to examine how the different kind of features used (content-based and
semantic) affect the performance of the classifiers, we used different weighting of the
features. Except using the features as they were, we did experiments using 100% of
the content-based features and 50% of the semantic ones and vice versa. Using 50%
of the features means that we multiplied the features with the respective percentage
(with 50/100 in this case). In the next chapter, where all the results are presented and
explained, the affect of different weighting in the performance of the classifiers is also
explained.

 For the creation of the vectors and the files used for the classification, a Java
program was implemented. Different percentages for the weighting can be chosen
form the user.

3.4 “Semantic” Error metric

As we mentioned in the beginning of the chapter, in this section we present a

measure which was used in order to evaluate the performance of the classifiers using
the different features.

 The “semantic” error metric gives us an insight on “how wrong” a
misclassified example is. In order to make this clear, imagine we have the following
schema (figure 13):

 Animal

Bird Fish

3 1

3

Mullet Cod

1 2 4

 Eagle Canary

Figure 13: example schema

 27

Semantic Classification Anastasia Krithara

 Imagine we have a document that should be categorized in the node “Eagle”
but it is classified in the node “Canary”. We can say that this was misclassification
into only a sibling class which is better than being classified in the node “Cod” which
is completely irrelevant. In other words, we can say that classified a document in a
sibling node is better (and “less” wrong) than classify it in a completely irrelevant
class.

 Trying to apply this idea, in order to see if combination of content-based and
semantic features can help in the reduction of the “semantic” error, we implement the
following method:

Suppose table 6 is a confusion matrix produced by WEKA for the example described
above (figure 13). In table 7 suppose we have the semantic vector created by, for
example, the “counting edges” method.

 Fish Cod Mullet Bird Eagle Canary
Fish 2 1 0 0 0 0
Cod 0 1 0 0 0 0
Mullet 0 1 1 0 0 0
Bird 0 0 1 0 0 0
Eagle 0 0 0 1 1 1
Canary 1 0 0 0 0 3

Table 6: Confusion Matrix

 Fish Cod Mullet Bird Eagle Canary
Fish 0 1 1 2 3 3
Cod 1 0 2 3 4 4
Mullet 1 2 0 3 4 4
Bird 2 3 3 0 1 1
Eagle 3 4 4 1 0 2
Canary 3 4 4 1 2 0

Table 7: Semantic Vector (counting edges)

 Having these two tables, we calculate then the accuracy of the classifier
(considering the “semantic” error) as followed:

• We first calculate the distance using the following formula:

A11*B11 + A12*B12 +…+ A1n*B1n = X1

A21*B21 + A22*B22 +…+ A2n*B2n = X2
…
An1*Bn1 + An2*Bn2 +…+ Ann*Bnn = Xn

 28

Semantic Classification Anastasia Krithara

where Aij and Bij is the jth column of the ith row of table A and B
respectively.

• We then add the results of the calculated distances:
X1+X2+…+Xn = Y

• Finally we calculate the accuracy as followed:

Accuracy = 1 – (Y / Max Distance), where Max Distance is the
maximum total distance we can have. In other words, it is the total
number of documents multiplied by the maximum distance between
the nodes of the tree (in the particular case 14 documents * 4 = 56)

If we apply this method to the above example we have the following results:

 2*0 + 1*1 + 0*1 + 0*2 +0*3 + 0*3 = 1
 0*1 + 1*0 + 0*2 + 0*3 + 0*4 + 0*4 = 0
 0*1 + 1*2 + 1*0 + 0*3 + 0*4 + 0*4 = 2
 0*2 + 0*3 + 1*3 + 0*0 + 0*1 + 0*1 = 3
 0*3 + 0*4 + 0*4 + 1*1 + 1*0 + 1*2 = 3
 1*3 + 0*4 + 0*4 + 0*1 + 0*2 + 3*0 = 3

Y = 1+0+2+3+3+3 = 12

Max Distance = 14 * 4 =56

Then the accuracy equals to: Acc = 1 – 12/56 = 0.7857

The normal accuracy (#correctly classified docs/ total #docs) equals to:
9/14 = 0.6428571

The procedure to calculate the accuracy, considering the “semantic” error, for
the “probability of the least subsumer” method is similar, with the only difference that
the Maximum distance equals to the number of documents (because in this case the
maximum distance between the nodes is always 1).

 For the “simple” method there is no need to implement this metric, as it will

have exactly the same results as the accuracy. If we recall the method, described
earlier in this chapter (3.3.2) we will notice that applying the “semantic” error metric
will end up with the number of the correctly classified documents divided by the total
number of documents, which is nothing else but the accuracy.

 Having implemented this method in Java we run the experiments and we

calculate the accuracy considering the “semantic” error. Unfortunately, AIRS
classifier does not return the confusion matrix so we could not apply the above idea
for it. We applied it only in the WEKA classifiers.

Some parts of the code used for the implementation of all the programs

mentioned in this chapter are displayed in the Appendix C.3.

 29

Chapter 4

Results and Analysis

 The purposes of the current chapter are to present the results obtained and
analyse the performance of the classifiers using our approach discussed in the
previous chapter. From the analysis of the results we wanted to reach the following
conclusions: firstly, if using the content-based features alone the classifiers have
better performance than using the semantic features alone. Secondly, if combining the
content-based and the semantic features can give us better results than using each of
them alone and thirdly, if the weighting of the features when we combine them makes
any difference to the accuracy of the classifiers.

 In order to reach the above conclusions, we used two measures: on the one
hand, we used the accuracy which is the number of correctly classified documents
divided by the total number of documents. We checked the results using Wilcoxon
Mann-Whitney ranking test [31] which is non-parametric. The particular test does not
assume normal distribution. This is the reason why the standard error was not
calculated and it is not presented in the diagrams (standard error assume normal
distribution). On the other hand, we used “semantic” error metric, which in contrast
to accuracy, can tell us not only if a document was incorrectly classified, but also
gives us a notion of “how wrong” it was misclassified. This measure was explained in
detail in section 3.4.

4.1 Accuracy results

 The accuracy was calculated as an average of the 50 runs (5 times * 10-fold
validation). Both WEKA and AIRS return as result the accuracy, which is the number
of correct classified documents, divided by the total number of documents.

 Initially, we needed a comparison of the performance of different classifiers
used in the project. Using only content-based features, the difference in the
performance between the classifiers was quite small, so the Wilcoxon Mann-Whitney
ranking test was used in order to find out if this difference is statistically significant or
not. Experiments took place using different number of features, in order to find which
the one with the better accuracy. In particular, we did experiments using 5, 10, 20, 50,
100, 150, 200 and 500 features. The achieved results showed that when we used a
large number of features (more than 100), the classifiers have significantly better
results in the training set but no difference in the test set, in comparison with the use
of smaller number of features (50 and less). Our suspicion was that a large number of
features may lead the classifiers to overfit. Also, when we used less than 50 features

 30

Semantic Classification Anastasia Krithara

the results was a bit worse than using 50 features. This is why the use of 50 features
was finally preferred. Also, the results showed (table 8 for example – the results for
the other pairs were similar) that the performance of Support Vector Machines and K-
Nearest Neighbour (for K=1 and K=4) was a bit better than the others and AIRS was
worse than the others, but as we can also see in figure 14, this was not always the case
as the results are depended in the dataset we used.

Figure 14: A comparison of the classifiers performance using content-based features, showing
small differences between their performance

MinComp1 -- Symptom TEST SET
CONTENT-BASED NB DT SVM AIRS

KNN
Better

(9.779e-06)
Better

(0.006333)

Not
Significant
(0.9464)

 Better
(3.632e-08)

AIRS
Worse

(0.02067)
Worse

(1.351e-05)
Worse

(3.151e-07)

SVM
Better

(7.905e-05)
Better

(0.02278)

Table 8: Statistical significance of the results for content-based features
 for the pair of schema Minor Component 1 – Symptom*

 Respectively, a comparison of the classifiers’ performance using only
semantic features took place, in order to find out if in this case the results were

* The table contains the results from Wilcoxon test. It tells us if the classifier in the Y axis is
better/worse from the one in the X axis. For example it tells us that KNN is better that Naïve Bayes and
that AIRS is worse than Decision Trees.
 All the tables of this section should be read in a similar way.

 31

Semantic Classification Anastasia Krithara

different. The results showed (figure 15 – “counting edges” method) that Naïve Bayes
did not have good results using only semantic features. Also, AIRS proved in general
to lack in performance (Table 9) in comparison with the other classifiers, which
seemed to have more or less the some results (not statistically significant difference).
The results using the “probability of the least subsumer” method for the creation of
the semantic features were similar.

Figure 15: A comparison of the classifiers performance using semantic features (counting edges)

MinComp1 -- Symptom TEST SET
Semantic Features
(counting edges) NB DT SVM AIRS

KNN
Better

(8.475e-09)
Better

(0.006104)
Worse

(0.03348)
Better

(6.304e-07)

AIRS
Better

(2.814e-07)
Worse

(5.927e-06)
Worse

(4.271e-06)

SVM
Better

(2.738e-09)

Not
Significant
(0.6242)

Table 9: Statistical significance of the results for semantic features (using counting edges method)

 for the pair of schema Minor Component – Symptom

 For the third method used for creation of semantic features, the “Simple”
method, the results are quite interesting. For the majority of the classifiers the
performance is similar to the ones achieved using the others methods for the semantic
features. But we can see a better performance of Naïve Bayes classifier (figure . The
possible reasons for that are discussed in the next chapter.

 32

Semantic Classification Anastasia Krithara

 Then, a comparison of content-based and semantic features took place. The
results showed that as an overall the use of just semantic features is in most cases
almost as accurate as using only content-based features, except for Naïve Bayes which
is discussed later. However, in the training set, if we use only content-based features
the results are better than using only semantic ones (figure 16 and Table 10).

Figure 16: Training set: A comparison of content-based and semantic features (for Decision Trees)
Content-based features are proved better in the training set

Content Topic-MinComp1 TRAINING SET
Decision Trees SEM-FEATURES
CONTENT-BASED
FEATURES

better
(7.821e-10)

Symptom -- MinComp1 TRAINING SET
Decision Trees SEM-FEATURES
CONTENT-BASED
FEATURES

better
(7.821e-10)

Table 10: Statistical significance of the results for the training set in the comparison of content-based

and semantic features. Content-based features are proved better

Nevertheless, in the test set (which is actually the one that we are interested in)
the performance of the classifiers using either content-based or semantic features is
almost the same. In some cases the content-based features seems to have a bit better
results (for example, in figure 17, the first column), as in others semantic features
seems to be more accurate (for example, in figure 17, the last column). As an overall,
we can conclude that the performance of the classifiers using semantic features is
almost as good as content-based features.

 33

Semantic Classification Anastasia Krithara

Figure 17: Test set: A comparison of content-based and semantic features (for Decision Trees)

No significant difference between them

Content Topic -MinComp1 TEST SET
Decision Trees SEM-FEATURES
CONTENT-BASED
FEATURES

Not Significant
(0.1201)

Symptom -- MinComp1 TEST SET
Decision Trees SEM-FEATURES
CONTENT-BASED
FEATURES

Not Significant
(0.1917)

Table 11: Statistical significance of the results for the test set in the comparison of content-based and

semantic features (Decision Trees). No significant difference in most cases.

 As mentioned earlier, Naïve Bayes does not seem to have good performance
with the semantic features created from either “counting edges” or “probability of the
least subsumer” method, as it seems to prefer content-based features (figure 18 and
Table 12).

 34

Semantic Classification Anastasia Krithara

Symptom -- MinComp1 TRAINING SET

Naïve Bayes
SEM-FEATURES
(Counting edges)

CONTENT-BASED
better

(1.149e-09)

Table 12: Statistical significance of the results of Naïve Bayes classifier for content-based and
semantic features (“counting edges” method). Content-based features perform better.

In contrast, using the “Simple” method, even though the results for most of the

classifiers are similar to the results of the other two methods, when it comes to Naïve
Bayes, things are a bit different. More particular, the Naïve Bayes classifier does not
seem to have so bad performance. Content-based features may have better
performance than the semantic ones (as in the cases where the “counting edges” and
the “Probability of the least subsumer” method were used), but in this case the
difference is apparently smaller (figure 18 and Table 13).

Symptom -- MinComp1 TEST SET

Naïve Bayes
SEM-FEATURES

(Simple)

CONTENT-BASED
better

(0.04167)

Table 13: Statistical significance of the results of Naïve Bayes classifier for content-based and
semantic features (Simple method). Content-based features perform better, but the difference is

significant smaller in comparison with the other methods

Figure 18: Test set: A comparison of 1:1 mapping, content-based and semantic features using the all
the three methods (for Naïve Bayes classifier). “Simple” method performs better than the others

 35

Semantic Classification Anastasia Krithara

After comparing content-based and semantic features, their combination
followed. As mentioned in the previous chapter (section 3.3.3), different weighting of
the features was used in order to see how this affects the performance of the
classifiers. Experiments took place and below some diagrams are presented that show,
for the selected schema pairs, how classifiers perform with content based features
alone (left hand column in each group), category based (semantic) features alone
(right hand side) and some mixture (middle columns).

 The diagram below (figure 19) is an example of the results we got from the
experiments. It shows the results of the performance of Support Vector Machine. As
we can see, the weighting did not seem to have any effect in this particular classifier.
In fact, we had the same result for all the classifiers in WEKA. AIRS differs (figure
20), but as we can see, the difference is very small and it has been proved statistically
insignificant (using again Wilcoxon tests).

The main question we want to answer is if the combination of content-based
and semantic features can improve the performance of the classifiers comparing with
the performance using either content-based or semantic features.

Figure 19: Test set: A comparison of content-based, semantic features and their combination

for SVM classifier

 36

Semantic Classification Anastasia Krithara

Figure 20: Test set: A comparison of content-based, semantic features and their combination

for AIRS classifier

 As we can see and in the diagrams above (figure 19 and 20), the performance
in most cases is similar to the one using only content-based features. In both the
diagrams, one can notice a better performance of the classifiers in the combined
features for the Minor Component – Symptom pair of schemas, but as we can see in
table 14 below, no significant difference found between them.

MinComp1-Symptom TEST SET
SVM COMBINATION SEM-FEATURES

CONTENT-BASED
Not significant

(0.1574)
Not significant

(0.9364)

SEM-FEATURES
Not significant

(0.1311)

MinComp1-Symptom TEST SET
AIRS (100-100) COMBINATION SEM-FEATURES

CONTENT-BASED
Not Significant

(0.09364)
Not Significant

(0.3389)

SEM-FEATURES
Not Significant

(0.2046)

Table 14: Statistical significance of the results of AIRS and SVM classifier for content-based, semantic

features and their combination. No significant difference in the results

 37

Semantic Classification Anastasia Krithara

The results have showed that in general there is not significant improvement.
In some cases (as the one below, figure 21) in the training set the combination of the
features seems to perform better (and the difference is statistically significant), but in
the test set (figure 19) no improvement is noticed. In other words, the combination
suggests an overfitting of the classifier (definition according to [2]: “Given a
hypothesis space H, a hypothesis h ∈ H is said to overfit the training data if there
exists some alternative hypothesis h΄ ∈ H, such that h has smaller error than h΄ the
training examples, but h΄ has a smaller error than h over the entire distribution of
instances”). Possible reasons for that are discussed in the next chapter.

Figure 21: Training set: A comparison of content-based, semantic features and their
combination for SVM classifier

4.2 “Semantic” Error metric results

 As mentioned in the beginning of this chapter, as well as the accuracy, the
“semantic” error metric was calculated for the semantic features created with the
“counting edges” and the “probability of the least subsumer” approaches.

 The results leaded to two conclusions. On the one hand, the accuracy
calculating taking into account the semantic error, seems to be similar for content-
based and semantic features in most cases.
 On the other hand, comparing the accuracy for the combination of content-
based and semantic features with either the content-based alone or the semantic
features alone, calculated by the method described earlier, we can notice (for example
in figures 22 and 23) that there is no statistically significant difference. These results
are similar to all the other experiments we performed for all the classifiers.

 38

Semantic Classification Anastasia Krithara

Figure 22: Training set: Accuracy, considering the “semantic” error

Figure 23: Test set: Accuracy, considering the “semantic” error

 In the next chapter, we have a deeper discussion on the results. We summarise
our conclusions and discuss the possible causes which led to these results.

 39

Chapter 5

Discussion and Future Directions

 The purpose of this chapter is to review and discuss the results presented in the
previous chapter. Also, some future directions will be discussed. The goals of the
project were reached, but there is still a number of different avenues related to the
present project which have not still been explored and they look promising.

5.1 Discussion

 Summarizing the results presented in the previous chapter, we reached several
conclusions. Initially, we examined the behaviour of the different classifier used for
the purposes of the project in the same features. We concluded that for content-based
features the behaviour of all the classifiers was similar. Some differences in the
performance of the classifiers between the different schema pairs were noticed, but
they proved statistically insignificant. At this point we should mention that, as we can
notice, the obtained results were quite poor (the accuracy is around 30-40%), in
comparison with the accuracy that the classifiers used can generally obtain.
Nevertheless, the results are not as “bad” as they look. In particular, the performance
of the classifiers may not be high but it is better than a random classification. All the
schemas which were used have at least 16 categories. Some of them have much more
(around 45). So, a random classification would have an accuracy of probably around
10% (and maybe smaller) which is worst than the results obtained. A possible reason
for having such low performance may be the fact that we used naïve content. If we
had used for example some rules the results would probably be better. As our goal
was not to improve the content-based results, but to test our own approach using
semantic features, we though that it was advisable to spend our time for the benefit of
our approach rather than the improvement of content-based results.

 The results of optimal one-to-one mapping were discussed in chapter 3 (in
section 3.3.2). Comparing them with the results of the classifiers we can see that in
general they are better as expected (as the mapping is optimal). However, in few
cases, classifiers seem to do slightly better. This can be explained by a “lucky break”
of training and test sets (1:1 algorithm was tested on the entire dataset).

 When semantic features were used, we noticed some interesting results. On the
one hand, most of the classifiers seem to have similar performance when we
compared the performance of the content-based features. Naïve Bayes classifier does
not seem to perform well with semantic features created by the first two methods we
used (“counting edges” and “probability of the least subsumer”). On the other hand,

 40

Semantic Classification Anastasia Krithara

when we used the “Simple” method to create the semantic features, even though the
results for most of the classifiers were similar to the ones achieved using the other
methods, in the case of Naïve Bayes classifier, thing seems to be different. More
particular, the latter performed much better than the other methods and the results
were equivalent to the content-based features. This result enforces our conclusion
mentioned earlier, according to which Naïve Bayes classifier prefers features in the
format of the content-based ones. As we have mentioned in chapter 3 (section 3.3.2)
the format of the features which is used from the “Simple” method is very close to the
format of the content-based features and is the same with the one the classifiers are
used to. This means, that even though most of the classifiers seems to adapt with the
use of different format of the features, Naïve Bayes does not. The reason for that
could be the fact that Naïve Bayes classifier is based on the simplifying assumption of
conditional independency among the features. But the semantic features created using
the “counting edges” and the “probability of the least subsumer” approaches are
distance-based, which means that they are dependent to each other. So, Naïve Bayes
seems not to be able to deal with them. At this point we should mention that for the
same reason we expected decision trees to perform quite bad, but the latter seems to
be able to handle them.

 Another conclusion we can reach using the results is that generally the
performance of the classifier using only semantic features is just as good as the one
which use only the content-based features. They both seem to be useful sources, but
imperfect. Thus, one would believe that combining these features (content-based and
semantic) would improve its performance.

 The results we achieved, in contrary, do not seem to agree with the above
concept. In particular, we had two main results: either the combination did not seem
to make any difference in the performance of the classifier or, in some cases, the
combination seems to suggest overfitting. For the first case, a possible hypothesis
could be that content-based features provide enough information such that the
classifier gets very little benefit form a few extra bit of information that the semantic
feature gives. In other words, even though when using only semantic features they
seems to be quite informative, in reality when they are combined with content-based
features probably the do not offer much more information than that we already have.
Probably because they actually offer the same “sort” of information. For the second
case, where the classifier gives some signs of overfitting when we combine the
features, a possible hypothesis could be that the combination confuses the classifier
rather than helping it. The different representation of semantic features, in comparison
with the representation of the content-based ones, may cause a degradation of feature
handling in the classifiers.

 In this point, is worth mentioning that our idea to use different weighting on
the features did not make any difference, especially in the WEKA classifiers, where
the results were identical. This result, made us believe that WEKA internally weights
the features to give the best results, this is why our weighting did not have any effect.
The small difference in the results of AIRS classifier, which is not included in
WEKA, strengthens this belief.

 Concerning the “semantic” error, the combination did not seem to improve the
results we have using only content-based features. A small difference can be noticed

 41

Semantic Classification Anastasia Krithara

when using the “Simple” method, but mostly in the training set and less in the test
one.

 In short, this project has proved that the combination of semantic features with
the content-based ones is not as easy as it might look. Even if, intuitively one would
believe that the combination could improve the performance of the classifiers, it is not
seem to be the case. Of course, this is the first attempt to this direction and there are
many possibilities and variation to be examined. In the following section, some of
them are presented as ideas for future work.

5.2 Future Directions

 As we mentioned earlier, this project has achieved an insight of how semantic
features can deal with content-based features and with a number of classifiers.
However, there are many areas related to this project yet to be explored. In this
section some ideas of how this project could be extended will be given.

 Firstly, we could perform classification for content-based and semantic
features separately, and then try to weight their prediction. As we have seen from the
produced results, semantic features alone seem to be quite informative but when they
are combined with content-based features they do not improve the classifiers as
expected and instead they seem to confuse them. We first have to examine if the
content-based and the semantic features make the same “sort” of errors. In other
words, we want to know if they face the same difficulties during the classification. If
they do not, then a combination of their prediction would look promising. So, it seems
worth trying to discover if they misclassify documents for the same reasons and then
try to weight their prediction, in a meta-classifier for example, and see if that could
improve the performance of the classifiers.

 Secondly, it would be interesting to perform the approach we introduce in this
project in different datasets and see their results. It is common that classification is a
dataset-depended procedure. This is why it would useful to have a more general idea
of the results of the presented approach, using different datasets.

 Thirdly, we could use a richer feature representation based for example on the
word frequency and the information gain values and compare the results with he
current ones. Also, different representation of the semantic features could be
performed. As well as the three methods we introduce in this project, several other
could be used.

 These are some of the ideas for extending the current project and produce new
results which can then be compared with the ones presented in the present work.

 42

Chapter 6

Conclusions

 As this thesis comes to an end, it is time to review the content of the previous
chapters. Chapter 1 outlined the idea and the purposes of the project. It presented the
extent of the problem of the data overload and it suggested our approach: the use of
semantic features as a rich input to classifiers. Chapter 2 introduced the relevant
research area around the project and provided the necessary information in order to
understand all the method used in the present project. Chapter 3 outlined the
implementation procedure followed in order to create the semantic features and use
them in the classification procedure. Chapter 4 presented the results of all the
experiments that took place during the project and in Chapter 5 a discussion of the
achieved results was presented. In particular, we found that the combination of
semantic and content-based features is not as simple as it may look. The combination
of the features does not seem to improve the performance of the classifiers. In the
same Chapter, some future suggestions that could extend the project were presented.

 At this point the objectives of the project should be mentioned again and the
outcome of the work should be evaluated. As mentioned in Chapter 1, the objective of
the project was to implement a new approach, according to which semantic features
are used, in addition to the traditional ones, in the classification procedure of a dataset.
The latter gave us an insight of how these two different kinds of features can deal with
each other and if their combination can improve the classifiers’ performance. As we
mentioned in the previous paragraph, the combination of the features was not as easy
as it looks. The classifiers did not seem to can easily deal with the combination of
different kind of features, even if they have satisfying results when they use the
different features separately.

 The outcome of the project is highly significant, not only because it opened
the door to a new direction, but also because it gave an insight of how classifiers are
dealing with semantic features and how the latter can be combined with the traditional
ones.

 43

References

1. Usama M. Fayyad, Gregory Piatesky-Shapiro, Padhraic Smuth and

Ramasamy Uthurusamy. Advances in Knowledge Discovery and Data
Mining. AAAI Press 1996

2. T. Mitchell. Machine Learning. McGraw-Hill, 1997

3. D. Michie, D. J. Spiegelhalter & C. C. Taylor. Machine Learning, neural

and statistical classification, (edited collection). New York: Ellis Horwood,
1994

4. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufman,

1993

5. J. Shafer, R. Agrawal, M. Mehta. “SPRINT: A scalable parallel classifier for

data mining“. In Proc. Of the VLDB Conference, Bombay, India, September
1996

6. M. Berry, G. Linoff. Data Mining Techniques For marketing, Sales and

Customer support. John Willey & Sons, Inc, 1996

7. V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New

York, 1995

8. P. Clarkson & P. J. Moreno. On the Use of Support Vector Machines for

Phonetic classification, 1999

9. T. Joachims. Text categorization with support vector machines: Learning
with many relevant features. In C. Nedellec and C. Rouveirol, editors, Proc.
European Conference in Machine learning, pages 137-142, Chemitz,
Germany, 1998, Springer

10. J. Kivinen, M. Warmuth, and P. Auer. The perceptron algorithm vs.

winnow: Linear vs. logarithmic mistake bounds when few input variables
are relevant. In Conference on Computational Learning Theory, 1995

11. Andrew B. Watkins and Lois C. Boggess. A Resource Limited Artificial

Immune Classifier. In Proceedings of Congress on Evolutionary
Computation, Pages 926-931. IEEE, May 2002. Part of the 2002 IEEE
World Congress on Computational Intelligence held in Honolulu, HI, USA,
May 12-17, 2002

12. Jerome Carter, “The immune system as a model for pattern recognition and

classification,” J American Medical Informatics Association (JAMIA), vol.
7, no. 1, pp. 28-41, 2000

 44

13. Jon Timmis, Mark Neal, and John Hunt, “An artificial immune system for
data analysis,” Biosystems, vol. 55, no. 1/3, pp. 143-150, 2000

14. Andrew B. Watkins, “AIRS: A resource limited artificial immune

classifier,” M.S. thesis, Mississippi State University, 2001

15. Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web.
Scientific American, 284(5):34-43, May 2001

16. AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy.
Learning to Map between Ontologies on the Semantic Web. WWW2002,
Honolulu, Hawaii, USA, May 7-11, 2002

17. Parent C, Spaccapietra S. Issues and approaches of database integration.
CACM 41(5):166-178, 1998

18. Erhard Rahm, Philip Bernstein .A survey of approaches to automatic schema
matching. P. Scheuermann (Editor). Springer, 2001

19. Ian H. Witten, Eibe Frank, Len Trigg, Mark Hall, Geoffrey Holmes, and
Sally Jo Cunningham. Weka: Practical Machine Learning Tools and
Techniques with Java Implementations. New Zealand, 1999

20. Watkins, Andrew. Artificial Immune Recognition System (AIRS) C++
source code, 2002

21. Watkins, Andrew and Jon Timmis. Artificial Immune Recognition System
(AIRS): Revisions and Refinements. In Proceedings of 1st International
Conference on Artificial Immune Systems (ICARIS), pages 173-181.
University of Kent at Canterbury, September 9-11 2002

22. Tom Morrison. Similarity Measure Building for Website Recommendation
within an Artificial Immune System. MSc thesis. University of West of
England, 2002

23. P. W. Lord, R. D. Stevens, A. Brass and C. A. Goble. Semantic similarity
measures as tools for exploring the Gene Ontology. University of
Manchester, 2003

24. Hong-Hai, Sergey Melnik and Erhard Rahm. Comparison of Schema
Matching Evaluations. University of Leipzig. August 2002

25. Sunita Sarawagi, Soumen Chakrabarti and Shantanu Godbole. Cross-
training: Learning probabilistic mappings between topics. IIT Bombay.
SIGKDD 2003

26. Fausto Giunchiglia and Pavel Shvaiko. Semantic Matching. University of
Trento. April 2003

27. Fausto Giunchiglia, Pavel Shvaiko and Mikalai Yatskevish. S-MATCH: An
algorithm and an implementation of semantic matching. University of
Trento. February 2004

 45

28. Deborah L. McGuinness, Pavel Shvaiko, Fausto Giunchiglia and Paulo
Pinheiro da Silva. Towards Explaining Semantic Matching. University of
Trento. February 2004

29. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, 279, 2001

30. M. F. Porter. An algorithm for suffix stripping. _Program_, Vol. 14, No. 3,
pp.130-137, 1980

31. Wilcoxon Mann-Whitney Test http://www.fon.hum.uva.nl/Service/Statistics/
Signed_Rank_Test.html

32. Julie Greensmith. New Frontiers For An Artificial Immune System.
University of Leeds. MSc Thesis. September 2003

 46

Appendix A

The categories of each schema

===== CONTENT TOPIC =====
0: component
1: component_compatibility
2: component_firmware/BIOS
3: component_manageability
4: component_power management
5: security
6: software
7: software_compatibility
8: software_diagnostic
9: software_driver
10: software_hp
11: software_manageability
12: software_operating system
13: software_utility
14: specifications
15: specifications_product
16: warranty

====== ENVIRONMENT =====
0: DOS
1: Linux
2: Novell
3: OpenVMS
4: Unix
5: Windows-English
6: Windows-localized
7: cluster
8: internet
9: network
10: wireless

====== SYMPTOM =====
0: error message
1: error message_beep codes
2: error message_displayed on
control panel
3: error message_displayed on
front panel
4: error message_displayed on
pc
5: error message_installing
6: error message_system
7: feeding issue
8: feeding issue_jam
9: output
10: output_color quality
11: output_unexpected
12: performance
13: performance_freeze

14: performance_no response
15: performance_noise
16: performance_slow

====== USER TASK =====
0: compare
1: fix problem
2: fix problem_configure
3: fix problem_download
4: fix problem_obtain service
5: fix problem_order
6: fix problem_reinstall
7: fix problem_replace
8: fix problem_setup
9: fix problem_shutdown
10: fix problem_startup
11: fix problem_uninstall
12: fix problem_upgrade
13: maintain
14: maintain_download
15: maintain_replace
16: maintain_upgrade
17: obtain service
18: order
19: setup
20: setup_configure
21: setup_loading
22: setup_upgrade
23: uninstall
24: uninstall_reinstall
25: use product
26: use product_choosing
27: use product_configure
28: use product_loading
29: use product_shutdown
30: use product_startup

====== MAIN COMPONENT =====
0: CPU
1: LCD
2: RAID
3: cables
4: chassis
5: control panel
6: controller
7: docking station
8: drive
9: drive_CD
10: drive_CD-RW
11: drive_DVD
12: drive_IDE
13: drive_SCSI
14: drive_floppy
15: drive_hard

 47

16: drive_library
17: drive_removable
18: drive_tape
19: drive_zip
20: enclosures/racks
21: expansion card
22: expansion card_modem
23: expansion card_multi-
function
24: expansion card_network
25: expansion card_remote
control
26: expansion card_sound
27: expansion card_video
28: fan
29: memory
30: motherboard
31: network device
32: network device_hub
33: network device_router
34: network device_switch
35: peripheral
36: peripheral_camera
37: peripheral_joystick
38: peripheral_keyboard
39: peripheral_microphone
40: peripheral_monitor
41: peripheral_mouse
42: peripheral_printer
43: peripheral_scanner
44: peripheral_speakers
45: port
46: port_PS/2
47: port_SCSI
48: port_USB
49: port_infrared
50: port_parallel
51: port_serial
52: power
53: power_battery
54: power_power cord
55: power_power module
56: power_power protection
57: slot
58: slot_PCI slot
59: supplies
60: supplies_optical disc

====== MINOR COMPONENT 1 =====
0: CPU
1: LCD
2: RAID
3: cables
4: chassis
5: control panel
6: controller
7: docking station
8: drive
9: drive_CD
10: drive_DVD
11: drive_IDE

12: drive_SCSI
13: drive_floppy
14: drive_hard
15: drive_library
16: drive_removable
17: drive_tape
18: drive_zip
19: enclosures/racks
20: expansion card
21: expansion card_modem
22: expansion card_network
23: expansion card_sound
24: expansion card_video
25: fan
26: front panel
27: memory
28: motherboard
29: network device
30: network device_router
31: network device_switch
32: peripheral
33: peripheral_fax
34: peripheral_keyboard
35: peripheral_monitor
36: peripheral_mouse
37: port
38: port_PS/2
39: port_SCSI
40: port_USB
41: port_serial
42: power
43: power_battery
44: power_power cord
45: power_power module
46: power_power protection
47: slot
48: slot_PCI slot
49: supplies
50: supplies_floppy disk

====== MINOR COMPONENT 2 =====
0: CPU
1: RAID
2: chassis
3: controller
4: drive
5: drive_DVD
6: drive_floppy
7: drive_hard
8: drive_tape
9: expansion card
10: expansion card_modem
11: expansion card_video
12: memory
13: motherboard
14: network device
15: network device_router
16: peripheral
17: peripheral_fax
18: peripheral_keyboard
19: peripheral_monitor

 48

20: peripheral_speakers
21: port
22: port_AGP 23: port_SCSI

 24: port_USB
 25: port_serial

26: power
27: power_battery 28: power_power module

 29: slot
 30: slot_PCI slot

31: supplies
32: supplies_floppy disk
 ====== PRODUCT FUNCTION =====

 0: backing up
 1: backing up_audio

2: backing up_data
3: connecting 4: copying

 5: faxing
 6: printing
 7: restoring

8: sending
 ====== SOFTWARE TOPIC =====

 0: business productivity
 1: development tools

2: entertainment
3: financial
4: personal productivity 5: presentations

 6: spreadsheet
 7: synchronization

8: virus protection
9: word processing

 49

 50

Appendix B

One-to-one schema mapping: algorithms, results

B.1 Algorithm for Optimal 1:1 Mapping

An exhaustive algorithm of optimal 1:1 mapping is implemented. Below, a
brief description of the algorithm is given: Imagine we have the above similarity
matrix (table 2), where {A, B, C, …} and {X, Y, Z, …} are two schemata.

F X Y Z
A 0.5 0.7 0.4
B 0.1 0.9 0.2
C 0.2 0.8 0.1

Then, an algorithm which finds the optimal 1:1 mapping between the two

schemata is the following:

bestMatch (cats1, cats2, sumSoFar, matches)
FOR (index = 0; index < cats2.length; index++)
 newSum=sumSoFar +similarity(cats1[0], cats2[index])
 matches = matches + {cats1[0], cats2[index]}
 newCats1 = cats1 - cats1[0]
 newCats2 = cats2 - cats2[index]
 IF(newCats2 IS empty) THEN

IF (newSum > maxSum) THEN
 match = matches
 maxSum = newSum
 ENDIF
 ELSE

bestMatch(newCats1, newCats2, newSum, match)
ENDIF

NEXT index

B.2 Results of 1:1 mapping (the most representative ones)

schema1 - schema2 correct error % correct correspondences: schema1 -->schema2

TOPIC - ENVIRONMENT 1099 520 67.88140828 3 --> Unix
 14 --> Windows-English

TOPIC - SYMPTOM 517 1133 31.33333333 8 --> error message_displayed on pc
 7 --> performance
 2 --> performance_no response

TOPIC - USERTASK 757 1638 31.60751566 13 --> fix problem
 2 --> fix problem_upgrade
 1 --> fix problem_configure
 1 --> fix problem_setup

TOPIC - MAIN COMPONENT 235 1273 15.58355438 1 --> memory
 1 --> drive_CD
 5 --> controller
 4 --> expansion card_video
 1 --> LCD
 1 --> drive
 1 --> power
 1 --> drive_DVD
 1 --> drive_hard
 1 --> expansion card_remote control

 51

TOPIC - MINOR COMPONENT 1 84 341 19.76470588 4 --> motherboard
 3 --> peripheral_monitor
 4 --> controller
 1 --> power
SYMPTOM - MINOR COMPONENT 1 66 244 21.29032258 3 --> motherboard
 1 --> port_USB
 3 --> peripheral_monitor
 5 --> controller
 1 --> RAID
 2 --> expansion card_video
 1 --> expansion card_network

SYMPTOM - MINOR COMPONENT 2 20 39 33.89830508 6 --> CPU
 2 --> peripheral_monitor
 2 --> port_USB
 4 --> controller
 1 --> network device_router
 1 --> RAID

SYMPTOM - PRODUCT FUNCTION 46 31 59.74025974 12 --> connecting
 4 --> backing up

SYMPTOM - SOFTWARE 35 50 41.17647059 7 --> personal productivity
 3 --> business productivity
 4 --> entertainment
 1 --> development tools
 1 --> virus protection

 52

Appendix C

Some parts of the implemented code (Java and Bash Scripts)

C.1 Bash script : extraction of schema information form the XML files

#!/bin/bash

Takes as input the XML files and creates a single file containing all the information
fo rall schemas and the categories the files belong

printf "DocID,Content Topic,Content Detail,Environment,Symptom,Symptom Detail,User Task,User Task Detail,main
component,main component detail,minor component1,minor component1 detail,minor component2,minor component2
detail,product function,product function detail,software topic\n\n"

for F in *.XML
do
egrep '<original_docid>|<content_topic>|<content_topic_detail>' "$F" |cut -f2 -d\> |cut -f1 -d\< | (while read ID
do
read TOPIC
read DETAIL1
read DETAIL2
read DETAIL3
read DETAIL4
read DETAIL5

if [-z "$TOPIC"] || ["$TOPIC" = "not applicable"] ; then

 53

printf "$ID,NA,NA,"
elif [-z "$DETAIL1"] || ["$DETAIL1" = "not applicable"]; then
printf "$ID,$TOPIC,NA,"
elif [-z "$DETAIL2"]; then
printf "$ID,$TOPIC,$TOPIC"_"$DETAIL1,"
elif [-z "$DETAIL3"]; then
printf "$ID,$TOPIC,$TOPIC"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,$TOPIC"_"$DETAIL2,"
elif [-z "$DETAIL4"]; then
printf "$ID,$TOPIC,$TOPIC"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,$TOPIC"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,$TOPIC"_"$DETAIL3,"
elif [-z "$DETAIL5"]; then
printf "$ID,$TOPIC,$TOPIC"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,$TOPIC"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,$TOPIC"_"$DETAIL3,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,$TOPIC"_"$DETAIL4,"
else
printf "$ID,$TOPIC,$TOPIC"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,$TOPIC"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,$TOPIC"_"$DETAIL3,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,$TOPIC"_"$DETAIL4,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,$TOPIC"_"$DETAIL5,"
fi

done);
egrep '<original_docid>|<environment>' "$F" |cut -f2 -d\> |cut -f1 -d\< | (while read ID
do
read ENVIRONMENT1
read ENVIRONMENT2
read ENVIRONMENT3
read ENVIRONMENT4

if [-z "$ENVIRONMENT1"] || ["$ENVIRONMENT1" = "not applicable"]; then
printf "NA,"
elif [-z "$ENVIRONMENT2"]; then

 54

printf "$ENVIRONMENT1,"
elif [-z "$ENVIRONMENT3"]; then
printf "$ENVIRONMENT1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,$ENVIRONMENT2,"
elif [-z "$ENVIRONMENT4"]; then
printf "$ENVIRONMENT1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,$ENVIRONMENT2,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,$ENVIRONMENT3,"
else
printf "$ENVIRONMENT1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,$ENVIRONMENT2,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,$ENVIRONMENT3,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,$ENVIRONMENT4,"
fi
done);

egrep '<original_docid>|<symptom>|<symptom_detail>' "$F" |cut -f2 -d\> |cut -f1 -d\< | (while read ID
do
read SYMPTOM
read DETAIL1
read DETAIL2
read DETAIL3

if [-z "$SYMPTOM"] || ["$SYMPTOM" = "not applicable"] ; then
printf "NA,NA,"
elif [-z "$DETAIL1"] || ["$DETAIL1" = "not applicable"]; then
printf "$SYMPTOM,NA,"
elif [-z "$DETAIL2"]; then
printf "$SYMPTOM,$SYMPTOM"_"$DETAIL1,"
elif [-z "$DETAIL3"]; then
printf "$SYMPTOM,$SYMPTOM"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,$SYMPTOM"_"$DETAIL2,"
else
printf "$SYMPTOM,$SYMPTOM"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,$SYMPTOM"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"

 55

printf "$ID,NA,NA,NA,NA,$SYMPTOM"_"$DETAIL3,"
fi
done);

egrep '<original_docid>|<user_task>|<user_task_detail>' "$F" |cut -f2 -d\> |cut -f1 -d\< | (while read ID
do
read USERTASK
read DETAIL1
read DETAIL2
read DETAIL3
read DETAIL4
read DETAIL5

if [-z "$USERTASK"] || ["$USERTASK" = "not applicable"] ; then
printf "NA,NA,"
elif [-z "$DETAIL1"] || ["$DETAIL1" = "not applicable"]; then
printf "$USERTASK,NA,"
elif [-z "$DETAIL2"]; then
printf "$USERTASK,$USERTASK"_"$DETAIL1,"
elif [-z "$DETAIL3"]; then
printf "$USERTASK,$USERTASK"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,$USERTASK"_"$DETAIL2,"
elif [-z "$DETAIL4"]; then
printf "$USERTASK,$USERTASK"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,$USERTASK"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,$USERTASK"_"$DETAIL3,"
elif [-z "$DETAIL5"]; then
printf "$USERTASK,$USERTASK"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,$USERTASK"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,$USERTASK"_"$DETAIL3,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,$USERTASK"_"$DETAIL4,"
else
printf "$USERTASK,$USERTASK"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,$USERTASK"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,$USERTASK"_"$DETAIL3,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,$USERTASK"_"$DETAIL4,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"

 56

printf "$ID,NA,NA,NA,NA,NA,NA,$USERTASK"_"$DETAIL5,"

fi
done);

egrep '<original_docid>|<main_component>|<main_component_detail>' "$F" |cut -f2 -d\> |cut -f1 -d\< | (while read ID
do
read MAINCOMP
read DETAIL1
read DETAIL2
read DETAIL3
read DETAIL4
read DETAIL5
read DETAIL6

if [-z "$MAINCOMP"] || ["$MAINCOMP" = "not applicable"] ; then
printf "NA,NA,"
elif [-z "$DETAIL1"] || ["$DETAIL1" = "not applicable"]; then
printf "$MAINCOMP,NA,"
elif [-z "$DETAIL2"]; then
printf "$MAINCOMP,$MAINCOMP"_"$DETAIL1,"
elif [-z "$DETAIL3"]; then
printf "$MAINCOMP,$MAINCOMP"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL2,"
elif [-z "$DETAIL4"]; then
printf "$MAINCOMP,$MAINCOMP"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL3,"
elif [-z "$DETAIL5"]; then
printf "$MAINCOMP,$MAINCOMP"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL3,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL4,"
elif [-z "$DETAIL6"]; then
printf "$MAINCOMP,$MAINCOMP"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"

 57

printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL3,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL4,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL5,"
else
printf "$MAINCOMP,$MAINCOMP"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL3,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL4,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL5,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL6,"
fi

done);

egrep '<original_docid>|<minor_component1>|<minor_component1_detail>' "$F" |cut -f2 -d\> |cut -f1 -d\< | (while read
ID
do

read MINORCOMP1
read DETAIL1
read DETAIL2

if [-z "$MINORCOMP1"] || ["$MINORCOMP1" = "not applicable"] ; then
printf "NA,NA,"
elif [-z "$DETAIL1"] || ["$DETAIL1" = "not applicable"]; then
printf "$MINORCOMP1,NA,"
elif [-z "$DETAIL2"]; then
printf "$MINORCOMP1,$MINORCOMP1"_"$DETAIL1,"
else
printf "$MINORCOMP1,$MINORCOMP1"_"$DETAIL1,NA,NA,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,$MINORCOMP1"_"$DETAIL2,"
fi
done);

 58

egrep '<original_docid>|<minor_component2>|<minor_component2_detail>' "$F" |cut -f2 -d\> |cut -f1 -d\< | (while read
ID
do

read MINORCOMP2
read DETAIL1
read DETAIL2

if [-z "$MINORCOMP2"] || ["$MINORCOMP2" = "not applicable"] ; then
printf "NA,NA,"
elif [-z "$DETAIL1"] || ["$DETAIL1" = "not applicable"]; then
printf "$MINORCOMP2,NA,"
elif [-z "$DETAIL2"]; then
printf "$MINORCOMP2,$MINORCOMP2"_"$DETAIL1,"
else
printf "$MINORCOMP2,$MINORCOMP2"_"$DETAIL1,NA,NA,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,$MINORCOMP2"_"$DETAIL2,"
fi
done);

egrep '<original_docid>|<product_function>|<product_function_detail>' "$F" |cut -f2 -d\> |cut -f1 -d\< | (while read
ID
do
read PRODUCT
read DETAIL1
read DETAIL2

if [-z "$PRODUCT"] || ["$PRODUCT" = "not applicable"] ; then
printf "NA,NA,"
elif [-z "$DETAIL1"] || ["$DETAIL1" = "not applicable"]; then
printf "$PRODUCT,NA,"
elif [-z "$DETAIL2"]; then
printf "$PRODUCT,$PRODUCT"_"$DETAIL1,"
else
printf "$PRODUCT,$PRODUCT"_"$DETAIL1,NA\n"
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,$PRODUCT"_"$DETAIL2,"

 59

fi
done);

egrep '<original_docid>|<software_topic>' "$F" |cut -f2 -d\> |cut -f1 -d\< | (while read ID
do

read SOFTWARE

if [-z "$SOFTWARE"] || ["$SOFTWARE" = "not applicable"] ; then
printf "NA\n"
else
printf "$SOFTWARE\n"

fi
done);

done

 60

C.2 Configuration file for AIRS

#values describing the data

Training File:
TrainF contentTopic.trn

Test data File:
TestF contentTopic.tst

norms file
the norms file has 2 lines in it with 2 feature vectors
the first line has the minimum value for each feature
and the 2nd line as the maximum vale for each feature
NormsFile contentTopic.norms

where to output the statistics
Stats contentTopic.sts

where to output the trained system
NetOut contentTopic.net

where to output the predictions for each vector in the test
and training set
Pred contentTopic.prd

the number of features in each vector in the data set
NGenes 4

the number of classes in the data set
Classes 3

is there a label for each vector?

 61

if so, this label must be in the 1st column of the data
labels yes

#various learning parameters

number of passes through the training data
has only been experimented, really, with value of 1
Epochs 1

the clonal rate
CRate 10

the mutation rate
MRate 0.1

number of training data items to seed the network
InitSize 0

the Affinity Threshold Scalar (ATS)
Nat 0.2

the stimulation threshold
StimT 0.95

the number of resources allowed in the system
NumRes 200

the K value used for the systems response to data items
BcellK 7

this is the hyper mutation rate for Memory Cell offspring
if it is not set, then the default value is 2
HRate 10.0

if NumRes is not set, then RRate is used as a scalar for

 62

determining the number of resources in the system
numres = RRate * number of training items
#RRate 3.0

this is the rate at which resources are added to an ARB
if it is not specified then RAddRate = Clonal Rate
#RAddRate 5

if InitSize is not set, then TrainP is used to determine
the number of data items to use to seed the network
initsize = TrainP * number of training items
#TrainP 0.2

 63

C.3 Code: creates the semantic vector for the “counting edges” approach

/*
 * Created on 06-Aug-2004
 * Author: Anastasia Krithara
 *
 * Creates a table containing the distances between the
 * categories of a given schema
 * Distance: the number of edges
 */

import java.io.*;
import java.util.*;

public class SemanticVector
{
 public static boolean TRAIN = false;
 public static String infoLine = "";
 public static String category = "";
 public static String categories = "";
 public static String nextToken = "";
 public static String outname = "";
 public static int pos1 = 0;
 public static int pos2 = 0;
 public static String[] classes;
 public static File output;
 public static File docs;
 public static File path;
 public static String line="";
 public static StringTokenizer tokenizer;
 public static String delim = "\n";
 public static boolean EOF = false;
 public static boolean found = false;
 public static boolean exist = false;

 64

 public static boolean child1 = false;
 public static boolean child2 = false;
 public static File[] OUTfiles; //array which holds the names of all out files
 public static File[] CAT;
 public static File[] CATEST;
 public static int len = 0;
 public static int[][] SemVect;
 public static double[][] NormVect;

 public static double[][] createVect(int[][] SemVect,double[][] NormSem,String[] classes) throws IOException
 {
 len = classes.length;
 SemVect = new int[len][len];

 for(int w=0;w<len;w++)
 {
 for(int q=0;q<len;q++)
 {
 child1 = false;
 child2 = false;
 pos1 = classes[w].length();
 pos2 = classes[q].length();
 char[] ch1 = classes[w].toCharArray();
 char[] ch2 = classes[q].toCharArray();

 for(int a=0;a<ch1.length;a++)
 {
 if(ch1[a] == '_')
 {
 child1 = true;
 pos1 = a;
 break;
 }
 }//end for

 for(int b=0;b<ch2.length;b++)

 65

 {
 if(ch2[b] == '_')
 {
 child2 = true;
 pos2 = b;
 break;
 }
 }//end for

 if(classes[w].equals(classes[q]))
 SemVect[w][q] = 0;

 else if(classes[w].startsWith(classes[q]+"_") || classes[q].startsWith(classes[w]+"_"))
 SemVect[w][q] = 1;

 else if(classes[w].substring(0,pos1).equals(classes[q].substring(0,pos2)))
 SemVect[w][q] = 2;

 else
 {
 if(child1 && child2)
 SemVect[w][q] = 4;

 else if((child1 && !child2) || (!child1 && child2))
 SemVect[w][q] = 3;

 else if(!child1 && !child2)
 SemVect[w][q] = 2;
 }//end else

 //System.out.println("SemVect["+w+"]["+q+"]: "+SemVect[w][q]);
 }//end for q
 }//end for w

 NormSem = normalize(SemVect);

 66

 return NormSem;

 }//end createVect

 public static double[][] normalize(int[][] vector)
 {
 double[][] afterVect = new double[vector.length][vector[0].length];
 double Sum = 0;

 for(int l=0;l<vector.length;l++)
 {
 Sum=0;
 for(int m=0;m<vector[l].length;m++)
 {
 Sum = Sum + vector[l][m];
 //System.out.println("vector["+l+"]["+m+"]: "+vector[l][m]);
 }//end for m

 //System.out.println("Sum: "+Sum);
 for(int m=0;m<vector[l].length;m++)
 {
 afterVect[l][m] = (double)vector[l][m]/Sum;
 }//end for m

 }//end for l

 return afterVect;
 }//end normalize

 public static String[] findClasses(String FOLDER,int FINAL,int FOLD)
 {
 for(int Final=0;Final<FINAL;Final++)
 {

 67

 String str = Integer.toString(Final+1);

 for (int Fold=0;Fold<FOLD;Fold++)
 {
 len = 0;
 String nbr = Integer.toString(Fold+1);
 String name = "Fold".concat(nbr);
 String PATH = "/home/anakri/Final"+str+"/Fold"+nbr+"/TRAINING/SCHEMAS/"+FOLDER+"/";
 String TESTPATH = "/home/anakri/Final"+str+"/Fold"+nbr+"/TEST/SCHEMAS/"+FOLDER+"/";

 path = new File(PATH);
 //System.out.println(path);
 CAT = path.listFiles();

 for(int l=0;l<CAT.length;l++)
 {
 if(CAT[l].isDirectory())
 len++;
 }

 path = new File(TESTPATH);

 CATEST = path.listFiles();
 for(int l=0;l<CATEST.length;l++)
 {
 exist = false;
 if(CATEST[l].isDirectory())
 {
 for(int d=0;d<CAT.length;d++)
 {
 if(CATEST[l].getName().equals(CAT[d].getName()))
 exist = true;
 }
 if(!exist)
 len++;
 }//end if

 68

 }//end for
 classes = new String[len];
 int i=0;
 for(int c=0;c<CAT.length;c++)
 {
 if(CAT[c].isDirectory())
 {
 classes[i] = CAT[c].getName();
 i++;
 }

 }//end for

 path = new File(TESTPATH);

 CATEST = path.listFiles();
 for(int c=0;c<CATEST.length;c++)
 {
 exist = false;
 if(CATEST[c].isDirectory())
 {
 for(int d=0;d<CAT.length;d++)
 {
 if(CATEST[c].getName().equals(CAT[d].getName()))
 exist = true;
 }
 if(!exist)
 {
 classes[i] = CATEST[c].getName();
 i++;
 }
 }//end if
 }//end for
 }//end FOLD

 69

 }//end FINAL

 return classes;
 }//end findClasses

}//end SemanticVector

 70

	2.1 Machine Learning and Classification
	2.2 Classification techniques
	2.3 Information Extraction
	2.4 Semantic Web
	2.5 Schema matching
	Principles for Tree Similarity Measure Construction
	Approaches of semantic similarity measures

	3.1 Dataset
	3.2 Matching between different schemas in the dataset
	3.3 Classifiers and Classification procedure
	Features extraction, selection and representation
	“Counting edges” approach
	Probability of the least Subsumer
	“Simple” approach

	3.4 “Semantic” Error metric
	4.1 Accuracy results
	4.2 “Semantic” Error metric results
	5.1 Discussion
	5.2 Future Directions
	The categories of each schema
	One-to-one schema mapping: algorithms, results
	Some parts of the implemented code (Java and Bash Scripts)

