
                                                                

       
Semantic Classification1 
 
Anastasia Krithara2 
Digital Media Systems Laboratory  
HP Laboratories Bristol 
HPL-2004-182 
October 20, 2004* 
 
  
 
 
semantic web, 
machine learning, 
document 
classification 

A key challenge in the semantic web is the mapping between different 
concepts. Many techniques for such mapping exist, but most of them 
induce a one-to-one mapping, which does not seem to correspond to real 
world problems. This project proposes a new approach, which tries to use 
the power of machine learning, and in particular classification algorithms, 
to solve the mapping task. It introduces a new semantic similarity metric 
which is used with semantic metadata and classification algorithms. The 
approach is tested in a real world dataset. Pre-processing of the dataset 
took place, and in particular feature selection, extraction and 
representation was implemented, for both content-based and semantic 
features. The documents of the dataset were classified using the content-
based features, the semantic ones, and their combination. The results 
were compared and they gave us an insight of how semantic features can 
affect classifiers and traditional features. 

 

* Internal Accession Date Only 
 1MSc dissertation submitted to the University of Bristol 
 2University of Bristol, Bristol, UK                              Approved for External Publication 
 Copyright Hewlett-Packard Company 2004 





Abstract 
 

A key challenge in the semantic web is the mapping between different concepts. 
Many techniques for such mapping exist, but most of them induce a one-to-one 
mapping, which does not seem to correspond to real world problems. This project 
proposes a new approach, which tries to use the power of machine learning, and in 
particular classification algorithms, to solve the mapping task. It introduces a new 
semantic similarity metric which is used with semantic metadata and classification 
algorithms. The approach is tested in a real world dataset. Pre-processing of the 
dataset took place, and in particular feature selection, extraction and representation 
was implemented, for both content-based and semantic features. The documents of the 
dataset were classified using the content-based features, the semantic ones, and their 
combination. The results were compared and they gave as an insight of how semantic 
features can affect classifiers and traditional features. 
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Chapter 1 
 

Introduction 
 

Nowadays, an explosion of information has taken place, which opens up new 
horizons in the acquisition of knowledge in a wide variety of subjects. However, the 
huge amount of available data is very difficult to handle. A representative example is 
the World Wide Web where the search of useful information in a particular subject is 
very difficult. This is the reason why, several ways to solve this problem have been 
attempted. One of them, which seems to gain ground, is the use of ontologies [29].  

 
Ontologies are used to describe the semantics of descriptive data (metadata). 

In other words, ontologies are collections of information. They generally have a 
taxonomy and a set of inference rules. “The taxonomy defines classes of objects and 
relations among them.” “Inference rules in ontologies supply further power” [29]. One 
problem that occurs is that more than one ontology may be used to describe the same 
domain, and it is difficult, if not impossible, to make everyone to agree on a particular 
ontology. So, a way must be found in order to map the ontologies that are 
semantically related. This procedure is known as ontology mapping. The problem of 
ontology mapping is a key research area for the semantic web. The latter hopes to be 
an “extension of the current web in which information is given well defined meaning, 
better enabling computers and people to work in cooperation” [17]. 

 
 Although many techniques exist for inducing a one to one mapping between 

concepts, the correspondence is unlikely to be this clear cut for real world data. 
Machine Learning techniques are well suited to dealing with semantic fuzziness, yet 
typically use mainly content based features, and not, for example, semantic metadata. 
In this project an investigation of a hybrid approach takes place, constructing and 
using semantic features as rich inputs to a machine learner. This approach is tested on 
a real world dataset.  

 
The question we want to answer is if a similarity measure would help in the 

classification process. We want to find out if fuzziness is better than 1:1 matching. 
The objectives of this project are to try semantic features to a number of machine 
learners and then evaluate the results. More than one similarity measure will be tested 
in order to check their performance.  

 
In other words, we want to achieve three goals:  
1. Provide a novel and useful semantic similarity metric for use with semantic 

metadata and machine learning algorithms.  
2. Provide some insight as how semantic similarity metrics can be useful, how 

they affect machine learners, and how to combine them with traditional 
features.  
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3. Use our approach to solve a real world problem. 
 

This thesis is constructed as follows: Charter 2 gives the background information 
that was needed in order to implement the particular project. More specifically, in the 
first section a description of classification is given and some of the most known 
classifiers are presented. In the second section, a brief introduction in Semantic web is 
given, and then in last section, some of the current approaches of schema matching 
are presented. Chapter 3 outlines all the necessary details for the implementation 
procedure. The experimental results are reported in Chapter 4 and in Chapter 5 a 
discussion of the results takes place. The latter also includes the future work that 
could extend the particular project. Finally, Chapter 7 includes the conclusion of the 
project.  In the Appendixes there are some parts of the code which was implemented 
for the purposes of this project and some tables with the achieved results. 
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Chapter 2 
 

Literature Review 

 
 
 Before describing the work that has been done for the project, in order to 
understand the key concepts of the project and the proposed solutions, it is necessary 
to present the work that already has been done in some particular research areas. More 
specifically, the concepts of machine learning and classification will be presented. 
Some of the well known classifiers will be explained in more details. Also, the 
concept of schema mapping will be introduced and its current approaches will be 
explained. 
 
 

2.1 Machine Learning and Classification 
 
 From the invention of computers, a high interest was showed by scientists, in 
constructing computer programs that can “automatically improve with experience”. 
Since then, many algorithms have been invented in this field of computer science 
which is known as Machine Learning. Classification is a subfield of machine learning 
and therefore, the techniques that are used in the latter are a subset of the general 
techniques of machine learning tasks. 
 
 Classification can be described as a function that maps (classifies) a data item 
into one of the several predefined classes [1]. A well-defined set of classes and a 
training set of pre-classified examples characterize the classification. So, the 
classification process is a 2-step procedure:   
 

• Training. In this step a model is being constructed, describing a predefined set 
of data classes. The training data are analyzed by a classification algorithm in 
order the model to be constructed.  

 
 

 
 

Figure 1: Training

Classification Classification 
model algorithm Training set 
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• Classification. In this step testing data are used in order to calculate the 
model accuracy. There are several methods to estimate the classifier 
accuracy. The test data are selected randomly and they are independent 
from each other. The model classifies the test data and then the known 
class label is compared with the model prediction about the class. The 
model accuracy in a specified test dataset is the percentage of the test 
dataset which has been classified correctly by the learning model. 

 
 

 
 

Figure 2: Classification 
 

 
 If the accuracy of the model is acceptable, the model can then be used to 
classify other data items. So, we could say that the goal of the classification is to 
induce a model that can be used to classify future data items whose classification is 
unknown [1]. 
 
 

2.2 Classification techniques 
 
 A number of classification techniques have been developed. We now review 
some of these techniques, such as: Bayesian classifier, Decision Trees, AIRS 
(Resource Limited Immune Classifier System), k-Nearest Neighbor and Support 
Vector Machines. All of them are used in the project in conjunction with our semantic 
similarity metrics.  
 
 

2.2.1 Bayesian Classifier 
 
 Bayesian Classifier is among the most effective known algorithms for text 
document classification. It is based on Bayesian statistical classification theory. The 
aim is to classify a sample x in one of the known classes C1, C2… Cn, using a 
probability model defined according to Bayes theory. Each category is characterized 

Test Dataset New Data 

Evaluation of 
classification 

results 

Classification 
model 

Classification model 
accuracy 
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by a prior probability of observing the category Ci. Also, we assume that a given 
sample x belongs to a category Ci with the conditional probability density function 
p(x|Ci)∈[0,1]. Then, using the above definitions and based on Bayes formula, we 
define the posterior probability:  
 

p(Ci|x) = 
)
)(

)(|(
xp
pxp cc ii  

 
An input pattern is classified into a category with the highest posterior 

probability [2]. 
 The simplest Bayesian Classifier is the Naïve Bayes Classifier. “The Naïve 
Bayes Classifier is based on the simplifying assumption that the attribute values are 
conditionally independent given the target value. The assumption is that given the 
target value of the instance, the probability of observing the conjunction α1, α2... αn is 
just the product of the probabilities for the individual attributes: p(α1, α2... αn |uj ) =  

p(α∏i 1|uj ) ” [2]. So, the target value output by Naïve Bayes Classifier (uNB) is: 
 

V
NB

u j

u
∈

= maxarg )(u j
p ∏

i
ji up )|(α  

 
Theoretically, Bayesian Classifiers have the lowest error percentage in 

comparison with all classifiers. In practice, however, this is not always true, because 
of the conditional independence assumption which has been made and the lack of 
available data for the accurate calculation of the conditional probabilities. 
Nevertheless, researches have shown that Naïve Bayes Classifier is competitive with 
other well known classifiers, such as Decision Trees and Neural Networks [3]. 

 

2.2.2 Decision Trees 
  
 Decision Trees are one of the widely used techniques for classification and 
prediction. A number of popular classifiers construct decision trees to generate 
classification models. 
 

 A decision tree is constructed based on a training set of pre-classified data. 
Each internal node of the decision tree specifies a test of an attribute of the instance 
and each branch descending of that node corresponds to one of the possible values for 
this attribute. Also, each leaf corresponds to one of the defined classes. The procedure 
to classify a new instance using a decision tree is as follows: starting at the root of the 
tree and testing the attribute specified by this node, successive internal nodes are 
visited until a leaf is reached. At each internal node, the test of the node is applied to 
the instance. The outcome of this test at an internal node determines the branch 
traversed and the next node visited. The class for the instance is the class of the final 
leaf node [2].  

 
 

 5



Semantic Classification                                                                      Anastasia Krithara 
 

Root node

 

 

Figure 3: Decision Tree 

 
Several algorithms for constructing decision trees have been developed. Some 

of the most widely known algorithms are: ID3 [2], C4.5 [4], SPRINT [5] etc. In 
general terms, most of the algorithms have two distinct phases, a building phase and a 
pruning phase [2]. In the building phase, the training data set is recursively partitioned 
until all the instances in a partition have the same class. The result of this procedure is 
a tree that classifies every data item from the training set. However, the tree 
constructed may be sensitive to statistical irregularities of the training set. Thus, most 
of the algorithms perform a pruning phase after a building phase, in which nodes are 
pruned to prevent overfitting and to obtain a tree with higher accuracy.  

 
The algorithms ID3 [2] and C4.5 [4] are based on a statistical property, called 

information gain, in order to select the attribute to be tested at each node in the tree. 
The measure definition is based on entropy used in information theory, “which 
characterizes the (im)purity of an arbitrary collection of examples” [2]. 

 

2.2.3 Support Vector Machines (SVMs) 
 
 Support Vector Machines provide a powerful methodology for solving 
problems in nonlinear classification.The theory of Support Vector Machines (SVMs) 
was first introduced by Vapnik and was developed from the theory of Structural Risk 
Minimization [7]. “SVMs learn the boundary regions between samples belonging to 
two classes by mapping the input samples into a high dimensional space, and seeking 
a separating hyperplane in this space. The separating hyperplane is chosen in such a 
way as to maximize its distance from the closest training samples” [8]. SVMs have 
been proved very effective for text categorization because of their property of learning 
independently of the dimensionality of the feature space [9]. Furthermore, Kivinen et 
al. [10] have proved both in theory and in practice that SVMs can handle problems 
with dense concepts and sparse instances, which are often seen in documents vectors. 

Internal node Internal node

Leaf node Leaf node Leaf node Leaf node
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In addition, SVMs do not need parameter tuning, as they have an automatic way to 
find good parameters.    
 
 

2.2.4 k-Nearest Neighbor Learning (kNN) 
 

All the above learning methods are called eager methods because they give an 
explicit description of the target function on the whole training set. On the other hand 
there are the instance-based methods which are called lazy methods, because the 
classification model is not built a priori. In their learning procedure they just store all 
the training instances and in the classification procedure they assign the target 
function to a new instance. The k-Nearest Neighbor learning (kNN) is the most basic 
of the instance-based methods. The kNN algorithm stores all available examples and 
classifies new instances of the example language based on similarity measure. The 
classification of an instance is most similar to the classification of other instances that 
are nearby in the vector space, usually in terms of the Euclidean distance [2]. 

 

2.2.5 AIRS - A Resource Limited Immune Classifier 
 
 AIRS (Artificial Immune Recognition System) is a particular type of artificial 
immune system, specifically designed for supervised classification tasks. Artificial 
Immune Systems are inspired by natural Immune Systems. In other words, natural 
Immune Systems serve as metaphors in Computational Systems [11]. Further details 
about which aspects of natural Immune Systems are used as metaphors for the 
Artificial ones can be find in the work of Timmis et al. [13].  
 

AIRS, which is based on kNN, has some properties which make it attractive as 
a classification system. Firstly, it does not expect from the user to find an appropriate 
architecture for the system, because it can use its resources according to the data that 
have been given to it. Secondly, it is capable or generalization. A very important 
property of AIRS is that the occurring classification system after the training can be 
significantly smaller than the training set. In addition, it has a number of parameters 
which can be adjusted by the user according to a specific problem, but as Watkins 
[14] claims, in most cases the default parameter values give very good results and this 
can be seen as an advantage of AIRS as it is not necessary for the user to try to find 
out the best values for them. 

 
All the above properties make the AIRS a very good classifier, which can be 

compared with many well-known classifiers [11], for example the ones that have been 
mentioned earlier. 

 
 

2.3 Information Extraction 
 
 In order to apply the above classification methods, we must first extract the 
information needed from the data we want to classify (XML documents in our case). 
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This is a very important part of the classification process, because if the extracted 
information is poor and it does not represent the content of the document fairly well, 
the classification accuracy results will be also poor. The extracted information is 
generally represented by a feature vector. 
 
 We first have to select the features we will extract from the documents. This 
requires a text processing, depending on the format of the document. In the case of 
XML documents, the text processing includes the removal of tags, and of some, 
irrelevant with the content, information that may include. There are also some 
stemming algorithms, which reduce the number of extracting words if there are two or 
more that have the same root. For example, if in the documents there are the words, 
“describe”, “descriptive” and “description”, the stemming algorithm will reduce these 
words to only one: “descri” which is the root of all the above three. 
 
 After the extraction of the features, we have to choose which of them we are 
going to use in the feature vector. In general, the number of the extracted features is 
very big and also some of them are not informative at all. So, we have to find a way to 
select the most representative ones. There are several methods which perform this 
task. One of them, which was used for the project, is called information gain. Given 
the features, using the information gain we can choose the most useful features. More 
details about information gain are given in Chapter 3.  
 
 Finally, a way to represent the chosen features has to be decided. A common 
one, which is also used in this project, is the use of a boolean vector, where each 
feature has the value zero if the particular feature exists in the document, one 
otherwise. 
 
 

2.4 Semantic Web 
 

Up to this point, we have given an overview of the classification process and 
we have introduced some well-known machine learners. An important point about 
current machine learners is the fact that they are able to deal only with content based 
features. In order to understand why the latter could be a problem we should first 
introduce the idea of Semantic Web.  
 

The idea of Semantic Web is “an extension of the current web in which 
information is given well-defined meaning, better enabling computers and people to 
work in cooperation” [15]. In order Semantic Web to implement that, it gives 
structure to data and it uses ontologies to describe the semantics of the data. Semantic 
Web is a promising idea but it also has many difficult challenges. A key challenge in 
creating Semantic Web is the semantic mapping among the ontologies [16]. Trying to 
implement Semantic Web, different ontologies will be created, and some of them may 
describe similar domains but use different terminologies. So, we must find a way to 
know the semantic correspondences between their elements [15, 18].  

 
Semantic Web introduces the problem of ontology mapping. There are many 

techniques which try to solve the above problem by implementing one-to-one 
mapping between concepts, but these solutions do not seem to be applicable in real 

 8



Semantic Classification                                                                      Anastasia Krithara 
 

world data, as it is rather rare to have exactly one-to-one mapping. On the other hand, 
machine learner, as mentioned earlier, may seem a good solution to the problem but 
they do not deal with semantic metadata.  

 
In the following chapters, we give a more detailed presentation of the schema 

mapping problem, we introduce a number of solutions that have taken place and we 
present our own approach to this problem. 
 
 

2.5 Schema matching 
 

“An ontology specifies a conceptualization of a domain in terms of concepts, 
attributes, and relations. The concepts provided model entities of interest in the 
domain. They are typically organized into a taxonomy tree where each node 
represents a concept and each concept is a specialization of its parent“ [16]. In other 
words, ontology can be seen as the schema of the particular concept. So, instead of the 
term ontology mapping we can use the term schema matching which is more widely 
used. In the particular project, we concentrate in taxonomies and not in whole 
ontologies. 

 
Schema matching could be described as the process “which takes two schemas 

as input and produces a mapping between elements of the two schemas that 
correspond semantically to each other” [16].  

 
On this point, we present the reason why schema matching is important for 

this project and also the several domains that it is needed in order to understand its 
importance.  

 
Schema matching gives us the possibility to have different views of the same 

data. It would be very useful to have the option to choose how the data are going to be 
presented. Everybody is used to a particular view of some data, so it would be very 
helpful to have the possibility to change the way some data are represented to the way 
someone is used to. In order to succeed it, we must know the schema in which the 
data are represented, the schema we want to be represented and of course have the 
possibility to match the two schemas. This possibility is the one that has inspired the 
particular project.  

 
Some other domains where schema matching is helpful are also worth 

mentioning. A very important problem is schema integration: Given a set of 
independently developed schemas, construct a global view [17]. Because the schemas 
are developed independently, it is obvious that they have different structure and 
terminology. So, on this point schema matching is needed so that the relationship 
between the schemas will be found and then the integration will take place. Also, 
schema matching is very useful in data warehouses. “Data warehouse is a decision 
support database that it is extracted from a set of data sources” [16]. So, we need a 
way to transform data from the data source format into the data warehouse format. 
Another domain where schema matching is useful is E-commerce. The participants to 
a transaction exchange messages between each other. It is almost impossible everyone 
to use the same message schema. So, schema matching is useful in order to give to the 
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participants the possibility to communicate. Finally, it would be very useful for a user 
to have the possibility to specify the output of a query and the system can find out 
how this output could be produced. So, the system should be able to map the user’s 
output to schema elements and then find out the qualification that gives the semantics 
of the mapping. In order to succeed this, we need, as in the previous cases, schema 
matching.  
 

From all the above, we can conclude that schema matching is really important 
and solutions for automatic schema matching should be developed.  
 
 

2.5.1 Current Approaches of Schema Matching 
 
A review of current approaches and their evaluation can be found in both the 

works of Rahm and Bernstein [18] and Hong-Hai, Rahm and Melnik [24]. Below, we 
present an approach that employs machine learning techniques and contrast our 
proposal with it.  

 
AnHai Doan and colleagues [16] have created a system named GLUE which 

applies machine learning techniques to semi-automatically create semantic mapping. 
In the above figure (figure 6) we can see the architecture of GLUE system.  
 
 

 
 

Figure 4: The GLUE architecture  
From [16, Figure 2]  

As we can see, it takes as an input two taxonomies. A number of machine 
learning techniques are then applied to compute the joint probability distributions of 
every pair of concepts (A є O

1
, B є O

2
). A meta-learner is used in order to combine 

the predictions of the different learners. The reason for using a meta-learner instead of 
a single one is that the majority of the learners are good for particular tasks. So, the 
use of a meta-learner extends GLUE capability.  
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The computed joint probability distributions are used as an input in the second 
step of GLUE, the similarity estimator. In this step, the user has the possibility to 
choose which similarity measure wants to use. On the one hand, the used similarity 
measure should be able to be computed using only the joint probability distributions 
as this is the input it has. This restricts the number of the similarity measures that the 
user has the possibility to use. On the other hand, the user does have the possibility to 
choose between a number (even if it is restricted) of similarity measures, which is 
very useful, because the applicability of every measure depends on the occasion and 
there is one that could be considered as the best for every occasion. So, the Similarity 
Estimator gives as an output a similarity matrix between the concepts in the two 
taxonomies.  
 

The last step of the GLUE architecture is the Relaxation Labeler, which takes 
as input the similarity matrix and exploits several constraint and heuristics to improve 
matching. The output of this step is a 1:1 mapping between the two taxonomies. A 
more detailed description of the above system can be found in [16]. This approach is 
different comparing to ours, because in our case, we want to examine not a 1:1 
mapping between two different schemas but a classification of the documents in the 
one schema, given information about the classification in the other. 

 
There are several other approaches for 1:1 schema matching. In the figure 

below (figure 7) a classification of the current approaches is given. The general 
procedure that is common for all of them is the following: They take two schemas as 
input and they give as output a 1:1 mapping between the elements of these schemas. 
The mapping is implemented according to the particular matching each approach 
uses. A survey of such approaches can be found in Rahm’s work [18].  
 

 
Figure 5: Classification of schema matching approaches  

From [18, figure 2]  
 

Another interesting work is that of Fausto Giunchiglia, Pavel Shvaiko et al. 
[26, 27, 28]. They present a new approach for schema matching, called semantic 
matching. More particularly, their method takes into account not only the labels of the 
nodes of the schemas they want to match, but also “the semantic relations between the 
concepts assigned to nodes” [27]. For example, some concepts can be equivalent, or 
one can be more general than the other.  
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As mentioned earlier, these approaches map each element of the one schema 
to the element of the other schema with the highest similarity, which results a 1:1 
mapping [16] and this is not applicable in the most of the cases of real world data, as 
it is difficult for the data to have exactly one-to-one mapping.  

 
Worth mentioning also is the work of Sarawagi, Chakrabarti and Godbole 

[25]. They present a new approach, called cross-training, which use sample 
documents from one taxonomy in order to improve the classification in another 
taxonomy. They assume that the taxonomy is a flat set of class labels. They present 
two algorithms. One is probabilistic and it is based on EM (Expectation 
Maximization) and the second is discriminative and it is based on SVMs (Support 
Vector Machines). Their results show that these methods are better than the baseline 
classifiers. 

 
The latter approach is closer to the one we examine. The main difference is 

that, as mentioned earlier, they do not take into account the hierarchy and they 
consider the taxonomy as flat. In contrary, in our approach we use two-level 
hierarchies. 

 
In this project, the aim is to find a fuzzy, context sensitive mapping between 

two schemas by combining semantic features and context-based features and using 
them as an input in a machine learner. 

 
 

2.5.2 Semantic similarity measures 
 

In order to match two schemata and create the semantic features, we need a 
notion of similarity. So, we are interested in semantic similarity measures. There are 
several similarity measures that can be used. Before we discuss them, it is worth 
mentioning some principles that we must take into consideration when constructing a 
tree similarity measure.   
 

Principles for Tree Similarity Measure Construction  
 

 According to Tom Morrison [22], the most important principles that we must 
consider before construct a tree similarity measure are:  
 

1. Matching at categories lower down the tree structure should count more to the 
measure than matching higher up, because this indicates a more precise match.  

2. Matches at the top level of the tree should not count at all.  
3. Matching counting should be reduced when they are not exactly on the same 

category and this reduction should be proportional to the generational distance.  
4. The matching metric should be normalized so that it ranges from 0 to 1.  
5. The matching metric should take into account all possible matches between the 

two schemata. 
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Approaches of semantic similarity measures 
 
 As mentioned earlier, there are several semantic similarity measures that can 
be used as a notion for similarity. Three of them have been used for the purposes of 
the project.  
  
 The first one is our own similarity measure. The idea is the following: for each 
concept on the tree, we calculate the distance from any other concept of the tree. More 
particular, we count the number of edges from each of the other concepts and we 
construct a sort of a taxonomic vector. This vector is normalized before is used.  
 

The inspiration of the second similarity measure was given by the work of P. 
W. Lord et Al. [23]. The idea is to use the probability of the least subsumer. Last 
subsumer is the node that subsumes A and B (where A and B are nodes on the tree) 
and there is no other node lower down which also subsumes A and B. Each node on 
the tree has a probability. So the similarity of A and B depends on the probability of 
the node that least subsumes both A and B. Like in the previous case, we normalize 
the vector before we use it. 

 
As a third similarity measure, a simple method is followed. All nodes are 

represented as a boolean vector. The node to which the document belongs has value 1; 
all other nodes have the value 0. Using these values we create the feature vector. 

 
More details about the above approaches are given in Chapter 3(3.3.2) of the 

present report. 
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Chapter 3 
 

Implementation 
 
 In this chapter all the details of the implementation are given. The chapter is 
organised as follows:  At first, a description of the dataset is given. Then, the one-to-
one schema matching that was implemented is presented. The procedure for the 
content-based classification is described. More particularly, we present the extraction 
of the features, their selection and their representation. Also, the tools and the 
classifiers used are presented. The description of the semantic features is following, in 
other words, the similarity measures used and the representation of the features. Then, 
the combination of content-based with the semantic features is taking place and all the 
details about this procedure are given. Finally, the “semantic” error metric is 
explained, a measure used for the evaluation of the results. 
 
 

3.1 Dataset 
 

 The dataset which was used is about problem and solution descriptions for HP 
and Compaq products. The dataset consists of 1864 XML documents. Each is tagged 
with category data from a number of simple 2-level hierarchies. An example of a part 
of a hierarchy in which the documents are categorized is given below (Figure 6):  

Content Topic 

Component

… Compatibility Firmware/BIOS 

Warranty

Specifications

… …Product
 

 
 

Figure 6: Some of the values of the hierarchy “Content Topic”  
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In the following table, a description of all the hierarchies is given: 
  

Categorization Metadata Description 

content_topic 
The main topic of the content; it is the parent of <content_topic_details>. 
This property is single-valued and is required.  A question to ask that may 
help determine what value should be selected is: What one topic of the 
product is this content about? 

Environments The user’s environment.  In addition to software, this property can apply to 
technology and applications.  This property is multi-valued. 

Main_component 
The primary component of the product.  A component value should only be 
selected when a component of the product directly relates to the topic. This 
property is multi-valued. 

Minor_component1 See main_component. 

Minor_component2 See main_component. 

Product_function 
The function of the product discussed in the content – whether the function is 
operating properly or part of a fix problem document. This property is the 
parent of <product_function_details> and is single-valued.  It is only relevant 
if the content describes the function, or requires the function to occur. 

Software_topic Software applications being described in the content. This property is single-
valued. It does not apply to operating systems, hardware, or drivers.  

Symptom 
The symptom that led to the problem discussed in the content. This property 
is only available if fix problem is selected as the <user_task>.  This property 
is single-valued. 

User_task 

The major task that best represents the intent of the document, and the 
reason why a customer would be interested in reading the document. 
(Usually the task is part of the title.) The property <user_task> is single-
valued, which means only one value can be assigned. It is common in a 
support document to discuss more than one task, but use this property to 
assign  

 
Table 1: schemas description 

 
 
 Each of these categories has a number of values. Further details about these 
values of the above hierarchies can be found in the Appendix A. 
 
 Having a document classified to a category of one of the above hierarchies 
(hierarchy A in figure 6), we want to determine if the use of that information plus the 
content-based features can give us better results in the classification of the document 
in another one of the above hierarchies (hierarchy B in figure 6) than using only 
content-based features. In other words, we want to classify the document in hierarchy 
B, using information about its position in hierarchy A and content-based features. 
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Hierarchy A 

Doc Doc 

 
 
 

 
 
 

 
 
 Hierarchy B  
 

 
Figure 7: Having a document classified in hierarchy A  

          try to correctly classify it in hierarchy B 
 
 

3.2 Matching between different schemas in the dataset 
 

In order to determine if the dataset described earlier was suitable for the purposes 
of the particular project, a one-to-one mapping between the hierarchies mentioned 
above took place. In particular, this mapping gave us the possibility to examine two 
characteristics. Firstly, the possibility to determine if there is an exact one-to-one 
mapping, in which case the dataset will be proven unsuitable, as the particular project, 
as mentioned earlier, focuses in the cases where one-to-one mapping is not enough. 
Secondly, the possibility to discover if any decent mapping between two particular 
schemas exists. If there is no connection at all between two schemas then our 
approach cannot be performed in the particular dataset. 
 
 

3.2.1 Pre-process of the dataset 
 
 As mentioned above, the data was available in XML documents, so some pre-
process had to take place in order to implement the mapping. 
 
 A bash script was implemented in order to extract the information needed 
from the dataset (the code can be found in the Appendix C.1). The output of the script 
was a file with the following format: 
 
DocID,Content Topic,Content Topic Detail,Environment,Symptom,… 
 
CN0093W,software,software_operating system,NA,error message,… 
CN0082W,component,component_firmware/BIOS,NA,NA,… 
BU021216_EW01,security,NA,Unix,performance,… 
OT011107_EW02,component,NA,NA,performance,… 
… 
 
 The first line contains the names of all the categories of the schemas. Each of 
the rest lines corresponds to a document and contains the values of the categories, 
respectively with the first line (e.g. the first value is the DocID, the second one is the 
Content Topic, the third one is the Content Topic Detail and so forth). 
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This file was then given as an input to a java program. The latter, created a 

similarity table between the categories of two particular schemas (the user can choose 
any two schemas among the available ones). The values in the table represent the 
number of documents that belong in both the respective categories of the two 
schemas.  

 
This table is then used in order to find an optimal mapping between the chosen 

schemas. The program maps each category of the one schema with a category of the 
second schema according to the values on the table. In order to make that more clear, 
we present below the pseudocode of the algorithm: 
 
FOR (index = 0; index<cats1.length; index++) 
 FIND cats2 [j]   

WHERE similarity (cats1 [index], cats2 [j]) is maximum 
ENDFOR 

 
Where cats1 [] and cats2 [] are the two schemas and similarity (cats1 [i], 

cats2 [j]) is the value in the similarity table which represents the number of 
documents classified in category i from the first schema and in category j from the 
second one. 

 
The above allows the mapping of one category from the first schema with a 

category of the second schema that may have already been mapped with another one, 
in other words it allows many-to-one mapping.  This allows mapping where the 
number of categories between the different schemas is not the same, so some 
categories would stay unmatched.   

 
At first, another attempt for one-to-one mapping (see Appendix B.1 for 

details) was made but it was thrust aside for two reasons: firstly, it was 
computationally expensive and secondly the output was restricted to one-to-one 
mapping (in opposition to the algorithm described earlier). In other words, if a 
category from the one schema has been matched with a category from the other 
schema, then it cannot be match with any other category. But in our approach there 
isn’t any restriction of this kind.  
 
 

3.2.2 Results of matching 
 
 The most representative results of the mapping can be found in Appendix B.2. 
Experiments have taken place for all the possible combinations of the available 
schemas.  
 
 The number and the percentage of the correctly and incorrectly classified 
documents are given. In addition, the correspondence between the categories of the 
two schemas is given. To be more specific, the number of the categories from the first 
schemas that corresponds to each category of the second schema is given. This 
information is important, because we want to know if the correspondences are well 
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spread (we don’t want, for example, all the categories from the first schema to be 
corresponded in only one category of the second one). 
 
 From the above results, considering the characteristics we want the mapping to 
have as mentioned earlier, we can conclude that: Firstly, there is no exact one-to-one 
mapping between any pair of the different schemas. Secondly, we can remark some 
good correspondences between some pairs of schemas. This means that the dataset 
seems to be suitable for the purposes of the project.  
  
 Having determined that the dataset is suitable, we had then to choose also the 
suitable pairs of schemas in which our approach was tested. The total number of 
available pair of schemas comes up to 72 and as a result is not possible (in terms of 
time restrictions, as the whole procedure followed in order to test our approach is 
time-consuming) to test them all. This is why we had to select the ones that were 
given us the most suitable matching results.  
 
 The pairs of schemas which were chosen are presented in the table below (in 
the table, Schema A   Schema B means that we have already the documents 
classified in Schema A and we want to classify them in Schema B): 
 
 

Schema A                      Schema B 
Minor Component 1      Content Topic 
Content Topic                Minor Component 1 
Minor Component 1      Symptom 
 Symptom                       Minor Component 1 
Content Topic                Minor Component 2 
Minor Component 2      Content Topic 

 
Table 2: Selected pairs of schemas 

 
 

3.3 Classifiers and Classification procedure 
 
 Using the selected pairs of schemas, the classification experiments took place, 
using two tools: WEKA and AIRS classifier. 
  
 “The Waikato Environment for Knowledge Analysis (WEKA) is a 
comprehensive suite of Java class libraries that implement many state-of-the-art 
machine learning and data mining algorithms” [19]. It is available on the World-
Wide-Web. It contains tools for data pre-processing, classification, regression, 
clustering, association rules and visualization. We are going to use WEKA for 
classification using the classification models mentioned in chapter 2 (except from 
AIRS, for which WEKA has no algorithm).  
 

For the AIRS classifier, the source code of Andrew Watkins [14, 20, and 21] 
will be used. 
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 The experiments that took place for this project can be divided in three main 
steps. In the first, only content-based features were used for the classification. In the 
second, semantic features were developed and used and in the third a combination of 
content-based and semantic features took place. In the following sections a detailed 
description of the above steps is given. 
 
  

3.3.1 Classification using content-based features 
 
 As mentioned above, at first classification took place using only content-based 
features. In the diagram below, the procedure which was followed is described. 

 
 
  

Figure 8: The classification process 
 
 
 We first have to select the documents which are categorized in both the 
selected schemas. As we use a real world dataset, there are many NA (Not Available) 
values, so not all the documents are categorized in all schemas. Nevertheless, from the 
matching we performed, described in section 3.2, we found out that the pairs of 
schemas we selected have a decent number of documents. More particular, the 
number of documents for the pair of schemas we have selected is approximately 
between 80 and 420, which seems to be a reasonable amount of documents for an 
accurate classification. 
 
 After selecting the documents, we divided them in training and test set. In 
order to have more accurate results, we use 5 times a 10-fold validation procedure. 
According to the latter, for each of the 5 times we do the following: we shuffle the 
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order of the documents in the dataset and we divide it in 10 portions. The 9 are used 
as training set and the remaining one as test set. The portion which was used as a test 
set is rotated so that at the end all the 10 portions have been used as test set. To make 
it clear, in figure 9 a diagram of the process is given. In order to calculate the final 
result, we average all the predictions produced during the above procedure. In 
particular, we take the average of the 50 produced results (5 times * 10-fold 
validation).   
 
 

…Time 1 Time 4 Time 5

… … … Fold 1 Fold 2 Fold 10

 
 

 
Figure 9: Structure of files 

 
 
 From the training set we select the features we want. A detailed description of 
the selection and representation of the features is given in the next paragraphs. The 
reason we use only the training set is to avoid information bleed. In other words, we 
want the feature vector to be different in each fold of the 10-fold validation for more 
accurate results (if we were using also the test set-which is changing in each fold- the 
extracted features would always be the same) .Using these features, we create the 
features vectors for both the training and the test set.  
 
 In order to give them as input to the classifiers, we have to create the files in 
the format that WEKA and AIRS accept them. WEKA uses arff files (one for the test 
and one for the training set) in which first the attributes (features) and their values are 
written and then the data vectors. Below, an example is presented. 
 
@RELATION ContentTopic--MinComp1 
 
@ATTRIBUTE upgrad {0,1} 
@ATTRIBUTE firmwar {0,1} 
@ATTRIBUTE insight {0,1} 
@ATTRIBUTE manag {0,1} 
@ATTRIBUTE server {0,1} 
@ATTRIBUTE download {0,1} 
… 
@ATTRIBUTE class {component,component_compatibility,…} 
 
@DATA 
0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,component 
0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,component 
0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,component 
0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,component 
... 
0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,1,1,software_compatibility 

Test 
set 

Training 
set …
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0,0,0,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,0,1,software_compatibility 
0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,software_compatibility 
0,0,1,0,0,1,1,0,1,0,1,0,1,1,1,1,1,1,0,1,software_compatibility 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,software_compatibility 
… 
 
 AIRS accepts two files (one for the test and one for the training set) with just 
the data vectors, in the following format: 
 
 
0 0 0 1 0 0 0 0 0 1 0 
1 0 0 0 1 1 1 0 0 0 0 
1 1 1 0 1 1 1 0 1 0 2 
1 1 0 1 1 1 1 1 0 0 2 
0 0 1 1 1 0 1 0 0 0 9 
1 0 1 1 1 1 1 1 0 0 9 
1 0 1 0 1 1 0 0 0 0 10 
 
 As we can notice, AIRS does not accept the name of the classes as strings, so 
we have to correlate each value of the class with a number. 
 
 It also needs a configuration file in which information about the parameters of 
AIRS is given. An example of the configuration files that was used in the project can 
be found in Appendix C.2. 
 

Features extraction, selection and representation 
 
 Having selected the training set, we have to extract the information we want 
from these XML documents, in order to use it for the creation of the feature vector. It 
would be possible to use all the words contained in all of the documents as features, 
however it is more sensible to perform some process of features selection for two 
reasons: On the one hand, many words in the documents are present for purposes of 
XML tags, so they are useless in sense of the classification process. On the other 
hand, in the documents there is also the information for the schemas and the 
categories they belong. Using all the available words of the documents, we would use 
also this information, but as mentioned before, the purposes of this part of 
classification is to use only the content-based features.  
 
 For the above reasons, we decided to extract only the words which are 
contained in the body of the XML documents, excluding all the special characters. A 
Java program and a script were implemented in order to extract these features. The 
output of this program is a file for each document, which contains the list of words 
which exist in the body of the particular XML document. In order to enhance the 
classification accuracy, a stemming algorithm was also used. In particular a porter 
stemming algorithm was used, implemented by John Keyes, fully described in [30]. 
 
 Using all the words extracted by the above procedure, the performance of the 
classifiers is not expected to be good enough, as they are too many, and in addition to 
that, we have dimensionality limitations. So, a selection of the most informative 
words is recommended. The concept used in the particular project for the reduction of 
the number of features is information gain. The latter is a concept which is based in 
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the entropy measure which is “a measure of the impurity in a collection of training 
examples” [2]. Information gain gives us a measure of how informative an attribute is, 
in classifying the training data. In other words, what information gain aims is the 
reduction of the entropy which is caused by classifying the examples according to this 
attribute [2]. 
 
 The following example will make the concept of information gain more 
understandable. Imagine we have 4 documents which are classified in a set of classes 
and they contain a number of words, as shown below: 
 
 
 Hardware Memory Disk Problem CLASS 
Doc 1 1 0 1 1 A 
Doc 2 1 1 0 1 A 
Doc 3 0 0 0 1 B 
 
   
 The word “Hardware” exists in both Doc 1 and Doc 2 and not in Doc 3, which 
means that is specific for class A (in which only Doc 1 and Doc 2 belong), so it has a 
high information gain. In contrast, the word “Problem” exists in all three Docs, so it 
has a low information gain, as no information about the classification in classes A and 
B can be derived. The words “Memory” and “Disk” have intermediate values of 
information gain. 
 
 More precisely, the formula with which we can calculate information gain of a 
word A in a collection of documents S is the following: 
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 For the calculation of the information gain, 2 scripts and one program 
implemented by Julie GreenSmith [32] were modified for the specific dataset. The 
program uses Laplace modifier to avoid arithmetic overflow (in the case we have 
log20).  
 
 After having calculated the information gain for all the words extracted from 
the documents, we then selected the k most informative ones. Different values for k 
were tested in order to find the one which gives us the better results. Finally, the 
number 50 seems to give the more representative results, so this is the one that was 
used. Using the selected words we created the feature vectors. Each word represents a 
feature and has two values: 1 if the document contains that word, 0 otherwise. After 
creating the suitable files for the classifiers, as described earlier in this section, 
everything is set to go. The above procedure is taking place, as mention earlier 5 *10 
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times (5 times *10-fold validation). The average of these results was calculated. The 
results are discussed in chapter 4.  
 
 

3.3.2 Classification using semantic features 
 
 In this section a description of the procedure followed for the classification 
using semantic features will be given. In this case, as we have mentioned earlier, we 
want, using the information of the categorization in one schema, to classify the 
documents in another schema. In order to represent the features according to the 
classification in one of the schemas we need a notion of similarity. There are several 
similarity measures that can be used. We are interesting in semantic similarity 
measures. Below, the three semantic similarity measures, mentioned in Chapter 2 
(2.5.2), that was used for the purposes of the project are described.  
 
 The procedure is similar to the one followed for the content-based features, in 
terms of using 5 times 10-fold validation and of using the same classifiers. The 
difference consists in the selection of the features, as in the present case we do not 
care about the content, but only about the categorization to the schemas. 
 

“Counting edges” approach 
 

 Our first attempt was to use our own similarity measure. For each concept on 
the tree, we count the number of edges from each of the other concepts and we 
construct a sort of a taxonomic vector.  
 

For example, imagine the following 6 node hierarchy, where d
1 

to d
4 

are 
classified documents (figure 10):  
 
 

 
 
 
 
 
 

A B C D  
d1 d2 d4  d3 

 
 d4 

 
Figure 10: Example of the naïve approach 

 
 

We create then a vector {(distance from A), (distance from B), (distance from 
C), (distance from D)}. So, for each of the above nodes, we count the number of 
edges and we have the results:  
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A = (0, 2, 4, 4)  
B = (2, 0, 4, 4)  
C = (4, 4, 0, 2)  
D = (4, 4, 2, 0)  
 
 Using these results, we create the following vector (Table 3), which is then 
normalized. The suitable files required from the classifiers, described earlier, are 
created according to this vector and are given as input to them: 
 
 
 
                Normalize  
 
 
 
 
     

 A B C D 
d1 0 2 4 4 
d2 2 0 4 4 
d3 4 4 0 2 
d4 4 4 0 2 
d4 4 4 2 0 

 A B C D 
d1 0 0.5 1 1 
d2 0.5 0 1 1 
d3 1 1 0 0.5 
d4 1 1 0 0.5 
d4 1 1 0.5 0 

Table 3: The vector created using the method of counting edges 
before and after it was normalized 

 
 
 As we can see from the table above (Table 3) we assume that if a document is 
classified in more than one category of one schema, we have multiple entries of this 
document in the vector (respectively to the number of categories it is classified). This 
assumption was applied to all three methods, described in the present section. 
 

Probability of the least Subsumer 
 

 In addition to the method described earlier (counting edges), a more refined 
similarity measure was used. The idea was inspired by the work of P. W. Lord et Al. 
[23]. They used the concept of the probability of the least subsumer. 
  

All the measurements are taking place using the information content, which is 
defined as “the number of times each term, or any child term, occurs in the corpus” 
[26]. Each node of the tree has a probability. The lower down on the tree structure, the 
less information content a node has. The root’s information content equals to 1. In the 
example in figure 11, if we want to find the similarity between A and B, we have to 
find the node that least subsumes both nodes. Least subsumer is the node that 
subsumes A and B and there is no other node lower down which also subsumes A and 
B. So, in the above example, the red node subsumes A and B but it is not the least 
subsumer. The black node is the least subsumer. So, the similarity of A and B depends 
on the probability of the black node. A low probability of the black node implies a 
high similarity of the concepts (A and B). 
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  d2
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Figure 11: Example of Probability of the least subsumer Figure 11: Example of Probability of the least subsumer 

  
  

As probability for each node on the tree, we used the number of documents 
classified in the particular node (category) or below divided by the total number of 
documents in the tree (# (docs in the node or below) / (total #docs)). 

As probability for each node on the tree, we used the number of documents 
classified in the particular node (category) or below divided by the total number of 
documents in the tree (# (docs in the node or below) / (total #docs)). 

  
The distance between A and B is calculated by the following equation 

(
The distance between A and B is calculated by the following equation 

( ),( BA ),( BApms
is the probability of the least subsumer of A and B): 
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Imagine in the example of figure 11 the total number of documents is 11. The 

numbers in red in the figure are the probabilities of each node. Using the equations 
described above we can create the following vector (after, the table is normalized as in 
the previous approach): 
 

 
 A B C D 

d1 0 2.315007613 2.602689685 3.409496184 
d2 2.602689685 1.406913648 0 3.004031076 
d3 3.409496184 2.716349004 3.00403107 0 
d4 2.315007613 0 1.406913648 2.716349004 
d4 2.602689685 1.406913648 0 3.004031076 

 
 
 
 
 
 

 
 

Table 4: The vector created using the method of probability of the least subsumer 
 

 “Simple” approach 
 
 The third approach we used is the simplest one. The idea is to represent the 
nodes as a boolean vector. The node that the document belongs takes the value 1; all 
the other nodes take the value 0. For example, the vector that is created from the tree 
in figure 12 is the following: 

 25



Semantic Classification                                                                      Anastasia Krithara 
 

 
 
 

 A B C D 
d1 1 0 0 0 
d2 0 1 0 0 
d3 0 0 1 0 
d4 0 0 1 0 
d4 0 0 0 1 

A B C D 
d1 d2 d4 d3 

 
 d4 
 
        

Figure 12: Example of the Simple approach 
 
 
 This approach, does not take into consideration the hierarchy. Nevertheless, 
we wanted to compare this method with the previous two, in order to find out how the 
information about the hierarchy can help the classification process. The representation 
of the features using this method is very close to the format that the classifiers are 
used to accept the features. More particular, the format follows the same concept as in 
the content-based features: 1 if the documents belong to that node and o otherwise, 
while in content-based features we have 1 if the word exists in the document, o 
otherwise. 
 
 In order to implement these three approaches we just discussed, three java 
programs were written which create the respective vector for each approach and use it 
for creating the suitable files, which was then given as input to the classifiers. 
 

3.3.3 Combination of content-based and semantic features 
 
 After having classified the documents using only content-based and only 
semantic features, our goal was to combine the above features and try to find out if 
this could improve the accuracy of the classifiers.  
 

Imagine we have the following table: 
 
  X Y Z W  A B C D 

d1 1 0 1 1 0 0.5 1 1 
d2 0 1 1 1 0.5 0 1 1 
d3 1 1 0 0 1 1 0 0.5
d4 1 0 0 1 1 1 0 0.5
d4 1 0 0 1 1 1 0.5 0 

 
 
 
 
  
 

Table 5: Combination of content-based and semantic features 
 
 

The first part of the table is a standard keyword vector where 1 indicates that 
di has, for example, a particular word (X, Y, Z or W in the current example) and 0 
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otherwise. The second part of the table is the same (Table 3) used in the example 
described in figure 10, for the counting edges approach.  
 
 Current approaches indicate that a machine learner gets as input only the first 
part of the table (the keyword vector). This is what we did in the classification using 
content-based features. On the other hand, if we use only the second part of the table 
(semantic vector), the best results we can obtain is the optimal 1:1 mapping. This is 
what the three approaches described in 3.3.2 did. 
 
 What we did next, was to use both keyword and semantic vectors. In order to 
combine them we gave as input to the classifiers a long vector as the one in table 5, 
which concatenates all the features. 
 
 In order to examine how the different kind of features used (content-based and 
semantic) affect the performance of the classifiers, we used different weighting of the 
features. Except using the features as they were, we did experiments using 100% of 
the content-based features and 50% of the semantic ones and vice versa. Using 50% 
of the features means that we multiplied the features with the respective percentage 
(with 50/100 in this case). In the next chapter, where all the results are presented and 
explained, the affect of different weighting in the performance of the classifiers is also 
explained.  
 
 For the creation of the vectors and the files used for the classification, a Java 
program was implemented. Different percentages for the weighting can be chosen 
form the user.  
 
 

3.4 “Semantic” Error metric 
 
As we mentioned in the beginning of the chapter, in this section we present a 

measure which was used in order to evaluate the performance of the classifiers using 
the different features. 
 
 The “semantic” error metric gives us an insight on “how wrong” a 
misclassified example is. In order to make this clear, imagine we have the following 
schema (figure 13): 
 
   Animal 
 

Bird   Fish 
 

3 1 
 

3  

Mullet Cod 

1 2 4
 

 Eagle Canary 
 

 
Figure 13: example schema 
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 Imagine we have a document that should be categorized in the node “Eagle” 
but it is classified in the node “Canary”. We can say that this was misclassification 
into only a sibling class which is better than being classified in the node “Cod” which 
is completely irrelevant. In other words, we can say that classified a document in a 
sibling node is better (and “less” wrong) than classify it in a completely irrelevant 
class.  
 
 Trying to apply this idea, in order to see if combination of content-based and 
semantic features can help in the reduction of the “semantic” error, we implement the 
following method: 
 
Suppose table 6 is a confusion matrix produced by WEKA for the example described 
above (figure 13). In table 7 suppose we have the semantic vector created by, for 
example, the “counting edges” method.  
 
 
 Fish Cod Mullet Bird Eagle Canary 
Fish 2 1 0 0 0 0 
Cod 0 1 0 0 0 0 
Mullet 0 1 1 0 0 0 
Bird 0 0 1 0 0 0 
Eagle 0 0 0 1 1 1 
Canary 1 0 0 0 0 3 
 

Table 6: Confusion Matrix 
 
 

 Fish Cod Mullet Bird Eagle Canary 
Fish 0 1 1 2 3 3 
Cod 1 0 2 3 4 4 
Mullet 1 2 0 3 4 4 
Bird 2 3 3 0 1 1 
Eagle 3 4 4 1 0 2 
Canary 3 4 4 1 2 0 
 

Table 7: Semantic Vector (counting edges) 
 
 
 Having these two tables, we calculate then the accuracy of the classifier 
(considering the “semantic” error) as followed: 
 

• We first calculate the distance using the following formula: 
 

A11*B11 + A12*B12 +…+ A1n*B1n = X1 
 

A21*B21 + A22*B22 +…+ A2n*B2n = X2 
… 
An1*Bn1 + An2*Bn2 +…+ Ann*Bnn = Xn 
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where Aij and Bij is the jth column of the ith row of table A and B 
respectively. 
 

• We then add the results of the calculated distances: 
X1+X2+…+Xn = Y 
 

• Finally we calculate the accuracy as followed: 
 

Accuracy = 1 – (Y / Max Distance), where Max Distance is the 
maximum total distance we can have. In other words, it is the total 
number of documents multiplied by the maximum distance between 
the nodes of the tree (in the particular case 14 documents * 4 = 56) 
 

If we apply this method to the above example we have the following results: 
 
 2*0 + 1*1 + 0*1 + 0*2 +0*3 + 0*3 = 1 
 0*1 + 1*0 + 0*2 + 0*3 + 0*4 + 0*4 = 0 
 0*1 + 1*2 + 1*0 + 0*3 + 0*4 + 0*4 = 2 
 0*2 + 0*3 + 1*3 + 0*0 + 0*1 + 0*1 = 3 
 0*3 + 0*4 + 0*4 + 1*1 + 1*0 + 1*2 = 3 
 1*3 + 0*4 + 0*4 + 0*1 + 0*2 + 3*0 = 3 
 
Y = 1+0+2+3+3+3 = 12 
 
Max Distance = 14 * 4 =56 
 
Then the accuracy equals to: Acc = 1 – 12/56 = 0.7857 
 
The normal accuracy (#correctly classified docs/ total #docs) equals to:  
9/14 = 0.6428571   
 

The procedure to calculate the accuracy, considering the “semantic” error, for 
the “probability of the least subsumer” method is similar, with the only difference that 
the Maximum distance equals to the number of documents (because in this case the 
maximum distance between the nodes is always 1). 

 
 For the “simple” method there is no need to implement this metric, as it will 

have exactly the same results as the accuracy. If we recall the method, described 
earlier in this chapter (3.3.2) we will notice that applying the “semantic” error metric 
will end up with the number of the correctly classified documents divided by the total 
number of documents, which is nothing else but the accuracy. 

 
  Having implemented this method in Java we run the experiments and we 

calculate the accuracy considering the “semantic” error.  Unfortunately, AIRS 
classifier does not return the confusion matrix so we could not apply the above idea 
for it. We applied it only in the WEKA classifiers. 

 
Some parts of the code used for the implementation of all the programs 

mentioned in this chapter are displayed in the Appendix C.3. 
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Chapter 4 
 

Results and Analysis 
 
 
 The purposes of the current chapter are to present the results obtained and 
analyse the performance of the classifiers using our approach discussed in the 
previous chapter. From the analysis of the results we wanted to reach the following 
conclusions: firstly, if using the content-based features alone the classifiers have 
better performance than using the semantic features alone. Secondly, if combining the 
content-based and the semantic features can give us better results than using each of 
them alone and thirdly, if the weighting of the features when we combine them makes 
any difference to the accuracy of the classifiers. 
 
 In order to reach the above conclusions, we used two measures: on the one 
hand, we used the accuracy which is the number of correctly classified documents 
divided by the total number of documents. We checked the results using Wilcoxon 
Mann-Whitney ranking test [31] which is non-parametric. The particular test does not 
assume normal distribution. This is the reason why the standard error was not 
calculated and it is not presented in the diagrams (standard error assume normal 
distribution). On the other hand, we used “semantic” error metric, which in contrast 
to accuracy, can tell us not only if a document was incorrectly classified, but also 
gives us a notion of “how wrong” it was misclassified. This measure was explained in 
detail in section 3.4. 
 
 

4.1 Accuracy results 
 
 The accuracy was calculated as an average of the 50 runs (5 times * 10-fold 
validation). Both WEKA and AIRS return as result the accuracy, which is the number 
of correct classified documents, divided by the total number of documents. 
 
 Initially, we needed a comparison of the performance of different classifiers 
used in the project. Using only content-based features, the difference in the 
performance between the classifiers was quite small, so the Wilcoxon Mann-Whitney 
ranking test was used in order to find out if this difference is statistically significant or 
not. Experiments took place using different number of features, in order to find which 
the one with the better accuracy. In particular, we did experiments using 5, 10, 20, 50, 
100, 150, 200 and 500 features. The achieved results showed that when we used a 
large number of features (more than 100), the classifiers have significantly better 
results in the training set but no difference in the test set, in comparison with the use 
of smaller number of features (50 and less). Our suspicion was that a large number of 
features may lead the classifiers to overfit. Also, when we used less than 50 features
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the results was a bit worse than using 50 features. This is why the use of 50 features 
was finally preferred.  Also, the results showed (table 8 for example – the results for 
the other pairs were similar) that the performance of Support Vector Machines and K-
Nearest Neighbour (for K=1 and K=4) was a bit better than the others and AIRS was 
worse than the others, but as we can also see in figure 14, this was not always the case 
as the results are depended in the dataset we used. 
 

 
 

Figure 14: A comparison of the classifiers performance using content-based features, showing 
small differences between their performance 

 
 
 

MinComp1 -- Symptom TEST SET     
CONTENT-BASED NB DT SVM AIRS 

KNN 
Better       

( 9.779e-06 ) 
Better         

(0.006333) 

Not 
Significant     
( 0.9464) 

 Better       
(3.632e-08) 

AIRS 
Worse        

(0.02067) 
Worse        

(1.351e-05) 
Worse        

(3.151e-07)  

SVM 
Better        

( 7.905e-05) 
Better         

(0.02278)   
 

Table 8: Statistical significance of the results for content-based features 
 for the pair of schema Minor Component 1 – Symptom*

 
 
 Respectively, a comparison of the classifiers’ performance using only 
semantic features took place, in order to find out if in this case the results were 

                                                 
*   The table contains the results from Wilcoxon test. It tells us if the classifier in the Y axis is 
better/worse from the one in the X axis. For example it tells us that KNN is better that Naïve Bayes and 
that AIRS is worse than Decision Trees.  
 All the tables of this section should be read in a similar way. 
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different. The results showed (figure 15 – “counting edges” method) that Naïve Bayes 
did not have good results using only semantic features. Also, AIRS proved in general 
to lack in performance (Table 9) in comparison with the other classifiers, which 
seemed to have more or less the some results (not statistically significant difference). 
The results using the “probability of the least subsumer” method for the creation of 
the semantic features were similar. 
 

 
 

Figure 15: A comparison of the classifiers performance using semantic features (counting edges) 
 
 
 

MinComp1 -- Symptom TEST SET     
Semantic Features  
(counting edges) NB DT SVM AIRS 

KNN 
Better        

(8.475e-09) 
Better        

(0.006104) 
Worse       

( 0.03348) 
Better         

(6.304e-07) 

AIRS 
Better        

(2.814e-07) 
Worse       

(5.927e-06) 
Worse       

(4.271e-06)  

SVM 
Better        

(2.738e-09) 

Not 
Significant    
(0.6242)   

 
Table 9: Statistical significance of the results for semantic features (using counting edges method) 

 for the pair of schema Minor Component – Symptom 
 

 
 For the third method used for creation of semantic features, the “Simple” 
method, the results are quite interesting. For the majority of the classifiers the 
performance is similar to the ones achieved using the others methods for the semantic 
features. But we can see a better performance of Naïve Bayes classifier (figure . The 
possible reasons for that are discussed in the next chapter.  
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 Then, a comparison of content-based and semantic features took place. The 
results showed that as an overall the use of just semantic features is in most cases 
almost as accurate as using only content-based features, except for Naïve Bayes which 
is discussed later. However, in the training set, if we use only content-based features 
the results are better than using only semantic ones (figure 16 and Table 10). 
 
 

 
 
 

Figure 16: Training set: A comparison of content-based and semantic features (for Decision Trees) 
Content-based features are proved better in the training set 

 
 

Content Topic-MinComp1 TRAINING SET 
Decision Trees SEM-FEATURES 
CONTENT-BASED 
FEATURES 

better              
(7.821e-10) 

 
Symptom -- MinComp1 TRAINING SET 
Decision Trees SEM-FEATURES 
CONTENT-BASED 
FEATURES 

better              
(7.821e-10) 

 
Table 10: Statistical significance of the results for the training set in the comparison of content-based 

and semantic features. Content-based features are proved better 
 

Nevertheless, in the test set (which is actually the one that we are interested in) 
the performance of the classifiers using either content-based or semantic features is 
almost the same. In some cases the content-based features seems to have a bit better 
results (for example, in figure 17, the first column), as in others semantic features 
seems to be more accurate (for example, in figure 17, the last column). As an overall, 
we can conclude that the performance of the classifiers using semantic features is 
almost as good as content-based features. 
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Figure 17: Test set: A comparison of content-based and semantic features (for Decision Trees) 

No significant difference between them 
 
 

Content Topic -MinComp1 TEST SET 
Decision Trees SEM-FEATURES 
CONTENT-BASED 
FEATURES 

Not Significant     
( 0.1201 ) 

 
 

Symptom -- MinComp1 TEST SET 
Decision Trees SEM-FEATURES 
CONTENT-BASED 
FEATURES 

Not Significant     
( 0.1917 ) 

 
Table 11: Statistical significance of the results for the test set in the comparison of content-based and 

semantic features (Decision Trees). No significant difference in most cases. 
 
 
 As mentioned earlier, Naïve Bayes does not seem to have good performance 
with the semantic features created from either “counting edges” or “probability of the 
least subsumer” method, as it seems to prefer content-based features (figure 18 and 
Table 12).  
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Symptom -- MinComp1 TRAINING SET 

Naïve Bayes 
SEM-FEATURES 
(Counting edges) 

CONTENT-BASED 
better            

(1.149e-09) 
 

Table 12: Statistical significance of the results of Naïve Bayes classifier for content-based and 
semantic features (“counting edges” method). Content-based features perform better. 

 
In contrast, using the “Simple” method, even though the results for most of the 

classifiers are similar to the results of the other two methods, when it comes to Naïve 
Bayes, things are a bit different. More particular, the Naïve Bayes classifier does not 
seem to have so bad performance. Content-based features may have better 
performance than the semantic ones (as in the cases where the “counting edges” and 
the “Probability of the least subsumer” method were used), but in this case the 
difference is apparently smaller (figure 18 and Table 13).  

 
 

Symptom -- MinComp1 TEST SET 

Naïve Bayes 
SEM-FEATURES 

(Simple) 

CONTENT-BASED 
better             

(0.04167) 
 

Table 13: Statistical significance of the results of Naïve Bayes classifier for content-based and 
semantic features (Simple method). Content-based features perform better, but the difference is 

significant smaller in comparison with the other methods 
 

 
 

Figure 18: Test set: A comparison of 1:1 mapping, content-based and semantic features using the all 
the three   methods (for Naïve Bayes classifier). “Simple” method performs better than the others 
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After comparing content-based and semantic features, their combination 
followed. As mentioned in the previous chapter (section 3.3.3), different weighting of 
the features was used in order to see how this affects the performance of the 
classifiers. Experiments took place and below some diagrams are presented that show, 
for the selected schema pairs, how classifiers perform with content based features 
alone (left hand column in each group), category based (semantic) features alone 
(right hand side) and some mixture (middle columns). 
 
 The diagram below (figure 19) is an example of the results we got from the 
experiments. It shows the results of the performance of Support Vector Machine. As 
we can see, the weighting did not seem to have any effect in this particular classifier. 
In fact, we had the same result for all the classifiers in WEKA. AIRS differs (figure 
20), but as we can see, the difference is very small and it has been proved statistically 
insignificant (using again Wilcoxon tests). 
 

The main question we want to answer is if the combination of content-based 
and semantic features can improve the performance of the classifiers comparing with 
the performance using either content-based or semantic features. 
 
  
 

 
 
Figure 19: Test set: A comparison of content-based, semantic features and their combination 

for SVM classifier 
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Figure 20: Test set: A comparison of content-based, semantic features and their combination 

for AIRS classifier 
 
 
 As we can see and in the diagrams above (figure 19 and 20), the performance 
in most cases is similar to the one using only content-based features. In both the 
diagrams, one can notice a better performance of the classifiers in the combined 
features for the Minor Component – Symptom pair of schemas, but as we can see in 
table 14 below, no significant difference found between them.  
 
 

MinComp1-Symptom TEST SET 
SVM COMBINATION SEM-FEATURES 

CONTENT-BASED 
Not significant  

(0.1574)  
Not significant      

( 0.9364) 

SEM-FEATURES 
Not significant    

(0.1311 )  
  
 
 

MinComp1-Symptom TEST SET 
AIRS (100-100) COMBINATION SEM-FEATURES 

CONTENT-BASED 
Not Significant   

( 0.09364) 
Not Significant    

(0.3389) 

SEM-FEATURES 
Not Significant   

(0.2046)  
  
Table 14: Statistical significance of the results of AIRS and SVM classifier for content-based, semantic 

features and their combination. No significant difference in the results 
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The results have showed that in general there is not significant improvement. 
In some cases (as the one below, figure 21) in the training set the combination of the 
features seems to perform better (and the difference is statistically significant), but in 
the test set (figure 19) no improvement is noticed. In other words, the combination 
suggests an overfitting of the classifier (definition according to [2]: “Given a 
hypothesis space H, a hypothesis h ∈  H is said to overfit the training data if there 
exists some alternative hypothesis h΄ ∈  H, such that h has smaller error than h΄ the 
training examples, but h΄ has a smaller error than h over the entire distribution of 
instances”). Possible reasons for that are discussed in the next chapter.  

 
 

 
 

Figure 21: Training set: A comparison of content-based, semantic features and their 
combination for SVM classifier 

 

4.2 “Semantic” Error metric results 
 
 As mentioned in the beginning of this chapter, as well as the accuracy, the 
“semantic” error metric was calculated for the semantic features created with the 
“counting edges” and the “probability of the least subsumer” approaches. 
 
 The results leaded to two conclusions. On the one hand, the accuracy 
calculating taking into account the semantic error, seems to be similar for content-
based and semantic features in most cases. 
 On the other hand, comparing the accuracy for the combination of content-
based and semantic features with either the content-based alone or the semantic 
features alone, calculated by the method described earlier, we can notice (for example 
in figures 22 and 23) that there is no statistically significant difference. These results 
are similar to all the other experiments we performed for all the classifiers.  
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Figure 22: Training set: Accuracy, considering the “semantic” error   
 

 
 

Figure 23: Test set: Accuracy, considering the “semantic” error   
 
 
 
 In the next chapter, we have a deeper discussion on the results. We summarise 
our conclusions and discuss the possible causes which led to these results.
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Chapter 5 
 

Discussion and Future Directions 
 
 
 The purpose of this chapter is to review and discuss the results presented in the 
previous chapter. Also, some future directions will be discussed. The goals of the 
project were reached, but there is still a number of different avenues related to the 
present project which have not still been explored and they look promising.  
 
 

5.1 Discussion 
 
 Summarizing the results presented in the previous chapter, we reached several 
conclusions. Initially, we examined the behaviour of the different classifier used for 
the purposes of the project in the same features. We concluded that for content-based 
features the behaviour of all the classifiers was similar. Some differences in the 
performance of the classifiers between the different schema pairs were noticed, but 
they proved statistically insignificant. At this point we should mention that, as we can 
notice, the obtained results were quite poor (the accuracy is around 30-40%), in 
comparison with the accuracy that the classifiers used can generally obtain. 
Nevertheless, the results are not as “bad” as they look. In particular, the performance 
of the classifiers may not be high but it is better than a random classification. All the 
schemas which were used have at least 16 categories. Some of them have much more 
(around 45). So, a random classification would have an accuracy of probably around 
10% (and maybe smaller) which is worst than the results obtained. A possible reason 
for having such low performance may be the fact that we used naïve content. If we 
had used for example some rules the results would probably be better. As our goal 
was not to improve the content-based results, but to test our own approach using 
semantic features, we though that it was advisable to spend our time for the benefit of 
our approach rather than the improvement of content-based results. 
 
 The results of optimal one-to-one mapping were discussed in chapter 3 (in 
section 3.3.2). Comparing them with the results of the classifiers we can see that in 
general they are better as expected (as the mapping is optimal). However, in few 
cases, classifiers seem to do slightly better. This can be explained by a “lucky break” 
of training and test sets (1:1 algorithm was tested on the entire dataset). 
 
 When semantic features were used, we noticed some interesting results. On the 
one hand, most of the classifiers seem to have similar performance when we 
compared the performance of the content-based features. Naïve Bayes classifier does 
not seem to perform well with semantic features created by the first two methods we 
used (“counting edges” and “probability of the least subsumer”). On the other hand, 
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when we used the “Simple” method to create the semantic features, even though the 
results for most of the classifiers were similar to the ones achieved using the other 
methods, in the case of Naïve Bayes classifier, thing seems to be different. More 
particular, the latter performed much better than the other methods and the results 
were equivalent to the content-based features. This result enforces our conclusion 
mentioned earlier, according to which Naïve Bayes classifier prefers features in the 
format of the content-based ones. As we have mentioned in chapter 3 (section 3.3.2) 
the format of the features which is used from the “Simple” method is very close to the 
format of the content-based features and is the same with the one the classifiers are 
used to. This means, that even though most of the classifiers seems to adapt with the 
use of different format of the features, Naïve Bayes does not. The reason for that 
could be the fact that Naïve Bayes classifier is based on the simplifying assumption of 
conditional independency among the features. But the semantic features created using 
the “counting edges” and the “probability of the least subsumer” approaches are 
distance-based, which means that they are dependent to each other. So, Naïve Bayes 
seems not to be able to deal with them. At this point we should mention that for the 
same reason we expected decision trees to perform quite bad, but the latter seems to 
be able to handle them. 
 
 Another conclusion we can reach using the results is that generally the 
performance of the classifier using only semantic features is just as good as the one 
which use only the content-based features. They both seem to be useful sources, but 
imperfect. Thus, one would believe that combining these features (content-based and 
semantic) would improve its performance. 
 
 The results we achieved, in contrary, do not seem to agree with the above 
concept. In particular, we had two main results: either the combination did not seem 
to make any difference in the performance of the classifier or, in some cases, the 
combination seems to suggest overfitting. For the first case, a possible hypothesis 
could be that content-based features provide enough information such that the 
classifier gets very little benefit form a few extra bit of information that the semantic 
feature gives. In other words, even though when using only semantic features they 
seems to be quite informative, in reality when they are combined with content-based 
features probably the do not offer much more information than that we already have. 
Probably because they actually offer the same “sort” of information. For the second 
case, where the classifier gives some signs of overfitting when we combine the 
features, a possible hypothesis could be that the combination confuses the classifier 
rather than helping it. The different representation of semantic features, in comparison 
with the representation of the content-based ones, may cause a degradation of feature 
handling in the classifiers.  
 
 In this point, is worth mentioning that our idea to use different weighting on 
the features did not make any difference, especially in the WEKA classifiers, where 
the results were identical. This result, made us believe that WEKA internally weights 
the features to give the best results, this is why our weighting did not have any effect. 
The small difference in the results of AIRS classifier, which is not included in 
WEKA, strengthens this belief.  
 
 Concerning the “semantic” error, the combination did not seem to improve the 
results we have using only content-based features. A small difference can be noticed 
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when using the “Simple” method, but mostly in the training set and less in the test 
one. 
 
 In short, this project has proved that the combination of semantic features with 
the content-based ones is not as easy as it might look. Even if, intuitively one would 
believe that the combination could improve the performance of the classifiers, it is not 
seem to be the case. Of course, this is the first attempt to this direction and there are 
many possibilities and variation to be examined. In the following section, some of 
them are presented as ideas for future work. 
 
 

5.2 Future Directions 
 
 As we mentioned earlier, this project has achieved an insight of how semantic 
features can deal with content-based features and with a number of classifiers. 
However, there are many areas related to this project yet to be explored. In this 
section some ideas of how this project could be extended will be given. 
 
 Firstly, we could perform classification for content-based and semantic 
features separately, and then try to weight their prediction. As we have seen from the 
produced results, semantic features alone seem to be quite informative but when they 
are combined with content-based features they do not improve the classifiers as 
expected and instead they seem to confuse them. We first have to examine if the 
content-based and the semantic features make the same “sort” of errors. In other 
words, we want to know if they face the same difficulties during the classification. If 
they do not, then a combination of their prediction would look promising. So, it seems 
worth trying to discover if they misclassify documents for the same reasons and then 
try to weight their prediction, in a meta-classifier for example, and see if that could 
improve the performance of the classifiers. 
 
 Secondly, it would be interesting to perform the approach we introduce in this 
project in different datasets and see their results. It is common that classification is a 
dataset-depended procedure. This is why it would useful to have a more general idea 
of the results of the presented approach, using different datasets. 
 
 Thirdly, we could use a richer feature representation based for example on the 
word frequency and the information gain values and compare the results with he 
current ones. Also, different representation of the semantic features could be 
performed. As well as the three methods we introduce in this project, several other 
could be used.  
 
 These are some of the ideas for extending the current project and produce new 
results which can then be compared with the ones presented in the present work.
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Chapter 6 
 

Conclusions 
 
 
 As this thesis comes to an end, it is time to review the content of the previous 
chapters. Chapter 1 outlined the idea and the purposes of the project. It presented the 
extent of the problem of the data overload and it suggested our approach: the use of 
semantic features as a rich input to classifiers. Chapter 2 introduced the relevant 
research area around the project and provided the necessary information in order to 
understand all the method used in the present project. Chapter 3 outlined the 
implementation procedure followed in order to create the semantic features and use 
them in the classification procedure. Chapter 4 presented the results of all the 
experiments that took place during the project and in Chapter 5 a discussion of the 
achieved results was presented. In particular, we found that the combination of 
semantic and content-based features is not as simple as it may look. The combination 
of the features does not seem to improve the performance of the classifiers. In the 
same Chapter, some future suggestions that could extend the project were presented.  
 
 At this point the objectives of the project should be mentioned again and the 
outcome of the work should be evaluated. As mentioned in Chapter 1, the objective of 
the project was to implement a new approach, according to which semantic features 
are used, in addition to the traditional ones, in the classification procedure of a dataset. 
The latter gave us an insight of how these two different kinds of features can deal with 
each other and if their combination can improve the classifiers’ performance. As we 
mentioned in the previous paragraph, the combination of the features was not as easy 
as it looks. The classifiers did not seem to can easily deal with the combination of 
different kind of features, even if they have satisfying results when they use the 
different features separately. 
 
 The outcome of the project is highly significant, not only because it opened 
the door to a new direction, but also because it gave an insight of how classifiers are 
dealing with semantic features and how the latter can be combined with the traditional 
ones.  
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Appendix A 
 

The categories of each schema 
 
 
===== CONTENT TOPIC ===== 
0: component 
1: component_compatibility 
2: component_firmware/BIOS 
3: component_manageability 
4: component_power management 
5: security 
6: software 
7: software_compatibility 
8: software_diagnostic 
9: software_driver 
10: software_hp 
11: software_manageability 
12: software_operating system 
13: software_utility 
14: specifications 
15: specifications_product 
16: warranty 
 
====== ENVIRONMENT ===== 
0: DOS 
1: Linux 
2: Novell 
3: OpenVMS 
4: Unix 
5: Windows-English 
6: Windows-localized 
7: cluster 
8: internet 
9: network 
10: wireless 
 
====== SYMPTOM ===== 
0: error message 
1: error message_beep codes 
2: error message_displayed on 
control panel 
3: error message_displayed on 
front panel 
4: error message_displayed on 
pc 
5: error message_installing 
6: error message_system 
7: feeding issue 
8: feeding issue_jam 
9: output 
10: output_color quality 
11: output_unexpected 
12: performance 
13: performance_freeze 
 
 

 
 
 
14: performance_no response 
15: performance_noise 
16: performance_slow 
 
====== USER TASK ===== 
0: compare 
1: fix problem 
2: fix problem_configure 
3: fix problem_download 
4: fix problem_obtain service 
5: fix problem_order 
6: fix problem_reinstall 
7: fix problem_replace 
8: fix problem_setup 
9: fix problem_shutdown 
10: fix problem_startup 
11: fix problem_uninstall 
12: fix problem_upgrade 
13: maintain 
14: maintain_download 
15: maintain_replace 
16: maintain_upgrade 
17: obtain service 
18: order 
19: setup 
20: setup_configure 
21: setup_loading 
22: setup_upgrade 
23: uninstall 
24: uninstall_reinstall 
25: use product 
26: use product_choosing 
27: use product_configure 
28: use product_loading 
29: use product_shutdown 
30: use product_startup 
 
====== MAIN COMPONENT ===== 
0: CPU 
1: LCD 
2: RAID 
3: cables 
4: chassis 
5: control panel 
6: controller 
7: docking station 
8: drive 
9: drive_CD 
10: drive_CD-RW 
11: drive_DVD 
12: drive_IDE 
13: drive_SCSI 
14: drive_floppy 
15: drive_hard 
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16: drive_library 
17: drive_removable 
18: drive_tape 
19: drive_zip 
20: enclosures/racks 
21: expansion card 
22: expansion card_modem 
23: expansion card_multi-
function 
24: expansion card_network 
25: expansion card_remote 
control 
26: expansion card_sound 
27: expansion card_video 
28: fan 
29: memory 
30: motherboard 
31: network device 
32: network device_hub 
33: network device_router 
34: network device_switch 
35: peripheral 
36: peripheral_camera 
37: peripheral_joystick 
38: peripheral_keyboard 
39: peripheral_microphone 
40: peripheral_monitor 
41: peripheral_mouse 
42: peripheral_printer 
43: peripheral_scanner 
44: peripheral_speakers 
45: port 
46: port_PS/2 
47: port_SCSI 
48: port_USB 
49: port_infrared 
50: port_parallel 
51: port_serial 
52: power 
53: power_battery 
54: power_power cord 
55: power_power module 
56: power_power protection 
57: slot 
58: slot_PCI slot 
59: supplies 
60: supplies_optical disc 
 
====== MINOR COMPONENT 1 ===== 
0: CPU 
1: LCD 
2: RAID 
3: cables 
4: chassis 
5: control panel 
6: controller 
7: docking station 
8: drive 
9: drive_CD 
10: drive_DVD 
11: drive_IDE 

12: drive_SCSI 
13: drive_floppy 
14: drive_hard 
15: drive_library 
16: drive_removable 
17: drive_tape 
18: drive_zip 
19: enclosures/racks 
20: expansion card 
21: expansion card_modem 
22: expansion card_network 
23: expansion card_sound 
24: expansion card_video 
25: fan 
26: front panel 
27: memory 
28: motherboard 
29: network device 
30: network device_router 
31: network device_switch 
32: peripheral 
33: peripheral_fax 
34: peripheral_keyboard 
35: peripheral_monitor 
36: peripheral_mouse 
37: port 
38: port_PS/2 
39: port_SCSI 
40: port_USB 
41: port_serial 
42: power 
43: power_battery 
44: power_power cord 
45: power_power module 
46: power_power protection 
47: slot 
48: slot_PCI slot 
49: supplies 
50: supplies_floppy disk 
 
====== MINOR COMPONENT 2 ===== 
0: CPU 
1: RAID 
2: chassis 
3: controller 
4: drive 
5: drive_DVD 
6: drive_floppy 
7: drive_hard 
8: drive_tape 
9: expansion card 
10: expansion card_modem 
11: expansion card_video 
12: memory 
13: motherboard 
14: network device 
15: network device_router 
16: peripheral 
17: peripheral_fax 
18: peripheral_keyboard 
19: peripheral_monitor 
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20: peripheral_speakers  
21: port  
22: port_AGP  23: port_SCSI 

 24: port_USB 
 25: port_serial 

26: power  
27: power_battery  28: power_power module 

 29: slot 
 30: slot_PCI slot 

31: supplies  
32: supplies_floppy disk  
  ====== PRODUCT FUNCTION ===== 

 0: backing up 
 1: backing up_audio 

2: backing up_data  
3: connecting  4: copying 

 5: faxing 
 6: printing 
 7: restoring 

8: sending  
  ====== SOFTWARE TOPIC ===== 

 0: business productivity 
 1: development tools 

2: entertainment  
3: financial  
4: personal productivity  5: presentations 

 6: spreadsheet 
 7: synchronization 

8: virus protection  
9: word processing                                     
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Appendix B 
 

One-to-one schema mapping: algorithms, results 
 

B.1 Algorithm for Optimal 1:1 Mapping  
 

An exhaustive algorithm of optimal 1:1 mapping is implemented. Below, a 
brief description of the algorithm is given: Imagine we have the above similarity 
matrix (table 2), where {A, B, C, …} and {X, Y, Z, …} are two schemata.  

 
F  X  Y  Z  
A  0.5 0.7 0.4
B  0.1 0.9 0.2
C  0.2 0.8 0.1 

 
Then, an algorithm which finds the optimal 1:1 mapping between the two 

schemata is the following:  
 

bestMatch (cats1, cats2, sumSoFar, matches)  
FOR (index = 0; index < cats2.length; index++)  
    newSum=sumSoFar +similarity(cats1[0], cats2[index])  
   matches = matches + {cats1[0], cats2[index]} 
   newCats1 = cats1 - cats1[0]  
  newCats2 = cats2 - cats2[index] 
 IF(newCats2 IS empty) THEN  

IF (newSum > maxSum) THEN  
                 match = matches  
                 maxSum = newSum  
          ENDIF 
  ELSE  

bestMatch(newCats1, newCats2, newSum, match) 
ENDIF  

NEXT index 
 
 
 
 
 
 
 



 

B.2 Results of 1:1 mapping (the most representative ones) 

 
schema1 - schema2 correct error % correct  correspondences: schema1 -->schema2 

TOPIC - ENVIRONMENT 1099 520 67.88140828 3 --> Unix 
        14 --> Windows-English 
          
TOPIC - SYMPTOM 517 1133 31.33333333 8 --> error message_displayed on pc 
        7 --> performance 
        2 --> performance_no response 
          
TOPIC - USERTASK 757 1638 31.60751566 13 --> fix problem 
        2 --> fix problem_upgrade 
        1 --> fix problem_configure 
        1 --> fix problem_setup 
          
TOPIC - MAIN COMPONENT 235 1273 15.58355438 1 --> memory 
        1 --> drive_CD 
        5 --> controller 
        4 --> expansion card_video 
        1 --> LCD 
        1 --> drive 
        1 --> power 
        1 --> drive_DVD 
        1 --> drive_hard 
        1 --> expansion card_remote control 
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TOPIC - MINOR COMPONENT 1 84 341 19.76470588 4 --> motherboard 
        3 --> peripheral_monitor 
        4 --> controller 
        1 --> power 
SYMPTOM - MINOR COMPONENT 1 66 244 21.29032258 3 --> motherboard 
        1 --> port_USB 
        3 --> peripheral_monitor 
        5 --> controller 
        1 --> RAID 
        2 --> expansion card_video 
        1 --> expansion card_network 
          
SYMPTOM - MINOR COMPONENT 2 20 39 33.89830508 6 --> CPU 
        2 --> peripheral_monitor 
        2 --> port_USB 
        4 --> controller 
        1 --> network device_router 
        1 --> RAID 
          
SYMPTOM - PRODUCT FUNCTION 46 31 59.74025974 12 --> connecting 
        4 --> backing up 
          
SYMPTOM - SOFTWARE 35 50 41.17647059 7 --> personal productivity 
        3 --> business productivity 
        4 --> entertainment 
        1 --> development tools 
        1 --> virus protection 
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Appendix C 
 

Some parts of the implemented code (Java and Bash Scripts) 
 

C.1 Bash script : extraction of schema information form the XML files 

 
#!/bin/bash 
 
# Takes as input the XML files and creates a single file containing all the information 
# fo rall schemas and the categories the files belong 
 
printf "DocID,Content Topic,Content Detail,Environment,Symptom,Symptom Detail,User Task,User Task Detail,main 
component,main component detail,minor component1,minor component1 detail,minor component2,minor component2 
detail,product function,product function detail,software topic\n\n" 
 
for F in *.XML 
do 
egrep '<original_docid>|<content_topic>|<content_topic_detail>' "$F" |cut -f2 -d\> |cut -f1 -d\< | (while read ID 
do 
read TOPIC 
read DETAIL1 
read DETAIL2 
read DETAIL3 
read DETAIL4 
read DETAIL5 
 
if [ -z "$TOPIC" ] || [ "$TOPIC" = "not applicable" ] ; then 
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printf "$ID,NA,NA," 
elif [ -z "$DETAIL1" ] || [ "$DETAIL1" = "not applicable" ]; then 
printf "$ID,$TOPIC,NA," 
elif [ -z "$DETAIL2" ]; then 
printf "$ID,$TOPIC,$TOPIC"_"$DETAIL1," 
elif [ -z "$DETAIL3" ]; then 
printf "$ID,$TOPIC,$TOPIC"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,$TOPIC"_"$DETAIL2," 
elif [ -z "$DETAIL4" ]; then 
printf "$ID,$TOPIC,$TOPIC"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,$TOPIC"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,$TOPIC"_"$DETAIL3," 
elif [ -z "$DETAIL5" ]; then 
printf "$ID,$TOPIC,$TOPIC"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,$TOPIC"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,$TOPIC"_"$DETAIL3,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,$TOPIC"_"$DETAIL4," 
else 
printf "$ID,$TOPIC,$TOPIC"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,$TOPIC"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,$TOPIC"_"$DETAIL3,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,$TOPIC"_"$DETAIL4,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,$TOPIC"_"$DETAIL5," 
fi 
 
done); 
egrep '<original_docid>|<environment>' "$F" |cut -f2 -d\> |cut -f1 -d\< | (while read ID 
do 
read ENVIRONMENT1 
read ENVIRONMENT2 
read ENVIRONMENT3 
read ENVIRONMENT4 
 
if [ -z "$ENVIRONMENT1" ] || [ "$ENVIRONMENT1" = "not applicable" ]; then 
printf "NA," 
elif [ -z "$ENVIRONMENT2" ]; then 
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printf "$ENVIRONMENT1," 
elif [ -z "$ENVIRONMENT3" ]; then 
printf "$ENVIRONMENT1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,$ENVIRONMENT2," 
elif [ -z "$ENVIRONMENT4" ]; then 
printf "$ENVIRONMENT1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,$ENVIRONMENT2,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,$ENVIRONMENT3," 
else 
printf "$ENVIRONMENT1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,$ENVIRONMENT2,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,$ENVIRONMENT3,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,$ENVIRONMENT4," 
fi 
done); 
 
egrep '<original_docid>|<symptom>|<symptom_detail>' "$F" |cut -f2 -d\> |cut -f1 -d\< | (while read ID 
do 
read SYMPTOM 
read DETAIL1 
read DETAIL2 
read DETAIL3 
 
 
if [ -z "$SYMPTOM" ] || [ "$SYMPTOM" = "not applicable" ] ; then 
printf "NA,NA," 
elif [ -z "$DETAIL1" ] || [ "$DETAIL1" = "not applicable" ]; then 
printf "$SYMPTOM,NA," 
elif [ -z "$DETAIL2" ]; then 
printf "$SYMPTOM,$SYMPTOM"_"$DETAIL1," 
elif [ -z "$DETAIL3" ]; then 
printf "$SYMPTOM,$SYMPTOM"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,$SYMPTOM"_"$DETAIL2," 
else 
printf "$SYMPTOM,$SYMPTOM"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,$SYMPTOM"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 

 55 



 

printf "$ID,NA,NA,NA,NA,$SYMPTOM"_"$DETAIL3," 
fi 
done); 
 
egrep '<original_docid>|<user_task>|<user_task_detail>' "$F" |cut -f2 -d\> |cut -f1 -d\< | (while read ID 
do 
read USERTASK 
read DETAIL1 
read DETAIL2 
read DETAIL3 
read DETAIL4 
read DETAIL5 
 
if [ -z "$USERTASK" ] || [ "$USERTASK" = "not applicable" ] ; then 
printf "NA,NA," 
elif [ -z "$DETAIL1" ] || [ "$DETAIL1" = "not applicable" ]; then 
printf "$USERTASK,NA," 
elif [ -z "$DETAIL2" ]; then 
printf "$USERTASK,$USERTASK"_"$DETAIL1," 
elif [ -z "$DETAIL3" ]; then 
printf "$USERTASK,$USERTASK"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,$USERTASK"_"$DETAIL2," 
elif [ -z "$DETAIL4" ]; then 
printf "$USERTASK,$USERTASK"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,$USERTASK"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,$USERTASK"_"$DETAIL3," 
elif [ -z "$DETAIL5" ]; then 
printf "$USERTASK,$USERTASK"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,$USERTASK"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,$USERTASK"_"$DETAIL3,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,$USERTASK"_"$DETAIL4," 
else 
printf "$USERTASK,$USERTASK"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,$USERTASK"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,$USERTASK"_"$DETAIL3,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,$USERTASK"_"$DETAIL4,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
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printf "$ID,NA,NA,NA,NA,NA,NA,$USERTASK"_"$DETAIL5," 
 
fi 
done); 
 
egrep '<original_docid>|<main_component>|<main_component_detail>' "$F" |cut -f2 -d\> |cut -f1 -d\< | (while read ID 
do 
read MAINCOMP 
read DETAIL1 
read DETAIL2 
read DETAIL3 
read DETAIL4 
read DETAIL5 
read DETAIL6 
 
 
if [ -z "$MAINCOMP" ] || [ "$MAINCOMP" = "not applicable" ] ; then 
printf "NA,NA," 
elif [ -z "$DETAIL1" ] || [ "$DETAIL1" = "not applicable" ]; then 
printf "$MAINCOMP,NA," 
elif [ -z "$DETAIL2" ]; then 
printf "$MAINCOMP,$MAINCOMP"_"$DETAIL1," 
elif [ -z "$DETAIL3" ]; then 
printf "$MAINCOMP,$MAINCOMP"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL2," 
elif [ -z "$DETAIL4" ]; then 
printf "$MAINCOMP,$MAINCOMP"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL3," 
elif [ -z "$DETAIL5" ]; then 
printf "$MAINCOMP,$MAINCOMP"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL3,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL4," 
elif [ -z "$DETAIL6" ]; then 
printf "$MAINCOMP,$MAINCOMP"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
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printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL3,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL4,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL5," 
else 
printf "$MAINCOMP,$MAINCOMP"_"$DETAIL1,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL2,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL3,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL4,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL5,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,$MAINCOMP"_"$DETAIL6," 
fi 
 
 
done); 
 
egrep '<original_docid>|<minor_component1>|<minor_component1_detail>' "$F" |cut -f2 -d\> |cut -f1 -d\< | (while read 
ID 
do 
 
read MINORCOMP1 
read DETAIL1 
read DETAIL2 
 
if [ -z "$MINORCOMP1" ] || [ "$MINORCOMP1" = "not applicable" ] ; then 
printf "NA,NA," 
elif [ -z "$DETAIL1" ] || [ "$DETAIL1" = "not applicable" ]; then 
printf "$MINORCOMP1,NA," 
elif [ -z "$DETAIL2" ]; then 
printf "$MINORCOMP1,$MINORCOMP1"_"$DETAIL1," 
else 
printf "$MINORCOMP1,$MINORCOMP1"_"$DETAIL1,NA,NA,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,$MINORCOMP1"_"$DETAIL2," 
fi 
done); 
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egrep '<original_docid>|<minor_component2>|<minor_component2_detail>' "$F" |cut -f2 -d\> |cut -f1 -d\< | (while read 
ID 
do 
 
read MINORCOMP2 
read DETAIL1 
read DETAIL2 
 
if [ -z "$MINORCOMP2" ] || [ "$MINORCOMP2" = "not applicable" ] ; then 
printf "NA,NA," 
elif [ -z "$DETAIL1" ] || [ "$DETAIL1" = "not applicable" ]; then 
printf "$MINORCOMP2,NA," 
elif [ -z "$DETAIL2" ]; then 
printf "$MINORCOMP2,$MINORCOMP2"_"$DETAIL1," 
else 
printf "$MINORCOMP2,$MINORCOMP2"_"$DETAIL1,NA,NA,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,$MINORCOMP2"_"$DETAIL2," 
fi 
done); 
 
egrep '<original_docid>|<product_function>|<product_function_detail>' "$F" |cut -f2 -d\> |cut -f1 -d\< | (while read 
ID 
do 
read PRODUCT 
read DETAIL1 
read DETAIL2 
 
if [ -z "$PRODUCT" ] || [ "$PRODUCT" = "not applicable" ] ; then 
printf "NA,NA," 
elif [ -z "$DETAIL1" ] || [ "$DETAIL1" = "not applicable" ]; then 
printf "$PRODUCT,NA," 
elif [ -z "$DETAIL2" ]; then 
printf "$PRODUCT,$PRODUCT"_"$DETAIL1," 
else 
printf "$PRODUCT,$PRODUCT"_"$DETAIL1,NA\n" 
printf "$ID,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,$PRODUCT"_"$DETAIL2," 
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fi 
done); 
 
egrep '<original_docid>|<software_topic>' "$F" |cut -f2 -d\> |cut -f1 -d\< | (while read ID 
do 
 
read SOFTWARE 
 
if [ -z "$SOFTWARE" ] || [ "$SOFTWARE" = "not applicable" ] ; then 
printf "NA\n" 
else 
printf "$SOFTWARE\n" 
 
fi 
done); 
 
done 
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C.2 Configuration file for AIRS 

 
#values describing the data 
 
# Training File: 
TrainF contentTopic.trn 
 
# Test data File: 
TestF contentTopic.tst 
 
# norms file 
# the norms file has 2 lines in it with 2 feature vectors 
# the first line has the minimum value for each feature 
# and the 2nd line as the maximum vale for each feature 
NormsFile contentTopic.norms 
 
# where to output the statistics 
Stats contentTopic.sts 
 
# where to output the trained system 
NetOut contentTopic.net 
 
# where to output the predictions for each vector in the test 
# and training set 
Pred contentTopic.prd 
 
# the number of features in each vector in the data set 
NGenes 4 
 
# the number of classes in the data set 
Classes 3 
 
# is there a label for each vector? 
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# if so, this label must be in the 1st column of the data 
labels yes 
 
 
#various learning parameters 
 
# number of passes through the training data 
# has only been experimented, really, with value of 1 
Epochs 1 
 
# the clonal rate 
CRate 10 
 
# the mutation rate 
MRate 0.1 
 
# number of training data items to seed the network 
InitSize 0 
 
# the Affinity Threshold Scalar (ATS) 
Nat 0.2 
 
# the stimulation threshold 
StimT 0.95 
 
# the number of resources allowed in the system 
NumRes 200 
 
# the K value used for the systems response to data items 
BcellK 7 
 
# this is the hyper mutation rate for Memory Cell offspring 
# if it is not set, then the default value is 2 
HRate 10.0 
 
# if NumRes is not set, then RRate is used as a scalar for 
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# determining the number of resources in the system 
# numres = RRate * number of training items 
#RRate 3.0 
 
# this is the rate at which resources are added to an ARB 
# if it is not specified then RAddRate = Clonal Rate 
#RAddRate 5 
 
# if InitSize is not set, then TrainP is used to determine 
# the number of data items to use to seed the network 
# initsize = TrainP * number of training items 
#TrainP 0.2 
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C.3 Code: creates the semantic vector for the “counting edges” approach 

 
/* 
 * Created on 06-Aug-2004 
 * Author: Anastasia Krithara 
 * 
 * Creates a table containing the distances between the  
 * categories of a given schema 
 * Distance: the number of edges 
 */ 
 
import java.io.*; 
import java.util.*; 
 
public class SemanticVector  
{ 
    public static boolean TRAIN = false; 
 public static String infoLine = ""; 
 public static String category = ""; 
 public static String categories = ""; 
 public static String nextToken = ""; 
 public static String outname = ""; 
 public static int pos1 = 0; 
 public static int pos2 = 0; 
 public static String[] classes; 
 public static File output; 
 public static File docs; 
 public static File path; 
 public static String line=""; 
 public static StringTokenizer tokenizer; 
 public static String delim = "\n"; 
 public static boolean EOF = false; 
 public static boolean found = false; 
 public static boolean exist = false; 

 64 



 

 public static boolean child1 = false; 
 public static boolean child2 = false; 
    public static File[] OUTfiles; //array which holds the names of all out files 
    public static File[] CAT; 
    public static File[] CATEST; 
    public static int len = 0; 
   public static int[][] SemVect; 
   public static double[][] NormVect; 
  
 public static double[][] createVect(int[][] SemVect,double[][] NormSem,String[] classes) throws IOException 
 {  
    len = classes.length; 
    SemVect = new int[len][len]; 
     
       for(int w=0;w<len;w++) 
       { 
        for(int q=0;q<len;q++) 
        { 
         child1 = false; 
         child2 = false; 
         pos1 = classes[w].length(); 
         pos2 = classes[q].length(); 
         char[] ch1 = classes[w].toCharArray(); 
         char[] ch2 = classes[q].toCharArray(); 
          
         for(int a=0;a<ch1.length;a++) 
         { 
          if(ch1[a] == '_') 
          { 
           child1 = true; 
           pos1 = a; 
           break; 
          } 
         }//end for 
          
         for(int b=0;b<ch2.length;b++) 
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         { 
          if(ch2[b] == '_') 
          { 
           child2 = true; 
           pos2 = b;   
           break; 
          } 
         }//end for 
          
          
         if(classes[w].equals(classes[q])) 
          SemVect[w][q] = 0; 
          
         else if(classes[w].startsWith(classes[q]+"_") || classes[q].startsWith(classes[w]+"_")) 
          SemVect[w][q] = 1; 
          
         else if(classes[w].substring(0,pos1).equals(classes[q].substring(0,pos2))) 
          SemVect[w][q] = 2; 
          
         else  
         { 
          if(child1 && child2) 
           SemVect[w][q] = 4; 
            
          else if((child1 && !child2) || (!child1 && child2)) 
           SemVect[w][q] = 3; 
           
          else if(!child1 && !child2) 
           SemVect[w][q] = 2; 
         }//end else 
          
         //System.out.println("SemVect["+w+"]["+q+"]: "+SemVect[w][q]);  
        }//end for q 
       }//end for w 
 
       NormSem = normalize(SemVect); 
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       return NormSem; 
      
 }//end createVect 
  
 public static double[][] normalize(int[][] vector) 
 { 
  double[][] afterVect = new double[vector.length][vector[0].length]; 
  double Sum = 0; 
   
  for(int l=0;l<vector.length;l++) 
  { 
   Sum=0; 
   for(int m=0;m<vector[l].length;m++) 
   { 
    Sum = Sum + vector[l][m];  
    //System.out.println("vector["+l+"]["+m+"]: "+vector[l][m]); 
   }//end for m 
    
   //System.out.println("Sum: "+Sum); 
   for(int m=0;m<vector[l].length;m++) 
   { 
    afterVect[l][m] = (double)vector[l][m]/Sum;   
   }//end for m 
    
  }//end for l 
   
  return afterVect; 
 }//end normalize 
 
  
 public static String[] findClasses(String FOLDER,int FINAL,int FOLD) 
 { 
  for(int Final=0;Final<FINAL;Final++) 
  { 
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   String str = Integer.toString(Final+1); 
          
   for (int Fold=0;Fold<FOLD;Fold++) 
   { 
    len = 0; 
    String nbr = Integer.toString(Fold+1); 
    String name = "Fold".concat(nbr); 
    String PATH = "/home/anakri/Final"+str+"/Fold"+nbr+"/TRAINING/SCHEMAS/"+FOLDER+"/"; 
    String TESTPATH = "/home/anakri/Final"+str+"/Fold"+nbr+"/TEST/SCHEMAS/"+FOLDER+"/"; 
     
        path = new File(PATH); 
        //System.out.println(path); 
       CAT = path.listFiles(); 
        
        for(int l=0;l<CAT.length;l++) 
        { 
         if(CAT[l].isDirectory()) 
          len++;          
        } 
        
         path = new File(TESTPATH); 
          
       CATEST = path.listFiles(); 
       for(int l=0;l<CATEST.length;l++) 
       { 
         exist = false; 
         if(CATEST[l].isDirectory()) 
         { 
          for(int d=0;d<CAT.length;d++) 
          { 
           if(CATEST[l].getName().equals(CAT[d].getName())) 
            exist = true; 
          } 
          if(!exist) 
           len++; 
         }//end if 
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       }//end for 
       classes = new String[len]; 
     int i=0; 
      for(int c=0;c<CAT.length;c++) 
      { 
       if(CAT[c].isDirectory()) 
       { 
        classes[i] = CAT[c].getName(); 
        i++; 
       } 
       
      }//end for 
       
       
       path = new File(TESTPATH); 
        
     CATEST = path.listFiles(); 
     for(int c=0;c<CATEST.length;c++) 
     { 
       exist = false; 
       if(CATEST[c].isDirectory()) 
       { 
        for(int d=0;d<CAT.length;d++) 
        { 
         if(CATEST[c].getName().equals(CAT[d].getName())) 
          exist = true; 
        } 
        if(!exist) 
        { 
           classes[i] = CATEST[c].getName(); 
           i++; 
        } 
         }//end if 
     }//end for 
 }//end FOLD 
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   }//end FINAL 
      
 return classes; 
  }//end findClasses 
  
}//end SemanticVector 
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