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Abstract 
In this paper, we describe the problem of designing online feedback control algorithms to 
dynamically adjust entitlement values for a resource container on a server shared by multiple 
applications. The goal is to quickly determine the minimum level of entitlement the container 
should receive in order for its hosted applications to achieve desired performance levels. Classic 
control theory is used as the foundation for both model identification and controller design. 
Specific implementation issues that affect the closed-loop system performance are discussed in 
detail, and a better implementation design is presented. A self-tuning adaptive controller is also 
presented to handle limited variations in the workload. All the controllers were implemented and 
evaluated on a testbed using the HP-UX PRM as the resource container technology and the 
Apache Web server as the hosted application inside the container. In all the experiments, our 
controller was able to quickly converge to the proper level of CPU entitlement to the Web server 
for it to track its performance target. By using our entitlement control system, shared servers can 
potentially reach much higher resource utilization while meeting service level objectives for the 
hosted applications under changing operating conditions. 
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1.  Introduction 
Utility computing refers to the vision of providing IT infrastructure to applications and services 
on demand. Enterprise grids, inspired by today’s Grid technologies that serve spare compute 
cycles to scientific and engineering jobs, aim to serve business critical applications under the 
utility computing model. Enterprise applications, distinct from traditional batch-style grid 
workloads, have resource demands that vary over time due to changes in user needs and business 
conditions. These variable demands typically have high peak-to-mean ratios, which leads to low 
resource utilization in most of today’s over-provisioned data centers with dedicated servers.    

To increase resource utilization, most leading hardware and software vendors are developing 
virtualization technologies that allow computing resources, such as servers, networks, and storage 
devices, to be shared across applications. In particular, servers shared by multiple applications 
can potentially reach much higher resource utilization due to statistical multiplexing of demands 
from co-hosted applications [34].  

Server consolidation is an industrial trend for reducing infrastructure and management costs 
and increasing return on IT investment. Current server consolidation tools typically rely on 
offline capacity planning to ensure that the shared server has sufficient capacity to accommodate 
the aggregate demand of all applications.  However, this does not prevent the servers from being 
overloaded due to unpredictable spikes in workload. Resource contention can cause performance 
degradation of the hosted applications, and may result in violation of the service level agreements 
(SLAs) for the applications. Two classes of technologies exist on the market today to address this 
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problem: server partitioning and server virtualization. For instance, HP’s Process Resource 
Manager (PRM) [13], IBM’s Application Workload Manager [20], SUN’s Solaris Resource 
Manager [35], and Aurema’s ARMTech [4], are technologies for partitioning a shared server 
under the same operation system, and ensuring each partition’s entitlement to system resources, 
such as CPU, memory, and disk bandwidth, under overload conditions. On the other hand, server 
virtualization technologies [6][15][31][36] allow multiple virtual servers to be created on the 
same physical machine and encapsulate resource demands of applications inside different virtual 
servers.  In this paper, we do not distinguish between these two technologies, and use the general 
term “resource container” to refer to a partition of a server that has certain entitlement to shared 
resources on the server.  

Resource containers are useful for performance isolation and service differentiation for 
applications on shared servers. However, the benefit of statistical multiplexing cannot be fully 
utilized if resource entitlements of the containers are predetermined statically. System resources 
on the shared server should be provided to hosted applications on an as-needed basis. For 
resource containers that host applications with SLA-based performance requirements, we need to 
guarantee that the container is always provided with enough resources such that the performance 
goals can be met. At the same time, over-provisioning of resources should be prevented so that 
more applications can be hosted on the same server. So the key question is, what is the minimum 
amount of system resource an application needs in order to meet its performance objective? This 
problem can be solved effectively using a feedback control approach, as illustrated in Figure 1. A 
controller periodically takes performance measurements of the application from a monitoring 
agent, compares it with the desired performance, and adjusts entitlement values for the resource 
container to meet the application’s performance goal. The changes to the entitlement can be 
effected through either exposed APIs or configuration utilities provided by the container. The 
performance monitoring agent can either be monitoring APIs provided by the application, or 
some standalone program that computes performance metrics from appropriate log files. 

 
Figure 1. Entitlement control for a resource container using feedback 

Most existing technologies for realizing this feedback loop online rely on policies or heuristics 
[20][29][36]. Heuristic algorithms are usually simple and easy to implement. However, they 
require a great deal of expert knowledge, therefore are typically domain specific. In addition, they 
do not provide stability guarantees, and may lead to large oscillations in certain metrics. In this 
paper, we propose a more systematic approach that uses control theory as the foundation for 
designing the control algorithms for the feedback loop in Figure 1. Control theory offers a great 
analytic engine and mature methodology for system modeling, analysis, design, and simulation. 
The rich theory provides useful guidelines for analyzing systems’ stability, performance, as well 
as tradeoffs between the two. For systems that cannot be easily described by first principles, the 
system identification process utilizes a black-box approach to infer a system model from 
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measurement data. Moreover, control theory is especially useful in an uncertain environment 
where system conditions and application requirements cannot be predicted accurately in advance, 
which is typically true for systems shared by enterprise applications. Finally, due to the use of 
short-term dynamic models to predict system behavior, this approach can quickly react to changes 
in workload intensity or system conditions automatically, in complement to offline planning and 
policy-based online adjustments that typically work at longer time scales.  

The remainder of the paper is organized as follows. Section 2 discusses related work. Section 3 
describes the architecture of the entitlement control system and the set up of our testbed in a case 
study. Section 4 demonstrates how the system model can be inferred from experimental data 
using standard system identification techniques in control theory. Section 5 describes offline 
design of a PI controller under a fixed workload, and discusses implementation issues and 
resolutions. Section 6 introduces the design of an adaptive controller and its online operation. 
Section 7 presents performance evaluation results for both the fixed controller and the adaptive 
controller. Finally, Section 8 offers conclusions and discusses future research directions. 
 

2. Related Work 
The concept of a Resource Container [5] was first proposed as a new operating system 
abstraction which separates the notion of a protection domain from that of a resource principal. 
Resource containers enable fine-grained resource management in server systems and allow the 
development of robust servers, with simple and firm control over traditional priority policies. Our 
notion of resource container is broader in the sense that it is agnostic about the specific 
technology used to create the resource container and how resource entitlement is enforced inside 
the container. In addition, the implementation of the resource container in [5] requires 
modification of both the kernel and the server applications, while our entitlement control system 
relies on existing server partitioning or virtualization technologies and externally exposed APIs or 
simple configuration utilities for the containers, and does not require a change of the applications 
running inside the container. Our goal is to provide a non-intrusive mechanism for dynamically 
controlling the entitlement of any given resource container. 

There have been various research efforts in providing resource reservation, monitoring, and 
enforcement capabilities on shared servers.  The Rialto operating system [16] offers support for 
scheduling multiple independent real-time applications along with traditional timesharing 
applications on the same machine using a combination of CPU reservations and time constraints. 
Processor Capacity Reserves [30] is a scheduling framework that supports reservation and 
admission control for multimedia applications. The reserve abstraction, though specifically 
designed for the microkernel architecture, can measure and control processor usage by individual 
applications. Resource Kernels [33] is real-time kernel that provides applications with explicit, 
timely, guaranteed and protected access to system resources. Under the support of resource 
kernels, an application can request the reservation of a specified amount of a resource, and the 
kernel can guarantee that the requested amount is exclusively available to that application. These 
resource reservation frameworks require that the entitlement of an application’s access to system 
resources be determined a priori. This is not appropriate for enterprise applications whose exact 
resource demands are unknown in advance, and typically fluctuate over time. Reservation for 
peak load is not desirable because it would lead to low resource utilization. In this paper, we 
focus on designing feedback control algorithms that dynamically adjust an application’s 
entitlement to resources based on its real-time resource needs during execution in order to meet 
its performance goals. 

Some vendors of server partitioning or virtualization technologies provide additional 
application/workload management tools for controlling application performance on shared 
servers using feedback. The IBM z/OS workload manager [21] for its zSeries servers lets the user 
of the system define performance goals for each application and assigns importance to each goal, 
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then it automatically figures out how much CPU and storage resource should be given to each 
application to meet the goal while constantly monitoring its performance. The HP-UX Workload 
Manager [14] allows the definition of a service level objective (SLO) for a workload, and 
implements a proportional (P) controller to dynamically adjust resource allocation to each 
workload to achieve its SLO [29]. The algorithm contains a number of parameters that the user 
needs to tune, mostly by trial-and-error, to achieve optimal performance of the controller. In this 
paper, we use control theory for designing such feedback control algorithms. 

Feedback control theory has had a long history of application in many engineering domains. In 
the past several years, with the help of digital control technology [11], control theory has been 
successfully applied to performance or quality of service (QoS) control of a variety of computer 
systems and software, including Lotus Notes email server [9][12], Apache Web server 
[1][7][8][10][23], Squid proxy server [25][26], Lustre file system [18], as well as a 3-tier e-
commerce site [19]. The metrics being controlled could be system-level metrics, such as CPU and 
memory utilization [1][8][10][24], cache hit ratio [25][26], server queue length [7][12], and 
server power consumption [17], or application level metrics such as response time and/or 
throughput [18][19][23], or even business level metrics such as profits [9]. The control 
mechanisms for these systems include admission control or request throttling [7][18][19], Web 
content adaptation [1], tuning of application configuration parameters [8][9][10][12], resource 
allocation [23][25][26], and frequency scaling [17]. The types of control algorithms used include 
integral (I) control [12], proportional and integral (PI) control [1][7], pole placement [8], linear 
quadratic regulator (LQR) [8][10], fuzzy control [9],  model predictive control (MPC) [17][24], 
and adaptive control [18][19][25]. Adaptive control, in particular, has received much interest 
lately due to its self-tuning capability that allows the controller to adapt to changes in operating 
conditions and workloads automatically. 

Our work is distinguished from the prior work in that we propose a generic approach for 
dynamically controlling resource entitlements of server applications that is built upon state-of-
the-art server partitioning or virtualization technologies and existing application capabilities. 
Although our experimental study used the HP-UX PRM and the Apache Web server as examples, 
the control system architecture we proposed can be applied to any resource container 
technologies and any applications hosted inside such containers on shared servers. Furthermore, 
we designed and implemented an adaptive controller that self-tunes its parameters based on 
online estimates of the system model and validated its effectiveness against variation in workload 
on a real system testbed. 
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3. Control System Architecture and Testbed Setup 
In this section, we introduce a case study that uses the HP-UX Process Resource Manager (PRM) 
[13] as an example of a resource container technology and the Apache Web server [2] as an 
example of an application running inside a resource container. Figure 2 illustrates the block 
diagram of the entitlement control system in our study. The subsections that follow explain in 
detail each block in the diagram. 

3.1 Server Application 
We chose the Apache Web server as the application to be hosted inside a resource container. The 
recent Apache release 2.0.48 was used. The Apache 2.x releases use a thread model called the 
Multi-Processing Module (MPM) to improve the performance over the Apache 1.3.x releases that 
used a process model. The new MPM implements a hybrid multi-process multi-threaded server. 
By using threads to serve requests, it is able to serve a large number of requests with less system 
resources than the previous process-based server. At the same time, Apache 2.X retains much of 
the stability of a process-based server by keeping multiple processes available, each with a 
variable number of threads to serve incoming requests.  

3.2 Resource Container and Actuator 
In our case study, we use HP-UX PRM as the resource container technology and the actuator for 
our control system. PRM is a resource management tool that allows system administrators to fine-
tune how system resources such as CPU, physical memory, and disk bandwidth on a server are 
shared by multiple users or applications. PRM controls the allocation of these resources to PRM 
groups. Each PRM group is a conceptual partition of the system’s resources, therefore a resource 
container. Because this partitioning is accomplished in the operating system, it can be changed at 
any time, even while the system is in use. During system overload conditions, PRM guarantees a 
minimum entitlement to system resources by each PRM group. Optionally, if CPU or memory 
capping is enabled on a PRM group, PRM ensures the group’s usage of CPU or memory does not 
exceed the cap regardless of whether the system is fully utilized.  

In this paper, we focus on CPU as the key system resource for applications, and rely on the 
CPU scheduler in PRM to enforce the CPU entitlement setting for a PRM group. We define the 
CPU entitlement percentage, CEP (u), as the entitlement to a percentage of CPU cycles used by 
all the Apache processes belong to the same PRM group. 

3.3 Workload Generator and Sensor 
We use httperf1 [32], a scalable client workload generator, to continuously send HTTP requests to 
the Apache Web server. We chose client-perceived mean response time, MRT, as the 
performance metric for the Web server. We modified httperf 0.8 to log the response time of every 
request. The resulting httperf log serves as our first sensor module for application performance 
(see Figure 2). We have programmed another sensor module S to compute the MRT of all the 
requests that returned during each sampling interval. The sampled MRT is fed into the controller 
for calculating control actions for the next interval. Because the workload mix and intensity affect 
the degree of how system resources inside the resource container are stressed, the workload also 
serves as a disturbance (d) to the control system.  

3.4 Controller 
The goal of the controller is to compute the proper level of CPU entitlement for the Web server to 
maintain the measured MRT around the desired response time. The latter is referred to as the 

                                                
1 ftp://ftp.hpl.hp.com/pub/httperf 
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reference signal in control theory, therefore denoted by RTref. The settings for RTref can be based 
on the SLA between the service/application provider and its users. At every sampling instant k, 
the measured MRTk (y(k)) for the previous sampling interval is compared to the current reference 
RTref

k (r(k)), and the difference e(k) is fed into the controller module C to compute the new CPU 
entitlement value, CEPk (u(k)), for the current interval. The above logic is implemented in a 
controller module C. The output of the controller module is subsequently fed into the actuator, 
i.e., PRM’s CPU scheduler, to reallocate the CPU cycles during this sampling interval.  

3.5 Testbed Setup 
All experiments including system identification and control were conducted on a testbed of two 
computers connected by 100 Mbps Ethernet, illustrated in Figure 3. The client machine runs 
httperf, the sensor module S, and the controller module C. The client machine has a 500 MHz 
Pentium III processor and 512 MB RAM. It runs Red Hat Linux 7.3 with kernel version 2.4.18. 
The server machine is used to run the Apache Web server 2.0.48 on HP-UX B11.00. It is an 
HP9000-R server with one 180 MHz PA-8000 processor and 512 MB RAM. The experimental 
setup is as follows.  
 

 
 

Figure 3. Set up of the entitlement control testbed 
 

• Client workload: Two sets of workloads were generated and tested in our experiments. For 
both sets, only static content was used. This prevents the system memory from becoming a 
bottleneck. In addition, the total size of the working file set is small enough to fit in the file 
system buffer cache so that no stress on the disk bandwidth is created either. The first set, 
WL1, consists of a sequence of static HTTP requests for the same URL, but at a different rate 
of requests per second. The second set, WL2, uses a working set of 540 distinct files that 
have sizes ranging from 1KB to 90 KB. In WL2, We used the ‘–wsesslog’ option of httperf to 
generate the workload. The corresponding session log file was generated in such a way that 
each session fetches a file that is randomly chosen out of the 540 files with a burst length of 
10 requests per connection. The session rate is exponentially distributed with a mean of 30 
sessions per second. The purpose of the second set of workloads will be explained in the 
performance evaluation section. 

• Web server: During all the experiments, we use the default Apache server settings and 
configuration parameters recommended by the Apache group.  

• PRM: We use the version of PRM inside the HP-UX B11.00 kernel. The PRM configuration 
file /etc/prmconf is modified every time a new CPU entitlement value is calculated, and the 
PRM utility prmconfig is used to reconfigure the entitlement settings of all the PRM groups. 
For the purpose of our experiment, all the Apache related users and processes are placed in 
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one PRM group called “WEBSV”. This serves as the resource container for the Web server 
application. Since CPU capping is enabled, the CPU entitlement percentage CEP also acts as 
an upper bound on the amount of CPU cycles used by the WEBSV group, enforced by the 
PRM CPU scheduler. In addition, the real CPU utilization by the WEBSV group is measured 
every second using the prmmonitor command provided by PRM and recorded in a log file 
that can be analyzed after each experiment. 

• Sensor and controller: Both the sensor module S and the controller module C are 
implemented in Perl. They can be placed on the client machine, the server machine, or a third 
machine. For the ease of parsing the httperf log, we placed them on the client machine. 

 

4.  Model Identification  
In this section, we establish the open-loop dynamic model for the mapping between the WEBSV 
PRM group’s CPU entitlement percentage (CEPk) and the mean response time (MRTk). For 
computer systems such as a Web server, it is difficult to obtain the model using first-principles 
due to the complex nature of the system. Therefore, we treat it as a black-box and infer the model 
from externally observable metrics using standard system identification techniques [22]. 

A single-input-single-output (SISO) model is used, where the input of the system u(k)= CEPk, 
and the output y(k)=1/MRTk for each sampling interval. The reason why the inverse of MRT is 
used as the output is that MRT is roughly inversely proportional to the Web server’s throughput, 
while the latter is proportional to the CPU entitlement. Therefore, we expect that the MRT is 
inversely proportional to the CEP. Using the inverse of MRT allows us to find a simple linear 
model as the basis for the controller design.  

For the system identification experiments, we used the simple fixed workload WL1 at a rate 
between 300 and 600 requests/sec to stress the CPU of the server at a certain level. For full 
excitation of the system, we varied CEPk using a pseudo-random sequence uniformly distributed 
in the interval [CPULOW, CPUHIGH]. We set CPULOW=20% and CPUHIGH=90% as the 
minimum and maximum CPU entitlement settings used for both system identification and 
control. At the beginning of each sampling interval k, u(k) was randomly chosen and fed into 
PRM for bounding the WEBSV group’s CPU utilization. The inverse of MRT, y(k), was 
measured by the sensor module S from the httperf log.  The experiment lasted 30 minutes, 
resulting in a time series of 120 input-output pairs (u(k), y(k)). We used the first 60 samples for 
identification, and the remaining 60 samples for validation. The experiment was repeated at 
different settings of the request rate, with different sampling intervals. 

After experimenting with various linear parametric models using the Matlab System 
Identification Toolbox [28], we have two observations. First, a longer sampling interval leads to a 
better fit of the model in general, while a shorter sampling interval produces data that is too noisy 
to be fit using a simple linear model. On the other hand, the controller may be too slow when the 
sampling interval is too long. We chose a sampling interval of 15 seconds as the result of the 
tradeoff. The second observation is that the following first-order auto-regressive (AR) model [22] 
provides reasonably good prediction for the inverse of MRT for all request rates. 
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The corresponding z-transform of the transfer function from u(k) to y(k) follows. 
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Notice that the system has a one-sample delay, 1−z , in the response of y(k) from u(k).  There 
are four potential contributing factors to this delay. First, the Web server itself may have a 
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delayed change in the response time when the CPU allocation to it changes; Second, the output, 
y(k), is an average measure, which incurs up to one sampling interval of delay from the real 
response time; Third, it takes time for the CEPk command to be sent from the client machine to 
the server and be written into the PRM configuration file; Fourth, the actuator (PRM’s CPU 
scheduler), which enforces the real CPU utilization of the WEBSV group to obey the entitlement 
value, requires some time for the enforcement to take effect.  

The least-squares based methods [22] in the System Identification Toolbox were used to 
estimate the first-order AR model. In addition to visually inspecting the accuracy of the 
prediction, one goodness-of-fit measure, 2r , was used to compare models with different 
parameter values. 2r  denotes the percentage of the variation in y(k) accounted for by the model. 
For the rate of 600 requests/sec, we arrived at the following parameters: 17.00 =b , and 

46.01 =a . The resulting open-loop transfer function is 

46.0
17.0)(

−
=

z
zG . (3) 

The corresponding 2r  value is 50.3%. Figure 4 shows the comparison of the measured output 
and simulated output (both inverse of MRT) from the above model on the validation data. We 
notice that although the model prediction misses some of the peak values in the real data, it is 
able to capture most of the fluctuations with reasonable accuracy. The results for other request 
rates are similar, while leading to different values of b0 and a1. 
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Figure 4.  Comparison of measured output vs. model prediction 

5.  Offline Controller Design and Implementation 
We now apply control theory to design the CPU entitlement controller in the feedback loop. 

The problem we study here is referred to as a regulation problem in the control literature, where 
the controller aims to maintain the MRT around a given target value by dynamically adjusting the 
WEBSV group’s CPU entitlement at every sampling interval.  

Table 1 lists the desired properties of the closed-loop control system along with the 
corresponding design goals for the controller. 
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Table 1.  Real system desired properties vs. controller design goals 

Desired System Properties Controller Design Criteria 
Stable Poles within the unit-circle 
Reference tracking Zero steady-state error 
Fast response Small rise time (tr) and settling time (ts) 

 
For our specific control system, stability means minimum oscillation in the controlled metric, 

i.e., MRT; in control theory, this requires that the poles of the closed-loop transfer function be 
within the unit-circle. The ability to track reference means the measured MRT eventually 
converges to the given response time target; in control theory, this is referred to as zero steady-
state error. Finally, fast response means when the response time reference changes, the measured 
MRT should be able to track the change in a timely manner; in control theory, we use the rise 
time tr and the settling time ts to measure the speed of the response, where the rise time refers to 
the time it takes to reach 90% of the reference value, and the settling time refers to the time it 
takes to settle within %5±  of the reference value. These criteria are used as guidelines when we 
determine the controller algorithm and parameters. 

We chose Proportional-Integral (PI) controller for its simplicity and the ability to achieve zero 
steady-state error. The PI controller for a discrete-time system has the following form: 

)1()()()1()( −−++−= keKkeKKkuku pip , (4) 
where e(k)=r(k)-y(k) is the error between the reference value and the measured output. For our 
system, we have kk

ref MRTRTke /1/1)( −= . The parameters used were Kp = 2.3 and Ki=2.7. This 
corresponds to the following transfer function for the controller: 

1
46.05

)(
)()(

−
−

×==
z

z
zE
zUzK . (5) 

Analytical calculation shows that the resulting closed-loop system should be able to track the 
references at steady state, and has both rise time and settling time at 30 seconds, corresponding to 
2 sampling intervals. 

In the following subsections, we describe three controller implementation designs and discuss 
their advantages and disadvantages. In all three implementations, the control interval is set as the 
same as the sampling interval, T=15 sec. 

5.1 Controller Implementation Design 1 
Figure 5 illustrates a typical timeline of implementing the above PI controller. In this design, we 
use a real-time timer to kick off the controller every T seconds. Starting from the beginning of 
each control interval Tk, the following two steps are performed: 

 
Figure 5. Controller implementation design 1 

Step 1: The sensor module S parses the httperf log on the client machine and computes the mean 
response time MRTk of all the requests that were completed in the last control interval [Tk-1, Tk).  
Step 2: The controller module C compares the inverse of MRTk with the inverse of the response 
time reference RTref

k, and uses the error to compute the control input, CEPk, for the current 
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control interval. After this is done, the control input is communicated to the server machine at 
time Uk, and will be subsequently actuated by PRM. 

This controller implementation is intuitive. However, since httperf uses buffered stream I/O to 
log the requests’ response time measurements, if at each timer expiration time Tk, we immediately 
begin parsing the httperf log file, the response time measurements of some of the requests have 
not yet been logged. This means MRTk will be calculated from an incomplete sample of the 
responses, which can degrade the performance of a traditional control system. We observed 
similar performance degradation of the control system in our own testbed, which is demonstrated 
in Section 6.  

One naïve remedy for this problem is to turn off the streamed I/O in httperf. However, due to 
the large volume of requests seen by a typical Web server, using non-streamed I/O will greatly 
affect the performance of httperf. We could also modify the httperf source code so that the 
logging is synchronized with our sampling interval, or even better, implement both the sensor 
module S and the controller module C inside httperf. However, this becomes an intrusive 
approach and is not generic enough for it to be applied to all applications. Thus we prefer an 
alternative solution to this problem.  

5.2 Controller Implementation Design 2 
To solve the incomplete sample data problem in controller implementation design 1, we propose 
the controller implementation design 2 as shown in Figure 6.  

 
Figure 6. Controller implementation design 2 

In this new design, at each timer expiration time Tk, instead of parsing the httperf log 
immediately, we add a nap time (denoted by block N) to wait for httperf to finish logging the 
response time measurements of all the requests that are completed in the previous interval [Tk-1, 
Tk]. The sensor module S and controller module C follow afterwards as in design 1.  

The time to nap is a design parameter that should be chosen carefully. Having a  nap time that 
is too short will not accomplish the goal of obtaining complete samples. On the other hand, the 
nap time should not be too long so that the whole sequence of control actions can be completed 
by the deadline (beginning of the next interval Tk+1). In our testbed, after carefully measuring the 
timing requirements of each module and the streamed I/O of httperf, we found that the nap time 
of 3 seconds is a good choice, as all requests were logged and no deadlines were missed.  

However, in controller implementation design 2, there is another deficiency that may degrade 
the performance of the closed-loop system. In a control system, the irregularity of control action 
times is referred to as control jitter. Control jitter comes from the variable execution times of 
different modules in each controller instance. This is illustrated in Figure 7. In control interval 
[Tk-1, Tk], the control action time is Uk-1. Since timer expiration time Tk-1 has the highest timing 
regularity, we use tk-1=Uk-1- Tk-1 to denote the relative control action time for interval [Tk-1, Tk]. 
Similarly, tk=Uk- Tk is the relative control action time for interval [Tk, Tk+1]. We see from Figure 7 
that due to the possible variable execution times of the sensor and the controller modules, there 
may be some jitter between tk-1 and tk.   

  S  N 

Tk Tk+1 
Tk-1 

C 

Uk 
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Figure 7. Illustration of jitter in controller implementation design 2 

It is well known that the presence of jitter in a controller’s execution will degrade the 
performance of the system, even causing a critical failure of the system [27]. To minimize the 
impact of jitter, we propose a third controller implementation design.  

5.3 Controller Implementation Design 3 
In controller implementation design 3, we address the control jitter problem by placing the 
control action time as close to Tk as possible in each control interval. We achieve this by 
withholding the calculated control input u(k-1) for the control interval [Tk-1, Tk] until the 
beginning of the next interval, Tk.   The illustration is shown in Figure 8. By making Uk-1 almost 
the same as Tk, we minimize the control jitter by removing the impact of variable execution times 
from the three modules (N+S+C).  

 
Figure 8. Controller implementation design 3 

In order to use controller implementation design 3, we need to revise the controller we had 
designed at the beginning of this section, as holding the control input to the next interval 
introduces an extra delay of one sampling interval. This results in the following controller 
algorithm: 

)1()()()()1( −−++=+ keKkeKKkuku pip . (6) 
By choosing Kp = 0.8 and Ki=0.95 based on our design criteria, we arrived at the following 
transfer function for the controller: 
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Analytical calculation shows that the closed-loop system has a rise time of 45 seconds (3 
samples) and a settling time of 90 seconds (6 samples). Notice that both the rise time and the 
settling time are longer than the controller design with no delay, which is to be expected since a 
smaller gain is chosen for the controller in exchange for stability. 
 

6.  Adaptive Controller Design 
The previous section described how a PI controller can be designed offline based on the dynamic 
input-output model obtained through system identification experiments. However, the system 
identification experiments were conducted on the simple fixed workload WL1. As a consequence, 
the offline controller is designed specifically to meet the resource needs of that particular 
workload. In a real system, workload conditions can be viewed as a disturbance on the controlled 
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system. In general, it is very difficult to find a single linear model that characterizes the system’s 
behavior under all workload conditions. As the workload changes, the best model to describe the 
system’s behavior changes accordingly. This calls for the design of an adaptive controller, which 
repeatedly estimates the dynamic model based on online input-output measurements, and 
computes controller parameters online based on the current estimated model.  

For our entitlement control testbed, a simple indirect self-tuning regulator [3] was implemented. 
One assumption we made was in spite of changes in the workload condition, a first-order AR 
model was always appropriate for predicting the MRT for the next sample interval. This means, 
the input-output model has a fixed structure, but the parameters are time-varying depending on 
the current workload in the system. Therefore, equation (1) remains as the open-loop system’s 
model, and the PI controller with one-step delay can still be used to regulate the Web server’s 
MRT. Figure 9 shows a block diagram for the self-tuning regulator, which is a variation of the 
general one in [3], but contains specific information for our testbed. 

 
 
 
 
 
 
 
 
 

Figure 9. Block diagram of an indirect self-tuning regulator 

We use the recursive least-squares (RLS) method [3] to estimate the two parameters 0b  and 1a  
for the first-order AR model. The updated parameter values at every control interval are fed into a 
pole placement module. The pole placement module chooses the desired closed-loop system 
poles based on the design criteria, such as stability, rise time, settling time, and bound on 
overshoot, and then computes the appropriate values for the Kp and Ki gains in the PI controller. 
The controller module implements the PI algorithm using the calculated gain values.  
 

7. Performance Evaluation 
In this section, we present the experimental results for the various controllers that we described in 
earlier sections, and offer a comparison with respect to the closed-loop system performance.  

First, we used the fixed workload WL1 with a rate varying between 300 and 600 
requests/second the same as what we used for system identification, to test the three 
implementations of the offline controller. To avoid the starting phase of httperf, the controller was 
turned on at 60 seconds after httperf started, and the test lasted 120 sampling intervals (1800 
seconds). In order to test how well and how fast the closed-loop control system can track changes 
in the response time target RTref, we set RTref at 3, 5, 3 seconds during time intervals [0s-600s), 
[600s-1200s), [1200s-1800s), respectively.  

Figure 10 shows the performance of the closed-loop system for workload WL1 at rate=600 
requests/second under controller implementation design 3. The middle graph (b) shows the 
measured MRT and the RTref as a function of time. With a small amount of delay (within 3-8 
sampling intervals), the controller could track changes in RTref and maintain the MRT within 

%15± of RTref. Tracking was achieved by dynamically adjusting the CPU entitlement for the 
WEBSV group at every control interval (15 second). To see this, the top graph (a) shows the 
control input CEPk and the measured CPU utilization used by the WEBSV group during the 
experimentation. The small gap between the two curves reflects both the communication delay 
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from the client machine to the server machine and the inherent error (and delay) in the actuator, 
the PRM CPU scheduler. (Note that this gap has been taken into account in our model since the 
input data we used for system identification was CEPk, not the real CPU utilization.) 

As we can see, for each setting of MRT target, our controller was able to quickly determine 
what is the correct level of CPU entitlement the WEBSV group should receive in order to meet 
that target. For example, a MRT target of 3 seconds requires a CPU entitlement of about 70-80%, 
while an MRT target of 5 seconds requires a lower entitlement setting at around 40-50%.  The 
feedback controller carried out these adjustments automatically.  

The bottom graph (c) shows the mean throughput of the server in the number of requests 
completed in each control interval. As the MRT increases, the mean throughput decreases as 
expected. As a result, if the SLA is with respect to throughput instead of response time, then a 
higher throughput target would require a higher level of CPU entitlement for the WEBSV group. 
For example,  a CPU entitlement of 40-50% produces a throughput of about 200 requests/second, 
while  a CPU entitlement of 70-80% produces a throughout of about 300 requests/second. 
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Figure 10. Closed-loop system performance under controller implementation design 3 

We also experimented with the controller implementation designs 1 and 2 discussed in Section 
5. The results are shown in Figure 11. Compared with controller implementation design 3, these 
two controller implementations are much less stable and result in large oscillations in response 
time, throughput, as well as CPU utilization of the WEBSV group. 

Finally, we tested the self-tuning adaptive controller against the variable workload WL2. Figure 
12 shows the result for a mean request rate = 30 sessions/second (with an exponential 
distribution). In the earlier sections, we discussed how different rate settings for even the simpler 
workload WL1 would lead to different parameter values for the model, which means a single 
fixed controller may not work well for all the rate settings. Since httperf does not allow the rate 
variable to be changed in the middle of a run, we chose to use variation in the file size in this 
workload to mimic the change in the CPU demand the workload places on the server during a 
single experiment. As we can see, for each fixed MRT target, the adaptive controller was able to 
maintain the MRT within %20±  of the target in spite of the variation in the workload. When the 
MRT target changed over time, it was able to track the changes within 5-9 sampling intervals and 
arrive at the proper levels of CPU entitlement for different target settings. However, the measured 
MRT does converge slower to the target value and has relatively more oscillations compared to 
the single controller specifically designed for a given workload. This is due to online estimation 
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of the parameters. It seems to be a reasonable tradeoff considering the larger classes of workload 
the adaptive controller is able to handle. 
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Figure 11. Closed-loop performance under controller implementation design 1 and 2 
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Figure 12. Closed-loop performance of the adaptive controller 

 

8.  Conclusions and Future Work 
In this paper, we described the problem of designing online feedback control algorithms to 
dynamically adjust entitlement values to a resource container on a shared server. A PI controller 
was designed offline for a fixed workload and a self-tuning adaptive controller was described to 
handle limited variations in workloads. All the controllers were implemented and tested on our 
real-time control testbed using the HP-UX PRM as the actuator and the Apache Web server as the 
hosted application inside the resource container. Both controllers were able to quickly converge 
to the minimum level of entitlement the container should receive in order for its hosted 
applications to achieve their performance goals. This technique is particularly useful when 
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multiple applications are co-hosted on the same server, which is the key feature of today’s server 
consolidation practices and utility computing environments. By using our entitlement control 
system, shared servers can reach much higher resource utilization while meeting service level 
objectives for the hosted applications. In future work, it will be interesting to evaluate the 
scenario where multiple applications are competing for resources on the shared server, and not all 
applications’ performance goals can be met at the same time. In this case, policy-based or utility-
driven prioritization schemes may be incorporated so that entitlement values for individual 
applications can be decided in a way that maximizes the overall benefit generated from the server. 

As ongoing work, we are including dynamic content into our workload set so that we can stress 
the memory of the resource container along with the CPU, and include memory entitlement as 
another control input in our system. Further explorations can allow disk bandwidth entitlement 
and system throughput to be included into the problem in a similar fashion. This would result in a 
multiple-input-multiple-output (MIMO) model for the controlled system, which requires that a 
broader set of controller design methodologies be investigated. 

Another interesting direction is to apply the same approach to environments with virtual 
machine technologies. This would rely on the power and flexibility of the entitlement setting 
APIs exposed by various products. We intend to determine if adding more dynamic control and 
self-tuning capabilities on top of the server virtualization technologies would enable enterprise 
grids to achieve much higher utilization in the infrastructure, better predictability in application 
performance, and quicker adaptation to changes in business priorities and user demands. 
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