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A CALCULUS AND LOGIC OF RESOURCES AND PROCESSES

DAVID PYM AND CHRIS TOFTS

Abstract. Recent advances in logics for reasoning about resources provide a

new approach to compositional reasoning in interacting systems. We present
a calculus of resources and processes, based on a development of Milner’s

synchronous calculus of communication systems, SCCS, that uses an explicit

model of resource. Our calculus models the co-evolution of resources and pro-
cesses with synchronization constrained by the availability of resources. We

provide a logical characterization, analogous to Hennessy-Milner logic’s char-

acterization of bisimulation in CCS, of bisimulation between resource processes
which is compositional in the concurrent and local structure of systems.

This technical report has been updated to match exactly the version of the
paper to be published under the same title in the journal Formal Aspects of

Computing.

1. Introduction

The notion of resource is a basic one in many fields, including economics, en-
gineering, and the humanities, but it is perhaps most clearly illuminated in the
computing sciences. The location, ownership, access to, and consumption of re-
sources are central concerns in the design of systems, such as networks, within
which processors must access devices such as file servers, disks, and printers, and
in the design of programs, which access memory and manipulate data structures,
such as pointers.

Within mathematical models of computational systems, however, the rôle of
resource is quite central. This observation is illustrated quite directly in modelling
systems such as Demos [Bir79, Bir81, BT93, BT94, BT98, BT00a, BT00b], in which
the central notions are entities, that are processes which execute trajectories within
the model, and resources, which are required to enable, and are manipulated by,
entities’ actions. Systems such as Demos, however, implement a process-theoretic
view of the world in which not only is the dynamics of systems represented as
processes but so too are the essentially static resource components. We would
argue that this situation is conceptually unsatisfactory. Moreover, pragmatically,
the computational cost of modelling interactive systems is, typically, dominated by
the handling of the resource components.

We present a calculus of resources and processes, based on a development of Mil-
ner’s synchronous calculus of communication systems, SCCS, that uses an explicit
model of resource. Our calculus models the co-evolution of resources and processes
with synchronization constrained by the availability of resources. We provide a
logical characterization, analogous to Hennessy-Milner logic’s characterization of
bisimulation in CCS, of bisimulation between resource processes which is composi-
tional in the concurrent and local structure of systems. Thus we are able to address
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the problem of providing a compositional framework for reasoning about concurrent
programs. That is, expressed in terms of a Hoare-style logic [OG76], give a rule for
concurrent composition of the form

{φ1}C1 {ψ1} {φ2}C2 {ψ2}
{φ1 op1 φ2}C1 par C2 {ψ1 op2 ψ2}

subject only to minimal side-conditions.
Our explicit model of resource is based on the semantics of the logic of bunched

implications, BI, introduced in [OP99, Pym02, Pym04, POY04, GMP02] As O’Hearn
[O’H04] discusses, there is some history, dating from the 1960s and 1970s, of work
on resource control in the context of work on multiprogramming [BH72], operating
systems [BH73], and concurrent programming [Dij68, Dij71, Hoa72, Hoa74, Hoa85].
More recently, O’Hearn [O’H04] has considered a resource-based view of local rea-
soning in concurrent systems based on semantics in the Hoare logic-style of sepa-
ration logic for Owicki and Gries’s calculus of resource declarations and concurrent
commands [OG76]. Our analysis operates at the conceptually more general level of
process calculus and, consequently, gives a direct analysis of the interaction between
processes and resources.

In § 2, we give a conceptual overview of our views of resources and of processes.
Our basic model of resource derives from that considered in the setting of the logic of
bunched implications, BI, introduced by O’Hearn and Pym [OP99, Pym02, Pym04,
POY04, GMP02], in which multiplicative (or linear) and additive (or intuitionis-
tic/classical) connectives co-exist at the same level of abstraction. The semantics of
BI is naturally motivated as a model of resource, later influenced by developments
of sophisticated examples such as pointer logic [IO01] and separation logic [Rey02].
BI’s semantics is sketched in§ 6. Our model of processes derives from Milner’s
SCCS, which has the asynchronous calculus CCS as a sub-calculus, influenced by
developments in the π-calculus [Mil99]. In § 3, we give a detailed definition of our
calculus of resource–processes, SCRP. In § 5, we provide examples of the use of
SCRP to specify some core aspects of concurrent systems, namely mutual exclu-
sion, resource transfer, handshaking, private channels, and asynchronous handover.
In § 6, we provide a brief review of BI and, in § 7, we give the definition of MBI, a
Hennessy-Milner-style modal logic for SCRP, based on BI. Then, in § 8, we show
how MBI may be used to specify properties of concurrent systems specified in
SCRP, including examples of MBI’s specification of the properties of concurrent
composition and of local resources. In § 9, we prove that bisimulation in SCRP is
characterized by logical equivalence in MBI. In § 10, we provide a brief discussion
of the analysis of concurrent imperative programs provided by our framework. We
conclude, in § 11, with a brief discussion of some further work.

2. Resources, Processes, and Logics

A mathematical account of a useful notion of resource can be given using logic.
Our starting position is that the following properties are reasonable requirements
for a simple model of resource [Pym02, Pym04, POY04, GMP02]:

• A set R of resource elements;
• A (partial) combination, ◦ : R×R ⇀ R of resource elements;
• A comparison, v, of resource elements; and
• A zero resource element, e.
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In the usual spirit and methodology of mathematically modelling, these conceptu-
ally evidently well-motivated properties correspond well to a wide a range of natural
examples [POY04, Pym02, Pym04]. Mathematically, we obtain this structure as
pre-ordered partial commutative monoid,

R = (R , ◦ , e , v),

subject to the condition that if r v s and r′ v s′, then r◦r′ v s◦s′, and, recalling the
preordering of a Kripke structure [Kri63, Kri65], call it a Kripke resource monoid,
or KRM, with worlds being resources. The ordering v gives rise to an equality,

= := w ∪ v .

A simple example is provided by the natural numbers, here including 0,

N = (N , + , 0 , ≤),

in which combination is given by addition, with unit 0, and comparison is given by
less than or equals. This is an example of resource as cost.

A richer example is provided by Petri nets [POY04]. Formally, a net

N = (P , T , pre , post)

consists of sets P and T of places and transitions and two functions

pre, post : T →M,

from transitions to markings, where a marking is a finite multiset of places and M
denotes the set of all markings. A marking amounts to a function M : P → N from
places to natural numbers that is zero on all but finitely many places. Addition of
markings is given by

(M + N)p = Mp + Np.

This formalization of Petri nets can be seen as a Kripke resource monoid in
several ways. One way is to internalize the reachability relation on markings. If M
and N are markings, then define

M ⇒ N iff there are t,M ′ such that M = pre(t) +M ′ and N = post(t) +M ′ .

We can then define a preorder, v, on markings by

M v N iff there are M1, . . . ,Mn such that M = M1 ⇒ · · · ⇒Mn = N.

We let [−], the unit of +, denote the empty marking. It follows that (M,+, [−],v)
is a preordered commutative monoid.

Of perhaps more direct relevance to our concerns is the ‘basic separation model’
[POY04, Rey02]. Suppose we are given an infinite set Res = {r0, r1, . . .}. We think
of the elements of Res as primitive resources, or resource IDs, that can be allocated
and deallocated. The partial monoid structure is given by taking a world to be a
finite subset of Res, and ◦ to be union of disjoint sets. In more detail, where ↑
denotes undefinedness (and, later on, ↓ definedness),

m ◦ n =
{
m ∪ n if m ∩ n = ∅
↑ otherwise.

The unit of ◦ is {e}, and we take v to be equality. This example is the basis of
Ishtiaq and O’Hearn’s pointer logic [IO01] and Reynolds’ separation logic [Rey02].
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The composition and ordering structure lifts to sets of resource elements. Let
℘(R) denote the powerset of R and let R,S ∈ ℘(R). Then define, for example,

R ◦ S =

{
{ r ◦ s | r ∈ R and s ∈ S } if each r ◦ s ↓
↑ otherwise,

with unit {e} and, for example,1

R v S iff for all r ∈ R there is s ∈ S such that r v s.

Such sets of resources are a convenient level of abstraction for our present purposes,
for which we shall require no further special properties. We might also require that
R ◦ S be defined only if R and S are disjoint. We write R1, R2 for the union of
R1 and R2, and emphasize that composition is quite different from union. Our
notational choices should be clear in situ. Other constructions, based on Kripke
resource monoids, might also provide a basis for a calculus and logic. The space
of choices is, however, quite large, so that a discussion of it is beyond our present
scope.

More generally, we might take a more complex structure of resources. For ex-
ample, we might take R = R1 × . . .×Rm, with a composition ◦i and ordering vi

on each Ri.
Kripke resource monoids provide the basis for the semantics of BI, the logic of

bunched implications [OP99, Pym02, Pym04]. The judgement r |= φ, for r ∈ R,
is read as ‘resource element r is sufficient to support proposition φ’. The ordering
structure admits the usual Kripke semantics for the usual, additive, connectives (>,
∧, ⊥, ∨, →) of intuitionistic logic and, in the discrete case, classical logic.2 The
monoidal structure admits a semantics for a multiplicative conjunction, ∗, given by

r |= φ1 ∗ φ2 iff there are s1 and s2 such that s1 ◦ s2 v r, and
s1 |= φ1 and s2 |= φ2.

The semantics of the multiplicative conjunction, ∗, is interpreted as follows: the
resource r is sufficient to support φ1∗φ2 just in case it can be divided into resources
s1 and s2 such that s1 is sufficient to support φ1 and s2 is sufficient to support φ2.
The assertions φ1 and φ2 — think of them as expressing properties of programs —
do not share resources. In contrast, in the semantics of the additive conjunction,
r |= φ1 ∧φ2 iff r |= φ1 and r |= φ2, the assertions φ1 and φ2 may share the resource
m.

Along with the multiplicative conjunction comes a multiplicative implication,
−∗ , given by

r |= φ−∗ψ iff for all s such that s |= φ,
r ◦ s |= ψ.

The semantics of the multiplicative implication, −∗ , may be interpreted as follows:
the resource r is sufficient to support φ−∗ψ just in case for any resource s which
is sufficient to support φ the combination r ◦ s is sufficient to support ψ. We can
think of the proposition φ−∗ψ as (the type of) a function and the proposition φ
as (the type of) its argument. The resources then describe the cost of applying

1Note that the ordering on ℘(R) given here is just one of many possible choices; see, for
example, [Gun92].

2Our use of the terms ‘additive’ and ‘multiplicative’ derives from their use in linear logic [Gir87]
and bunched logic [OP99, Pym02, Pym04].
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r φ−∗ψ

s φ

r ◦ s ψ

Figure 1. Multiplicative Resources

r s φ→ ψ

s φ

r s ψ

Figure 2. Additive Resources (φ→ ψ
def= (¬φ) ∨ ψ)

the function to its argument in order to obtain the result. The function and its
argument do not share resources. This semantics can be pictured as in Figure 1.

In contrast, in the semantics of additive implication, the function and its argu-
ment may share the resource s. Intuitionistically, r |= φ→ ψ iff for all r v s, s |= φ
implies s |= ψ; classically, r |= φ→ ψ iff r |= φ implies r |= ψ. Figure 2, in which s
may be equal to r, illustrates the classical case.3

We emphasize that BI and linear logic [Gir87] are very different. Logically, they
are incomparable extensions of a basic system, sometimes called Lambek logic, of
a (commutative) tensor product, with a unit, and an implication; their treatments
of the additives and the structural laws of weakening and contraction are radically
different. Moreover, linear logic’s resource reading amounts to counting occurrences
of propositions, whereas BI’s resource semantics incorporates a basic model of the
notion of resource.

Returning to our earlier ‘basic separation model’, we note that taking the or-
dering to be given by equality gives a model of Boolean BI, that is, with classical
additives. (A model of BI with intuitionistic additives is obtained by taking v to
be inclusion.) In this model, if φ ∗ ψ holds for a given collection of resources, then
φ and ψ hold for disjoint sub-collections.

Within a process algebra [Mil83, BK84, Hoa85, Mil89], the common representa-
tion of resource is as a separated process. For instance, a semaphore is represented
as a two-state process, representing whether the token is currently available or not.
There have been extensions [BGL97] that attempt to model resource explicitly but
these approaches carry both the communication structures of the process algebras
alongside the representation of resource. We take the view that resource is the
fundamental organizing principle of the underlying calculus, an approach taken
within process-oriented discrete event languages [Bir79, Bir81]. There has been a

3BI is so called because natural deduction systems for it manipulate sequents of the form

Γ ` φ, in which Γ is a bunch of formulæ [OP99, Pym02, Pym04]; that is, a tree-structured context
built from two combining operations, one corresponding to ∗ and one to ∧.
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demonstration that Milner’s calculus SCCS can support a compositional view of
resource directly [Tof03]. It is clear, however, that this approach still contains all
of the fundamental action structures of SCCS. Our approach is to consider the
co-evolution of resources, as discussed above, and processes, in the sense of SCCS,
with synchronization being constrained by the availability of resources and with
resources being modified by the occurrence of actions.

Process calculi such as SCCS and CCS come along with a modal logic, usually
called Hennessy-Milner logic, with a semantic judgement of the form

E |= φ,

read as ‘process E has property φ’. The language of propositions typically consists
of classical conjunction, disjunction, and negation, together with modalities 〈a〉
and [a] for describing the properties of evolutions E a−→ E′. Notice that Hennessy-
Milner logic provides no characterization of the (asynchronous) parallel composition
|. One proposal for dealing with this deficiency, at least in CCS-like settings, and
which is discussed in [Sti01], is to introduce a ‘slicing’ operator, /, on formulæ
with the property that E | F |= φ iff E |= φ/F . The definition of φ/F involves
‘distributing the process through the formula’. Such a construction breaks the
distinction between specifications, given by the logic, and implementations, given
by the process terms. Moreover, the logical meaning of φ/F seems unclear. Dam
[Dam90] also considered this question in the context of models of relevant logics.

In our setting, with an explicit model of resources and a corresponding logic, we
are able to work with a judgement

R , E |= φ,

read as ‘relative to the available resources R, process E has property φ’. In
our richer logic, we obtain a finer analysis of this judgement than is available in
Hennessy-Milner logic. Specifically, we obtain, essentially, the following characteri-
zation of parallel composition, denoted by ×, as in SCCS, where ∼µ is the evident
notion of bisimulation,

R , E |= φ1 ∗ φ2 iff there are R1 and R2 such that R1 ◦R2 = R
and there are E1 and E2 such that E1 × E2 ∼µ E,
such that R1 , E1 |= φ1 and R2 , E2 |= φ2.

That is, as a direct consequence of our formulation, we are able to characterize the
concurrent structure of the system, together with its resource-constrained synchro-
nization. Finally, by working with BI’s multiplicative quantifiers, we are also able
to characterize a notion of local resource, with a corresponding logical construct
(see §§6, 7, and 9).

A similar objective is encountered in the work of Cardelli and Caires [CC03]
in which a ‘spatial logic’, in many ways similar to MBI but lacking a notion of
resource, is used to model the asynschronous π-calculus. A detailed exploration of
possible relationships between this work and ours — perhaps via particular choices
of resource monoid — is beyond our present scope.

Another approach to resources, in a synchronous setting, is that of Brémond-
Grégoire and Lee’s ACSR [BGL97]. Our approach is more foundational, starting
from a logically well-founded model of resource and developing a foundational, yet
applicable, theory of the interaction between processes and resources. A similar
point of view may be found in the work of Gastin and Mislove [GM04] in which,
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perhaps deriving from its denotational semantics motivations, the association of re-
sources and processes uses a global construction in the style of Mazurkiewicz traces
[Maz87]. Neither [BGL97] nor [GM04], however, provides a logical characteriza-
tion of the interaction between resources and processes. In contrast, our analysis
provides not only a logical characterization but one which captures the concurrent
structure of the system.

3. A Synchronous Calculus of Resource Processes

Our starting point for our calculus of resource process is Milner’s synchronous
calculus of communicating systems, SCCS [Mil83]. Note that the asynchronous
calculus CCS is a sub-calculus of SCCS.

Our main development is to view the statement E a−→ E′ as meaning that by
using resource required for the action a to be enabled, the process E evolves to E′,
with a corresponding modification of the available resource.

The natural point at which the presence or absence of a resource should impact
upon the definition of a processes activities is within the action rule. A simple ex-
tension to the standard action rule would be to add an enabling function associated
with each action, which one might call ρ(a). Consequently rendering the action rule
thus:

R, a : E a→ R,E
ρ(a) v R

However, this approach is limiting: resources will be fixed throughout the compu-
tation. In such an account, we should have to record, within the process, state
information (such as the amount in a bank within a vending machine) which one
might consider as more naturally recorded within the resource element. To that
end one should then posit the existence of a (partial) modification function, which
one might call µ, in which µ(a,R) = R′ has the interpretation that the effect of a
on a resource R is to modify it to R′. With this view the atomic action rule should
then be written:

R , a : E a→ µ(a,R), E
ρ(a) v R

a natural question with such a rule would be what should be the relationship
between ρ(a) and µ(a,R). Clearly there will be a problem if ρ(a) v R whilst
µ(a,R) is undefined. To accomodate this problem we could require that

ρ(a) = min{R | µ(a,R) ↓ }

but with this requirement it is clear that ρ is redundant, since its definition is
forced. Further, if we use an enabling function view then its integration with the
modal logic, as discussed in § 7, seems to be awkward. For descriptive convenience,
we sometimes retain the ρ presentation of process/resource constraints, but in all
cases this derives from the implied definition of µ. Given the above we fix on the
following definition of action within our calculus:

R , a : E a−→ µ(a,R) , E
provided µ(a,R) is defined.

Synchronization is achieved by requiring that a parallel composition of actions,
a#b, be possible only if the resource environment can be decomposed to support
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a and b separately. Thus our operational rule for parallel composition essentially
takes the form

R1 , E1
a1→ µ(a1, R1) , E′1 R2 , E2

a2→ µ(a2, R2) , E′2
R , E1 × E2

a1#a2→ µ(a1#a2, R) , E′1 × E′2

provided µ(a1#a2, R1 ◦R2) is defined;

that is, it must be possible to decompose R into the resources R1 and R2, the
resources required to support a1 and a2 simultaneously, though we admit the pos-
sibility of an equality between R1 and R2, so allowing sharing as required. Note
that synchronization is regulated by resources, in constrast to ACSR [BGL97], in
which instantaneous events provide the basic synchronization mechanism. Note also
that, in contrast to our local conditions, Gastin and Mislove’s [GM04] mechanism
requires a global construction for synchronization.

One fundamental consequence of this approach is that we should wish to maintain
all of the interactions that lead to the current resource use transition within a
process. In some sense, we need to know how the current resource utilization can
be decomposed. Consequently, we must abandon the elegant use of the free abelian
group of actions within SCCS to describe actions, restricting ourselves to the more
basic free abelian monoid [Mil83],

A = (Act , # , 1).

If we were to take an abelian group, then an action a might result from the com-
position a#b−1 and b thus, in some sense, making use of more resource. Taking
resource as the basic organizing principle, this form of hiding makes decomposition
difficult to track. Nevertheless, our formulation permits the formulation of com-
pound atomic actions (see the definition of µ, below) which are able to emulate the
difficult wait-until construct of discrete event simulation languages such as ECSL
[Cle65] and Demos [Bir79].

SCCS, in common with CCS, uses a notion of restriction. In our setting, a
more natural concept is that of a local action, in which a collection of resources is
available only to the process to which it is bound. Informally, the operational rule
should take the form

R ◦ S , E a−→ R′ ◦ S′ , E′

R , (νS)E
(νS)a→ R′ , (νS′)E′

,

where ‘(νS)a’ denotes the action a without the components of it that are associated
with the bound resource S. These components are ‘hidden’ in the subsequent
evolution.

As it is important to have an acronym and name for the calculus we shall call
it the synchronous calculus of resource processes, or SCRP (pronounced ‘scrap’).
Following the notation of SCCS and the π-calculus, we present the syntax of the
process element of the calculus as follows:

• 1, the unit process;
• a : E a process that performs the action a to become the process E;
• E + F a process that evolves as E or as F , unit 0;
• E × F a process that synchronously uses resources as E and F ;

• C
def= E is the definition of a constant C, allowing recursive processes to be

defined;
• (νR)E a process with a local, or hidden, evolution relative to resource R.
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Unlike for standard process algebras, we must, as we have seen, define the envi-
ronment of resources wherein the process evolves. This is given as a set of permitted
actions drawn from the monoid. Thus our operational judgement is essentially of
the form

R , E
a−→ R′ , E′

and is intended to be read as ‘process E evolves via action a relative to the set of
resources R’. R is assumed to be a set of elements of resource drawn from a Kripke
resource monoid. But this alone is not sufficient. As we have seen, we must set up
an association between the actions of the monoid and the resources in the system.

For now, we take a partial function

µ : Act× ℘(R) ⇀ ℘(R)

which should be understood as describing the modification to a set R of resources
caused by the execution of the action a, satisfying the following conditions:

• µ(1, R) = R and, if µ(a,R) ↓ and µ(b, S) ↓, then µ(a#b, R ◦ S) = µ(a,R) ◦
µ(b, S);

• for all a and R, the identity id(a,R) = R.
Modification functions are partial because the effects of actions, just like the com-
bination of resources, need not be everywhere defined. We omit, in our definition of
SCRP’s operational semantics, explicit mention of the partial function µ wherever
possible. We write µ−1S for the set of actions a such that µ(a, S) ↓. These ideas
will be illustrated by examples, after our calculus and logic have been formally de-
fined, in §§ 5 and 8. In our present context, our examples will require very simple
functions. In general, however, we might admit more complex models of resource
evolution.

Now we can state precisely the fully general form of our operational judgement:

R , E
a−→ R′ , E′,

where R′ = µ(a,R). With this form set up, the operational rules of SCRP, which
should be read from conclusion to premisses, are given in Table 1. In order to give
the rule for hiding, we need an auxiliary definition of deletion:

• Let A = {a1, . . . , am} ⊆ Act be a finite set of actions. Then define

ΠA = Πm
i=1ai = a1# . . .#am.

If b is the product over a subset of A, then we refer to ‘b in ΠA’.
• Let αs and βs denote atomic actions. Let

a = α1
k1# . . .#αm

km

b = β1
l1# . . .#βn

ln .

Then define

a / b = Πm
i=1{α

ki
i | for all 1 ≤ j ≤ n, αi 6= βj}.

Notice that, in the Hide rule, in which we write µ−1S for the set of actions a such
that µ(a, S) ↓, the product Πµ−1S may include irrelevant actions but that these
actions are discarded by the deletion operation. Notice also the separation condition
in the Prod rule given in Table 1: we ensure that the composite resource is defined.
The non-interference of the components of the composition can be enforced by
requiring also that R ◦ S be defined only if R and S are disjoint (cf. separation
logic [Rey02]).
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Act
R , a : E

a−→ µ(a,R) , E
µ(a,R) ↓

Prod
R , E

a−→ µ(a,R) , E′ S , F
b−→ µ(b, S) , F ′

R ◦ S , E × F
a#b−→ µ(a#b,R ◦ S) , E′ × F ′

Sumi
R , Ei

a−→ µ(a,R) , E′i

R , E1 + E2
a−→ µ(a,R) , E′i

i = 1, 2

Hide
R ◦ S , E a−→ R′ ◦ S′ , E′

R , (νS)E
a / Πµ−1(S)−→ R′ , (νS′)E′

µ(a /Πµ−1(S), R) = R′

Con
R , E

a−→ µ(a,R) , E′

R , C
a−→ µ(a,R) , E′

C
def
= E

Table 1. Operational Semantics of SCRP

Notice that we do not take a relabelling rule. Such a rule would follow the usual
pattern but rather we simply regard relabelling as a structural operation at the
level of the language.

4. Metatheory

Bisimulation for SCRP, R,E ∼µ R,F , is defined in the usual way. Note that, for
now, we consider the processes E and F relative to the same resource environment.

Definition 1. Bisimulation, ∼µ, is the largest binary relation on resource–process
pairs, R,E such that if R,E ∼µ R,F , then

(i) R,E a−→ µ(a,R), E′ implies, for some F ′,

R,F
a−→ µ(a,R), F ′ and µ(a,R), E′ ∼µ µ(a,R), F ′,

and
(ii) R,F a−→ µ(a,R), F ′ implies, for some E′,

R,E
a−→ µ(a,R), E′ and µ(a,R), E′ ∼µ µ(a,R), F ′.

�

We shall need the familiar property that bisimulation is a congruence, that is,
in our setting, that if R,E ∼µ R,F , then, for all evident terms a, G, and S,
R, a : E ∼µ R, a : F , R,E + G ∼µ R,F + G, R,E × G ∼µ R,F × G, and
R, (νS)E ∼µ R, (νS)F .

Proposition 4.1. Bisimulation is a congruence.

Proof. Straightforward arguments by induction on the structure of resource–process
pairs establish that ∼µ is both an equivalence relation and substitutive. �
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At this point in the development of a process calculus it is conventional to present
the equational theory that matches the notion of equivalence that we have employed.
Whilst the structure of the equational theory is important as a demonstration of
the naturality of the equivalence, it is by no means necessary to perform proofs
within the calculus. Throughout our presentation we have an intention that the
calculus will be used to represent implementation and that an extended resource
logic will be used to represent requirements. As a consequence there is little need
to reason directly within the process calculus exploiting an equational theory.

In our system, the usual basic equations of SCCS, such as commutativity, asso-
ciativity, and distribution of × over +, do indeed hold. For example, it is easy to
see, from the operational semantics, that

R , E × (F ×G) ∼µ R , (E × F )×G,

since the monoidal composition ◦ on resources is associative.
This being said, one of the most important aspects of a process system is the

interaction between the sequential part of the language and the concurrent parts,
usually expressed via an expansion theorem [Mil89]. In our instance, it is clear that
there is no useful form of the expansion theorem as an equivalence. The main reason
for this is that when we consider the constituent parts of a parallel composition we
will have a particular allocation of resources to each of those parts. When we form
the parallel composition we naturally form a (typically larger) compound resource,
it is clear that this could have been divided in many ways other than that with
which we chose to do the original proofs of the behaviours of the sub-components.
Whilst this observation does not matter when we are reasoning operationally and
decomposing the structure, it is clearly important when we are reasoning equation-
ally and forming terms by composition. The appropriate form in this instance is an
inequational theory with the obvious extension of the standard expansion theorem
for SCCS, with the caveat that, as a consequence of the potential ability to change
the division of resource, the relationship will be one of simulation and not bisim-
ulation. Given our observations above that this is of no handicap when taking a
‘two-language’ approach to specification and verification, we omit this development
within the current presentation.

5. Some Illustrative Examples

We present some examples to illustrate the commonly required interactions in a
concurrent setting:

• mutual exclusion;
• resource transfer;
• handshaking;
• private channels;
• asynchronous handover.

These examples have been chosen to illustrate how we can specify core concurrent
systems concepts in this simple setting.

The first four examples can be stated clearly enough without giving a detailed
description of the Kripke resource monoids involved. For the last example — asyn-
chronous handover — we take the following Kripke resource monoid: assume basic
sets of resource elements R, writing Rn for n ≥ 0 distinct copies of R, that is,
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R ◦ . . . ◦R︸ ︷︷ ︸
n times

, with R0 = {e}. If we take the ordering on resources to be Rm v Rn

iff m ≤ n, then bifunctoriality follows immediately and, up to some requirements
about the definedness of the modification function and the interpretation of pred-
icates, which we discussion in § 7, we get an essentially intuitionistic model. If
we were to take the discrete ordering, which is not appropriate for all examples,
we should obtain an essentially classical model, a situation similar to that which
obtains in separation logic [Rey02].

Although we have explained that taking ‘enabling’ functions as distinct from the
modification functions is logically problematic, we nevertheless find it helpful to
use the idea as a notational abbreviaton. Specifically, following our discussion in
§ 3, we write

ρ(a) = min {R | µ(a,R) ↓}

where such a minimum exists. This abbreviation is particularly convenient in the
context of the Kripke resource monoid, described above, used in the asynchronous
handover example.

5.1. Mutual Exclusion. In this example, we have two (or more) processes and
some points in the computation at which at most one of them may be active, often
termed a critical region or section. To that end we define a process in the following
manner:

E
def= nc : E + critical : Ecritical

Ecritical
def= critical : Ecritical + critical : E

To give the rest of the system we define an enabling map by ρ(nc) = {e} (nc is
‘not critical’), and ρ(critical) = {R}. Now, the resource process

R , E × E,

where µ(a,R) = R, for all a, defines a system exhibiting mutual exclusion. The
important point is that, in the application of the Prod rule, we have R = R ◦ {e}.
In other words, the resource is available as itself at the same time as an empty
resource. Consequently, the evolutions of our system are as follows:

R , E × E
nc#nc→ R , E × E

R , E × E
nc#critical→ R , E × Ecritical

R , E × Ecritical
nc#critical→ R , E × Ecritical

R , E × Ecritical
nc#critical→ R , E × E.

Notice that at no point is the action critical#critical performed nor do we see both
processes in the state Ecritical × Ecritical.

Note that in this example the resource we have used plays the rôle of a semaphore;
this demonstrates the calculus’s ability to directly exploit resource. A more stan-
dard process algebra solution to this problem is to use communication via hand-
shaking; we shall demonstrate how that is achieved within this calculus in our next
example.
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5.2. Resource Transfer. As an extension of the semaphores example, above, we
may wish to establish a system in which only one of the parallel tasks is ‘active’
at any one time, but in which the tasks take turns. One way of achieving this is
described below.

We take as resources sets R1 and R2. Then we define the following modification
functions:

µ(put1, R1) = R2 µ(get1, R1) = R1

µ(put2, R2) = R1 µ(get2, R2) = R2.

Here we take ρ(get1) = R1 and ρ(get2) = R2, and ρ(put1) = R1 and ρ(put2) = R2.
Ignoring the resources for the moment, we take the following process definitions:

E1 def= get1 : E1critical + 1 : E1

E1critical
def= 1 : E1critical + put1 : E1

E2 def= get2 : E2critical + 1 : E2

E2critical
def= 1 : E2critical + put2 : E2,

where, of course, we take ρ(1) = {e}.
Then the system R1 , E1 × E2 represents one in which the processes E1 and

E2 exchange ownership of a resource in order that they may enter their respective
critical sections:

R1 , E1× E2
get1#1→ R2 , E1critical × E2.

There are two clear generalizations of this system: we can extend the number of
resources whilst keeping the same pass-on property and so obtain a ‘round-robin’
scheduler [Mil89]; alternatively, we can extend the processes as follows:

E1 def= get1 : E1critical + swap1 : E1 + 1 : E1,

with µ(swap1, R1) = R2 and ρ(swap1) = R1, and the obvious symmetric defini-
tions. We then obtain a mutual exclusion system with a designated, or transferable,
token.

It should be clear from these examples that the modification functions, of the
form µ : Act×℘(R) ⇀ ℘(R), allow very flexible models of resource transfer between
concurrent processes.

5.3. Handshaking. In this example, we desire that two processes should proceed
only if they mutually agree on progress. In other words, there is a point in the
computation that is preceded by a point of mutual agreement or a ‘join’. The
following process definitions will illustrate the point:

E1
def= waitE1 : E1 + goE1 : E′1

E2
def= waitE2 : E2 + goE2 : E2

′

we take ρ(goE1) = R1 and ρ(goE2) = R2 but importantly R = R1◦R2, remembering
that this is not the same as R1, R2 (recall that we use this list notation for the union
of sets of resources) and can only be ‘split up’ (composition is not, in general, union)
by a use of a Prod rule. We assume ρ(wait1) = ρ(wait2) = {e}.

The evolutions of R , E1 × E2 are as follows:

R , E1 × E2

waitE1#waitE2→ R , E1 × E2
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R , E1 × E2

goE1#goE2→ R , E′1 × E′2.

Notice that E1 and E2 either wait or proceed together. Obviously in a larger system
the states E1 and E2 need not be arrived at at the same time.

5.4. Privacy. In the foregoing example, we may wish to ensure that only E1 and
E2 can interact by using the composed resource. So we would form the process

(νR1 ◦R2) (E1 × E2),

with E1, E2, and ρ as above. Note that the requirement that that each goEi be
enabled by the available resource leads, essentially, to the association of each Ri

and Ei.

5.5. Asynchronous Handover. The classic form of this example is the producer–
consumer problem: that is, there is one process that can generate work and leave
it for another process to handle later. Consider the following process definitions,
using the ‘powers of R’ monoid described at the beginning of this section:

Prod
def= nowork : Prod+ work : Prod

Cons
def= wait : Cons+ cons : Cons,

with ρ(nowork) = {e}, ρ(wait) = {e}, ρ(work) = {e}, ρ(cons) = R and, writing
Rn for n > 0 distinct copies of R, i.e., R ◦ . . . ◦R︸ ︷︷ ︸

n times

,

µ(nowork, {e}) = {e} µ(nowork,Rn) = Rn

µ(wait, {e}) = {e} µ(wait,Rn) = Rn

µ(work, {e}) = {R} µ(work,Rn) = Rn+1

µ(cons,Rn) = Rn−1.

It follows that the system

{e} , P rod× Cons

behaves as a producer–consumer system with a counter R. Given a generic state
of the system, we have the following evolutions

{e} , P rod× Cons
nowork#wait→ {e} , P rod× Cons

{e} , P rod× Cons
work#wait→ R , Prod× Cons

Rn , P rod× Cons
nowork#wait→ Rn , P rod× Cons

Rn , P rod× Cons
nowork#cons→ Rn−1 , P rod× Cons

Rn , P rod× Cons
work#cons→ Rn , P rod× Cons

Rn , P rod× Cons
work#wait→ Rn+1 , P rod× Cons.

Since our calculus is based on a synchronous view of computation, we have, as an
immediate consequence, the ability to form compound yet atomic actions. Exploit-
ing this construction and using non-determinism gives an account of the wait-until
and cond type synchronizations of Demos2k [BT00a, BT00b] like languages, since
the details are essentially identical to those of the corresponding construction within
SCCS [Mil83], they are omitted in the interest of brevity.
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6. Basic Bunched Logic

We have argued that a basic and useful model of resource arises from a Kripke
resource monoid, that is, a set equipped with a monoidal combination and a pre-
order,

R = (R , ◦ , e , v),

subject to the bifunctoriality condition. Such a structure provides the basis for
the possible-worlds models of the logic of bunched implications, BI [OP99, Pym02,
Pym04]. The axiomatization of such a structure provided by BI is given by a forcing
relation |= between resources and propositions such that, for a given denotation of
the propositional letters, [[p]],

R |= p iff R ∈ [[p]]
R |= > always

R |= φ1 ∧ φ2 iff R |= φ1 and R |= φ2

R |= ⊥ never
R |= φ1 ∨ φ2 iff R |= φ1 or R |= φ2

R |= φ→ ψ iff for all S such that R v S,
S |= φ implies S |= ψ

R |= φ1 ∗ φ2 iff there are S1 and S2 such that S1 ◦ S2 v R and
S1 |= φ1 and S2 |= φ2

R |= I iff R v e
R |= φ−∗ψ iff for all S such that S |= φ,

R ◦ S |= ψ

Intutitionistic negation is then given by ¬φ def= φ → ⊥. Boolean BI, in contrast,
takes classical additive negation,

R |= ¬φ iff R 6|= φ,

with classical implication defined by

R |= φ ⊃ ψ iff R |= φ implies R |= ψ
iff R |= (¬φ) ∨ ψ.

In a slightly more complex formulation of BI and its models, we can also interpret
both additive and multiplicative quantifiers. Here, we simply consider

R |= ∃x.φ iff for some term t defined at R,
R |= φ[t/x]

R |= ∃νx.φ iff for some term t defined at S,
R ◦ S |= φ[t/x].

The additive and multiplicative universal quantifiers are defined analogously.
The metatheory of BI, including a range of proof systems and a range of sound-

ness and completeness theorems, is presented in [OP99, Pym02, Pym04, GMP02,
POY04].

7. A Logic of Resources and Processes

Having seen that BI provides a logic of resources, with judgement R |= φ, and
that Hennessy-Milner provides a modal logic of processes, with judgement E |= φ,
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we are now in a position to introduce our modal logic of resources and processes,
MBI, with judgement

R , E |= φ,

where
• R is a set of resources, with composition and ordering lifted from the un-

derlying Kripke resource monoid,

R = (R , ◦ , e , v),

as previously discussed,
• µ : Act× ℘(R) ⇀ ℘(R) is a modification function.

The language of MBI is summarized below. The intended meanings of the less
familiar connectives are discussed in the subsequent text; the formal semantics of
all of the connectives is given in Table 2. We take Act as the domain of predication
and quantification.4 Otherwise, our formulation is based on quite standard methods
and so is presently concisely.

• Atoms: p(a1, . . . , am), predication is over actions ai ∈ Act.
• Basic Additives: The classical propositional connectives, φ ∧ ψ, >, φ ∨ ψ,
⊥, and ¬φ.

• Additive Modalities: The usual Hennessy-Milner modalities, [a]φ and 〈a〉φ,
where a ∈ Act.

• Additive Quantifiers: The usual classical quantifiers, ∀x.φ and ∃x.φ, where
the domain of quantification is Act.

• Basic Multiplicatives: The usual propositional multiplicatives from the
bunched logic BI, φ ∗ ψ, I, and φ−∗ψ.

• Multiplicative Modalities: Multiplicative forms of the usual Hennessy-Milner
modalities, [a]νφ and 〈a〉νφ, where a ∈ Act

• Multiplicative Quantifiers: A simple form of the multiplicative quantifiers
found in BI, ∀νx.φ and ∃νx.φ, where the domain of quantification is Act,
in which predication is additive [Pym02, Pym04].5

Let p be an m-ary predicate symbol. Then the interpretation of p in a Kripke
resource monoid, R = (R, ◦, e,v),

[[p]] : (℘(R))m → 2,

is an m-ary relation on ℘(R). Notice how, in the clause form atoms in Figure 2,
the meaning of an action a corresponds, locally, to the resource for which its mod-
ification, µ(a,R), is defined. Other choices may be possible here. Note, however,
that taking [[a]] = ρ(a) seems to be awkward. Such a choice would suggest taking
a side-condition of the form ρ(a) v R in the Act rule of SCRP’s operational se-
mantics, with a corresponding condition in the definiens of the clause for atoms in
MBI’s consequence relation. It seems that these choices would lead to an heredi-
tary property which, as we discuss below, we prefer to avoid in general.

4It is clear that other, possibly richer, possibly application-specific, choices are possible.
5For binary connectives, such as ∗, one might require that each component of the formula

be formed with respect to a different set of variables, with the composite formula requiring the
multiplicative combination of the two sets of variables. Here we use the much simpler additive

predication, with both components, and so the composite formula, being formed over the same
set of variables.
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R E φ−∗ψ

S F φ

R ◦ S E × F ψ

Figure 3. Multiplicative Resources

R S E φ→ ψ

S E φ

R S E ψ

Figure 4. Additive Resources (φ→ ψ
def= (¬φ) ∨ ψ)

Definition 2 (MBI model). An MBI model6 is a quadruple

M = 〈R , µ , [[−]] , |=µ
M〉,

where R = (R, ◦, e,v) is a Kripke resource monoid, µ is a modification function,
[[−]] is an interpretation of the predicate symbols in ℘(R), and |=µ

M is a satisfaction
relation such the conditions given in Table 2 hold.
�

Where no confusion can arise, we write just |= rather than |=µ
M.

The clauses for the multiplicative conjunction, ∗, and implication, −∗ , establish
the basic characterization of concurrent composition. The correspondence between
the composition of resources, ◦, and concurrent composition, ×, is illustrated in
Figure 3.

Here, we can imagine that the process E, characterized by a multiplicative im-
plication, imports a module F , together with the separate resources required by F .
The resulting concurrent process requires the composite resource.

In contrast, the (classical) additive implication does not characterize the forma-
tion of a concurrent composition. Rather, it expresses a disjunctive property of
(possibly) shared resources for a fixed process. This is illustrated by Figure 4, in
which S may be all of R.

It would be tempting to take the following Kripke monotonicity, or hereditary,
condition:

for all S s.t. R v S, R , E |= φ implies S , E |= φ.

6It should be noted that, whilst adequate for our present purposes, the rather simple definition
of MBI model presented here seems, with the classical additives, to be too näıve for more delicate
logical results, such as the completeness of a tableaux system (cf. [GMP02]), to be available.

For such purposes, more sophisticated classes models, such as those based on ternary relations
[Dun86, RM72, GMP02] seem to be necessary.
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Atoms

R , E |=µ
M p(a1, . . . , am) iff for all 1 ≤ i ≤ m, µ(ai, R) ↓, and [[p]](R, . . . , R︸ ︷︷ ︸

m times

)

Basic Additives

R , E |=µ
M > always

R , E |=µ
M φ ∧ ψ iff R , E |=µ

M φ and R , E |=µ
M ψ

R , E |=µ
M ⊥ never

R , E |=µ
M φ ∨ ψ iff R , E |=µ

M φ or R , E |=µ
M ψ

R , E |=M ¬φ iff R , E 6|=µ
M φ

Additive Modalities

R , E |=µ
M [ a ]φ iff for all R,E

a−→ µ(a,R), E′ s.t. µ(a,R) ↓,
µ(a,R) , E′ |=µ

M φ

R , E |=µ
M 〈 a 〉φ iff for some R,E

a−→ µ(a,R), E′ s.t. µ(a,R) ↓,
µ(a,R) , E′ |=µ

M φ

Additive Quantifiers

R , E |=µ
M ∃x.φ iff for some a s.t. µ(a,R) ↓, R , E |=µ

M φ[a/x]

R , E |=µ
M ∀x.φ iff for all a s.t. µ(a,R) ↓, R , E |=µ

M φ[a/x]

Basic Multiplicatives

R , E |=µ
M I iff R v e, E ∼µ 1

R , E |=µ
M φ ∗ ψ iff there exist S, T s.t. S ◦ T ↓v R, and

F , G s.t. R , F ×G ∼µ R , E, and
S , F |=µ

M φ and T , G |=µ
M ψ

R , E |=µ
M φ−∗ψ iff for all S, F s.t. R ◦ S ↓, S , F |=µ

M φ,
R ◦ S , E × F |=µ

M ψ

Multiplicative Modalities

R , E |=µ
M [ a ]νφ iff for all R ◦ S,E a−→ µ(a,R ◦ S) , E′ s.t.

R ◦ S ↓, µ(a,R ◦ S) ↓, and µ(a,R ◦ S) , E′ |=µ
M φ

R , E |=µ
M 〈 a 〉νφ iff for some R ◦ S,E a−→ µ(a,R ◦ S) , E′, s.t.

R ◦ S ↓, µ(a,R ◦ S) ↓, and µ(a,R ◦ S) , E′ |=µ
M φ

Multiplicative Quantifiers

R , E |=µ
M ∃νx.φ iff for some S, F s.t. R , E ∼µ R , (νS)F ,

R ◦ S ↓, R ◦ S , F |=µ
M φ[b/x],

for some b in Πµ−1S

R , E |=µ
M ∀νx.φ iff for all S, F s.t. R , E ∼µ R , (νS)F ,

R ◦ S ↓, R ◦ S , F |=µ
M φ[b/x],

for all b in Πµ−1S

Table 2. Satisfaction for an MBI model, M
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That is, established properties of resource–process pairs would remain true if the
available resource were increased. We do not take this condition in general. To see
why, consider that we might assert that a process has insufficient resource available
to evolve even though adding more resource would allow evolution. Such a condition
might, however, be derived from the properties of a given monoid. If a monoid,
such as the one taken in our illustrative examples, has the property that, for all R,
S, R v R◦S, if the definedness of the modification function is preserved as resource
increases, and if the truth of predicate symbols is preserved as resource increases,
then, via the clause of Table 2 for atoms, Kripke monotonicity will hold.

In addition to the basic multiplicative connectives already discussed, MBI makes
use of multiplicative quantifiers and multiplicative modalities. The basic idea of
the multiplicative quantifiers has already been introduced, for example,

R |= ∃νx.φ iff for some term t defined at S,
R ◦ S |= φ[t/x],

the point being that new resource is required to form the substituting term. In
MBI, the additional resource corresponds to that which is hidden by the Hide
rule, so that the semantic clause for ∃ν characterizes hiding up to bisimulation.

The multiplicative modalities are similar. For example, we have that R,E |=
〈a〉νφ just in case we have that for some action R ◦ S,E a−→ µ(R ◦ S), E′ — that
is, some a that is enabled by additional, separated, resource, S — R′ ◦ S′, E′ |= φ.

Our principal metatheorem concerning MBI, that logical truth in MBI models
corresponds to bisimulation, is established in § 9. Before proceeding with our
theoretical development, however, we revisit our SCRP examples in the from the
logical perspective provided by MBI.

8. The Illustrative Examples Revisited

We revisit the examples introduced in § 5 in order to illustrate the interaction
between resource processes and the polymodal logic MBI.

The additive connectives correspond to those available in logics of the usual
Hennessy-Milner type and are able to express the usual things [Mil89]. Accordingly,
we concentrate here on examples of the use of the multiplicatives.

8.1. Mutual Exclusion. Recall that we define a process in the following manner:

E
def= nc : E + critical : Ecritical

Ecritical
def= critical : Ecritical + critical : E,

with ρ(nc) = {e} (recall nc is ‘not critical’), and ρ(critical) = {R}. Then the
resource process

R , E × E

defines a system exhibiting mutual exclusion.
Recall that, in this example, at no point is the action critical#critical performed

and at no point do we see the state Ecritical × Ecritical. Simple (true) assertions
about the system include

R , E × E |= [critical#critical]⊥.
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8.2. Resource Transfer. As we have seen, the modification functions allow com-
plex notions of resource transfer to be expressed quite naturally. Returning to our
simple example of scheduling, again following on from the example above, with
process definitions as given in § 5, we have

R , E1× E2 |= [get1#get2]⊥
and

R , E1critical × E2critical |= [put1#put2]⊥.
Defining a rather unsubtle resource-ownership predicate in a system R,E by

ownsR,E(a) iff an evolution R,E a→ µ(a,R), E′ occurs, then we get

R1 , E1 × E2 |= [get1#1]〈1#get2〉ownsR2,E2(get2).

8.3. Handshaking. Recall that the processes

E1
def= waitE1 : E1 + goE1 : E′1

E2
def= waitE2 : E2 + goE2 : E′2

determine a system that can proceed only if they mutually agree on progress: that
is, E1 × E2 can evolve to E′1 × E′2 only if goE1#goE2 is enabled, that is, R can be
decomposed into R1 and R2. For i = 1, 2, let φ′i be some assertion such that

Ri , E
′
i |= φ′i.

Then we have that

R , E1 × E2 |= 〈goE1#goE2〉 (φ′1 ∗ φ′2)
provided R1 ◦ R2 = R. This assertion, which demonstrates how a property of a
concurrent system may be expressed as a conjunction of properties of its concurrent
components, forms part of our next example. Note that if φ′2, say, is of the form
φ′1−∗ψ, then we obtain

〈goE1#goE2〉ψ
as an ‘emergent property’ of the concurrent system.

8.4. Privacy. Recall again that

E1
def= waitE1 : E1 + goE1 : E′1

E2
def= waitE2 : E2 + goE2 : E′2.

For i = 1, 2, again let φ′i be such that

Ri , E
′
i |= φ′i.

Then we have that

{e} , (νR1 ◦R2)(E1 × E2) |= ∃νx.〈x〉(φ′1 ∗ φ′2),
since unpacking |=, using the ∃ν , clause gives

R1 ◦R2 , E1 × E2 |= 〈goE1#goE2〉(φ′1 ∗ φ′2),
then, using the 〈−〉 clause,

R1 ◦R2 , E
′
1 × E′2 |= φ′1 ∗ φ′2,

and finally, using the ∗ clause,

R1 , E
′
1 |= φ′1 and R2 , E

′
2 |= φ′2.
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This assertion expresses the property that there exists an action, namely goE1#goE2 ,
which is separated from the ambient resources, which allows E1 × E2 to evolve
locally, using R1 and R2 privately, and which leads to a state having the given
properties, φ′1 and φ′2.

Again, this assertion provides an example of the use of the multiplicative con-
junction, ∗, in order to express a property of the concurrent system as a conjunction
of properties of its component systems. It also provides an example of the use of the
multiplicative existential quantifier, in order to describe a local binding of resources
to a component of the system, as well as the more familar diamond modality, 〈−〉.
Notice that the separation condition, between the ambient resource, here {e}, and
the local resource, R1 ◦R2, is satisfied trivially.

8.5. Asynchronous Handover. Recall the producer–consumer system,

Prod
def= nowork : Prod + work : Prod

Cons
def= wait : Cons+ cons : Cons,

with ρ(nowork) = {e}, ρ(wait) = {e}, ρ(work) = {e}, ρ(cons) = R and, writing
Rn for n > 0 distinct copies of R, i.e., R ◦ . . . ◦R︸ ︷︷ ︸

n times

,

µ(nowork,Rn) = Rn

µ(wait,Rn) = Rn

µ(work,Rn) = Rn+1

µ(cons,Rn) = Rn−1.

Let φProd and φCons be properties of Prod and Cons, respectively, relative to
resource R. Then the system {e}, P rod× Cons has the property

{e} , P rod× Cons |= 〈nowork#cons〉ν(φProd ∗ φCons)

since, unpacking |= using 〈−〉ν , noting that

{e} ◦R , Prod× Cons
nowork#cons→ µ(nowork#cons, {e} ◦R) , P rod× Cons

gives
R , Prod× Cons |= φProd ∗ φCons,

which follows using the case of |= for ∗.
This property says that the system {e}, P rod × Cons may perform the action

nowork#cons provided the required resource be added.
Since our primary modalities, 〈a〉 and [a], are defined over actions, we can exploit

the action structure to define compound requirements which match the compound
interaction forms of wait-until [BT00a]. For example, 〈a#b〉φ requires that actions
a and b are performed simultaneously, this could either be as a result of a single
process insisting on the availability of both resources (a wait-until) or the result of
a parallel system performing both actions as a synchronous parallel.

9. Logical Metatheory

The logical characterization of bisimulation provided by Hennessy-Milner logic
for a process calculus such as CCS [Mil89] takes the form

E ∼ F iff for all φ, E |= φ iff F |= φ.
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Here we show that such a theorem is available for the finer analysis of process
equivalence and logical equivalence provided by SCRP and MBI. More specifi-
cally, our result, expressed as Theorems 9.1 and 9.2, shows that MBI provides a
explicit characterizations of the concurrent and local structure of a system, via the
definitions of |= for the connective ∗ and the multiplicative quantifiers, ∀ν and ∃ν ,
respectively.

Definition 3. Let Γ be a set of MBI formulæ. Then the equivalence ≡Γ between
SCRP processes is defined by

R , E ≡Γ R,F iff for all M, {φ ∈ Γ | R , E |=µ
M φ}

=
{ψ ∈ Γ | R , F |=µ

M ψ}.

�

We have the usual derived definition:

R,E ≡MBI R,F iff for all Γ, we have R,E ≡Γ R,F .

Theorem 9.1. If, for all R and µ, R,E ∼µ R,F , then, for all R, it follows that
R,E ≡MBI R,F .

Proof. By induction on the structure of formulæ, φ.

p: Let φ be p(a1, . . . , am). By the definition of |=, we have that R,E |=
p(a1, . . . , am) iff, for each 1 ≤ i ≤ m, µ(ai, R) ↓ and [[p]](R, . . . , R︸ ︷︷ ︸

m times

). But

these conditions are independent of E, so we are done.
¬: Let φ be ¬ψ. By the induction hypothesis, we may assume that the result

holds for ψ. By the definition of |=, we have that R,E |= ¬ψ iff R,E 6|= ψ.
Therefore, by the induction hypothesis, we have that R,F 6|= ψ, and so, by
the definition of |=, R,F |= ¬ψ.

>: Similar to the case for atoms, p.
∧: Let φ be ψ1 ∧ ψ2. By the induction hypothesis, we may assume that the

result holds for ψ1 and ψ2. By the definition of |=, R,E |= ψ1 ∧ ψ2 iff
R,E |= ψ1 and R,E |= ψ2. Therefore, by the induction hypothesis, R,F |=
ψ1 and R,F |= ψ2. Therefore, by the definition of |=, R,F |= ψ1 ∧ ψ2.

⊥: Similar to the case for atoms, p.
∨: Similar to the case for ∧.

[a]: Let φ be [a]ψ. It follows that, for any E′ such that R,E a−→ µ(a,R), E′,
µ(a,R), E′ |= ψ. By the definition of bisimulation, we have that, for some
E′ such that R,E a−→ µ(a,R), E′, there is an R,F a−→ µ(a,R), F ′ such that
µ(a,R), E′ ∼µ µ(a,R), F ′. So, by the induction hypothesis, µ(a,R), F ′ |=
ψ, and so, by the definition of |=, R,F |= [a]ψ.

〈a〉: Similar to the case for [a].
∃: Let φ be ∃x.ψ. By the induction hypothesis, we may assume that the result

holds for each ψ[a/x], where a ∈ Act. By the definition of |=, we have that
R,E |= ∃x.ψ iff, for some a such that µ(a,R) ↓, R,E |= ψ[a/x]. Therefore,
by the induction hypothesis, we have that R,F |= ψ[a/x], and the result
follows.

∀: Similar to the case for ∃.
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I: Let φ be I. By the definition of |=, we have that R,E |= I iff R v e and
R,E ∼µ R,1. But if R,E ∼µ R,F , then R,F ∼µ R,1, and the result
follows.

∗: Let φ be ψ1 ∗ ψ2. By the induction hypothesis, we may assume that the
result holds for ψ1 and for ψ2. By the definition of |=, we have that R,E |=
ψ1 ∗ ψ2 iff, for some R1 and R2 such that R1 ◦ R2 v R and some E1 and
E2 such that

R1 ◦R2 , E1 × E2 ∼µ R , E,

R1, E1 |= ψ1 and R2, E2 |= ψ2. So, by the assumption of a bisimulation,
R1 ◦R2 = R.

Now suppose that R,E ∼µ R,F . It follows immediately that R,F ∼µ

R1 ◦R2, E1 × E2, and so we are done.
−∗ : Let φ be ψ1−∗ψ2. By the induction hypothesis, we may assume that the

result holds for ψ1 and ψ2. By the definition of |=,

R , E |= ψ1−∗ψ2 iff for all R′ and E′ such that R ◦R′ ↓
and R′ , E′ |= ψ1,
R ◦R′ , E × E′ |= ψ2

Since R , E ∼µ R , F and since ∼µ is a congruence, we have

R,E |= ψ1−∗ψ2 iff for all R′ and E′ such that R ◦R′ ↓
and R′ , E′ |= ψ1,
R ◦R′ , F × E′ |= ψ2

iff R , F |= ψ1−∗ψ2

[a]ν : Let φ be [a]νψ. By the induction hypothesis, we may assume that the
result holds for ψ. By the definition of |=, we have that R,E |= [a]νψ iff,
for all a and S such that R ◦ S,E a−→ µ(a,R ◦ S), E′, subject to some
conditions, µ(a,R ◦ S), E′ |= ψ. Suppose that R ◦ S, F a−→ µ(a,R ◦ S), F ′.
Then, by the definition of bisimulation, for some E′ such that R ◦S,E a−→
µ(a,R ◦ S), E′, µ(a,R ◦ S), E′ ∼µ µ(a,R ◦ S), F ′. So, by the induction
hypothesis, µ(a,R◦S), F ′ |= ψ, and so, by the definition of |=, R,F |= [a]νψ.

〈a〉ν : Similar to the case for [a]ν .
∃ν : Let φ be ∃νx.ψ. By the induction hypothesis we may assume that the result

holds for any ψ[a/x], where a ∈ Act. By the definition of |=, we have that
R,E |= ∃νx.ψ iff, for some T some H such that R,E ∼µ R, (νT )H, and
some b in Πµ−1T ,

R ◦ T , H |= ψ[b/x],
provided R ∩ T = ∅. Now suppose that R ◦ T,H ′ ∼µ R ◦ T,H. Then, by
the induction hypothesis, we have that

R ◦ T , H ′ |= ψ[b/x] iff R ◦ T , H |= ψ[b/x].

Now suppose that R,E ∼µ R,F . It follows immediately that R,F ∼µ

R, (νT )H, and so we are done.
∀ν : Similar to the case for ∃ν .

�

We now turn to the converse, that logical equivalence implies bisimulation equiv-
alence. Unfortunately, it is does not seem to be possible to use the first-order quan-
tifiers that are naturally present in our system to capture non-image-finite systems.
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It seems that, just as for Hennessy-Milner logic for CCS, some form of infinitary
conjunction would be necessary in order to handle the non-image-finite case.

It follows that, for image-finite processes, the argument of Stirling [Sti01] can be
applied rather straightforwardly. This brings into focus the rôle of the multiplica-
tives in our setting. They provide a refinement of the analysis usual relationship
between logical equivalence and bisimulation equivalence but their absence from
the proof of Theorem 9.2 reveals the crudeness of the characterization provided by
results of this form.

Theorem 9.2. If, for all R and µ, R,E and R,F are image-finite and if, for all
R, it is the case that R , E ≡MBI R , F , then, for all R and µ, R , E ∼µ R , F .

Proof. We adopt Stirling’s technique [Sti01] and show that the relation

{ (R,E , R, F ) | R,E and R,F image-finite and
R , E ≡MBI R , F }

is a bisimulation.
Seeking a contradiction, we suppose not. Then, without loss of generality, for

some R,G and R,H such that R,G ≡MBI R,H, there are an a and a µ(a,R), G′

such that R,G a−→ µ(a,R), G′ but µ(a,R), G′ 6≡MBI µ(a,R),H ′, for all µ(a,R),H ′

such that R,H a−→ µ(a,R),H ′. Following Stirling’s argument, we observe that

H = {µ(a,R),H ′ | R,H a−→ µ(a,R),H ′ }

is either empty or not.
Suppose that H is empty. Then we have both that R,G |= 〈a〉> and that

R,H 6|= 〈a〉>, so contradicting R,G ≡MBI R,H.
Otherwise H is non-empty but finite, since we have assumed image-finiteness.

So let it be {R,Hi | 1 ≤ i ≤ m}.
Suppose that, for each 1 ≤ i ≤ m, R,G′ 6≡MBI R,H. Then, for each i, there is

some φi(ai), for some ai ∈ Act, such that R,G′ |= φ(ai) but R,Hi 6|= φi(ai).
Now let φ be φ1(a1) ∧ . . . ∧ φn(an). Then R,G′ |= φ but R,Hi 6|= φ. Therefore

R,G |= 〈a〉φ and R,H 6|= 〈a〉φ, and we have a contradiction. Therefore the relation

{ (R,E , R, F ) | R,E and R,F image-finite and
R,E ≡MBI R,F }

is a bisimulation. The result follows. �

It remains to be considered whether results of this form are recoverable if the
bisimulation is defined for processes with different resource environments.

10. On Imperative Programs

A full presentation of the analysis of concurrent imperative programs provided
by our framework is beyond our present scope. Nevertheless, we are able to explain,
at least informally, how we are able to address the question, expressed in terms of
a Hoare-style logic [OG76, O’H04], of giving a rule for concurrent composition of
the form

{φ1}C1 {ψ1} {φ2}C2 {ψ2}
{φ1 op1 φ2}C1 par C2 {ψ1 op2 ψ2}



A CALCULUS AND LOGIC OF RESOURCES AND PROCESSES 25

subject only to minimal side-conditions. Specifically, for commands C and D,
expressible in SCCS terms, and recalling Milner’s representation of Hoare logic in
Hennessy-Milner logic [Mil89], we represent such a rule in the form

R , C |= φ S , D |= ψ

R ◦ S , C ×D |= φ ∗ ψ
.

Here we require just the constraint that the resources R and S, which in this set-
up would handle (perhaps among other things) the representation of the program
variables, be such that R ◦ S is defined and enforces sufficient separation.

To see the point, we introduce two small programs and consider, informally, their
translation into SCRP. The program P1 is
(X := X+1 ; Y := Y+1) || (Y := Y+1 ; X := X+1)

The presence of races not withstanding, this program is one that one might naturally
wish to write. It cannot be treated within, for example, O’Hearn’s Hoare-style
concurrent separation logic [O’H04], because of the races, unless one wraps critical
sections [OG76, O’H04] around the statements. This imposes a default level of
granularity. When that is done, the program P1 can be seen to increment both X
and Y by 2.

The program P2, below, is very similar to P1 but has no races. In fact, we’d like
our semantics to treat them as equivalent.
(X := X+1 || Y := Y+1) ; (Y := Y+1 || X := X+1)

To see, at least informally, how our semantics treats these programs as being
equivalent, we consider their actions on resources, when represented in SCRP. To
this end, we assume a definition of a combinator Seq, for sequential composition,
in SCRP, essentially as defined for CCS in [Mil89], such that, for actions c, d, we
have essentially

µ(c Seq d,R) = µ(c, µ(d,R)).

Let RX and RY be the resource components corresponding to the variables X
and Y , respectively, and consider a suitable monoid of pairs (RX , RY ). Let a and
b be actions for the assignments X := X + 1 and Y := Y + 1, respectively. Then,
abusing our notation somewhat, we can calculate the resource modification of P1,
call it µ(P1, (RX , RY )), as follows:

µ(P1, (RX , RY )) = µ(a, µ(b, (RX , RY ))) ◦ µ(b, µ(a, (RX , RY )))
= µ(a#b, µ(b, (RX , RY )) ◦ µ(a, (RX , RY ))) definition of µ
= µ(a#b, µ(b#a, ((RX , RY ) ◦ (RX , RY )))) definition of µ

Notice that we have assumed that the composite

µ(a, µ(b, (RX , RY ))) ◦ µ(b, µ(a, (RX , RY ))),

is defined; that is, we have a separation condition. Thus the program P2 can also
be seen to increment both X and Y by 2, since the modification corresponding to
a#b, incrementing each of RX and RY , occurs twice.

Similarly, since we have, by the definition of µ,

µ(a, (RX , RY )) ◦ µ(b, (RX , RY )) = µ(a#b, (RX , RY ) ◦ (RX , RY ))

we can calculate the resource modification of P2, µ(P2, (RX , RY )), immediately as:

µ(b#a, µ(a#b, (RX , RY ) ◦ (RX , RY ))).
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But a#b = b#a, so we have µ(P1, (RX , RY )) = µ(P2, (RX , RY )). Again, notice
that we have assumed that the composite µ(a, (RX , RY ))◦µ(b, (RX , RY )) is defined;
again, a separation condition.

So, in summary, we have demonstrated how our resource semantics will give the
correct meaning to a concurrent imperative program, even one with races, provided
it is, in a suitable sense, equivalent to a corresponding race-free program.

11. Quo Vadis

We have presented a calculus, SCRP, of resources and processes, based on a
development of Milner’s synchronous calculus of communication systems, SCCS,
that uses an explicit model of resource. Our calculus models the co-evolution of
resources and processes with synchronization constrained by the availability of re-
sources. We provide a logical characterization, analogous to Hennessy-Milner logic’s
characterization of bisimulation in CCS, of bisimulation between resource processes
which is compositional in the concurrent and local structure of systems.

In many ways the power of the calculus SCRP derives from the interaction
between the decomposing behaviour of the parallel rule and the composition on
resources. This has permitted us to avoid explicit notions of handshaking whilst
retaining that computational power. The full calculus presented above appears to
be very expressive, so for instance in the cases of the producer–consumer system
we can present an infinite state system with a very small collection of syntax. One
question is whether there are ‘safe’ (in the sense of Petri nets) sub-calculi that are
interesting.

A possibly useful sub-calculus is one in which we omit the capability of actions
to manipulate resource, so that the system will run with only the resources with
which it starts. Whilst, superficially, it may seem that we force the system to have
the same level of resource throughout its execution, that is not the case. To see
this, consider first the process

Destroy
def= wait : Destroy + use : Destroy,

in the full system, with µ(wait,Rn) = Rn, µ(use,Rn) = Rn−1, using the Kripke
resource monoid of our earlier examples.

Now consider the process

Hold
def= hold : Hold

Destroy
def= wait : Destroy + use : (Destroy ×Hold),

where µ(hold,R) = R, µ(wait,Rn) = Rn, µ(use,Rn) = Rn. Then the effect of
this process is to deplete the resource Rn until there is no more free, since each
instance of Hold will exploit one instance of R. This example illustrates that, in
combination with recursion, modification functions of the form µ(a,R) = R can
describe non-trivial systems.

In this example, we have a system that will eventually dissipate to a fix-point.
The presence of such fix-points within systems is often a powerful lever in proving
their properties and it is possible to envision proof approaches within this calcu-
lus where we can demonstrate that no matter what the initial resource levels then
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eventually some ‘good’ outcome is reached and hence demonstrate that this prop-
erty must hold in general. This may be of particular use within a probabilistic or
queue-like setting.

As we noted in the producer–consumer example there, are certain ‘evident’ be-
haviours of the system that we cannot code within the current formalism. There
has been some success in extending synchronous calculi with notions of both prob-
ability and priority [Tof94] and it would be interesting to see if such methods could
be applied here; the major obvious point of difficulty is the non-uniqeness of the
parallel rule applications. Given such extensions to the basic calculus, we may well
have a tool that will attach the calculation of probabilistic properties for a large
range of complex problems.

From the logical point of view, it will be necessary to investigate the evident
extensions to include greatest and least fixed points [Sti01].

The analysis of concurrent imperative programs, sketched in § 10, remains to be
developed in detail.
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