

Overloaded conversion as an alternative to printf

Greg Nelson
Imaging Systems Laboratory
HP Laboratories Palo Alto
HPL-2004-163
September 28, 2004*

type-safety,
programming
language output
primitives

This note proposes a programming language feature for formatted output
that is almost as convenient as printf but provides significantly better
static and dynamic checking.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2004

OverloadedConversionasanAlternative to printf

Greg Nelson

September29,2004

Abstract

This noteproposesa programminglanguagefeaturefor formattedoutputthat
is almostas convenientasprintf but provides significantly betterstatic and
dynamicchecking.

SincetheFortranfeatureFORMAT, mostif not all programminglanguageshave pro-
vided languagefeaturesor library routinesfor formattedoutputof numericdata.Per-
hapsthemostpopularof themany approacheshasbeentheC library functionprintf.
printf takesa variablenumberof parameters.The first parameteris a string (the
format string), the remainingarguments(the output arguments) are the valuesto be
printed.They canbeof varioustypes.In thisnote,I will call thetypesthatareallowed
for the outputargumentsthe formattable types. The format string containswithin it
severalconversion codes, onefor eachoutputargument.The effect of printf is to
sendto theoutputa copy of theformatstring,with eachconversioncodereplacedby
theprintedvalueof thecorrespondingoutputargument.For example,theconversion
code“%d” specifiestheconversionof aninteger to a sequenceof decimaldigits. The
conversioncodemayincludetype-specificformattingspecifications.For example,the
code“%3.1f” specifiestheconversionof afloatingpointnumberto a three-character-
widedecimalfield with onedigit to theright of thedecimalpoint. Thus

printf("The floor of %3.1f is %d\n", 25.0/10.0, 2)

will print

The floor of 2.5 is 2

followedby a newline.
The varying numberand varying typesof the argumentsare keys to the conve-

nienceof printf, but thesefeaturesmake it difficult to provide goodstaticor dy-
namiccheckingfor printf.

This little paperproposesa formattedoutputfeaturethatis almostasconvenientas
printf, but providesbetterchecking. It is not my suggestionto changeC or C++
or their libraries.But, asnew languagescontinueto bedesigned,andlanguagedesign
continuesto be of scientific andengineeringinterest,the featureI describemay be
usefulin somedesignsin thefuture,evenif it is mootfor thegreatdesignsof thepast.
Thereadershouldimaginea cleanslate.

I suggestone left-associative overloadedbinary infix operator, say “&”, which I
proposeto call conversion. Thereis oneoverloadingof the conversionoperatorfor
eachformattabletype T . Let us useConvert � T as the nameof the overloadingof
& for type T . Convert � T hasthe type

�������	��
�
T � �������	��

andthe following se-
mantics:Convert � T � s � x � producesthestringobtainedby replacingtheleft-mostcon-
versioncodewithin s by the valuex formattedaccordingto that conversioncode,or
producesanerrorif thatcodedoesn’t exist or is inappropriatefor typeT . For example,

print("the floor of %3.1f is %d\n" & 25.0/10.0 & 2)� print("the floor of 2.5 is %d\n" & 2)� print("the floor of 2.5 is 2\n")

Comparingthe examplewith overloadedconversionto the examplewith printf,
we seethat, using&, we canwrite a commandthat is semanticallyequivalentto the
printf version.And theversionwith & is not significantlymoredifficult to typeor
(moreimportantly)to read. (Only a curmudgeonwould complainthat theampersand
key is lessconvenientlyplacedthanthecommakey.)

Severalaspectsareinteractingin this design.First, anoverloadedleft-associative
infix operatoris beingusedto avoid theneedfor a routinethattakesa varyingnumber
of parametersof varyingtypes.This aspectof thedesignis not new. For example,the
C++ operator<< usesthe sametechnique.But the detailedsyntaxandsemanticsof
& have beencraftedso that thereis anobjective basisto theclaim that& is almostas
convenientasprintf (objective by the standardsof programminglanguagedesign
discussions),namely:thesyntaxandsemanticsof & aresuchthat

almostall occurrencesof printf canbeeliminatedin favor of a seman-
tically equivalentstatementusing& by simply replacing“printf” with
“print” andreplacingthecommabeforeeachoutputargumentwith an
ampersand.

This strongargumentfor near-equivalenceof convenienceof & with printf is new.
For example,theC++ operator<< doesn’t allow a formatstringor conversioncodes.

Overloadedconversionprovidesbetterstaticanddynamiccheckingthanprintf.
In the casethat an outputargumentis not of a formattabletype, or in the casethat
an outputargument’s type is inappropriateto the correspondingconversioncode,the
C languageallowsprintf to print garbagewithout warning,which is just what the
majority of implementationswill do. In contrast,overloadedconversionwill give a
statictypeerrorin thefirst caseanda runtimeerrorin thesecond.

The naive useof overloadedconversioninsteadof printf will result in more
stringallocationsandmorestringscanning,whichareundesirablefrom aperformance
pointof view. Butoptimizingawaytheseunnecessarycostsin thecommoncaseswould
beeasy.

I have readspecificationsfor printf that defineits behavior whenthe number
of outputargumentsexceedsthe numberof format codesin the format string. The
overloadedconversionoperatorthat I proposewill not duplicatethesesemantics.But
the specificationsthat I have readdiffer, and I have never met a programmerwho
admittedto deliberatelywriting a programthat relieson thespecifiedbehavior in this

2

case.Sothefact thatoverloadedconversiondoesn’t duplicatethesesemanticscannot
beclaimedasa significantlackof conveniencecomparedto printf.

It is time to explain the qualifier “almost all” in the claim providing an objective
basisfor thenear-equivalenceof convenienceof & andprintf. Thenecessityfor this
qualificationarisesfrom two circumstances.

First, for printf, String itself is a formattabletype(with conversioncode%s). In
theuncommoncasethatanoutputargumentof typestringcontainsformatcodes,it is
easyto comeupwith anexamplein whichthemechanicaltransformationof printf into
& fails. Thus,for example,

printf("%s %d", "%d", 6)

prints “%d 6”, but mechanicallyreplacingprintf with print andcommaswith
ampersandsproducesa differentresult:

print("%s %d" & "%d" & 6)

prints"6 %d" But it is for %d and%f thatweloveprintf, not for %s. In alanguage
that usesoverloadedconversionasan outputprimitive, it would probablybe bestto
avoid thisproblemby omitting String from theformattabletypes.

Second,printf will translatean occurrenceof “%%” in the format string into a
literal occurrenceof asingle“%” in its output,functionalitythat& cannotduplicatewith
equalconvenience(sincein generalit takesmorethanoneapplicationof & to replace
a singleapplicationof printf). If the “%” comesafter the conversioncodesin the
formatstring,thereis no problem.Otherwise,a workaroundis to print anexpression
of the form A � "%" � B where � denotesstring concatenationand A and B are
applicationsof one or more occurrencesof &. This is clearly lessconvenientthan
printf, but it is alsonot thecommoncase.

A final subjectmustbe touchedon. Nowadaysall programmersareexpectedto
write programsthat can easily be customizedfor useby peopleof different native
tongues(threestepsforward);andsomeprogrammersareevensubjectto theextreme
requirementthat the customizationmustconsistonly in substitutionsfor the format
stringsof theoccurrencesof printf in theprogram(two stepsback).(Thedefinition
of printf hasbeenchangedto make the extremerequirementtenable.) If you are
designingaprogramminglanguagethatyouintendto beusedby programmerswhoare
subjectto thisrequirement,youshouldnotattemptto replaceprintfwith overloaded
conversion.But in this caseyou shouldstopdesigninganew languageandjust useC.

I amgratefulto MikeBurrows,Rajeev Joshi,andMark Lillibridge for theirhelpful
commentson thispaper.

3

