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On the Entropy Rate of Pattern Pro
essesGeorge M. Gemelos Tsa
hy WeissmanSeptember 17, 2004Abstra
tThis work examines some information theoreti
 properties of pattern sequen
esindu
ed by sto
hasti
 pro
esses. In parti
ular, we study relationships between the en-tropy rate of the original pro
ess and that of its pattern sequen
e. We also 
hara
terizepossible growth rates of the blo
k entropy of pattern sequen
es.1 Introdu
tionIn their re
ent work [1℄, Orlitsky et. al dis
uss the 
ompression of sequen
es with unknownalphabet size. This work, among others, has 
reated interest in examining random pro
esseswith arbitrary alphabets whi
h may a priori be unknown. One 
an think of this as a problemof reading a foreign language for the �rst time. As one begins to parse 
hara
ters, one'sknowledge of the alphabet grows. Sin
e the 
hara
ters in the alphabet have initially nomeaning beyond the order in whi
h they appear, one 
an relabel these 
hara
ters by theorder of their �rst appearan
e. Given a string, we refer to the relabelled string as the patternasso
iated with the original string.Example 1 Assume that the following English senten
e was being parsed into a pattern bya non-English speaker. english is hard to learn: : :The asso
iated pattern would be1; 2; 3; 4; 5; 6; 7; 8; 5; 6; 8; 7; 9; 10; 11; 8; 12; 13; 8; 4; 1; 9; 10; 2; : : :regarding the spa
e too as a 
hara
ter.We abstra
t this as follows: Given a sto
hasti
 pro
ess fXigi�1, we 
reate a pattern pro
essfZigi�1. 1



It is the 
ompression of the pattern pro
ess fZig that Orlitsky et. al. fo
us on in [1℄.They justify this emphasis by reasoning that the bulk of the information is in the pattern.Although universal 
ompression is an extensively studied problem, the universal 
ompressionof pattern sequen
es is relatively new, see [1℄, [2℄, [3℄, [4℄, [5℄ and [6℄. These re
ent papersaddress universality questions of how well a pattern sequen
e asso
iated with an unknownsour
e 
an be 
ompressed relative to the 
ase where this distribution is known. Emphasisis on quantifying the redundan
y, i.e., the di�eren
e between what 
an be a
hieved withoutand with knowledge of the sour
e distribution. In this work we restri
t our attention to these
ond term of the said di�eren
e, namely, to the entropy of the pattern sequen
e. Morespe
i�
ally, our goal is to study some of the relationships between the entropy rate H(X)of the original pro
ess1 fXig, and the entropy rate H(Z) of the asso
iated pattern pro
ess.This relationship is not always trivial, as the following examples illustrate.Example 2 Let Xi be drawn i:i:d: � P , where P is a pmf on a �nite alphabet. Then weshow below that H(X) = H(Z).The intuition behind this result is that given enough time, all the symbols with positiveprobability will be seen, after whi
h time the original pro
ess and its asso
iated patternsequen
e 
oin
ide, up to relabelling of the alphabet symbols.Example 3 Let Xi be drawn i:i:d: � uniform [0; 2℄: Then H(X) =1. Sin
e the probabilityof seeing the same number twi
e is zero, Zi = i with probability 1 for all i and, 
onsequently,H(Z) = 0:The above two are extreme examples illustrating the fa
t that the relationship between H(X)and H(Z) is not trivial. In Se
tion 2 we 
hara
terize this relationship for the 
ase of a gen-erally distributed i:i:d: pro
ess, as well as in various other 
ases involving Markov pro
esses,stationary ergodi
 pro
esses, and hidden Markov pro
esses (under 
ertain restri
tions on theasso
iated sour
e alphabets). In Se
tion 3 we 
hara
terize a set of a
hievable asymptoti
growth rates for the blo
k entropy of a pattern pro
ess. We 
on
lude in Se
tion 4 with abrief summary of our results and a 
onje
ture.2 Entropy RatesConsider �rst the 
ase where fXig are generated i:i:d: � f , where f is an arbitrary distribu-tion on the arbitrary sour
e alphabet X . In general, f 
an be de
omposed into two parts:a part 
onsisting solely of point masses, and one 
onsisting of a distribution that does not1H(X) will denote entropy rate throughout this work, regardless of the dis
reteness of the distributionsof fXng. It is thus to be regarded as 1 when these are not dis
rete.2




ontain any point masses. Let Sf be the set of all point masses Sf = fx 2 X : f(x) > 0g.There exists a pmf fm; on Sf ; and a distribution with no point masses fd; su
h thatf = �fm + ��fd;where � = f(Sf).Theorem 1 For fXig i:i:d: � f; and any point x0 2 S
f letf � = �fm + ��Æx0 ;where Æx0 denotes the probability distribution assigning probability one to x0. ThenH(Z) = H(f �);where H(f �) denotes the entropy of the dis
rete distribution f �.The proof of Theorem 1 is deferred to the Appendix (as it will employ a 
orollary morenaturally proved in the next se
tion). As 
an be seen, Theorem 1 is 
onsistent with Example2 and Example 3. Note that f � is 
reated by taking all the point masses in f and assigningall the remaining probability to a new point mass. This 
orresponds to the result in Example3 whi
h suggests that the pattern of a pro
ess drawn a

ording to a pdf has no randomness,i.e. an entropy rate of zero. Therefore, the only randomness in the pattern 
omes from thepoint masses and the event of falling on a \non-point-mass-mode".Example 4 Let fXig be i:i:d: with ea
h 
omponent drawn, with probability 1=3, as a N(0; 1)and, with probability 2=3, as a Bern(1=2): Applying Theorem 1 for this 
ase gives that f � isthe uniform distribution on an alphabet of size 3. Therefore, H(Z) = log(3):Although the number of point masses in the f �-s asso
iated with all three examples aboveare �nite, it is important to note that Theorem 1 makes no su
h assumption.Our natural next step is the 
ase where fXig is generated by a Markov pro
ess. Theentropy rate of Markov pro
esses is well-known. What 
an be said about the entropy rateof the asso
iated pattern pro
ess? We 
an begin in this 
ontext with an even more generalsetting, but for the 
ase of a �nite alphabet.Theorem 2 Let fXig be a stationary ergodi
 pro
ess with 
omponents in the alphabet X ,where jX j <1, and let fZig be the asso
iated pattern pro
ess. Then H(X) = H(Z):Proof: De�ne the mapping gn : X 7! f1; : : : ; jX jg [1 wheregn(x) = inffZi : i � n;Xi = xg;3



where an in�mum over an empty set is de�ned as 1. We 
an think of gn as the label of xwhen it appears in the sequen
e Xn:H(Z) = limn!1 H(Zn)n� limn!1 H(Znjgn)n(a)= limn!1 H(Xnjgn)n= limn!1 H(Xn; gn)n � limn!1 H(gn)n� limn!1 H(Xn)n � limn!1 H(gn)n(b)= limn!1 H(Xn)n � limn!1 jX j log(jX j+ 1)n ;where (a) 
omes from the fa
t that fXng is a deterministi
 fun
tion of fZng given gn and(b) from the fa
t that there are at most jX jjX j possible maps gn: Thus we gotH(Z) � H(X): (1)The upper bound H(Xn) � H(Zn) holds for all n from the data pro
essing inequality and,hen
e, H(X) � H(Z). Combining this with (1) gives H(X) = H(Z). 2We now look at the 
ase of a �rst order Markov pro
ess with 
omponents in a 
ountablealphabet.Theorem 3 Let fXig be a stationary ergodi
 �rst order Markov pro
ess on the 
ountablealphabet X and let fZig be the asso
iated pattern pro
ess. Then H(X) = H(Z):Proof: Let � be the stationary distribution of the Markov pro
ess and let Px(y) = P (Xt+1 =yjXt = x) for all x; y 2 X : The data pro
essing inequality implies H(Xn) � H(Zn) for all n:Hen
e H(X) � H(Z). To 
omplete the proof it remains to show H(X) � H(Z), for whi
hwe will need the following elementary fa
t and the lemma following it.Fa
t 1 Let fAng and fBng be two sequen
es of events su
h that limn!1 P (An) = 1 andlimn!1 P (Bn) = b. Then limn!1 P (An \Bn) = b:For 
ompleteness we provide a proof of this elementary fa
t in the Appendix.Lemma 1 Given any B � X su
h that jBj <1H(Z) �Xb2B �(b)H(�B(Pb));where �B(Px) , �(B)Px + �(B
)Æx0, for an arbitrary x0 62 B.4



Proof of lemma: Let A(xn) , fx1; : : : ; xng:H(Z) = limn!1H(ZnjZn�1)� limn!1H(ZnjXn�1)� limn!1Xb2B Zfxn�1:B�A(xn�1); xn�1=bgH(P (ZnjXn�1 = xn�1)) dPXn�1� limn!1Xb2B P (B � A(Xn�1); Xn�1 = b)H(�B(Pb))= Xb2B H(�B(Pb)) limn!1P (B � A(Xn�1); Xn�1 = b)(a)� Xb2B �(b)H(�B(Pb))where (a) is a 
onsequen
e of Fa
t 1. 2Let now fBkg be a sequen
e of sets su
h that Bk � X , jBkj <1 for all k, andlimk!1Xb2Bk Xa2Bk��(b)Pb(a) logPb(a) =Xb2XXa2X ��(b)Pb(a) logPb(a);regardless of the �niteness of both sides of the equation. Note that sin
e the above summandsare all positive, su
h a sequen
e fBkg 
an always be found. Lemma 1 gives usH(Z) � Xb2Bk �(b)H(�B(Pb)) 8 k:Hen
e, by taking k !1, we getH(Z) � limk!1Xb2Bk �(b)H(�B(Pb))� limk!1Xb2Bk �(b) Xa2Bk�Pb(a) logPb(a)= limk!1Xb2Bk Xa2Bk��(b)Pb(a) logPb(a)(a)= Xb2XXa2X ��(b)Pb(a) logPb(a)(b)= H(X); (2)where (a) 
omes from the 
onstru
tion of fBkg and (b) from the fa
t that fXig is a stationary�rst-order Markov pro
ess. 2One should note that the proof of Theorem 3 
an easily be extended to the 
ase of Markovpro
esses of any order. Hen
e, without going through the proof, we state the following:5



Theorem 4 Let fXig be a stationary ergodi
 Markov pro
ess (of any order) on the 
ountablealphabet X , and let fZig be the asso
iated pattern pro
ess. Then H(X) = H(Z):We now 
onsider the 
ase of a noise-
orrupted pro
ess. Let Xi be a stationary ergodi
pro
ess and Yi be its noise 
orrupted version. Here we assume i:i:d: additive noise, Ni: Wewill also assume that Xi takes values in a �nite alphabet A � R: Let SX ; SY and SN denotethe set of points of positive measure for Xi; Yi and Ni respe
tively (assumed to all takevalues in R). We will also de�ne the dis
rete random variable~Ni = Ni1fNi2SNg + no1fNi2S
Ng;for an arbitrary point n0 62 SN :Theorem 5 Let fXig be a stationary ergodi
 pro
ess. Let fYig and f ~Yig denote, respe
tively,the pro
ess fXig 
orrupted by the additive noise fNig and f ~Nig. If jSY j < 1; then theentropy rate of the pattern pro
esses asso
iated, respe
tively, with fYig and f ~Yig, fZig andf ~Zig, are equal.Proof: De�ne Ẑ(n)i = Zi1f9j2[1;n℄ni: Zi=Zjg + yo1f9j2[1;n℄ni: Zi=Zjg
for some arbitrary y0 62 SY : Clearly Ẑ(n)i uniquely determines Zn and vi
e versa so, inparti
ular, H(Zn) = H(Ẑ(n)) 8 n > 0: (3)We also observe that we 
an 
onstru
t Ẑ(n) from ~Zn w.p. 1. ThereforeH( ~Zn) � H(Ẑ(n)) 8 n > 0: (4)Combining (3) and (4) gives H(~Z) � H(Z): (5)De�ning C(n)i = 1fẐ(n)i=y0g\fYi2SY g we observe that given C(n) and Ẑ(n) we 
an re
onstru
t~Zn for all n > 0: Hen
e, for all n > 0,H( ~Zn) � H(Ẑ(n); C(n))� H(Ẑ(n)) +H(C(n))(a)= H(Zn) +H(C(n))� H(Zn) + nXi=1 H(C(n)i); (6)where (a) 
omes from (3). 6



Let Pe(n)i = PrfYi 2 SY ; Yj 6= Yi 8 j 2 [i; n℄nig:Then we have Pe(n)i = PrfYi 2 SY gPrfYj 6= Yi 8 j 2 [1; n℄ni jYi 2 SY gPe(n)i (a)= PrfSY gXy2SY PrfYj 6= y 8 j 2 [1; n℄ni jYi = yg;where (a) 
omes from the stationarity of Y: Without loss of generality assume that i > n=2Pe(n)i � PrfSY gXy2SY PrfYj 6= y 8 j 2 [i� n=2 + 1; i� 1℄jYi = ygPe(n)i (b)� PrfSY gXy2SY PrfYj 6= y 8 j 2 [2; n=2℄jY1 = yg;where (b) 
omes from the stationarity of Y: LetPe(n) = PrfSY gXy2SY PrfYj 6= y 8 j 2 [2; n=2℄jY1 = yg: (7)Therefor we have Pe(n) � Pe(n)i 8i: (8)Sin
e jSY j <1, by ergodi
ity we havelimn!1PrfYj 6= y 8 j 2 [2; n=2℄jY1 = yg = 0and (7) gives us limn!1 Pe(n) = 0: Hen
e there exists an N su
h that Pe(n) < 1=2 for alln > N and (8) implies that HB(Pe(n)i ) � HB(Pe(n)) 8n � N; (9)where HB is the binary entropy fun
tion. Substituting Pe(n)i into (6) and taking the nor-malized limits we getlimn!1 H( ~Zn)n � limn!1 H(Zn)n + limn!1 1n nXi=1 HB(Pe(n)i )and, (9) gives us limn!1 H( ~Zn)n � limn!1 H(Zn)n + limn!1 1n nXi=1 HB(Pe(n))� limn!1 H(Zn)n + limn!1HB(Pe(n))7



and, sin
e limn!1 Pe(n) = 0, limn!1 H( ~Zn)n � limn!1 H(Zn)n + 0:Therefore H(~Z) � H(Z): (10)Combining (5) and (10) 
ompletes the proof. 2The following is dire
tly implied by Theorems 2 and 5.Corollary 6 Let Xi be a stationary ergodi
 pro
ess,Yi = Xi +Niwhere Ni is an i:i:d: sequen
e and SY and ~Yi are de�ned as in Theorem 5. Assume furtherjSY j <1: If Xi takes values in a �nite alphabet thenH(Z) = H( ~Y):3 Growth RatesWe now turn our attention to the asymptoti
 growth rate for the blo
k entropy of a patternsequen
e. We begin by stating our main result whi
h is a set of su
h a
hievable growth rates.Proposition 1 For any Æ > 0 there exists a pro
ess fXig su
h that its asso
iated patternsequen
e satis�es limn!1 H(Zn+1jZn)(lnn)1�Æ =1: (11)Before we begin the proof of Proposition 1 we need to prove some useful fa
ts. Let Xi bei:i:d: � X, where X takes values in an arbitrary spa
e X , and fZigi�1 be the asso
iatedpattern sequen
e. De�ne D = fx 2 X : Pr(X = x) > 0g. For B � D let P B denote the(point-mass) distribution on B [ fsg (where s stands for \spe
ial symbol") withP B(x) = � Pr(X = x) for x 2 B1�Px2B Pr(X = x) for x = sand let h(P B) = Xx2B[fsgP B(x) log 1P B(x)denote its entropy. 8



Claim 1 h(P B) is in
reasing in B, i.e., for any B1 � B2 � Dh(P B1) � h(P B2):Proof: This is nothing but a data-pro
essing inequality. Indeed, let Y � P B2 and letU = � Y if Y 2 B1s otherwise:Clearly U � P B1 and U is a deterministi
 fun
tion of Y , thus the 
laim follows. 2De�ne now further, for xn 2 X n,A(xn) = fa 2 D : xi = a for some 1 � i � ng:In words, A(xn) are the elements of D that appear in xn.Proposition 2 For any B � DH(Zn+1jZn) � h �P B� �1� jBj exp��nminb2B Pr(X = b)�� :Proof: Letting P nX denote the distribution of Xn, for any B � D,H(Zn+1jZn) � H(Zn+1jXn) (12)= ZXn H(Zn+1jXn = xn)dP nX(xn) (13)= ZXn h �PA(xn)� dP nX(xn) (14)� Zfxn:B�A(xn)g h �PA(xn)� dP nX(xn) (15)� h �P B�Pr (B � A(Xn)) ; (16)where the last inequality follows from the monotoni
ity property in Claim 1. Now, for anyB � D, Pr (B 6� A(Xn)) = Pr [b2B fb 62 A(Xn)g! (17)� Xb2B Pr (b 62 A(Xn)) (18)= Xb2B(1� Pr(X = b))n (19)� jBj�1�minb2B Pr(X = b)�n (20)� jBj exp��nminb2B Pr(X = b)� : (21)The proposition now follows by 
ombining (16) with (21). 29



Corollary 7 lim infn!1 H(Zn+1jZn) � h �PD� ;regardless of the �niteness of the right side of the inequality.Proof: Take a sequen
e fBkg of �nite subsets Bk � D satisfyinglimk!1h �P Bk� = h �PD� :Proposition 2 implies, for ea
h k,lim infn!1 H(Zn+1jZn) � h �P Bk� ; (22)
ompleting the proof by taking k !1 on the right side of (22). 2Sket
h of the proof of Proposition 1: Consider the 
ase where fXig are generate i:i:d: � P ,where P is a distribution on N and pj = Pr(Xi = j) is a non-in
reasing sequen
e. LettingSl =Pli=1 pi log 1pi it follows by taking B = Bl = f1; : : : ; lg in Proposition 2 thatH(Zn+1jZn) � h �P Bl� �1� jBlj exp��nminb2Bl Pr(X = b)��� Sl [1� l exp (�npl)℄implying, by the arbitrariness of l,H(Zn+1jZn) � maxl Sl [1� l exp (�npl)℄ : (23)Consider now the distribution pi = Pr(X = i) = 
(")i(ln i)1+" ; (24)for some " > 0, where 
(") is the normalization 
onstant. In this 
ase Sl =Pli=1 
(")i(ln i)1+" log i(ln i)1+"
(") �>Pli=1 1i(ln i)" � (ln l)1�" thus (23) implies, taking l � n(1�")=(1+"),H(Zn+1jZn) � Sl [1� l exp (�npl)℄�> (ln l)1�" [1� l exp (�npl)℄�> (ln l)1�" �1� l exp ��n=l1+"���> (lnn)1�" [1� n exp (�n")℄� (lnn)1�":Thus (11) is satis�ed under the distribution in (24) with any " < Æ. 210



4 Con
lusionWe have 
hara
terized relationships between the entropy rate of a sour
e and that of itspattern pro
ess for the i:i:d: 
ase, the 
ase of a stationary ergodi
 �nite-alphabet sour
e,Markov pro
esses of any order with 
ountable state spa
es, and additive noise sequen
es.We also examined possible asymptoti
 growth rates for the blo
k-entropy of patternsequen
es. The following is inspired by Proposition 1.Conje
ture 1 Let fXig be an arbitrarily distributed stationary and ergodi
 pro
ess and letfZig be its pattern pro
ess. Then limn!1 H(Zn+1jZn)logn = 0:On the other hand, for any f(n) = o(logn) there exists an i.i.d. pro
ess fXig su
h thatlimn!1 H(Zn+1jZn)f(n) =1:Regarding the �rst assertion in the 
onje
ture note that the pattern sequen
e asso
iatedwith an arbitrarily distributed sour
e satis�eslim supn!1 H(Zn+1jZn)logn <1sin
e obviously H(Zn+1jZn) � log(n+1) for all n. This part of the 
onje
ture, then, assertsslightly more for the 
ase where fXig is stationary and ergodi
, namely that in this 
asene
essarily H(Zn+1jZn) = o(logn). The se
ond part of the 
onje
ture, we believe, might beprovable by re�ning the argument used in the proof of Proposition 1.A Proof of Theorem 1If � = 0; then Xi is i:i:d: � fd: Therefore H(Zn) = 0 for all n: This gives us that H(Z) = 0whi
h agrees with Theorem 1. Hen
e we just need to prove Theorem 1 for the 
ase where� > 0: Therefore, Sf exists and jSf j > 0:Note that Corollary 7 gives us H(Z) � H(f �): For the reverse inequality, de�ne thepro
ess fX̂ig where X̂i = Xi1fXi2Sfg + x01fXi 62Sfg;for some x0 62 Sf . Clearly, X̂i is i:i:d: � f �: We thus haveH(Z) = limn!1 H(Zn)n(a)� limn!1 H(X̂n)n(b)= H(f �); (25)11



where (a) 
omes from the fa
t that Zn is a deterministi
 fun
tion of X̂n with probability 1,and (b) from the fa
t that X̂i is i:i:d: � f �: 2Proof of Fa
t 1: Trivially, P (An \ Bn) � P (Bn)! b: On the other hand,lim infn!1 P (An \Bn) = lim infn!1 1� P (A
n [B
n)� lim infn!1 1� P (A
n)� P (B
n)= 1� 0� (1� b): 2Referen
es[1℄ A. Orlitsky, N.P. Santhanam, and J. Zhang, Universal 
ompression of memorylesssour
es over unknown alphabets, IEEE Transa
tions on Information Theory, IT-50:7(July 2004), pp. 1469-1481.[2℄ N. Jevti�
, A. Orlitsky, N. Santhanam, Universal 
ompression of unknown alphabets,Pro
eedings of the 2002 IEEE International Symposium on Information Theory, p.302.[3℄ A. Orlitsky, N. P. Santhanam, Performan
e of universal 
odes over in�nite alphabets,Pro
eedings of the 2003 Data Compression Conferen
e.[4℄ A. Orlitsky, N. P. Santhanam, J. Zhang, Bounds on 
ompression of unknown alphabets,Pro
eedings of the 2003 IEEE International Symposium on Information Theory.[5℄ G. I. Shamir, On the MDL Prin
iple for Universal Compression of Unknown Alpha-bets, Pro
eedings of the 2002 Allerton Conferen
e on Communi
ation, Control, andComputing, pp. 1238-1247.[6℄ G. I. Shamir and L. Song, On the entropy of patterns of I.I.D. sequen
es, Pro
eedingsof the 2003 Allerton Conferen
e on Communi
ation, Control, and Computing
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