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Abstract

This work examines some information theoretic properties of pattern sequences
induced by stochastic processes. In particular, we study relationships between the en-
tropy rate of the original process and that of its pattern sequence. We also characterize
possible growth rates of the block entropy of pattern sequences.

1 Introduction

In their recent work [1], Orlitsky et. al discuss the compression of sequences with unknown
alphabet size. This work, among others, has created interest in examining random processes
with arbitrary alphabets which may a priori be unknown. One can think of this as a problem
of reading a foreign language for the first time. As one begins to parse characters, one’s
knowledge of the alphabet grows. Since the characters in the alphabet have initially no
meaning beyond the order in which they appear, one can relabel these characters by the
order of their first appearance. Given a string, we refer to the relabelled string as the pattern
associated with the original string.

Example 1 Assume that the following English sentence was being parsed into a pattern by
a non-English speaker.

english is hard to learn. ..
The associated pattern would be
1,2,3,4,5,6,7,8,5,6,8,7,9,10,11,8,12,13,8,4,1,9,10, 2, ...
regarding the space too as a character.

We abstract this as follows: Given a stochastic process {X;};>1, we create a pattern process
{Zi}is1.



It is the compression of the pattern process {Z;} that Orlitsky et. al. focus on in [1].
They justify this emphasis by reasoning that the bulk of the information is in the pattern.
Although universal compression is an extensively studied problem, the universal compression
of pattern sequences is relatively new, see [1], [2], [3], [4], [5] and [6]. These recent papers
address universality questions of how well a pattern sequence associated with an unknown
source can be compressed relative to the case where this distribution is known. Emphasis
is on quantifying the redundancy, i.e., the difference between what can be achieved without
and with knowledge of the source distribution. In this work we restrict our attention to the
second term of the said difference, namely, to the entropy of the pattern sequence. More
specifically, our goal is to study some of the relationships between the entropy rate H(X)
of the original process' {X;}, and the entropy rate H(Z) of the associated pattern process.
This relationship is not always trivial, as the following examples illustrate.

Example 2 Let X; be drawn i.i.d. ~ P, where P is a pmf on a finite alphabet. Then we
show below that H(X) = H(Z).

The intuition behind this result is that given enough time, all the symbols with positive
probability will be seen, after which time the original process and its associated pattern
sequence coincide, up to relabelling of the alphabet symbols.

Example 3 Let X; be drawn i.i.d. ~ uniform [0,2]. Then H(X) = co. Since the probability
of seeing the same number twice is zero, Z; = i with probability 1 for all i and, consequently,

H(Z) =0,

The above two are extreme examples illustrating the fact that the relationship between H (X)
and H(Z) is not trivial. In Section 2 we characterize this relationship for the case of a gen-
erally distributed i.7.d. process, as well as in various other cases involving Markov processes,
stationary ergodic processes, and hidden Markov processes (under certain restrictions on the
associated source alphabets). In Section 3 we characterize a set of achievable asymptotic
growth rates for the block entropy of a pattern process. We conclude in Section 4 with a
brief summary of our results and a conjecture.

2 Entropy Rates

Consider first the case where { X} are generated i.i.d. ~ f, where f is an arbitrary distribu-
tion on the arbitrary source alphabet X'. In general, f can be decomposed into two parts:
a part consisting solely of point masses, and one consisting of a distribution that does not

LH(X) will denote entropy rate throughout this work, regardless of the discreteness of the distributions
of {X"}. It is thus to be regarded as oo when these are not discrete.



contain any point masses. Let Sy be the set of all point masses Sy = {z € X' : f(z) > 0}.
There exists a pmf f,,,, on Sy, and a distribution with no point masses f4, such that

[ =afm+afq,
where a = f(Sy).

Theorem 1 For {X;} i.i.d. ~ f, and any point vy € S§ let
[* = afm + ady,

where 0, denotes the probability distribution assigning probability one to xy. Then
H(Z) = H(f"),

where H(f*) denotes the entropy of the discrete distribution f*.

The proof of Theorem 1 is deferred to the Appendix (as it will employ a corollary more
naturally proved in the next section). As can be seen, Theorem 1 is consistent with Example
2 and Example 3. Note that f* is created by taking all the point masses in f and assigning
all the remaining probability to a new point mass. This corresponds to the result in Example
3 which suggests that the pattern of a process drawn according to a pdf has no randomness,
i.e. an entropy rate of zero. Therefore, the only randomness in the pattern comes from the
point masses and the event of falling on a “non-point-mass-mode”.

Example 4 Let {X;} be i.i.d. with each component drawn, with probability 1/3, as a N(0,1)
and, with probability 2/3, as a Bern(1/2). Applying Theorem 1 for this case gives that f* is
the uniform distribution on an alphabet of size 3. Therefore, H(Z) = log(3).

Although the number of point masses in the f*-s associated with all three examples above
are finite, it is important to note that Theorem 1 makes no such assumption.

Our natural next step is the case where {X;} is generated by a Markov process. The
entropy rate of Markov processes is well-known. What can be said about the entropy rate
of the associated pattern process? We can begin in this context with an even more general
setting, but for the case of a finite alphabet.

Theorem 2 Let {X;} be a stationary ergodic process with components in the alphabet X,
where |X| < oo, and let {Z;} be the associated pattern process. Then H(X) = H(Z).

Proof: Define the mapping ¢" : X — {1,...,|X|} U oo where

¢"(z) =inf{Z; : i <n, X, =z},



where an infimum over an empty set is defined as oc. We can think of ¢” as the label of z
when it appears in the sequence X".
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where (a) comes from the fact that {X™} is a deterministic function of {Z"} given g™ and
(b) from the fact that there are at most |X|'*! possible maps g”. Thus we got

H(Z) > H(X). (1)

The upper bound H(X™) > H(Z™) holds for all n from the data processing inequality and,
hence, H(X) > H(Z). Combining this with (1) gives H(X) = H(Z). O

We now look at the case of a first order Markov process with components in a countable
alphabet.

Theorem 3 Let {X;} be a stationary ergodic first order Markov process on the countable
alphabet X and let {Z;} be the associated pattern process. Then H(X) = H(Z).

Proof: Let p be the stationary distribution of the Markov process and let P,(y) = P(X;1, =
y| Xy = z) for all z,y € X. The data processing inequality implies H(X") > H(Z") for all n.
Hence H(X) > H(Z). To complete the proof it remains to show H(X) < H(Z), for which
we will need the following elementary fact and the lemma following it.

Fact 1 Let {A,} and {B,} be two sequences of events such that lim,_,,, P(A,) = 1 and
lim,, ,o P(B,) =b. Then lim, .., P(A, N B,) = b.

For completeness we provide a proof of this elementary fact in the Appendix.

Lemma 1 Given any B C X such that |B| < oo

H(Z) > 3 u(b)H(®s(P)).

beB

where ®5(Py) £ w(B) Py + u(B°)6y,, for an arbitrary xo ¢ B.
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Proof of lemma: Let A(z") 2 {zy,...,2,}.

H(Z) = lim H(Z,/Zz"")

n—oo

> lim H(Z,|X" 1)
n—oo

> lim Z/ H(P(Z,| X" = 2™ ")) dPxn-s
neen TR J{aniBCA(@n ), wp—1=b}

> JHEOZP (BC A(X"™), X, =b)H(®p(P))

beB

= Y H(®p(R)) lim P(BC A(X" 1), X, =)
be B n—oo

(@)

> ZM H(®p(P))
beB

where (a) is a consequence of Fact 1. O

Let now { By} be a sequence of sets such that By, C X, |By| < oc for all k, and
klg(r)loz > —u a)log Py(a) =Y > —p a)log Py(a),
be By, a€ By, beX acX

regardless of the finiteness of both sides of the equation. Note that since the above summands
are all positive, such a sequence {By} can always be found. Lemma 1 gives us

H(Z) > Y u)H(@p(P) ¥ k.

Hence, by taking £ — oo, we get

H(Z) > lim Y u(b)H(®p(B))

> lim 11(b) Z —Py(a)log Py(a)

bEBk aEBk

hm Z Z a)log Py(a)

bGBk a€EBy

= 3> —u a)log Py (a)

beX acX

= H(X), (2)

—
=

—~
=

where (a) comes from the construction of { By} and (b) from the fact that {X;} is a stationary

first-order Markov process. O
One should note that the proof of Theorem 3 can easily be extended to the case of Markov

processes of any order. Hence, without going through the proof, we state the following;:
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Theorem 4 Let {X;} be a stationary ergodic Markov process (of any order) on the countable
alphabet X, and let {Z;} be the associated pattern process. Then H(X) = H(Z).

We now consider the case of a noise-corrupted process. Let X; be a stationary ergodic
process and Y; be its noise corrupted version. Here we assume ¢.7.d. additive noise, N;. We
will also assume that X; takes values in a finite alphabet A C R. Let Sy, Sy and Sy denote
the set of points of positive measure for X;, Y; and N; respectively (assumed to all take
values in R). We will also define the discrete random variable

N; = Niliniesy}y + Noliniess,ys
for an arbitrary point nyg € Sy.

Theorem 5 Let {X;} be a stationary ergodic process. Let {Y;} and {Y;} denote, respectively,
the process {X;} corrupted by the additive noise {N;} and {N;}. If |Sy| < oo, then the
entropy rate of the pattern processes associated, respectively, with {Y;} and {Y;}, {Z;} and
{Z:}, are equal.

Proof: Define
Z(n); = Zilgzjenm\is zi=z;3 + Yol{zjenm\ic zi=z,}e

for some arbitrary yo & Sy. Clearly Z(n); uniquely determines Z" and vice versa so, in

particular,
H(Z") = H(Z(n)) ¥Yn>0. (3)

We also observe that we can construct Z(n) from Z" w.p. 1. Therefore
H(Z") > H(Z(n)) ¥Yn>0. (4)

Combining (3) and (4) gives

H(Z) > H(Z). (5)
Defining C(n); = 154, 2y0)n{viesy) We observe that given C'(n) and Z(n) we can reconstruct

Z" for all n > 0. Hence, for all n > 0,

H(Z") H(Z(n),C(n))

A

H(Z(n)) + H(C(n))
H(Z") + H(C(n))

H(Z) + Y H(C)) ©)

= IA IA

where (a) comes from (3).
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where (a) comes from the stationarity of Y. Without loss of generality assume that ¢ > n/2

Pe™ < Pr{Sy} Y Pri{Y;#£yVjeli—-n/2+1,i—1]Y; =y}
yESy

b

Pe < Pr{Sy} Y Pr{Y;#£yVj€[2,n/2]]Vi =y},

yESy

—
=

where (b) comes from the stationarity of Y. Let

Pe™ = Pr{Sy} Y Pr{Y;#yVje[2,n/2V; =y} (7)
yESy
Therefor we have
Pe™ > pel™ Vi, (8)

Since |Sy| < oo, by ergodicity we have
lim Pr{Y; 4V j € 2n/2V; = y} = 0
n—o0o

and (7) gives us lim,_,,, Pe™ = 0. Hence there exists an N such that Pe(™ < 1/2 for all
n > N and (8) implies that

Hp(Pe™) < Hg(Pe™) ¥n > N, (9)

(n)

where Hp is the binary entropy function. Substituting Pe;"’ into (6) and taking the nor-

malized limits we get

H(Z" H(zZ"
lim ( )glim (2")

n—o0 n n—oo n

1 (n)
+ i 5 2 o (Pe)

and, (9) gives us

H(Z" H(Z" 1
lim (2") < lim ( )+lim—ZHB(Pe("))

n—00 n n—00 n n—oc N, 4

H(Z"
< lim ( )+lim Hp(Pe™)

n—oo n n—oo



and, since lim,_,., Pe(™ =0,

H(Z" H(Z"
lim ( )Slim ( )+0.
n—00 n n—00 n
Therefore
H(Z) < H(Z). (10)
Combining (5) and (10) completes the proof. 0

The following is directly implied by Theorems 2 and 5.

Corollary 6 Let X; be a stationary ergodic process,
Yi=Xi+ N,

where N; is an i.i.d. sequence and Sy and Y; are defined as in Theorem 5. Assume further
|Sy| < oc. If X; takes values in a finite alphabet then

3 Growth Rates

We now turn our attention to the asymptotic growth rate for the block entropy of a pattern
sequence. We begin by stating our main result which is a set of such achievable growth rates.

Proposition 1 For any 6 > 0 there exists a process {X;} such that its associated pattern

sequence satisfies
. H(Zn41|2") _
=y o (1)
Before we begin the proof of Proposition 1 we need to prove some useful facts. Let X; be
ii.d. ~ X, where X takes values in an arbitrary space X, and {Z;},>1 be the associated
pattern sequence. Define D = {z € X : Pr(X = z) > 0}. For B C D let PP denote the

(point-mass) distribution on B U {s} (where s stands for “special symbol”) with

By Pr(X =x) forz e B
P(x)_{l—zxeBPr(X:x) forz =s
and let 1
By _ B
h(PP)y= Y P5x)log PE02)

xEBU{s}

denote its entropy.



Claim 1 h(P?) is increasing in B, i.e., for any B; C B, C D
h(P"') < h(PP).
Proof: This is nothing but a data-processing inequality. Indeed, let Y ~ P?2 and let
- { Y ifYebB

s  otherwise.

Clearly U ~ PBt and U is a deterministic function of Y, thus the claim follows. O
Define now further, for 2" € X",

A(z") ={a € D : z; = a for some 1 < i < n}.
In words, A(z") are the elements of D that appear in z".
Proposition 2 For any B C D
H(Zy1|2") > h (PP) [1 — | Bl exp (—nrbniél Pr(X = b))] :
€

Proof: Letting P% denote the distribution of X", for any B C D,

H(Zp1|2") 2 H(Znga|X") (12)
= H(Zp| X" = 2")dPg (") (13)
= / h (PAE)) aPR (™) (14)
> / h (PA™) dPg (2") (15)
{zm:BCA(@m)}
> h(PP)Pr(BCAX"), (16)

where the last inequality follows from the monotonicity property in Claim 1. Now, for any
B CD,

Pr(B ¢ A(X")) = Pr (U {b¢ A(X")}) (17)
< Z;:?b g A(X™)) (18)
— :2::(1 — Pr(X =b))" (19)
< |B| (1 —minPr(X = b))n (20)
< |Blexp (-Wgél Pr(X = b)) . (21)

The proposition now follows by combining (16) with (21). O
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Corollary 7
lim inf H (Z, 1| Z2") > h (PP),

n—oo

regardless of the finiteness of the right side of the inequality.
Proof: Take a sequence {By} of finite subsets By, C D satisfying

lim h (PP*) = h (PP).

k—o00

Proposition 2 implies, for each k,

liminf H(Z,11|2") > h (PP), (22)
n—o0
completing the proof by taking £ — oc on the right side of (22). O
Sketch of the proof of Proposition 1: Consider the case where { X} are generate i.i.d. ~ P,
where P is a distribution on N and p; = Pr(X; = j) is a non-increasing sequence. Letting
S = Zi’:ﬂ’i log z% it follows by taking B = B; = {1,...,1} in Proposition 2 that

H(Zy1|2") > h(PP) [1 — |By| exp (—nmin Pr(X = b))]

beB,
> S)[1—lexp (—np)]

implying, by the arbitrariness of [,
H(Zn1|2") > max Si[1—lexp (—np)] . (23)

Consider now the distribution

c(g)

pi = Pr(X = i) = i)

(24)

for some & > 0, where ¢(¢) is the normalization constant. In this case S; = Y'_, i(hf(ghs log (1128;“ >
S, m ~ (In1)'=¢ thus (23) implies, taking [ a2 n1=5)/(1+2)

H(Zp1|Z") > Si[1—lexp(—np)]
> (In)'=[1 = lexp (—np)]
> (Inl)' == [1—lexp (—n/1M*9)]
> (Inn)'~ [1 — nexp (—n°)]
~ (lnn)'~

Thus (11) is satisfied under the distribution in (24) with any ¢ < 4. O
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4 Conclusion

We have characterized relationships between the entropy rate of a source and that of its
pattern process for the i.i.d. case, the case of a stationary ergodic finite-alphabet source,
Markov processes of any order with countable state spaces, and additive noise sequences.

We also examined possible asymptotic growth rates for the block-entropy of pattern
sequences. The following is inspired by Proposition 1.

Conjecture 1 Let {X;} be an arbitrarily distributed stationary and ergodic process and let
{Z;} be its pattern process. Then
H(Z, | Z"
lim —( +1/12") =0.
n—0o0 logn

On the other hand, for any f(n) = o(logn) there exists an i.i.d. process {X;} such that

H(Zun 7) _
mm — =
n—»00 f(n)

Regarding the first assertion in the conjecture note that the pattern sequence associated
with an arbitrarily distributed source satisfies

lim sup w < 00
n—00 logn
since obviously H(Z,41|Z") <log(n -+ 1) for all n. This part of the conjecture, then, asserts
slightly more for the case where {X;} is stationary and ergodic, namely that in this case
necessarily H(Z,;,|Z") = o(logn). The second part of the conjecture, we believe, might be

provable by refining the argument used in the proof of Proposition 1.

A Proof of Theorem 1

If « =0, then X is i.i.d. ~ f4. Therefore H(Z"™) = 0 for all n. This gives us that H(Z) =0
which agrees with Theorem 1. Hence we just need to prove Theorem 1 for the case where
a > 0. Therefore, Sy exists and |Sy| > 0.
Note that Corollary 7 gives us H(Z) > H(f*). For the reverse inequality, define the
process {X;} where
X = Xilixies;y + Tol{x;gs;ys
for some zy & Sy. Clearly, X; is i.i.d. ~ f*. We thus have

H(Z) = lim H(Z")
n—oo n
(a) H(X"
2 im0
© H(), (25)
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where (a) comes from the fact that Z” is a deterministic function of X with probability 1,
and (b) from the fact that X; is i.i.d. ~ f*. 0
Proof of Fact 1: Trivially, P(A, N B,) < P(B,) — b. On the other hand,

liminf P(4, N B,) = liminfl — P(A; U B;)

n—oQ n—oo
> liminfl — P(AY) — P(B)
n—oo
= 1-0-(1-b).
O
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