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On the Entropy Rate of Pattern ProessesGeorge M. Gemelos Tsahy WeissmanSeptember 17, 2004AbstratThis work examines some information theoreti properties of pattern sequenesindued by stohasti proesses. In partiular, we study relationships between the en-tropy rate of the original proess and that of its pattern sequene. We also haraterizepossible growth rates of the blok entropy of pattern sequenes.1 IntrodutionIn their reent work [1℄, Orlitsky et. al disuss the ompression of sequenes with unknownalphabet size. This work, among others, has reated interest in examining random proesseswith arbitrary alphabets whih may a priori be unknown. One an think of this as a problemof reading a foreign language for the �rst time. As one begins to parse haraters, one'sknowledge of the alphabet grows. Sine the haraters in the alphabet have initially nomeaning beyond the order in whih they appear, one an relabel these haraters by theorder of their �rst appearane. Given a string, we refer to the relabelled string as the patternassoiated with the original string.Example 1 Assume that the following English sentene was being parsed into a pattern bya non-English speaker. english is hard to learn: : :The assoiated pattern would be1; 2; 3; 4; 5; 6; 7; 8; 5; 6; 8; 7; 9; 10; 11; 8; 12; 13; 8; 4; 1; 9; 10; 2; : : :regarding the spae too as a harater.We abstrat this as follows: Given a stohasti proess fXigi�1, we reate a pattern proessfZigi�1. 1



It is the ompression of the pattern proess fZig that Orlitsky et. al. fous on in [1℄.They justify this emphasis by reasoning that the bulk of the information is in the pattern.Although universal ompression is an extensively studied problem, the universal ompressionof pattern sequenes is relatively new, see [1℄, [2℄, [3℄, [4℄, [5℄ and [6℄. These reent papersaddress universality questions of how well a pattern sequene assoiated with an unknownsoure an be ompressed relative to the ase where this distribution is known. Emphasisis on quantifying the redundany, i.e., the di�erene between what an be ahieved withoutand with knowledge of the soure distribution. In this work we restrit our attention to theseond term of the said di�erene, namely, to the entropy of the pattern sequene. Morespei�ally, our goal is to study some of the relationships between the entropy rate H(X)of the original proess1 fXig, and the entropy rate H(Z) of the assoiated pattern proess.This relationship is not always trivial, as the following examples illustrate.Example 2 Let Xi be drawn i:i:d: � P , where P is a pmf on a �nite alphabet. Then weshow below that H(X) = H(Z).The intuition behind this result is that given enough time, all the symbols with positiveprobability will be seen, after whih time the original proess and its assoiated patternsequene oinide, up to relabelling of the alphabet symbols.Example 3 Let Xi be drawn i:i:d: � uniform [0; 2℄: Then H(X) =1. Sine the probabilityof seeing the same number twie is zero, Zi = i with probability 1 for all i and, onsequently,H(Z) = 0:The above two are extreme examples illustrating the fat that the relationship between H(X)and H(Z) is not trivial. In Setion 2 we haraterize this relationship for the ase of a gen-erally distributed i:i:d: proess, as well as in various other ases involving Markov proesses,stationary ergodi proesses, and hidden Markov proesses (under ertain restritions on theassoiated soure alphabets). In Setion 3 we haraterize a set of ahievable asymptotigrowth rates for the blok entropy of a pattern proess. We onlude in Setion 4 with abrief summary of our results and a onjeture.2 Entropy RatesConsider �rst the ase where fXig are generated i:i:d: � f , where f is an arbitrary distribu-tion on the arbitrary soure alphabet X . In general, f an be deomposed into two parts:a part onsisting solely of point masses, and one onsisting of a distribution that does not1H(X) will denote entropy rate throughout this work, regardless of the disreteness of the distributionsof fXng. It is thus to be regarded as 1 when these are not disrete.2



ontain any point masses. Let Sf be the set of all point masses Sf = fx 2 X : f(x) > 0g.There exists a pmf fm; on Sf ; and a distribution with no point masses fd; suh thatf = �fm + ��fd;where � = f(Sf).Theorem 1 For fXig i:i:d: � f; and any point x0 2 Sf letf � = �fm + ��Æx0 ;where Æx0 denotes the probability distribution assigning probability one to x0. ThenH(Z) = H(f �);where H(f �) denotes the entropy of the disrete distribution f �.The proof of Theorem 1 is deferred to the Appendix (as it will employ a orollary morenaturally proved in the next setion). As an be seen, Theorem 1 is onsistent with Example2 and Example 3. Note that f � is reated by taking all the point masses in f and assigningall the remaining probability to a new point mass. This orresponds to the result in Example3 whih suggests that the pattern of a proess drawn aording to a pdf has no randomness,i.e. an entropy rate of zero. Therefore, the only randomness in the pattern omes from thepoint masses and the event of falling on a \non-point-mass-mode".Example 4 Let fXig be i:i:d: with eah omponent drawn, with probability 1=3, as a N(0; 1)and, with probability 2=3, as a Bern(1=2): Applying Theorem 1 for this ase gives that f � isthe uniform distribution on an alphabet of size 3. Therefore, H(Z) = log(3):Although the number of point masses in the f �-s assoiated with all three examples aboveare �nite, it is important to note that Theorem 1 makes no suh assumption.Our natural next step is the ase where fXig is generated by a Markov proess. Theentropy rate of Markov proesses is well-known. What an be said about the entropy rateof the assoiated pattern proess? We an begin in this ontext with an even more generalsetting, but for the ase of a �nite alphabet.Theorem 2 Let fXig be a stationary ergodi proess with omponents in the alphabet X ,where jX j <1, and let fZig be the assoiated pattern proess. Then H(X) = H(Z):Proof: De�ne the mapping gn : X 7! f1; : : : ; jX jg [1 wheregn(x) = inffZi : i � n;Xi = xg;3



where an in�mum over an empty set is de�ned as 1. We an think of gn as the label of xwhen it appears in the sequene Xn:H(Z) = limn!1 H(Zn)n� limn!1 H(Znjgn)n(a)= limn!1 H(Xnjgn)n= limn!1 H(Xn; gn)n � limn!1 H(gn)n� limn!1 H(Xn)n � limn!1 H(gn)n(b)= limn!1 H(Xn)n � limn!1 jX j log(jX j+ 1)n ;where (a) omes from the fat that fXng is a deterministi funtion of fZng given gn and(b) from the fat that there are at most jX jjX j possible maps gn: Thus we gotH(Z) � H(X): (1)The upper bound H(Xn) � H(Zn) holds for all n from the data proessing inequality and,hene, H(X) � H(Z). Combining this with (1) gives H(X) = H(Z). 2We now look at the ase of a �rst order Markov proess with omponents in a ountablealphabet.Theorem 3 Let fXig be a stationary ergodi �rst order Markov proess on the ountablealphabet X and let fZig be the assoiated pattern proess. Then H(X) = H(Z):Proof: Let � be the stationary distribution of the Markov proess and let Px(y) = P (Xt+1 =yjXt = x) for all x; y 2 X : The data proessing inequality implies H(Xn) � H(Zn) for all n:Hene H(X) � H(Z). To omplete the proof it remains to show H(X) � H(Z), for whihwe will need the following elementary fat and the lemma following it.Fat 1 Let fAng and fBng be two sequenes of events suh that limn!1 P (An) = 1 andlimn!1 P (Bn) = b. Then limn!1 P (An \Bn) = b:For ompleteness we provide a proof of this elementary fat in the Appendix.Lemma 1 Given any B � X suh that jBj <1H(Z) �Xb2B �(b)H(�B(Pb));where �B(Px) , �(B)Px + �(B)Æx0, for an arbitrary x0 62 B.4



Proof of lemma: Let A(xn) , fx1; : : : ; xng:H(Z) = limn!1H(ZnjZn�1)� limn!1H(ZnjXn�1)� limn!1Xb2B Zfxn�1:B�A(xn�1); xn�1=bgH(P (ZnjXn�1 = xn�1)) dPXn�1� limn!1Xb2B P (B � A(Xn�1); Xn�1 = b)H(�B(Pb))= Xb2B H(�B(Pb)) limn!1P (B � A(Xn�1); Xn�1 = b)(a)� Xb2B �(b)H(�B(Pb))where (a) is a onsequene of Fat 1. 2Let now fBkg be a sequene of sets suh that Bk � X , jBkj <1 for all k, andlimk!1Xb2Bk Xa2Bk��(b)Pb(a) logPb(a) =Xb2XXa2X ��(b)Pb(a) logPb(a);regardless of the �niteness of both sides of the equation. Note that sine the above summandsare all positive, suh a sequene fBkg an always be found. Lemma 1 gives usH(Z) � Xb2Bk �(b)H(�B(Pb)) 8 k:Hene, by taking k !1, we getH(Z) � limk!1Xb2Bk �(b)H(�B(Pb))� limk!1Xb2Bk �(b) Xa2Bk�Pb(a) logPb(a)= limk!1Xb2Bk Xa2Bk��(b)Pb(a) logPb(a)(a)= Xb2XXa2X ��(b)Pb(a) logPb(a)(b)= H(X); (2)where (a) omes from the onstrution of fBkg and (b) from the fat that fXig is a stationary�rst-order Markov proess. 2One should note that the proof of Theorem 3 an easily be extended to the ase of Markovproesses of any order. Hene, without going through the proof, we state the following:5



Theorem 4 Let fXig be a stationary ergodi Markov proess (of any order) on the ountablealphabet X , and let fZig be the assoiated pattern proess. Then H(X) = H(Z):We now onsider the ase of a noise-orrupted proess. Let Xi be a stationary ergodiproess and Yi be its noise orrupted version. Here we assume i:i:d: additive noise, Ni: Wewill also assume that Xi takes values in a �nite alphabet A � R: Let SX ; SY and SN denotethe set of points of positive measure for Xi; Yi and Ni respetively (assumed to all takevalues in R). We will also de�ne the disrete random variable~Ni = Ni1fNi2SNg + no1fNi2SNg;for an arbitrary point n0 62 SN :Theorem 5 Let fXig be a stationary ergodi proess. Let fYig and f ~Yig denote, respetively,the proess fXig orrupted by the additive noise fNig and f ~Nig. If jSY j < 1; then theentropy rate of the pattern proesses assoiated, respetively, with fYig and f ~Yig, fZig andf ~Zig, are equal.Proof: De�ne Ẑ(n)i = Zi1f9j2[1;n℄ni: Zi=Zjg + yo1f9j2[1;n℄ni: Zi=Zjgfor some arbitrary y0 62 SY : Clearly Ẑ(n)i uniquely determines Zn and vie versa so, inpartiular, H(Zn) = H(Ẑ(n)) 8 n > 0: (3)We also observe that we an onstrut Ẑ(n) from ~Zn w.p. 1. ThereforeH( ~Zn) � H(Ẑ(n)) 8 n > 0: (4)Combining (3) and (4) gives H(~Z) � H(Z): (5)De�ning C(n)i = 1fẐ(n)i=y0g\fYi2SY g we observe that given C(n) and Ẑ(n) we an reonstrut~Zn for all n > 0: Hene, for all n > 0,H( ~Zn) � H(Ẑ(n); C(n))� H(Ẑ(n)) +H(C(n))(a)= H(Zn) +H(C(n))� H(Zn) + nXi=1 H(C(n)i); (6)where (a) omes from (3). 6



Let Pe(n)i = PrfYi 2 SY ; Yj 6= Yi 8 j 2 [i; n℄nig:Then we have Pe(n)i = PrfYi 2 SY gPrfYj 6= Yi 8 j 2 [1; n℄ni jYi 2 SY gPe(n)i (a)= PrfSY gXy2SY PrfYj 6= y 8 j 2 [1; n℄ni jYi = yg;where (a) omes from the stationarity of Y: Without loss of generality assume that i > n=2Pe(n)i � PrfSY gXy2SY PrfYj 6= y 8 j 2 [i� n=2 + 1; i� 1℄jYi = ygPe(n)i (b)� PrfSY gXy2SY PrfYj 6= y 8 j 2 [2; n=2℄jY1 = yg;where (b) omes from the stationarity of Y: LetPe(n) = PrfSY gXy2SY PrfYj 6= y 8 j 2 [2; n=2℄jY1 = yg: (7)Therefor we have Pe(n) � Pe(n)i 8i: (8)Sine jSY j <1, by ergodiity we havelimn!1PrfYj 6= y 8 j 2 [2; n=2℄jY1 = yg = 0and (7) gives us limn!1 Pe(n) = 0: Hene there exists an N suh that Pe(n) < 1=2 for alln > N and (8) implies that HB(Pe(n)i ) � HB(Pe(n)) 8n � N; (9)where HB is the binary entropy funtion. Substituting Pe(n)i into (6) and taking the nor-malized limits we getlimn!1 H( ~Zn)n � limn!1 H(Zn)n + limn!1 1n nXi=1 HB(Pe(n)i )and, (9) gives us limn!1 H( ~Zn)n � limn!1 H(Zn)n + limn!1 1n nXi=1 HB(Pe(n))� limn!1 H(Zn)n + limn!1HB(Pe(n))7



and, sine limn!1 Pe(n) = 0, limn!1 H( ~Zn)n � limn!1 H(Zn)n + 0:Therefore H(~Z) � H(Z): (10)Combining (5) and (10) ompletes the proof. 2The following is diretly implied by Theorems 2 and 5.Corollary 6 Let Xi be a stationary ergodi proess,Yi = Xi +Niwhere Ni is an i:i:d: sequene and SY and ~Yi are de�ned as in Theorem 5. Assume furtherjSY j <1: If Xi takes values in a �nite alphabet thenH(Z) = H( ~Y):3 Growth RatesWe now turn our attention to the asymptoti growth rate for the blok entropy of a patternsequene. We begin by stating our main result whih is a set of suh ahievable growth rates.Proposition 1 For any Æ > 0 there exists a proess fXig suh that its assoiated patternsequene satis�es limn!1 H(Zn+1jZn)(lnn)1�Æ =1: (11)Before we begin the proof of Proposition 1 we need to prove some useful fats. Let Xi bei:i:d: � X, where X takes values in an arbitrary spae X , and fZigi�1 be the assoiatedpattern sequene. De�ne D = fx 2 X : Pr(X = x) > 0g. For B � D let P B denote the(point-mass) distribution on B [ fsg (where s stands for \speial symbol") withP B(x) = � Pr(X = x) for x 2 B1�Px2B Pr(X = x) for x = sand let h(P B) = Xx2B[fsgP B(x) log 1P B(x)denote its entropy. 8



Claim 1 h(P B) is inreasing in B, i.e., for any B1 � B2 � Dh(P B1) � h(P B2):Proof: This is nothing but a data-proessing inequality. Indeed, let Y � P B2 and letU = � Y if Y 2 B1s otherwise:Clearly U � P B1 and U is a deterministi funtion of Y , thus the laim follows. 2De�ne now further, for xn 2 X n,A(xn) = fa 2 D : xi = a for some 1 � i � ng:In words, A(xn) are the elements of D that appear in xn.Proposition 2 For any B � DH(Zn+1jZn) � h �P B� �1� jBj exp��nminb2B Pr(X = b)�� :Proof: Letting P nX denote the distribution of Xn, for any B � D,H(Zn+1jZn) � H(Zn+1jXn) (12)= ZXn H(Zn+1jXn = xn)dP nX(xn) (13)= ZXn h �PA(xn)� dP nX(xn) (14)� Zfxn:B�A(xn)g h �PA(xn)� dP nX(xn) (15)� h �P B�Pr (B � A(Xn)) ; (16)where the last inequality follows from the monotoniity property in Claim 1. Now, for anyB � D, Pr (B 6� A(Xn)) = Pr [b2B fb 62 A(Xn)g! (17)� Xb2B Pr (b 62 A(Xn)) (18)= Xb2B(1� Pr(X = b))n (19)� jBj�1�minb2B Pr(X = b)�n (20)� jBj exp��nminb2B Pr(X = b)� : (21)The proposition now follows by ombining (16) with (21). 29



Corollary 7 lim infn!1 H(Zn+1jZn) � h �PD� ;regardless of the �niteness of the right side of the inequality.Proof: Take a sequene fBkg of �nite subsets Bk � D satisfyinglimk!1h �P Bk� = h �PD� :Proposition 2 implies, for eah k,lim infn!1 H(Zn+1jZn) � h �P Bk� ; (22)ompleting the proof by taking k !1 on the right side of (22). 2Sketh of the proof of Proposition 1: Consider the ase where fXig are generate i:i:d: � P ,where P is a distribution on N and pj = Pr(Xi = j) is a non-inreasing sequene. LettingSl =Pli=1 pi log 1pi it follows by taking B = Bl = f1; : : : ; lg in Proposition 2 thatH(Zn+1jZn) � h �P Bl� �1� jBlj exp��nminb2Bl Pr(X = b)��� Sl [1� l exp (�npl)℄implying, by the arbitrariness of l,H(Zn+1jZn) � maxl Sl [1� l exp (�npl)℄ : (23)Consider now the distribution pi = Pr(X = i) = (")i(ln i)1+" ; (24)for some " > 0, where (") is the normalization onstant. In this ase Sl =Pli=1 (")i(ln i)1+" log i(ln i)1+"(") �>Pli=1 1i(ln i)" � (ln l)1�" thus (23) implies, taking l � n(1�")=(1+"),H(Zn+1jZn) � Sl [1� l exp (�npl)℄�> (ln l)1�" [1� l exp (�npl)℄�> (ln l)1�" �1� l exp ��n=l1+"���> (lnn)1�" [1� n exp (�n")℄� (lnn)1�":Thus (11) is satis�ed under the distribution in (24) with any " < Æ. 210



4 ConlusionWe have haraterized relationships between the entropy rate of a soure and that of itspattern proess for the i:i:d: ase, the ase of a stationary ergodi �nite-alphabet soure,Markov proesses of any order with ountable state spaes, and additive noise sequenes.We also examined possible asymptoti growth rates for the blok-entropy of patternsequenes. The following is inspired by Proposition 1.Conjeture 1 Let fXig be an arbitrarily distributed stationary and ergodi proess and letfZig be its pattern proess. Then limn!1 H(Zn+1jZn)logn = 0:On the other hand, for any f(n) = o(logn) there exists an i.i.d. proess fXig suh thatlimn!1 H(Zn+1jZn)f(n) =1:Regarding the �rst assertion in the onjeture note that the pattern sequene assoiatedwith an arbitrarily distributed soure satis�eslim supn!1 H(Zn+1jZn)logn <1sine obviously H(Zn+1jZn) � log(n+1) for all n. This part of the onjeture, then, assertsslightly more for the ase where fXig is stationary and ergodi, namely that in this aseneessarily H(Zn+1jZn) = o(logn). The seond part of the onjeture, we believe, might beprovable by re�ning the argument used in the proof of Proposition 1.A Proof of Theorem 1If � = 0; then Xi is i:i:d: � fd: Therefore H(Zn) = 0 for all n: This gives us that H(Z) = 0whih agrees with Theorem 1. Hene we just need to prove Theorem 1 for the ase where� > 0: Therefore, Sf exists and jSf j > 0:Note that Corollary 7 gives us H(Z) � H(f �): For the reverse inequality, de�ne theproess fX̂ig where X̂i = Xi1fXi2Sfg + x01fXi 62Sfg;for some x0 62 Sf . Clearly, X̂i is i:i:d: � f �: We thus haveH(Z) = limn!1 H(Zn)n(a)� limn!1 H(X̂n)n(b)= H(f �); (25)11



where (a) omes from the fat that Zn is a deterministi funtion of X̂n with probability 1,and (b) from the fat that X̂i is i:i:d: � f �: 2Proof of Fat 1: Trivially, P (An \ Bn) � P (Bn)! b: On the other hand,lim infn!1 P (An \Bn) = lim infn!1 1� P (An [Bn)� lim infn!1 1� P (An)� P (Bn)= 1� 0� (1� b): 2Referenes[1℄ A. Orlitsky, N.P. Santhanam, and J. Zhang, Universal ompression of memorylesssoures over unknown alphabets, IEEE Transations on Information Theory, IT-50:7(July 2004), pp. 1469-1481.[2℄ N. Jevti�, A. Orlitsky, N. Santhanam, Universal ompression of unknown alphabets,Proeedings of the 2002 IEEE International Symposium on Information Theory, p.302.[3℄ A. Orlitsky, N. P. Santhanam, Performane of universal odes over in�nite alphabets,Proeedings of the 2003 Data Compression Conferene.[4℄ A. Orlitsky, N. P. Santhanam, J. Zhang, Bounds on ompression of unknown alphabets,Proeedings of the 2003 IEEE International Symposium on Information Theory.[5℄ G. I. Shamir, On the MDL Priniple for Universal Compression of Unknown Alpha-bets, Proeedings of the 2002 Allerton Conferene on Communiation, Control, andComputing, pp. 1238-1247.[6℄ G. I. Shamir and L. Song, On the entropy of patterns of I.I.D. sequenes, Proeedingsof the 2003 Allerton Conferene on Communiation, Control, and Computing
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