

Characterizing Application Workloads on CPU Utilization
for Utility Computing

Bruno Abrahao, Alex Zhang
Intelligent Enterprise Technologies Laboratory
HP Laboratories Palo Alto
HPL-2004-157
September 15, 2004*

capacity planning,
principal
component
analysis, workload
model, trace
characterization
and generation

We analyze CPU utilization traces of multiple applications running on a
shared set of processors in a utility computing environment and apply
PCA (Principal Component Analysis) technique to characterize each
application's workload. We show that, in our dataset, the 12 applications
under examination can be characterized by just three features, namely,
periodic, noisy, and spiky. We then use these principal components for
classifying applications, detrending the CPU usage behavior, and
generating synthetic traces with amplification or suppression of the
desired features. The workload characteristics that we derive using the
PCA approach help application owners to better understand the behaviors
of their applications, and also enable the system operator to better plan
for capacity usage.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2004

Characterizing Application Workloads on CPU
Utilization for Utility Computing

Bruno Abrahao, Alex Zhang
HP Labs, Palo Alto, California 94304, U.S.A.

August 31, 2004

Abstract— We analyze CPU utilization traces of multiple appli-
cations running on a shared set of processors in a utility comput-
ing environment and apply PCA (Principal Component Analysis)
technique to characterize each application’s workload. Weshow
that, in our dataset, the 12 applications under examinationcan
be characterized by just three features, namely, periodic,noisy,
and spiky. We then use these principal components for classifying
applications, detrending the CPU usage behavior, and generating
synthetic traces with amplification or suppression of the desired
features. The workload characteristics that we derive using the
PCA approach help application owners to better understand
the behaviors of their applications, and also enable the system
operator to better plan for capacity usage.

I. I NTRODUCTION

Utility Computing [1] has recently become a wide-spread
paradigm for data center operators to adapt to the changing
business environment. Utility Computing offers two advan-
tages: (1) lowering customer costs related to hardware, soft-
ware license, deployment and maintenance of IT; and (2) al-
lowing customers to adapt quickly to business changes and
simplify IT environments. With utility computing, customers
are able to obtain computing services as needed, deriving
benefits from the optimal use of IT resources.

HP’s SASU (Shared Application Server Utility) program [2]
aims to create an adaptable, high performance, shared appli-
cation infrastructure using the Utility Computing paradigm.
Managed under HP Global Operations and IT, SASU uses
HP’s own technology, hardware and operating system (HP-UX
with HP OpenView), providing adaptive IT infra-structure for
hosting J2EE applications that are owned by internal HP busi-
ness divisions. Currently in August 2004, SASU has twelve
business applications running under BEA WebLogic on two
HP RP8400 production servers. Within a few months, more
than 20 applications will be deployed on SASU; new server
hardware has already been procured and being integrated into
SASU.

Several issues that arise in this kind of environment are
(1) How to size the IT infra-structure; (2) How to allocate re-
sources (CPU, Memory, network, etc) to different applications
that share these resources (see [3]); and (3) How much and
when to add (or remove) physical hardware when computing
demand increases (changes) (see [4]). These decisions mustbe
made to satisfy pre-specified service level objectives (SLOs)
and at the same time to balance the cost of providing the
service (such as by maintaining CPU utilization to a suffi-
cient level). Central to all these issues is understanding and
prediction of the resource usage characteristics (or behaviors)

of the applications. For example, an application that exhibits
”spiky” CPU usage behavior might require a higher share of
CPU allocation to ensure its SLO to be met.

To address the first issue of capacity planning (or sizing),
we propose a three stage approach [5], in which the planning
horizon is divided into Pre-Installation, Test and Production
phases.

The three stages differ from each other by the data availabil-
ity and the desired precision of planning. The Pre-Installation
capacity plan is driven by mathematical scaling and extrapo-
lation models based on published (known) benchmark data.
A tool called Pre-Installation Capacity Calculator [5] was
designed to execute the models and to automate the analysis.

At the test (or integration) stage and the production stage
in the application deployment lifecycle, the application has
been installed and the computing utility is instrumented to
collect usage data of the application (the trace) under a
synthetic workload (at the test stage) or a real workload (atthe
production stage). The measurement data on workload (trans-
actions) and performance (CPU usage) enables us to refine
the workload and the performance models. We may derive
the application’s characteristics through analytical extraction
discussed in this paper, thus enabling the application owner
and the system operator to gain a better understanding of
the application’s behavior in the shared-resource computing
environment. As a result, resource usage plans can be made
more precise; capacity planning implications due to future
business growth or business change can be analyzed.

In this study, we use PCA (Principal Component Analy-
sis), a feature selection technique, and apply some analysis
steps, called structural analysis [6], to an application dataset
extracted from a SASU production server. By determining
whether the whole system has low intrinsic dimensionality,it
is possible to create a workload model that is described only
by a small set of features such as periodic, noisy and spiky.

We then use the extracted features for several purposes:
classifying applications based on their behavioral features; de-
trending application traces; and generating synthetic workload
with the option to amplify or suppress any of the features.
Potential uses other than those described above are also
possible.

This paper is organized as follows. In section II, we outline
the need for an automatic means for extracting application
characteristics from multiple traces in a shared and interdepen-
dent system. Section III describes the data (traces) collected
from the SASU environment; Section IV gives the technical

1

background on the Principal Component Analysis (PCA) tech-
nique. We describe how we apply PCA to the SASU data in
Section V and how we use the extracted features in Section VI.
Finally, we summarize and conclude in Section VII.

II. WORKLOAD CHARACTERIZATION

It is known that the performance of a system depends
heavily on the characteristics of its load. Starting from the
Test Phase, it is possible to rely on some data (trace), collected
from the system’s log files, to create a model that describes,
or approximates, the actual application’s workload behavior.
From these models, one can predict the impact of the load
imposed by each application in the system, when the system
goes to the Production Phase. Much of the work done in this
direction focus on single application’s load characterization,
which considers each application at a time, creating a model
from observation (i.e. a stochastic model) and extracting the
parameters needed from the application trace.

In a single system there may be hundreds or thousands
of applications running simultaneously. If one had to analyze
each application at a time, it would be a rather exhaustive task.
Furthermore, the whole system’s performance is affected not
only by the behavior of each single application, but also by the
resulting execution of several different applications combined
together. This means that the system’s overall performance
is given by the superposition of several timeseries that, in
some instances, are not independent. A wide range of im-
portant problems require the whole system analysis, including
resource assignment [3], [7], [8], queueing networks [9] and
system’s behavior analysis [10]. Since a single application
analysis is itself a complex task, modeling the whole system
behavior is even more difficult. The reason is that, considering
each application as a timeseries, they form together a high-
dimensional structure.

However, one can suppose that some applications share
common behaviors as a function of time. For example, several
applications could share the same periodic behavior due to
steady peaks of utilization during the business hours and low
utilization during the lunch hour and other non-business hours
in the evenings and on weekends. On the other hand, some
applications could present simultaneous short bursts (or spikes)
of high demand, which are called flash crowds, often triggered
by a special event. These observations lead us to believe that
the high-dimensional structure of application timeseries, that
appears to be complex, could be governed by a small set
of features (i.e. correlated periodicity, simultaneous demand
spikes) and, therefore, be represented approximately by a
lower-dimensional representation. This minimum number of
features, needed to closely approximate a high-dimensional
structure, is called the intrinsic dimensionality of the data.

PCA (Principal Component Analysis) is a useful technique
for feature selection. With PCA, one can process a large
amount of data quickly to determine whether the whole system
has low intrinsic dimensionality, and to identify the prominent
features exhibited in the data, thus making it possible, by ex-
ploiting the common temporal patterns shared by applications,

to create a workload model that is described only by a small
set of features.

Several kinds of analysis could benefit from this study. For
instance, all sort of algorithms could be carried out using
a small input, that is, a small number of features instead
of all original traces. We can imagine that, although SASU
is currently under low utilization and has a relatively low
number of applications running, the PCA analysis that we
study in this paper will become more effective as the number
of applications hosted on SASU grows.

III. D ATA DESCRIPTION

SASU’s application servers are grouped under Functional
Test, Integration Test, and Production groups. The multiple
servers within each group (except the Functional Test group)
are clustered for load balance purposes. In this fashion, there
is one server dedicated to functional test, two for integration
test and two for actual production. The servers run HP-UX
operating system and OVPA (OpenView Performance Agent)
to collect performance data.

The data considered in this study was collected from one
of the two production servers, during the two-week period
from from 08/02/2004 to 08/16/2004. The reason for collecting
only two weeks worth of data is that SASU’s CPU utilization
had been increasing over time and, prior to this period, some
applications did not have sufficient utilization to be analyzed.
There were twelve applications running on this production
server (HTX694).

OVPA (OpenView Performance Agent) aggregates (aver-
ages) the CPU utilization at every five minutes and writes to a
log file which is subsequently extracted and stored in a central
repository. The dataset lists CPU utilization percentagesby
each application (APP_CPU_TOTAL_UTIL OVPA metric) in
5-minute intervals during the two-week collection period and
it is summarized in Table I. This table shows the maximum,
the average and the standard deviation of the percentage of
CPU utilization during the two weeks. The number in the
first column is used, by convention in this paper, as a further
reference to the applications. We have excluded thePRM_SYS
application (a group of system management processes) and
the OTHER group (undefined applications). From this table,
it is possible to conclude that the server is still under light
utilization.

From the data collected, we generate a CPU utilization
measurementm×p matrix X, where the number of rowsm is
the number of time intervals (number of 300-second intervals
within the two-week period) and the number of columnsp is
the number of applications in the system (p = 12). Note that
m >> p.

Each columni of the matrix denotes an application time-
series, referenced by vectorXi, and each row represents an
instance of all the applications at timet. The matrix X is
used as the input for PCA. Figure 1 shows some examples
of application load traces (applications 2, 6 and 7), which
correspond to columns of theX matrix. The plots show the
percentage of CPU utilization as a function of time. In some

2

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

%
 C

P
U

 U
til

iz
at

io
n

Time (5 min intervals)

B2B

’x’ u 0:2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

%
 C

P
U

 U
til

iz
at

io
n

Time (5 min intervals)

Primavision

’x’ u 0:6

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

%
 C

P
U

 U
til

iz
at

io
n

Time (5 min intervals)

Psghrms

’x’ u 0:7

Fig. 1. Examples of Application Traces

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

%
 C

P
U

 U
til

iz
at

io
n

Time (5 min intervals)

B2B

reconstruction

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

%
 C

P
U

 U
til

iz
at

io
n

Time (5 min intervals)

Primavision

reconstruction

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

%
 C

P
U

 U
til

iz
at

io
n

Time (5 min intervals)

Psghrms

reconstruction

Fig. 2. Examples of Application Reconstructed Traces UsingThree Features

TABLE I

APPLICATION LOAD SUMMARY : CPU UTILIZATION PERCENTAGES BY

APPLICATION

Num. Application Max Avg Std.Dev.
01 ARC 14.31 0.08 0.04
02 B2B 24.79 9.59 5.64
03 Contivo 0.34 0.02 0.01
04 Esgui 0.38 0.22 0.03
05 Parallax 0.11 0.04 0.01
06 Primavision 3.14 0.19 0.25
07 Psghrms 9.49 1.08 1.21
08 Pshd 5.12 0.54 0.63
09 Psportal 18.56 0.97 1.65
10 Rdma 0.09 0.00 0.01
11 Rocket 0.60 0.01 0.02
12 Wwtbl 0.37 0.01 0.01

plots, it is possible to visually identify temporal patterns during
the course of the two weeks.

IV. PRINCIPAL COMPONENT ANALYSIS

This section provides the basic concepts behind PCA. A
detailed description of PCA can be find in [11]. The idea
behind PCA is to place the data into a new set of coordi-
nates, or components. This new hyper-space has the property
that the first (principal) component points to the direction
of the maximum data variation in magnitude, in terms of
the Euclidean norm. After finding the first component, the
second orthogonal component can be found by removing the
information captured by the first component, and capturing the
maximum variation of the residual; and so on. This idea can
be illustrated graphically using a two-dimensional space.In
Figure 3, there is an elliptical cloud being cut by a principal

component along the direction that captures the maximum
variation in magnitude from the data.

-10

-5

 0

 5

 10

-10 -5 0 5 10

Y

X

Two Dimensional Data Example

data
pc

Fig. 3. Example of Finding the Principal Component

In practice, this is equivalent to finding the eigen-vectorsof
XT X [11].

XT Xvi = λivi i = 1, .., p (1)

The eigen-values,λi, provide the magnitude of the variation
along each componenti, so, by convention, we sort these
λ values in decreasing order. Furthermore, becauseXT X is
symmetric positive definite, its eigen-valuesλi are nonnega-
tive. The eigen-vectors,vi, are vectors of sizep and they form
the transformation matrixV . To maintain consistency, we re-
arrange the vectorsvi according to its correspondingλi values
in a decreasing order.

In the new mapped space, the contribution of principal
componenti is given by ui = Xvi. The ui vector of size

3

m is actually a feature shared by all applications along the
principal componenti. It can be normalized to unit length by
dividing by the singular valueσi =

√
λi. Since theV matrix

is sorted in a way in which the first component represents the
maximum variation in energy,u1 is the most dominant feature,
u2 the second dominant and so on.

Conversely, the original data can be reconstructed from
features as:

X = U(V −1) (2)

whereU is them× p feature matrix andV is a p× p matrix
containing the eigen-vectors.

V. DATA MANIPULATION

In order to examine the low intrinsic dimensionality of the
SASU’s application dataset, we apply PCA to the dataset. The
methodology we are using here was first presented in [6] in
analyzing network traffic behavior.

The singular values account for the data variability along
their correspondent principal components. Extracting thesin-
gular values using PCA, we can determine how many features
actually bring information to the dataset. In other words, there
are some components that account for low variability and
therefore have low degrees of representativeness in the dataset.

There are two possible causes for the low intrinsic dimen-
sionality. First, if the magnitude of the loads differs greatly
among the applications, the ones that have the greatest mean
values will dominate the energy (or variance) in the dataset.
Second, the other cause of low intrinsic dimensionality can
be attributed to the common patterns among the timeseries,
making the dimensions correlated and, therefore, redundant.
Since we are interested in the latter, that is, the common
behavior shared by the applications, in order to avoid the first
effect, we normalize the timeseries data to zero mean and unit
variance:

Xi,t =
Xi,t − X̄i,∗

σi

. (3)

The dimensionality analysis can be carried out using a
scree plot. In this plot, the set of the sorted singular values
is presented with their correspondent magnitudes. Figure 4
presents the scree plot for the SASU’s application dataset.
From this plot, we can see that the first two attributes are
responsible for the largest changes in variation in the dataset.
While features 1 and 2 account for a change of more than two
points in magnitude, the other ten together account only for
one.

If we consider only the first three attributes to reconstruct
the original trace, it is possible that the reconstruction still
preserve the main characteristics of the original, even though
this process will incur some loss (distortion).

Some problems require that the data be strongly correlated
in order to apply PCA, so the loss will be minimized. However,
there are other cases, in which the precision in the absolute
value of each point in the reconstructed trace is not a strict
goal. For instance, in this particular study, we are mostly
interested in capturing application behavior (shapes of the
plots) rather than in the precise value of the CPU utilization

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2 4 6 8 10 12

M
ag

ni
tu

de

Singular Value

Scree Plot

Fig. 4. Scree Plot for Normalized Data

at a particular time. Therefore, if the reconstruction using
a handful number of attributes preserves, or mimics, the
behavior of the original applications, it could be rather useful.

In Figure 2 we show the reconstructed traces of the three
applications, presented earlier in Figure 1, using only three out
of the twelve features. From this picture, we can see that the
noticeable temporal patterns of the applications are preserved.
The number of features can be chosen according to the error
tolerance level allowed.

In order to evaluate the degree of correlation between the
original and the reconstructed traces, we plot in Figure 5 the
correlation coefficient as a function of the number of features
used in the reconstruction, for the three applications shown in
Figure 1 (original) and Figure 2 (reconstructed). We can see
that the first three features significantly affect the correlation
level for the three applications. Also, as we add more than the
first three features, the correlation increases slowly in all the
traces.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Number of Features

Correlation

app 2
app 6
app 7

Fig. 5. Correlation Coefficient Between the Original to the Reconstructed
Traces by Varying the Number of Features Considered

Since three features were able to capture the temporal
characteristics of the original traces remarkably well, inthe
rest of this paper, we are going to consider three as the intrinsic
dimensionality of the data.

It is also possible to examine the features and try to attribute
meaning to them. The first three features, which are the most

4

dominant, are displayed at Figure 6. Visually, we can see
a clear distinction among the features. Feature number one
presents a strong periodic trend, in which each period is a
complete business day (288 intervals of five minutes). There
are also some longer valleys due to the low utilization during
the weekends. Feature number two seems like a Gaussian
noise that intensifies in the second week due to the SASU’s
increasing utilization over time. Finally, feature numberthree
presents short lived spikes in each one of the business days,
which also intensify in the second week.

The features are used as the basic units and together form
a CPU utilization workload model. Some useful analysis can
be derived from the model, as presented in the next section.

VI. U SING THE EXTRACTED FEATURES

This section shows how the model can be used to describe
the system’s behavior, classifying the applications and analyz-
ing its components, and generating synthetic traces for test
and simulation purposes.

A. Classifying Applications

One important issue in capacity planning is the ability to
classify a large number of applications into relatively few
groups (or types). The notion of classes gives the planner the
possibility to distribute the load incurred by different types
of applications over separate servers, to size the resource
consumption for each group, and to decide which applications
can be put together to share the same resources. In order to
classify the applications, we analyze each component at a time.

The features capture the pattern of temporal variation
common to the set of original traces; the extent to which
this particular temporal pattern is presented on each original
application trace is given by the entries ofVi, the eigen-
vectors.

The entries of the three dominant components are presented
in Figure 7. The numbers in thex-axis correspond to the
numbers of the applications in Table I. The greater the absolute
value of the entry (y-axis), the stronger the correspondent
feature is present in the original application load behavior. For
example, we can see that in the third component in Figure 7,
which corresponds to the “spiky” feature, application 6 hasa
strong presence of this feature in its behavior. Application 6 is
shown in the middle plot of Figure 1. By looking at the plot
of the original trace, we can confirm that this application has
indeed a strong spiky characteristic.

In the same fashion, applications 2 and 7 have the strongest
presence of the periodic behavior, as shown in the left plot
of Figure 7. These two applications correspond to the other
two applications in Figure 1, which present a strong periodic
trend.

By examining the component entries, we can specify a
criterion to classify the applications by their predominant
features: periodic, noisy or spiky. To illustrate the idea,we use
a simple arithmetic criterion to attribute traces into classes.
To determine the traces that belong to a class, we select
those traces in which their entry in the component is greater
the mean value of the absolute values of all entries. That

means that all application’s entries in the first component
greater than0.27 were considered periodic, the ones greater
than 0.26 in the second were considered noisy and the ones
greater than0.20 in the third were considered spiky. The result
is summarized in Table II. Although some traces were not
uniquely classified, this classification helps us to understand
the predominant behavior of each trace.

TABLE II

APPLICATION CLASSIFICATION

Num. App f1 f2 f3 Class
1 ARC 0.30 0.09 0.24 Periodic, Spiky
2 B2B 0.37 -0.18 0.08 Periodic
3 Contivo 0.27 0.38 0.19 Noisy
4 Esgui 0.28 -0.16 -0.06 Periodic
5 Parallax 0.29 -0.21 0.36 Periodic, Spiky
6 Primavision 0.14 0.18 -0.78 Spiky
7 Psghrms 0.39 -0.26 -0.15 Periodic
8 Pshd 0.37 -0.24 -0.31 Periodic, Spiky
9 Psportal 0.23 -0.34 0.05 Noisy
10 Rdma 0.22 0.51 -0.05 Noisy
11 Rocket 0.23 0.21 -0.03 Noisy
12 Wwtbl 0.28 0.40 0.17 Periodic,Noisy

B. Detrending Applications

Resource assignment [3] is a useful technique for capacity
planning. This method takes advantage of the seasonal comple-
mentarities of the periodic behavior of the traces and exploits
negative correlations between different applications’ demand
in a shared resource environment. It also considers the effect
of unusual events, such as unexpected peaks.

This capacity planning technique can also benefit from the
structural analysis. It is possible to detrend applicationtraces
to examine one effect at a time.

Suppose one is interested in determining the seasonal be-
havior of the applications. In this case, we would be interested
mostly in the periodic behavior. Thus, we can reconstruct
the original application traces annulling the noisy and spiky
components. This will reconstruct a trace governed only by
its periodic trend and, therefore, the analysis could be carried
out more precisely. Sometimes, in analyzing the original trace
directly it is difficult to distinguish and isolate only the effect
of the periodicity.

Analyzing the periodic trend alone, one could complement
the valley of a period with a peak from another. For example,
applications being utilized by users physically located onthe
East and West coasts, running in the same system, could differ
in terms of utilization as a function of the hours of the day
and therefore the load periodicity could be complemented in
order to maximize resource utilization.

On the other hand, to study anomalies and unexpected
events in the system, one could be interested in separate the
invisible spikes from the other effects. This can be done by
considering only the third component in the reconstruction.

As an illustration we detrend an actual application shown
in Figure 8, presenting each effect, period, noise and spike,
separately in Figure 9. It is interesting to see the intensity
of the noise in the second plot and, also, the spikes in the

5

−3

−2

−1

 0

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (5 min intervals)

Feature 1 : Periodic

−4

−3

−2

−1

 0

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (5 min intervals)

Feature 2 : Noisy

−12

−10

−8

−6

−4

−2

 0

 2

 4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (5 min intervals)

Feature 3 : Spiky

Fig. 6. The First Three Features: Periodic, Noisy, Spiky

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14

Application number in the original trace

1st Principal Component

line 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14

Application number in the original trace

1st Principal Component

line 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14

Application number in the original trace

1st Principal Component

line 1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14

Application number in the original trace

1st Principal Component

line 1

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14

Application number in the original trace

2nd Principal Component

line 1

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14

Application number in the original trace

2nd Principal Component

line 1

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14

Application number in the original trace

2nd Principal Component

line 1

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14

Application number in the original trace

2nd Principal Component

line 1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 2 4 6 8 10 12 14

Application number in the original trace

3rd Principal Component

line 1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 2 4 6 8 10 12 14

Application number in the original trace

3rd Principal Component

line 1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 2 4 6 8 10 12 14

Application number in the original trace

3rd Principal Component

line 1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0 2 4 6 8 10 12 14

Application number in the original trace

3rd Principal Component

line 1

Fig. 7. The First Three Components

third plot, which were indistinguishable when looking at the
original trace

 0

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

%
 C

P
U

 U
til

iz
at

io
n

Time (5 min intervals)

Pshd

original

Fig. 8. Pshd: an application to be detrended

C. Generating Synthetic Workload

Synthetic workloads are useful for testing and simulation
purposes. Not only do we want to reproduce a typical behavior
of the existing applications, but also we would like to create a
model and change some of its parameters, in order to evaluate
the effect of a new, slightly different application.

As an example, we may want to simulate the behavior of
a new application which is connected to a headlines news
database. This new application has the same noisy behavior
as an existing one, lets say applicationy. However, due
to a special unexpected news event, there is a peak during
the business hours of some days. To evaluate the impact
of this new application in the system, we can generate a

synthetic trace from they model, intensifying the peak effect
of applicationy. Doing so, we will be able to evaluate the
performance implications of the new application in the system
due to the effect of burstiness incurred by the special news
event.

Similarly, it is also possible to suppress or undermine the
presence of a feature in an application trace in order to
reproduce some desirable behavior.

The reconstruction of a original trace can be accomplished
by

U(V −1)i = Xr
i (4)

The synthetic trace generation is basically a reconstruction
with a new combination of the basic features, that is, playing
with the values of the inverted matrixV −1. Equivalently,
equation 4 can be written as

U





v1

v2

v3



 = Xr
i

wherev1 is the parameter related to the periodic component,
andv2 andv3 to the noisy and spiky components, respectively.

As an illustration, application 2 has the following configu-
ration:

U





0.37
−0.18

0.08



 = Xr
2

Lets say that we want to reproduce the behavior of application
2, but with half of the amplitude induced by the periodic
feature. In order to produce this result, we just attribute half of
the value in entryv1, that isv1 = 0.18. The resulting trace can
be seen in Figure 10. This figure compares the reconstruction
of application 2 (left), using the original configuration, to the

6

 0

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

%
 C

P
U

 U
til

iz
at

io
n

Time (5 min intervals)

Pshd

reconstruction

 0

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

%
 C

P
U

 U
til

iz
at

io
n

Time (5 min intervals)

Pshd

reconstruction

 0

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

%
 C

P
U

 U
til

iz
at

io
n

Time (5 min intervals)

Pshd

reconstruction

Fig. 9. Detrending Application Pshd (8): a) Periodic, b) Noisy and c) Spiky behaviors from the same application plotted separately

new synthetic generated application (right), that mimics its
behavior but presents half of its periodic amplitude.

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

%
 C

P
U

 U
til

iz
at

io
n

Time (5 min intervals)

B2B

reconstruction

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

%
 C

P
U

 U
til

iz
at

io
n

Time (5 min intervals)

B2B

reconstruction

Fig. 10. Comparing the reconstruction of application 2 to a the new synthetic
generated trace making a change in its configuration

VII. C ONCLUSIONS

In order to characterize the workload of applications in a
shared utility computing environment, we applied the Principal
Component Analysis (PCA) technique to an CPU utilization
dataset extracted from an HP SASU’s production server. It
was possible to create a workload model using a small number
of features. We demonstrated how to classify applications by
their predominant feature, how to examine the structure of
the behavior of an application and how to generate synthetic
workload.

Further analysis is required in order to validate the model.
For instance, as SASU is a changing environment from which
we have obtained our dataset for the PCA analysis, it would be
necessary to prove the temporal stability of the applications.
We should be able to confirm that, if we want to describe the
system behavior in the future, the basic features do not change
much with time. In other words, the question is whether the
structure described is useful for analyzing data that was not
part of the input of the analysis. Furthermore, it is possible
that a new application has a completely different behavior
from the existing ones. For this reason, the insertion of a
new application requires a test to determine whether the PCA
model should be rebuilt from scratch.

Another possibility is to automate the process to generate
periodical reports to the IT manager in a way that it would be
possible to analyze the applications’ behaviors during several
periods of time.

Finally, we believe that, in the future, when hundreds of
applications are being supported and as the CPU utilization

increases, the advantage of using the PCA technique in man-
aging the larger system will become more significant – instead
of analyzing a large number of times series at a time, one
could use this approach in reducing the complexity of system’s
characterization and synthetic trace generation.

Application behavior on the consumption of other system
resources such as network bandwidth and disk I/O can also
be similarly analyzed.

VIII. A CKNOWLEDGMENT

We wish to thank Fereydoon Safai, project manager of Ca-
pacity Planning with the Decision Technologies Department,
Intelligent Enterprise Technologies Laboratory, for his overall
support of our research effort. Thanks are due to Cipriano
(Pano) Santos for his numerous valuable comments on an
earlier version of this paper. We also thank the comments
and project help from other members of the project team,
Dirk Beyer, Jerry Shan, Yunhong Zhou, and Richard Stormo
throughout the project. Finally, we have benefited from the
technical discussion with Professor Virgilio A. F. Almeida
of Federal University of Minas Gerais, Brazil, in the earlier
phases of the project.

REFERENCES

[1] “HP grid and utility computing,” http://devresource.hp.com.
[2] “Shared application server utility - service brief,”

http://sasu.corp.hp.com/index.htm.
[3] D. Beyer, C. Santos, J. Shan, and Y. Zhou, “SASU resource assign-

ment/capacity planning,” HP Labs, Palo Alto - California, Tech. Rep.
[4] F. Safai, A. Zhang, D. Beyer, Y. Zhou, J. Shan, V. Almeida,and

R. Stormo, “An optimization model for cost-effective capacity expan-
sion,” April 2004, hP Labs - unpublished research note.

[5] F. Safai, J. Shan, D. Beyer, A. Zhang, and S. Jain, “IT capacity planning:
A three-stage approach,” HP Labs, Palo Alto - California, Tech. Rep.,
January 2004.

[6] A. Lakhina, K. Papagiannaki, M. Crovella, E. D. K. Christophe Diot
(Intel Research), and N. Taft, “Structural analysis of network traffic
flows,” in ACM Sigmetrics, 2004.

[7] J. Rolia, X. Zhu, M. Arlitt, and A. Andrzejak, “Statistical service
assurance for applications in utility grid environments,”HP Labs, Tech.
Rep., 2002, hPL-2002-155.

[8] J. Rolia, A. Andrzejak, and M. Arlitt, “Automating enterprise application
placement in resource utilities,” inSelf-Managing Distributed Systems:
14th IFIP/IEEE International Workshop on Distributed Systems: Oper-
ations and Management, DSOM 2003, vol. 2867/2004, January 2004,
pp. 118–129.

[9] D. Menascé and V. Almeida,Capacity Planning for Web Services.
Prentice Hall, 2000.

[10] D. Thiébaut, “On the fractal dimension of computer programs and its
application to the prediction of the cache miss ratio,”IEEE Transactions
on Computers, vol. Volume 38 , Issue 7, July 1989.

7

[11] H. Hotelling, Analysis of a complex of statistical variables into principal
components. J. Educ, Psy, 1933.

8

