

Server Allocation Problem for Multi-Tiered Applications

Kamalika Chaudhuri, Anshul Kothari, Ram Swaminathan,
Robert Tarjan, Alex Zhang, Yunhong Zhou
HP Laboratories Palo Alto
HPL-2004-151
September 8, 2004*

E-mail: {firstname.lastname}@hp.com

capacity planning,
resource allocation,
response time,
approximation
algorithm,
knapsack problem

Last few years have seen exponential growth in the area of web
applications, especially, e-commerce and web services. One of the most
important QoS metric for web applications is the response time for the
user. Web application normally has a multi-tier architecture and a request
might have to traverse through all the tiers before finishing its processing.
Therefore, a request's total response time is the sum of response time at
all the tiers. Since the expected response time at any tier depends upon
the number of servers allocated to this tier, many different configurations
(number of servers allocated at each tier) can give the same QoS
guarantee in terms of total response time. Naturally, one would like to
find the configuration, which minimizes the total system cost and
satisfies the total response time guarantee. Zhang et al. [15] have
modeled this problem as a non- linear integer optimization problem and
proposed heuristics to solve it optimally.

In this paper we study computational complexity of this non- linear
optimization problem, which we call the multi-tier problem. We show,
for the case of variable number of tiers, the decision version of this
problem is NP-Complete and present efficient approximation algorithms
(2-approximation in linear time and fully polynomial time approximation
scheme) .For the case of constant number of tiers, we show that the
problem can be solved in polynomial time.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2004

Server Allocation Problem for Multi-Tiered Applications

Kamalika Chaudhuri Anshul Kothari Ram Swaminathan Robert Tarjan
Alex Zhang Yunhong Zhou∗

HP Labs, 1501 Page Mill Rd, Palo Alto, CA, 94304

{firstname.lastname}@hp.com

Abstract

Last few years have seen exponential growth in the area of web applications, especially, e-commerce
and web services. One of the most important QoS metric for web applications is the response time for
the user. Web application normally has a multi-tier architecture and a request might have to traverse
through all the tiers before finishing its processing. Therefore, a request’s total response time is the sum
of response time at all the tiers. Since the expected response time at any tier depends upon the number
of servers allocated to this tier, many different configurations (number of servers allocated at each tier)
can give the same QoS guarantee in terms of total response time. Naturally, one would like to find the
configuration, which minimizes the total system cost and satisfies the total response time guarantee.
Zhang et al. [15] have modeled this problem as a non-linear integer optimization problem and proposed
heuristics to solve it optimally.

In this paper we study computational complexity of this non-linear optimization problem, which we
call the multi-tier problem. First we show, for the case of variable number of tiers, the decision version
of this problem is NP-Complete. Then we present a simple two-approximation algorithm which runs in
linear time and a fully polynomial time approximation scheme. For the case of constant number of tiers,
we show that the problem is polynomial time solvable.

1 Introduction

Last few years have seen a tremendous growth in the area of web-applications such as electronic commerce,
web service, search engines etc. As these applications are user oriented, their main objective is to keep their
users satisfied by means of meeting certain quality of service guarantees. One of the most important quality
of service parameters for these applications is expected response time, which is the total time it takes a user’s
request to be processed.

Most of the web-applications have a multi-tiered architecture, where a user’s request is processed by
multiple (levels of) servers. For example, a typical web-service system can be thought to consist of three
tiers: web servers, application servers and database servers. Web servers talk to the user and serve as an
interface between application servers and the user. Application servers parse users’ requests and possibly do
some intensive computations. Application servers also needs to talk to back-end database servers to obtain
user profiles and system data. Within each tier, multiple machines can be provisioned to share the incoming
workload which consists of a series of different types of web requests. At each of the tiers, a user’s request
is going to suffer queuing delay and processing delay and the expected response time bounds the total delay
suffered by a user. The response time is the time taken for a web request to go through the three-tiered
system (i.e. “server-side response time”).

Even though three tiers are typical for a web-application architecture, it is possible for the application
to have more tiers. Consider a typical search engine such as google [2], the application server tier is actually
very complex, and it consists of multiple sub-tiers, working on things such that crawling, parsing, indexing,
ranking, searching etc. If the service demand for one tier is high, normally a few load balancing servers are
placed in front of the tier to divide the load equally into multiple servers, and they act as one tier also.

∗Corresponding author.

1

Our question is to allocate an adequate number of servers to each tier in order to meet certain service
level requirement. Applications that allow different number of machines at each tier are called horizontally
scalable. We deal with such a horizontally scalable system where service level requirement is expressed in
average response time of the system. At each tier, the queuing delay suffered by a request is a function of the
number of servers available at that tier. One can reduce the total delay by increasing the number of servers,
however, it also increases the total infrastructure cost. Therefore, there is a tussle between the infrastructure
cost and total delay and in turn with expected response time. This necessitates the need for a tool, which
given the application’s workload and expected response time, finds a server allocation (how many servers at
each tier) with minimum cost.

Since the system response time is the sum of response times at each of the tiers, the total response time
requirement can be met by different configurations in the number of machines at each tier. For example,
the configuration of 3 web servers, 2 application servers, and 1 database server may achieve the same
average response time as the configuration of 1 web server, 3 application servers, and 1 database server.
The question, then, is to find a minimum number of machines in total to meet the average response time
guarantee. Realizing that machines at different tiers might be different and incur different costs, the more
general optimization problem is to minimize the total weighted sum of servers, with the weights reflecting
the “total cost of ownership” (including various costs such as hardware and software costs, operating costs,
etc) of servers at different tiers.

In this paper, we study this server allocation problem by modeling it as a non-linear integer optimization
problem. For the case where the application has arbitrary number of tiers, we show that the problem is
NP-hard. We then present a simple two-approximation algorithm based on Lagrangian relaxation. Next, we
present a pseudo polynomial time algorithm and a fully polynomial time approximation scheme (FPTAS).
Finally, for the case where the application has constant number of tiers, we show that the problem can be
solved in polynomial time. We also observe that Lenstra’s algorithm [12] for integer linear programming
with a constant number of variables can be extended to an arbitrary convex body with the existence of a
separation oracle.

1.1 Related Work

This problem is motivated by TAO (web transaction and optimization), a HP project focusing on developing
metrics, models, and infrastructures to effectively manage the performance of web applications. Please refer
to Garg et al. [4] for a more detailed discussion of the system and modeling efforts. Appleby et al. [1] describe
various aspects of IBM’s Océano project which is centered on service level management and which includes
many issues that the TAO project also sets out to solve. Menasce and Almeida [14] present general issues
in capacity planning issues for web performance.

Zhang et al. [15] have modeled the multi-tier problem as a non-linear integer optimization problem and
proposed heuristics to solve it optimally. Zhu et al. [16] addressed the issue of allocating resources (machines)
in a tree-like topology of a data center, considering performance constraints such as link bandwidth and switch
capacity while minimizing communication delay between the assigned servers. They propose a mathematical
optimization model with binary variables for optimally configuring the topology. Our work differs from [16]
in several important ways. First, we consider only the average response time performance measure. Second,
our topology is a tiered structure compared to an arbitrary topology. The use of the queuing model in
expressing the average response time leads to a general non-linear integer problem, but with only a few
general integer variables. These simplifications allow us to devise efficient algorithms to find near optimal
solutions in polynomial time.

We point out that the solution to the server allocation problem is relevant to the dynamic resource
allocation at a Utility Data Center (UDC). The dynamic resource allocation at a UDC requires the integration
of demand and capacity planning, and this concept is known as Capacity on Demand . Capacity on Demand
consists of optimizing the assignment of shared resources to satisfy the requirements of multiple applications.
A UDC enables multiple applications to be hosted on a collection of shared resources, where the resources
assigned to the applications may be increased when workload increases and reduced when workload reduces.
This dynamic resource allocation allows flexible service level agreements (SLAs) in an environment where
peak workload is much greater than the normal steady state. A key problem with Capacity on Demand is
that the user needs are translated into a logical configuration, and physical resources are then assigned to
the logical configuration to satisfy the resource requirements of the application. The problem addressed in

2

this paper is precisely to determine the optimal resource requirements of an application under a workload in
such a way that application SLAs are satisfied.

1.2 Organization of the Paper

The rest of the paper is organized as follows. We describe the queuing model which gives the expected
(average) response time as a function of demand and the amount of resources allocated in Section 2.1. In
Section 2.2, we will then formulate the multi-tier problem as a mathematical optimization problem consisting
of a linear objective function and a nonlinear constraint, with general integer decision variables. In Sections 3
we show that the multi-tier problem is NP-complete. In Section 4, we present the optimal fractional solution
using Lagrangian relaxation and give a two-approximation algorithm based on rounding up the optimal
fractional solution. In Section 5, we give a pseudo-polynomial time algorithm and as well an (1 + ε)-
approximation algorithm in polynomial time. In Section 6, we show that the problem is polynomial time
solvable if the number of tiers is a constant.

2 Problem Formalization

We now describe the response time model, and using this model, then state the multi-tier problem precisely.

2.1 The Response Time Model

One of the nice properties of multi-tier architecture is that the delay suffered by a request in a tier only
depends upon the number of servers in that tier and is not affected by how many servers we have at any
other tier. Therefore, one can compute request’s response time by computing the delays at individual tiers
and then summing them up to obtain the total response time.

To simplify our modeling effort for each tier, we assume that all servers at the same tier are identical,
and that the workload is shared approximately equally among all the servers at the same tier. If the request
arrival rate is λi for the i-th tier with Ni servers, then each server has a request arrival rate of λi/Ni. Each
server is modeled as a processor sharing queue. The expected response time is given by the expected time
in system with M/G/11 queuing model:

Ri(Ni) =
E[Si]

1 − (λi

Ni
)E[Si]

,

where E[Si] is the expected processing time (or service demand) of a request on the critical resource (such
as CPU) at the i-th tier.2 For a reference to general queuing theory and the above formula, please see
Kleinrock [10]. As discussed before, the response time, R(N), for a k-tier application is the sum of the
delays in all the tiers. Therefore

R(N) =
k∑

i=1

Ri(Ni) =
k∑

i=1

E[Si]

1 − λiE[Si]
Ni

, (1)

where N = (N1, N2, . . . , Nk). We refer to N as a configuration.

2.2 The Multi-Tier Problem

From Eq. (1), it follows that there exist multiple server allocations, which have the same response time, and
among these feasible allocations, one would like to find the one, which yields the minimum cost. This can
be formulated as the following optimization problem:

1Poisson distribution for request interarrival density, arbitrary service processing time distribution, one single queue with
unbounded buffer length.

2E[Si] can be estimated from the measured utilization rate, ui, of the critical resource as follows: E[Si] = ui/(λi/Ni).

3

min
Ni

k∑
i=1

hiNi (2)

s.t. R(N) =
k∑

i=1

E[Si]

1 − λiE[Si]
Ni

≤ T0; (3)

Ni integer with Ni > λiE[Si], for i = 1, · · · , k,
where T0 is the guaranteed response time and weight hi’s (all assumed to be strictly positive) reflect the
difference in the costs of the different servers. 3 Because

E[Si]

1 − λiE[Si]
Ni

=
NiE[Si]

Ni − λiE[Si]
= E[Si] +

λiE[Si]2

Ni − λiE[Si]
, for all i,

the non-linear constraint (3) can be further simplified as follows:

k∑
i=1

λiE[Si]2

Ni − λiE[Si]
≤ T0 −

k∑
i=1

E[Si].

Let ai = λiE[Si]2, bi = λiE[Si] and T = T0 −
∑k

i=1 E[Si], then the response time constraint becomes:

k∑
i=1

ai

Ni − bi
≤ T. (4)

Given this formulation of the optimization problem, one can define the corresponding decision problem as
follows: for a given cost p, does there exist an allocation N = (N1, . . . , Nk) such that,

k∑
i=1

hiNi ≤ p

k∑
i=1

ai

Ni − bi
≤ T

N1, N2, · · · , Nk positive integers with Ni > bi, ∀ i.

For simplicity, we assume that hi’s are positive integers for all i. However, ai, bi are not necessarily
integers. It is easy to see that if one can solve the decision problem in polynomial time then the optimization
problem can also be solved in polynomial time by doing a binary search on possible values of p. In the next
section, we show that for arbitrary k, solving the decision problem is NP-Complete.

3 NP-Completeness

It is tempting to solve the multi-tier problem optimally. However, the following result shows that the problem
is “hard” to solve optimally in polynomial time.

Theorem 1 With arbitrary number of tiers, the multi-tier decision problem is NP-complete.

Proof: It is easy to see that the multi-tier decision problem is in NP, since a non-deterministic algorithm
need only guess a feasible solution and check in linear time whether these two constraints (cost constraint

3In the case where costs are difficult to ascertain, a convenient simplification would be to minimize the total number of

servers (
Pk

i=1 Ni); that is, to set hi = 1 for all i.

4

and response time constraint) are satisfied. Any feasible solution has its size polynomially bounded by the
input size, since Ni ≤ p/hi for all i.

In order to show that the multi-tier decision problem is NP-Complete, we reduce the subset sum problem
to it. The subset sum problem is one of the original problems shown to be NP-complete by Karp [8].

Subset Sum: Given an instance (I, C) where I = {wi | i = 1, . . . , k} is a set of positive integers and C
is a constant, decide whether there exists a subset S ⊂ I such that

∑
i∈S wi = C.

Without loss of generality, we assume that wi ≥ 4, for each i = 1, . . . , k, for otherwise, we can multiply
each wi and C by 4.

An instance of multi-tier decision problem can be expressed in terms of ai, bi, hi, for i = 1, . . . , k, and
T , p. Given an instance (I, C) of the subset sum problem, we construct an instance of multi-tier decision
problem as follows. For the i-th tier, we compute the input ai and bi as follows:

ai

1 − bi
− ai

2 − bi
= wi and

ai

2 − bi
− ai

3 − bi
= 1.

The above equations uniquely solve ai, bi as positive fractionals:

ai =
2wi(wi + 1)
(wi − 1)2

and bi =
wi − 3
wi − 1

.

Because wi ≥ 4 for each i, bi ∈ (0, 1) in this construction. Next, let ci denote the response time for the
i-th tier if there is only one server, or equivalently, ci = ai/(1 − bi) = wi(wi + 1)/(wi − 1). Using ci we
define T to be T =

∑k
i=1 ci − C. In addition, we set hi = wi and p =

∑k
i=1 wi + C.

We next show that the multi-tier decision instance is equivalent to the subset-sum instance. It is easy to
show the equivalence from the subset-sum instance to the multi-tier instance. Given a subset-sum solution
S with

∑
i∈S wi = C, choose Ni = 2 for i ∈ S and Ni = 1 otherwise. Now

k∑
i=1

ai

Ni − bi
=

k∑
i=1

ai

1 − bi
−
∑
i∈S

(
ai

1 − bi
− ai

2 − bi
) =

k∑
i=1

ci −
∑
i∈S

wi =
k∑

i=1

ci − C = T,

k∑
i=1

hiNi =
k∑

i=1

wiNi =
k∑

i=1

wi +
∑
i∈S

wi =
k∑

i=1

wi + C = p.

To show the other way, consider a feasible configuration N for the multi-tier instance. As N is feasible,
we have

∑
i wiNi ≤ p and

∑
i ai/(Ni − bi) ≤ T . Let S be the set of tiers with at least two servers. The way

we have chosen ai and bi, one can easily see that the response time for the i-th tier is ci if there is only one
server or at least ci − wi − (Ni − 2) if there are at least two servers. Therefore, we have:

k∑
i=1

ci −
∑
i∈S

(wi + Ni − 2) ≤
k∑

i=1

ai

Ni − bi
≤ T =

k∑
i=1

ci − C,

i.e., C ≤
∑
i∈S

wi +
∑
i∈S

(Ni − 2).

Also as
∑k

i=1 wiNi ≤ p =
∑

i wi + C, we have
∑

i wi(Ni − 1) ≤ C, i.e.,∑
i∈S

wi +
∑
i∈S

wi(Ni − 2) ≤ C.

The above two inequalities combined together imply that∑
i∈S

wi(Ni − 2) ≤
∑
i∈S

(Ni − 2), i.e.,
∑
i∈S

(wi − 1)(Ni − 2) ≤ 0.

Because Ni ≥ 2 for all i ∈ S and wi ≥ 4 for all i, this is only possible if either S is empty or Ni = 2 for each
element i ∈ S. The former case is not possible as it contradicts the fact that N is a feasible configuration.
Therefore, for all elements in S, Ni = 2 and we have,

∑
i∈S wi = C.

5

4 A Two Approximation Algorithm

In the previous section, we have shown that the multi-tier problem is NP-Complete for arbitrary k. Given
the hardness of computing the optimal solution one would like to know if it is possible to compute a good
approximate solution efficiently. It turns out that a fully polynomial time approximation scheme (FPTAS)
exists for our problem. Before presenting the relatively complex approximation scheme, we first give a
simple approximation algorithm which runs in linear time. Our simple approximation algorithm guarantees
a worst-case performance factor of two, and it will be used for the construction of our FPTAS in Section 5.

The two-approximation algorithm is based on rounding up the optimal fractional solution, which can be
computed using Lagrangian relaxation. By relaxing the constraints that Ni’s have to be positive integers, we
replace them by Ni > 0 for all i. Afterwards, we have only one non-linear constraint left, the total response
time requirement. We can use Lagrangian multiplier method to incorporate the response time constraint into
the objective function and even get a closed form solution for the continuous-variable optimization problem.
Recall that our optimization problem is:

min
k∑

i=1

hiNi (5)

s.t.
k∑

i=1

ai

Ni − bi
≤ T ; (6)

N1, N2, · · · , Nk are positive integers.

Consider the Lagrangian function where λ is the Lagrangian multiplier:

L(N1, N2, · · · , Nk, λ) =
k∑

i=1

hiNi + λ

(
k∑

i=1

ai

Ni − bi
− T

)
.

Taking partial derivative with respect to Ni and setting it to zero, we obtain:

∂L

∂Ni
= hi − λ · ai

(Ni − bi)2
= 0, i = 1, . . . , k.

Let Nf
i be the optimal fractional value, thus

Nf
i = bi +

√
λai

hi
, i = 1, . . . , k.

Since Nf
i ’s are continuous, the non-linear constraint must be binding, that is,

k∑
i=1

ai

Nf
i − bi

= T.

Substituting Nf
i into the equality and simplify algebraically, we can solve for λ:

√
λ =

∑k
i=1

√
hiai

T
.

And the cost of the relaxed Lagrangian solution becomes

cost(Nf) =
k∑

i=1

hiN
f
i =

k∑
i=1

hibi +
(
∑k

i=1

√
hiai)2

T
.

The optimal fractional solution Nf can be converted into a feasible 2-approximation directly. Let N r be
the integer solution got by rounding up Nf . Specifically, N r

i = �Nf
i
, for all i. Because N r

i ≥ Nf
i for all i,

6

∑k
i=1 ai/(N r

i − bi) ≤
∑k

i=1 ai/(Nf
i − bi) = T . Therefore N r satisfies the total response time constraint and

N r is a feasible solution to the multi-tier problem. Next, we show that the N r is also a 2-approximation.
Because N r

i = �Nf
i
, it is easy to see that 1 ≤ N r

i < Nf
i + 1, for all i.

cost(N r) =
k∑

i=1

hiN
r
i ≤

k∑
i=1

hi(N
f
i + 1) = cost(Nf) +

k∑
i=1

hi. (7)

Since Nf is optimal fractional solution, its cost is going to be no more than the optimal integral solution,
N∗, i.e., cost(Nf) ≤ cost(N∗). Also, since any optimal integral solution should at least contain one server
in each of the tiers, we have

∑
i hi ≤ cost(N∗). Eq. (7) together with the above two inequalities implies

that cost(N r) ≤ 2cost(N∗). In summary, we have the following theorem:

Theorem 2 For the multi-tier problem with k tiers where k is an arbitrary integer variable, we can compute
a two-approximation in time O(k).

It is easy to construct pathological examples where the performance ratio of the above algorithm versus
the optimal is arbitrarily close to two, and so our analysis is tight. However, in practice where T is small,
we expect the algorithm to work very well, with its performance ratio close to 1. This is because Eq. (7)
together with the fact cost(Nf) ≤ cost(N∗) leads to

cost(N r)
cost(N∗)

≤ cost(N r)
cost(Nf)

≤ 1 +
∑k

i=1 hi

cost(Nf)
.

When T approaches 0, cost(Nf) approaches to ∞, thus the last term of the above inequalities approaches
0. In other words, when T is very small, the performance of the above algorithm is almost optimal.

5 Fully Polynomial Time Approximation Scheme

In this section, we present our fully polynomial time approximation scheme. We start by transforming
multi-tier optimization problem into an equivalent multiple-choice knapsack problem. By bounding the size
of each class of items, first we are able to give a pseudo-polynomial time algorithm for our problem. This
solution in turn is adapted to design the FPTAS using standard scaling technique.

The multi-choice knapsack problem is a generalization of the ordinary knapsack problem, where there are
m sets of items S1, . . . , Sm with |Si| = ni for all i and

∑m
i=1 ni = n. Each item j ∈ Si consists of a weight wij

and a profit pij , and we are given a knapsack with capacity W . The objective is to pick exactly one item from
each set, such that the profit sum is maximized and the weight sum is bounded by the knapsack capacity
W . (See Martello and Toth [13] and Keller et al. [9] for an extensive treatment of knapsack problems.)

The multi-choice knapsack problem has a lot of applications and the multi-tier problem is one of the latest
examples. Because the multi-choice knapsack problem contains the knapsack problem as a special case, and
the knapsack problem in turn contains the subset sum problem as a special case, it follows that multi-choice
knapsack problem is also NP-complete. An approximation algorithm with performance guarantee 5/4 is
given by Gens and Levner [5]. A pseudo-polynomial time algorithm using dynamic programming is easy to
design. The first fully polynomial time approximation scheme for the multi-choice knapsack problem has
been given by Chandra, Hirschberg and Wong [3]. An improved FPTAS is given in the book [9] where
(1 + ε)-approximation is given using standard scaling with time complexity O(nm · 1/ε).

We transform the multi-tier problem into the multi-choice knapsack problem and use the pseudo-polynomial
time algorithm for the multi-choice knapsack problem to solve our problem optimally. Given a multi-tier
problem instance with k tiers, the multi-choice knapsack problem consists of k sets of items S1, . . . , Sk. For
an item j ∈ Si:

weight(j) =
ai

j − bi
, cost(j) = j · hi.

For the multi-tier optimization problem, we don’t have any cost constraint, thus any j > bi is a feasible
item in Si. In order to bound the size of Si, we bound the number of servers needed at each tier. Consider
the response time constraint:

7

ai

Ni − bi
≤

k∑
i=1

ai

Ni − bi
≤ T

⇒ Ni ≥ bi +
ai

T
≡ nl

i.

Thus, nl
i is a lower bound on the number of servers needed at the i-th tier.

Next, let us consider the 2-approximation solution N r. Let Cr = cost(N r). Since Cr is an upper bound
on total cost of the optimal, we have:

hiNi +
∑
j|j �=i

hjn
l
j ≤

k∑
j=1

hjNj ≤ Cr

⇒ Ni ≤ Cr −∑j|j �=i hjn
l
j

hi
≡ nu

i .

Thus, nu
i is an upper bound on the number of servers needed at i-th tier.

Given nl
i and nu

i , we only need to consider item j ∈ Si satisfying �nl
i
 ≤ j ≤ �nu

i �. Without loss of
generality, we assume that nl

i and nu
i are both integers. Otherwise we can always replace nl

i by �nl
i
 and

replace nu
i by �nu

i �. Therefore now set Si has only nu
i − nl

i + 1 elements. Next we describe our pseudo-
polynomial time algorithm to solve the multi-choice knapsack problem.

The multi-choice knapsack problem can be solved, in pseudo polynomial time, by building a dynamic
programming (DP) table. There are two ways to build the dynamic programming table; either using the
cost or using the weight. As the weights of items in our case are not integers, and the costs are integers, we
build it using the cost. Let F (i, c) denote the minimum weight of items selected from the first i item sets
with total cost bounded by c. Following is the recursion function to build the DP table F (,):

F (i, c) = min
j∈Si

{F (i− 1, c− cost(j)) + weight(j)}

From Theorem 2, Cr (the cost of N r) is within twice of cost(N∗), the optimum cost. We restrict the size
of the cost parameter (number of columns) of the table to B = Cr −∑k

i=1 hin
l
i. Thus, the total time taken

to build the table is O(B ·∑k
i=1(nu

i −nl
i)). Once the table has been built, the optimal solution can be found

by going through the last row and choosing the minimum cost c, such that F (k, c) is bounded by at most
T . Thus, we have the following result:

Theorem 3 The multi-tier problem is pseudo-polynomial time solvable. The optimal solution can be com-
puted in time O(B ·∑k

i=1(nu
i − nl

i)).

The pseudo polynomial algorithm given above can be converted into a fully polynomial time approxima-
tion scheme using cost scaling. The following theorem is our main result in this section:

Theorem 4 For the multi-tier problem with k tiers, we can compute a (1 + ε)-approximation with time
O(k3 · 1/ε2) and space O(k · 1/ε).

Proof: We first scale the cost of each item as follows:

scost(j) = �k · cost(j)
ε · Cr

, ∀ j ∈ Si.

It is easy to see that, using the scaled cost, the cost of the optimal solution is bounded by k · 1/ε. Let S′
i

denote the i-th item set with scaled down cost. If two items have the same scaled cost, we only keep the one
with less weight. Because there are only k ·1/ε different scost values, S′

i should contains at most k/ε different
items. For the i-th set Si, there are nu

i − nl
i + 1 items before the scaling, which is exponentially large. The

8

näıve way of computing S′
i (scaling and discarding afterwards) will result in exponential running time and

space. In the following we show that it is possible to compute S′
i with both time and space O(k · 1/ε).

Fix i. For t = 1, · · · , k/ε, consider all the items j ∈ Si such that scost(j) = t. We can find the maximum
value of j in O(1) time. Once we get the maximum j = jt, its weight becomes weight(jt) = jt · hi. We then
put the item with scost = t and weight = weight(jt) into set S′

i.
In order to save space for the algorithm, we don’t compute all the S′

i in advance. Furthermore, when we
compute the DP table, we don’t need to store the whole table in memory. Instead, we compute F (,) row by
row. For i = 1, . . . , k, we compute F (i, c) for all possible values of c. At the time of computing the i-th row
F (i, .), we first compute S′

i, then compute F (i, .) using the values of F (i− 1, .) and S′
i. After the i-th row

F (i, .) is finished, we discard S′
i and F (i− 1, .), and continue to process the (i + 1)-th row. Thus the total

storage requirement for our algorithm is just O(k · 1/ε).
For the total processing time, there are k rows of the DP table, each column has length k/ε, and each

cell takes time O(k/ε) to compute. Thus the total processing time becomes O(k3 · 1/ε2). In summary, we
need time O(k3 · 1/ε2) and space O(k · 1/ε) for this algorithm. Each item with scaled cost induces an error
bounded by ε · Cr/k. There are totally k items in the solution, thus the total error for cost is bounded by
ε · Cr. Since Cr is a two-approximation of the optimum cost, it follows that the total error is bounded by
ε · Cr ≤ 2ε · cost(N∗). By replacing ε by ε/2, it will only change the above analysis by a constant factor,
thus this gives a (1 + ε)-approximation to the multi-tier problem.

6 Constant Number of Tiers

In Section 3, we showed that the multi-tier problem is NP Hard for arbitrary number of tiers. However, real
world applications are usually composed of only a small number of stages. For example, a typical ecommerce
application has only three tiers: a web server tier, an application server tier, and a database server tier. So
it is natural to ask if one could do better if the number of tiers is small. It turns out that it is indeed possible
to solve multi-tier problem in polynomial time when the number of tiers is constant. This can be done by
a variant of Lenstra’s algorithm for solving integer linear programs with constant number of variables. For
the sake of completeness, we provide the details in this section.

For the rest of the section, we look at the following generalization of multi-tier problem, which we call
Generalized Multitier problem: Given a convex body K in n dimensions described by a set of constraints
(linear or nonlinear), we would like to determine if there is an integer point inside the body.

6.1 Definitions and Notation

Before we proceed with a description of Lenstra’s algorithm, let us look at a few definitions.

Definition 1 Given a set B of linearly independent vectors B = {b1, b2, · · · , bn}, the lattice spanned by B
is the set

L = {
n∑

i=1

xibi|xi ∈ Z}.

The vectors {b1, b2, · · · , bn} form a basis of the lattice. For example, Zn is a lattice spanned by the unit
coordinate vectors. Given a lattice L, we would like to determine if there is a point in L inside the body K.

Consider the matrix with columns b1, b2, · · · , bn. The absolute value of the determinant of this matrix
depends only on the lattice L and not on the particular basis. We call this determinant det(L). We can
interpret det(L) as the volume of the n-dimensional parallelepiped formed by the vectors b1, b2, · · · , bn. The
volume interpretation tells us that

|det(L)| ≤
n∏

i=1

|bi| (8)

where the equality holds only when the bi’s are orthogonal.

Definition 2 A basis is called a reduced basis when the basis vectors are almost orthogonal. More formally,
n∏

i=1

|bi| ≤ c · |det(L)|

9

where c is a constant depending only on the dimension n.

We will make use of the following simple lemma, which states that given any point in R
n , there is a

lattice point close enough to it. The lemma is due to [12]. Due to completeness, we also give a proof for it.

Lemma 1 Let L be a lattice spanned by {b1, b2, . . . , bn}, where the basis vectors are ordered in increasing
order of magnitude. Then for any point x ∈ Rn , there is a point y ∈ L such that

|x− y| ≤ 1
2
√
n · |bn|

Proof: The proof is by induction on n, the number of dimensions. It is easy to see that the base case
n = 1 holds. Suppose the statement holds for an n− 1 dimensional lattice.

Let h be the distance of bn from the hyperplane H =
∑n−1

i=1 Rbi ; then we can always find an integer
yn such that x − ynbn is at most a distance 1

2h from H . Let x − ynbn = x1 + e, where x1 ∈ H and e is
perpendicular to H . We know that

|e| ≤ 1
2
h ≤ 1

2
|bn|. (9)

By the induction hypothesis, there is some point y1 in the lattice L′ =
∑n−1

i=1 Zbi such that |x1 − y1| ≤
1
2

√
n− 1|bn−1|; the distance of the lattice point y1+ynbn from x is therefore at most

√
1
4 (n− 1)|bn−1|2 + 1

4 |bn|2
which is at most 1

2

√
nbn.

Next, we would need to define a separation oracle for a convex body.

Definition 3 A separation oracle for a convex body K ∈ Rn is an oracle which, given a point x ∈ Rn ,

1. either asserts that x ∈ K,

2. or finds a hyperplane H such that K and x lie on opposite sides of H.

6.2 The Algorithm

Lenstra’s algorithm [12] works in n phases. Each phase either finds an integer point inside K, or identifies a
direction along which the current body is “flat”. By “flat”, we mean that the coordinate along that direction
of any point inside K lies in a constant sized interval. This reduces the problem to a constant number of
subproblems in dimension one lower than the dimension of the current problem.

In each phase, we first find an endomorphism τ which makes K look almost spherical. More formally,
after applying the transformation, we can find two concentric spheres S1 and S2 of radii r and R respectively
such that S1 ⊆ τ(K) ⊆ S2 and the ratio of the radii of S2 and S1 is a constant which depends only on the
dimension n. τ will map Zn to a lattice L; we compute a reduced basis {b1, b2, · · · , bn} for L. The basis
vectors are ordered such that |bi+1| ≥ |bi| for each i.

Let p be the common center of S1 and S2. We find q, the lattice point nearest to p. If q lies inside τ(K),
then we have found an integer point inside K. Otherwise, we consider all hyperplanes Hi which intersect
S2 and correspond to H + ybn where y ∈ Z, and recurse on each n− 1 dimensional subproblem of finding a
lattice point inside the body τ(K) ∩Hi.

The number of phases n in the algorithm is constant. As Lemma 2 shows, there are only a constant
number of hyperplanes Hi we need to consider, so the number of subproblems at each stage is constant.
This makes the running time polynomial, even though it is exponential in terms of n.

Lemma 2 [12] If q /∈ τ(K), then any lattice point inside τ(K) can have only a constant number of values
for its coordinate corresponding to bn.

Proof: Consider the n − 1 dimensional lattice L′ =
∑n−1

i=1 Zbi on the hyperplane H =
∑n−1

i=1 Rbi . If h
is the distance of bn from H , the hyperplanes Hi are all parallel to H and are at the distance h apart. The
volume interpretation of det(L) gives us

|det(L)| = h|det(L′)| (10)

10

Since the vectors {b1, b2, . . . , bn} form a reduced basis of L,

n∏
i=1

|bi| ≤ c · |det(L)| ≤ c · h · |det(L′)| ≤ c · h ·
n−1∏
i=1

|bi| (11)

This tells us that |bn| ≤ c · h, i.e., 1/h ≤ c/|bn|.
Now if q lies outside K, q must also lie outside the smaller sphere S1, i.e., |p − q| > r. Lemma 1 tells

us that |q − p| ≤ 1
2

√
n|bn|. These two inequalities implies the following relationship between r and bn:

r < 1
2

√
n|bn|. Combining this fact with Eq. (11) gives us

2R
h

=
R

r
· 2r · 1

h
≤ R

r
· √n|bn| · c

|bn| =
R

r
· c · √n. (12)

Since the hyperplanes Hi are a distance h apart, there can be at most 2R/h such hyperplanes intersecting
S2. Because c is a constant only depending on n, n is a constant, and R/r is bounded by a constant only
related to n, Eq. (12) implies that 2R/h is a constant only related to n. The proof is complete now.

The following two theorems complete the proof that Lenstra’s algorithm works correctly.

Theorem 5 [6] Suppose we have a convex body K in n dimensions specified by a separation oracle. We can
find in polynomial time two ellipsoids E1 and E2 with the following properties:

1. E1 ⊆ K ⊆ E2

2. E2 = O(n3/2) ·E1

We refer to [7] for a detailed description of the algorithm for constructing the ellipsoids. Once we obtain
E1 and E2, we can take τ to be the transformation which maps E1 and E2 to spheres. Designing a separation
oracle for our convex body K is easy; for a point that violates a linear constraint, we take the same constraint
as the separating hyperplane. For a point p that violates a non-linear constraint, we draw a line between p
and some arbitrary point q inside K. Let r be the point where this line intersects K; the tangent at r to the
non-linear constraint curve will be our separating hyperplane.

Theorem 6 [11] Given an arbitrary basis B′ = {b′1, b′2, . . . , b′n} of a lattice L, it is possible to find a reduced
basis B = {b1, b2, . . . , bn} of L with c = 2n(n−1)/4. Moreover, B can be found in polynomial time.

Combining Theorems 5 and 6 and Lemma 2 leads to the following result.

Theorem 7 Suppose we have an n-dimensional convex body K described by a separation oracle. If n is a
constant, it is possible to determine in polynomial time if there is an integer point inside K.

Proof: Theorems 5 and 6 and Lemma 2 tell us that if there is a separation oracle for K, then we can
determine in polynomial time whether there is an integer point inside K. A separation oracle for a convex
body described by a set of linear or non-linear constraints can be the following: It is easy to see if a point
is inside K; for a point that violates a linear constraint, we take the same constraint as the separating
hyperplane. For a point p that violates a non-linear constraint, we draw a line between p and some arbitrary
point q inside K. Let r be the point where this line intersects K; the tangent at r to the non-linear constraint
curve will be the separating hyperplane.

6.3 Application to Multi-Tier Problem

In this subsection, we show how the techniques discussed so far apply to multi-tier problem. The correspond-
ing body K in the multi-tier problem is formed by the surface

∑n
i=1 ai/(Ni − bi) ≤ T and the hyperplane∑

i hiNi ≤ C. If there is an integer point inside K, there exists a solution for the multi-tier problem with
cost ≤ C.

It is easy to see that the body K in our problem is convex. One can also design a separation oracle
for K using the techniques described in the proof of Theorem 7. The following is therefore a corollary of
Theorem 7.

Corollary 1 The multi-tier problem with a constant number of tiers can be solved in polynomial time.

11

7 Open Problems

For the special case where k = 2, our multi-tier decision problem can be simplified to the following form:
Does there exists two positive integers x, y such that xy ≥ T , and ax + by ≤ c? According to Corollary 1,
this simple yet intriguing decision problem is polynomial time solvable. However, the current solution uses a
lot of heavy machinery and techniques from high dimensional geometry. One would eventually like to have
a simple solution that uses little of this machinery and specific properties of the surface. Is there such an
efficient algorithm? We end with this open question.

References

[1] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, and M. Kalantar. Océano – SLA-based management
of a computing utility. In Proc. 7th IFIP/IEEE Intl. Symp. on Integrated Network Management, May
2001.

[2] Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Computer Networks and ISDN Systems, 30:107–117, 1998.

[3] A. Chandra, D. Hirschberg, and C. Wong. Approximate algorithms for some generalized knapsack
problems. Theoretical Computer Science, 3:293–304, 1976.

[4] P. K. Garg, M. Hao, C. Santos, H.-K. Tang, and A. Zhang. Web transaction analysis and optimization
(TAO). In Proceedings of the 3rd Workshop on Software and Performance, pages 286–293, 2002.

[5] G. Gens and E. Levner. Approximation algorithms for certain universal problems in scheduling theory.
Soviet Journal of Computers and System Sciences, 6:31–36, 1978.

[6] J. L. Goffin. Variable metric relaxation methods, part ii: The ellipsoid method. Mathematical Program-
ming, 30, 1984.

[7] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization.
Springer-Verlag, 1988.

[8] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editors,
Complexity of Computer Computations, pages 85–103. Plenum Press, New York, 1972.

[9] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

[10] L. Kleinrock. Queueing Systems. Vol. II: Computer Applications. John Wiley and Sons, 1976.

[11] A. Lenstra, H. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann.,
261:515–534, 1982.

[12] H. W. Lenstra. Integer linear programming with a fixed number of variables. Mathematics of Operations
Research, 8:538–548, 1983.

[13] S. Martello and P. Toth. Knapsack Problems - Algorithms and Computer Implementations. John Wiley
and Sons, New York, 1991.

[14] D. A. Menasce and V. A. Almeida. Capacity Planning for Web Performance.

[15] A. Zhang, P. Santos, D. Beyer, and H.-K. Tang. Optimal server resource allocation using an open
queueing network model of response time. Technical Report HPL-2002-301, HP Labs, 2002.

[16] X. Zhu, C. Santos, J. Ward, D. Beyer, and S. Singhal. Resource assignment for large-scale computing
utilities using mathematical programming. Technical Report HPL-2003-243R1, HP Labs, 2003.

12

