A

invent

L essons from E-gpeak

Alan H. Karp

Mobile and Media Systems L aboratory
HP Laboratories Palo Alto
HPL-2004-150

September 7, 2004*

E-mail: alan.karp@hp.com

distributed E-speak was the technology base for HP's E-services initiative, which
systems, scalable was announced in 1999. It was designed to be a scalable distributed
systems system, and it met all of its design goals. Although it's no longer around

as a supported product, the lessons we learned, both positive and painful,
may be helpful to others.

* Internal Accession Date Only Approved for External Publication
a Copyright Hewlett-Packard Company 2004



Lessons from E-speak

Alan H. Karp
Hewlett-Packard Laboratories
alan.karp@hp.com

August 31, 2004

Abstract

E-speak was the technology base for HP’s E-
services initiative, which was announced in 1999.
It was designed to be a scalable distributed sys-
tem, and it met all of its design goals. Although
it’s no longer around as a supported product,
the lessons we learned, both positive and painful,
may be helpful to others.

1 Introduction

The basic idea behind e-speak was to improve in-
teroperability in distributed systems that crossed
administrative domains by turning everything into
a service. Today this approach is called Web Ser-
vices or the Service Oriented Architecture. For
that reason, e-speak has been called “the indus-
try’s first web services platform.” [5] and “web
services before there were web services”. The
most succinct definition is “E-speak is roughly
what you’d get if you crossed CORBA with LDAP
and simplified the resulting mess a bit.” [6]. Of
course, e-speak preceded SOAP, WSDL, and even
the widespread acceptance of XML, but all the
essential elements of web services, and more, were
there.

At one point, over 60 companies were eval-
uating or using e-speak [5]. Nevertheless, work
on e-speak stopped when HP dropped its entire
suite of middleware products in 2002. At that
time, there were four major users of e-speak,
several of whom continued to use their e-speak
platforms for a year or more.

We did some things right, and we did some

things wrong. After briefly describing what prob-
lems e-speak was intended to solve, I’'ll enumer-
ate some of the lessons we learned. It has been
said that a fool learns from his own mistakes, a
wise man learns from the mistakes of others. At
best we fell into the former category. The goal of
this paper is to help you land in the latter one.

2 Architecture

The name e-speak was applied to two, some-
what different architectures. The first was built
to be a single system image for the Internet [1];
the second was a B2B platform [2]. Because of
their different goals, they used somewhat differ-
ent mechanisms for authorizing access. However,
they were both based on the same set of assump-
tions.

Large scale: E-speak was designed for a
million machines. Hence, it did not have any-
thing centralized and couldn’t rely on ever being
in a consistent state.

Dynamic: Something is always changing. It
is important that we not require developers to
deal with such a dynamic environment; it’s hard
enough to write applications in a static world.
The e-speak platform hid many of the changes
from the applications.

Heterogeneous: The world is heterogeneous
and getting more so, and not just in hardware
platform or operating system, but in device ca-
pability as well. E-speak’s distribution model al-
lowed devices to implement as much or as little
of the protocol and environment as appropriate.



Hostile: As we know, there are bad people
out there. Some are bad for financial gain; oth-
ers merely for the challenge of breaking things.
Security is critical, but it can’t make the system
too rigid. E-speak’s security mechanisms allowed
distrustful parties who implemented completely
different security policies to interact while con-
trolling their risk.

Many fiefdoms: There are a variety of or-
ganizations that want to use such systems, but
getting them to change how they do things is dif-
ficult. Getting them all to agree on a single way
is nearly impossible, and once you’ve got agree-
ment, making changes is even worse. E-speak
allowed interoperation even across organizations
with incompatible policies.

3 Dos and Don’ts

We did some things right; we did some things
wrong. This section summarizes some of the
lessons from what we did right.

Don’t put policy into the architecture.
Too many systems build specific policies into the
architecture. For example, mandating a specific
digital certificate format for carrying informa-
tion requires everyone to use this format, even
if they already use a different format internally.
Basing access control on identity requires a uni-
fied identity scheme across the entire environ-
ment. Most military systems build a particular
version of multi-level security into the architec-
ture, which makes it hard for them to interact
with those with a different definition or number
of security levels. E-speak’s flexible mechanisms
allowed us to implement a wide variety of poli-
cies.

People who never interact should not
have to agree. Too many of our distributed
systems require global agreement. In the best of
these systems, it is only the version of the pro-
tocol that everyone must use. Even this level
of agreement is too much, since it requires syn-
chronous upgrades, which is clearly untenable in
a large scale system. More commonly, numer-
ous policies are hardwired. The most common
problems concern naming and ontologies. Too

many systems require the entire system use a
single name system and a single, global ontol-
ogy. Since global agreement is needed, updates
take too long. People either abandon the system
or implement updates in their own communities,
fragmenting the system into incompatible parts.

Everything in e-speak was pairwise. We also
decided that it was all right if two parties could
not communicate. This decision meant that many
problems of upgrading components could be left
to individual policies instead of being specified
in the architecture.

Think about security early and often.
Everyone says that you’ve got to include secu-
rity from the beginning, but few do, at least
in a meaningful way. The first question to be
answered is what you mean by security. You
must identify what assets you’re protecting and
the threats you're protecting them from. Only
then can you define your security mechanism. Be
careful, though, it is easy to to architect policy
instead of just mechanisms.

In e-speak everything was a service, so it made
sense to control access to the methods provided
by the service. Because of the large scale and
different administrative domains, basing access
control on identity was clearly untenable. Hence,
we settled on a capability-like approach [4]. Lim-
iting ourselves to mechanisms proved its value
when we found that we could enforce such dis-
parate policies as Unix-style security, multiple
security level, and compartments without any
change to the mechanisms.

Think about naming early and often.
Designers of distributed systems invariably as-
sume that the name space can be partitioned.
However, in a dynamic environment with hostile
participants, this assumption is unwarranted. The
problem with names is that they reside in many
places — programs, data files, even people’s heads.
The goal is to build a name system in which
applications don’t break when someone renames
something.

It has been shown [10] that no single naming
system can be human meaningful, securely col-
lision free, and globally context free. A human
meaningful name has meaning in some particu-
lar context. URLs have this property to some



extent, but they lack other desirable properties.
Securely collision free means that names can’t
be spoofed. Clearly, return addresses on email
do not have this property. The usual approach
is to use a private key in a private/public key
system to construct the name. Globally context
free means that the name doesn’t depend on the
location of the namer or the named. Sufficiently
large random numbers have this property.

It is also important that names in a large
scale distributed system have both spatial and
temporal integrity. Spatial integrity means that
the name used for something doesn’t change when
the namer or the named changes locations, as it
does today when moving from inside to outside
a corporate firewall. Temporal integrity means
that the name shouldn’t change because the pas-
sage of time caused some external factor to change,
as it does today when companies merge or when
a private key used to construct a name must be
changed.

E-speak was based on path based names. Each
client, sort of like a process, had a private name
space. Pairwise translation was used to move the
request between the namer and the named. The
advantage was that any pair could change the
name used without affecting anyone else along
the path. The disadvantage was that names had
no meaning out of band. Also, if an intermedi-
ary was unavailable, the service was unreachable.
However, paths could be shortened by introduc-
tion.

Avoid special cases. Special cases are an
architectural nightmare, a development night-
mare, a maintenance nightmare. We went to
considerable effort to avoid special cases in e-
speak, and it paid benefits. The service engine,
analogous to an operating system kernel, was rel-
atively small and only had about a dozen distinct
resource types to deal with.

Sticking to this policy also had an unexpected
benefit. E-speak provided for service discovery
with constraint based search using vocabularies,
an ontology representation based on attribute
value pairs. Since everything in e-speak was a
service, so were vocabularies. That meant a vo-
cabulary could be advertised would any other
service. A search might turn up services and new

vocabularies that extended the descriptions used
to find them. The result was that e-speak pro-
vided a dynamically extensible ontology frame-
work.

Plan for delegation/Plan for revocation.
Most of the systems we use today depend on
identification or authentication to determine ac-
cess. There are many problems with such an
approach, such as confused deputy attacks [3],
but the biggest problem is the inability to desig-
nate a delegate. The unfortunate result is that
people tend to share their identities.

Delegation also simplifies management when
access crosses administrative domains. In to-
day’s world, I get a list of employees (or roles, it
doesn’t much matter) in your company who are
authorized to use my service. When someone in
your company changes jobs or a role changes re-
sponsibility, you tell me, and I update my list.
The problem is that we each have thousands of
partners and spend all our time updating our re-
spective lists. With easy delegation, I give your
company a delegatable right to use my service.
How you manage it is up to you. If the right is
easily revoked, you can delegate it to the appro-
priate subset of your employees.

Support Voluntary Oblivious Compli-
ance. There will be people who want to break
the rules. Not just strangers, but people in your
organization, too. Unfortunately, there’s noth-
ing you can do to prevent misuse of a legitimate
authority. Don’t even try. In other words, DP-
WYCP (Don’t Prohibit What You Can’t Pre-
vent). However, those who want to follow the
rules need some help. The rules are complex,
and they frequently change. If your system re-
quires that everyone know these rules in order
for them to be enforced, they won’t be.

E-speak supported what we now call “Vol-
untary Oblivious Compliance” (VOC). Let’s say
you ask me for access to a service. Should I
give it to you? I could certainly expend some
effort to find out, but there’s a race condition.
Your access might be revoked just after I ask.
E-speak took a different approach. I'd just send
you a reference to the service, and the platform
would prevent you from using it if you shouldn’t
have gotten it. The specific mechanism, nega-



tive permissions from split capabilities [4], isn’t
as important as the ability to support the con-
cept.

Design for Consistency Under Merge.
People will build private copies of your distributed
system. At some later date they will want to
merge these copies. If you’re not careful, one
side or the other will have to go through painful
modifications in order to eliminate conflicts be-
tween the systems.

You can’t rely on a partitionable name space
to help you, either. A major supercomputer cen-
ter spent several weeks trying to merge two large
clusters until they discovered that two ethernet
cards had the same MAC address. In fact, AOL
at one time assigned the same MAC address to
every dial-in user. Several attempts at merging
private UDDI repositories failed due to conflict-
ing GUIDs, even though the GUID algorithm
supposedly generates unique strings. E-speak
was consistent under merge because of the name
system and the distribution model.

Don’t authenticate when you want to
authorize. Too many times our systems ask
“Who are you?” when they want to know if your
request should be honored. Most times knowing
who you are doesn’t carry enough information
to make an informed decision. If my access is
granted because I work for a business partner,
you don’t want to know who I am. You only
want know that business partner has authorized
me to make the request.

Relying on identity also makes delegation dif-
ficult. The unfortunate result is that people share
their passwords, which loses a valuable use for
identity, audit trails. A final problem is that
it isn’t a person making the request; it’s soft-
ware. There is no assurance that the software is
acting in the user’s best interest. A virus cer-
tainly doesn’t. If access is controlled by identity,
then the software necessarily runs with the user’s
privileges. E-speak properly separated identifi-
cation, authentication, authorization, and access
control.

4 Why E-speak Died

HP abandoned E-speak in 2001 for a number of
reasons. Had we been able to build a larger user
base in the time we had, e-speak might still be
in widespread use. Unfortunately, we made some
mistakes that slowed e-speak’s spread.

We didn’t devote enough resources to
the Open Source effort. We knew that keep-
ing e-speak proprietary to HP would doom it, so
we released it under the GNU Public Licenses.
Unfortunately, we didn’t realize until too late
that this was not enough. We needed to devote
substantial resources to building a community
of developers. Without that push on our part,
we never developed a critical mass that could
convince potential customers that e-speak wasn’t
just an HP product.

We made people change their mental
models too much. When we explained all
of what e-speak could do, customers told us it
was too much to grasp. When we explained
only the part relevant to their particular envi-
ronment, they told us it was just CORBA or
DCE or ... (fill in your favorite environment).

Once we got past that barrier and started
showing people how to use it, we ran into an-
other problem; developers had to change their
way of thinking. It isn’t difficult for people to
think of a print service as a service, but we also
wanted them to think of the file being printed as
a service. Doing so had a lot of advantages, such
as not accidentally printing a confidential doc-
ument on the printer in the lobby. Once users
adopted this way of thinking, they found their
problems were easier to solve. We just didn’t
have a good way to get them across that barrier.

We focused on the technology, not the
business problem. We're technologists, and
we developed some pretty neat technology. Un-
fortunately, we turned off some customers who
wanted us to help them solve their problems, not
demonstrate our cool stuff. The customers we
ended up with were the ones who couldn’t see
any other way to build their business, so they
listened to our techno-babble. We might have
built a big enough customer base to avoid be-
ing shut down had we focused more on the cus-



tomer’s problems.

We didn’t give adequate attention to
the development environment. It’s one thing
to have a good solution to people’s problems,
but it’s got to be something they want to use.
If the only debugging tool is “System.println”,
you're not going to attract many developers. It’s
a credit to e-speak’s potential that we had as
many as we did. We would have been better off
devoting a sizable part of our budget to building
a good development environment.

We worked in the wrong industry. E-
speak was software. Even worse, it was middle-
ware, which is software that’s supposed to be
invisible. HP at that time was largely a hard-
ware company. In fact, we started in the busi-
ness unit that sold HP-UX servers. Everything
about software is different from hardware. It’s
made differently; it’s sold differently; it’s pro-
curement cycle is different; it’s support structure
is different. All these differences made it hard
both for HP management to know how to deal
with it and for customers to deal with HP in this
new way. HP could certainly make a wonderful
refrigerator, but it would be hard to break into
the market because refrigerators are so far from
customer’s expectations of HP. In 2000, middle-
ware was farther from HP’s core business than
are refrigerators today.

E-speak is no longer a supported product,
but aspects of it still live on. NTT still has a
web site describing the services platform it built
with e-speak [9]. More significantly, various as-
pects of e-speak have influenced the development
of the E language for secure distributed comput-
ing [8]. The e-speak vocabulary system [7] has
taken on a life of its own because of the way it
solves the problems people try to address with
global ontologies. Finally, some groups trying
to build scalable systems with the web services
standards and finding them inadequate are tak-
ing a look at e-speak. Maybe our biggest mistake
was being too early.

References

[1

Hewlett-Packard Company. FE-speak
Architecture Specification, Septem-
ber 1999. http://www.hpl.hp.com /-

personal /Alan_Karp/espeak/version2.2 /-
Architecture_2.2.pdf.

Hewlett-Packard Company. E-speak
Architectural Specification, Release A.0,
January 2001. http://www.hplhp.com/-
personal/Alan_Karp/espeak/version3.14/-
Architecture_3.14.pdf.

Norm Hardy. The confused deputy. Op-
erating Systems Reviews, 22(4), 1988.
http://www.cap-lore.com/CapTheory/-
ConfusedDeputy.html.

Alan H. Karp, Guillermo Rosas, Arindam
Banerji, and Rajiv Gupta. Using split
capabilities for access control. IEEE
Software,  20(1):42-49, January 2003.
http://www.hpl.hp.com/techreports//-
2001/HPL-2001-164R1.html.

Jim Kerstetter and Peter Burrows. Hp’s
e-speak: Good products, botched mar-
keting. Businessweek Online, July 3
2000. http://www.businessweek.com/-

2000/00-27/b3688173.htm.

Eric Kidd. Customdns. http://customdns.-
sourceforge.net /internals.php.

Wooyoung Kim and Alan H. Karp. Cus-
tomizable description and dynamic dis-
cover for web services. ACM Con-
ference on  Electronic Commerce (ACM
EC’04), 2004. http://www.hpl.hp.com/-
techreports/2004/HPL-2004-45.html.

Mark Miller. Open source distributed capa-
bilities. http://erights.org.

NTT. Teatray. http://www.nttcom.co.jp/-
teatray /english /base/.

Bryce Wilcox-O’Hearn. Names: Decentral-
ized, secure, human-meaningful: Choose
two. http://zooko.com/distnames.html,
September 2003.



