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We analyze the technique for reducing the complexity of entropy coding 
that consists in the a priori grouping of the source alphabet symbols, and 
in the decomposition of the coding process in two stages: first coding the 
number of the symbol's group with a more complex method, followed by 
coding the symbol's rank inside its group using a less complex method, or 
simply using its binary representation. This technique proved to be quite 
effective, yielding great reductions in complexity with reasonably small 
losses in compression, even when the groups are designed with empiric 
methods. It is widely used in practice and it is an important part in 
standards like MPEG and JPEG. However, the theory to explain its 
effectiveness and optimization had not been sufficiently developed. In 
this work, we provide a theoretical analysis of the properties of these 
methods in general circumstances. Next, we study the problem of finding 
optimal source alphabet partitions. We demonstrate a necessary 
optimality condition that eliminates most of the possible solutions, and 
guarantees that a more constrained version of the problem, which can be 
solved via dynamic programming, provides the optimal solutions. In 
addition, we show that the data used by the dynamic programming 
optimization has properties similar to the Monge matrices, allowing the 
use of much more efficient solution methods. 
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1 Introduction

1.1 Motivation

Techniques for reducing the computational complexity of data coding are commonly devel-
oped employing both theory and heuristics. On one hand, we have very general results from
information theory, and a variety of coding methods of varying complexity that had been
developed for any type of data source. On the other hand, we frequently have the coding
methods improved by exploiting properties from a particular type of source (text, images,
audio, etc.). In consequence, a large number of ad hoc cost-reduction methods had been
developed, but the techniques created for one type of source and equipment may not be used
directly for another type.

There is a need to find out and study techniques for reducing coding costs that have wide
application, and are valid for many measures of computational complexity, and to clearly
identify the range of situations in which they are effective. One such general technique to
reduce the coding complexity, which we call symbol grouping, uses the following strategy:

• The source alphabet is partitioned, before coding, into a relatively small number of
groups;

• Each data symbol is coded in two steps: first the group that it belongs (called group
number) is coded; followed by the rank of that particular symbol inside that group (the
symbol index);

• When coding the pair (group number, symbol index) the group number is entropy-
coded with a powerful and complex method, while the symbol index is coded with a
simple and fast method, which can be simply the binary representation of that index.

Fig. 1 shows a diagram of such scheme when the symbol indexes are coded using their
binary representation. With this very general technique we commonly can trade small losses
in compression with very significant reductions in complexity.

1.2 Practical Applications

The effectiveness and usefulness of symbol grouping are now well established because it has
been used quite extensively, in a variety of practical applications. The technique may not be
immediately recognized because in most cases its complexity reduction is used to create a
more elaborate coding method, and consequently it is not implemented exactly as presented
above.

For example, symbol grouping is employed by the JPEG and MPEG standards, where it is
used in the VLI (variable length integer) representation [12, 13, 19], in which the magnitude
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Figure 1: System for data compression using the symbol grouping method for complexity
reduction.

category corresponds to the group number, and the information in the extra bits corresponds
to the symbol index. Its complexity reduction enables efficiently coding the magnitude
category (group number) together with the run-length with a single Huffman code, and
exploiting the statistical dependence between these two types of data. The use of symbol
grouping in these standards can be traced back to its earlier choice for facsimile coding [7].
The practical advantages of identifying the information that can be efficiently coded with
its binary representation was also identified in applications that used Golomb, Golomb-Rice,
and similar codes [1, 2, 5].

The same approach is used in the embedded image coding methods like EZW, SPIHT,
and similar [14, 17, 24, 34], where the wavelet coefficient significance data corresponds to
a group number, which is coded with set-partitioning (optionally followed by arithmetic
coding). The sign and refinement data, which define the symbol index, can be coded using
simply one sign bit and one bit per coefficient refinement. Methods that use this approach,
but without producing embedded bit streams, have similar compression efficiency [18, 23].

TThe advantages of symbol grouping come from the combination of two factors. First,
using simply the binary representation to represent the symbol index is significantly faster
than any form of entropy coding [33]. The second factor is defined by how the complexity
of coding algorithms depends on alphabet size [21, 33]. There are many practical difficulties
when the data alphabet is large, ranging from the time required to design and implement the
code, to the amount of memory necessary to store the codebooks. When the coding method
is adaptive there is also a possible compression loss due to the long time required to gather
sufficiently accurate statistics. These problems get much worse when exploiting a statistical
dependence between the source samples by, for example, coding several symbols together, or
designing context-based codes.

The price to pay for this complexity reduction is that there is possibly some loss in
compression, which can be minimized by exploiting properties of the symbol probabilities
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and using the proper alphabet partition. For example, the large alphabet problem can be
alleviated using an extra “overflow” symbol to indicate that less frequent symbols are to
be coded with a less complex method. Golomb-Rice codes use the fact that if the symbols
have the geometric probability distribution they can be grouped and coded with the same
number of bits with a small loss [3]. Symbol grouping is significantly more efficient than each
of these techniques used separately because it combines both in a synergistic manner, greatly
increasing their effectiveness (this is explained in the mathematical analysis in Section 2).
Consequently, it commonly yields a net gain in compression because the loss is typically
smaller than the coding gains obtained from the more complex source modeling that it
enables.

It is worth mentioning that another important practical advantage of symbol grouping
(which is not analyzed in this work) is the increased immunity to errors in data transmis-
sion. An error in a variable-length code can lead to unrecoverable error propagation, but
with the symbol grouping technique the errors in the symbol index bits can only affect one
reconstructed source sample [25, 29], and this can be effectively exploited in sophisticated
unequal-error protection schemes [26].

1.3 Previous Work

Despite the widespread adoption of symbol grouping among coding practitioners, it is not
mentioned in coding textbooks, except when in a standard’s context, and its theoretical
analysis received comparatively little attention. The factors that enable its remarkably
small compression loss are identified in the preliminary theoretical analysis by Said and
Pearlman [18]. In the same work a heuristic algorithm for finding good alphabet partitions
in real time is proposed, but numerical experiments demonstrate another property of symbol
grouping, which is the ability to use the same partition for sources with some similar features,
but very different parameters. This is shown in [18] by developing a new image coding method
using symbol grouping exactly as defined above, and obtaining excellent compression with
the same alphabet partition in applications ranging from high compression ratios to lossless
compression (0.25–5 bits/symbol). Subsequent work confirmed these results [22, 23].

A more recent work covers the same technique and some variations. Chen et al. [30]
analyze the application of symbol grouping for semi-adaptive coding, and develop dynamic
programming and heuristic solutions to the problem of finding optimal groups. While there
are similarities with this work, a very important difference is that they reduce complexity
by using Golomb codes for the symbol indexes. This complicates the analysis significantly
because in this case many more probability patterns are acceptable inside a group. Further-
more, Golomb codes are defined for infinite alphabets, and it is necessary to consider early
termination strategies for coding the finite number of symbol indexes in a group.

The terminology used in this document is meant to avoid confusion between two very
different coding techniques that we worked on. In [18] the complexity reduction technique
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studied here is called alphabet partitioning, and later called amplitude partitioning in [23].
However, it was used together with set-partitioning coding [17], in which sets of source
samples are sequentially divided, and we found that our terminology sometimes lead to the
incorrect assumption that the two technique are equivalent. Consequently, in this work we
decided to call it symbol grouping.

1.4 New Contributions and Organization

The main contributions of this work are the following:

• A theoretical analysis of the compression loss (coding redundancy) caused by symbol
grouping, extending the work in [18] to include

– A very precise approximation of the redundancy function, which enables a more
intuitive interpretation of its properties.

– An analysis of the structure and convexity of the grouping redundancy function.

• An study of the optimal alphabet partition problem, considering how it fits in the
general class of optimal set-partitioning problems, the type of combinatorial problem,
and the number of solutions.

• A theorem that states a necessary optimality condition for the optimal alphabet par-
titioning problem, which enables us to state that only one type of solution, which can
be much more easily obtained via dynamic programming, can be optimal.

• A general dynamic programming solution to the optimal alphabet partitioning problem,
plus a set of mathematical properties of the quantities needed by the algorithm, which
enable much faster solution of the problem.

• A study of the computational complexity of the solution algorithms, demonstrating
the advantages of exploiting the particular properties of our design problem.

This document is organized as follows. In Section 2 we introduce the notation and present
the initial analysis of symbol grouping. In Section 3 we study the problem of finding optimal
partitions, by first presenting a theorem with a necessary optimality condition, by the devel-
opment of a dynamic programming problem formulation, and the study of its mathematical
properties. Section 4 discusses the computational implementation and complexity of the
alphabet partition algorithms. Section 5 presents the conclusions.
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2 Analysis of Symbol Grouping

2.1 Analysis using Information Theory

We can use some well-known facts from information theory to understand, in very general
terms, the properties exploited by symbol grouping for complexity reduction. It uses the
fact that we can split the coding process in two or more stages without necessarily adding
redundancy. Let S be a random data source, which is to be coded using side information
Z. The optimal coding rate is the conditional entropy H(S|Z). If we have a one-to-one
transformation between S and two other random sources, G and X, we have [11]

H(S|Z) = H(G,X|Z) = H(G|Z) + H(X|G,Z), (1)

where H(·|·) is the conditional entropy of the corresponding discrete random variables.

In the symbol grouping case we have G corresponding to the group numbers, and X
corresponding to the symbol indexes. We aim to decompose the data samples in a way that
we can use a code C = Φ(G), and a low-complexity coding method with rate R(X|C) such
that

R(X|C)−H(X|G,Z) ≤ εH(S|Z), 0 ≤ ε ¿ 1, (2)

i.e., the relative loss in compression (relative coding redundancy) is very small.

Fig. 2 shows two alternative ways of coding data. While the first system seems to be
simpler and more elegant, for complex data sources it may require an unreasonable amount
of computational resources for achieving rates near H(S|Z). The second system requires
some effort to separate the data components, but can provide a great overall reduction in
complexity. While this solution may be clearly more attractive, the real practical problem
is in the identification of good decompositions of S into G and X that satisfies (2). It is
important to note that the system in Fig. 2(b) works with data from a single source sample:
it is not difficult to find different source samples that are nearly independent, but we seek
the component of information in a single sample that can be separated without significant
loss.

In this document we study this problem under the assumption that that all symbols in
a group use the same (or nearly the same) number of bits, and thus the code C corresponds
roughly to the size of the group to which a symbol belongs. For example, when the group
size is a power of two (dyadic groups), C corresponds to the integer number of bits required
to code the symbol index. Otherwise, it may correspond to a fractional number of bits that
may be coded using arithmetic coding [31, 32], or an approximation using combination of
two numbers of bits, as in Golomb codes [1] (cf. Section 3.6).
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Figure 2: Two alternative systems for data coding: the low-complexity version identifies and
separates the data that can be coded with lower computational cost.

2.2 Basic Definitions, Notation, and Analysis

Most of the results in this section are presented in ref. [18], but they are repeated here
because they help introduce the notation and the basic assumptions used throughout the
document. In Section 2.3 we start introducing new results.

We consider a random data source that generates independent and identically distributed
(i.i.d.) symbols belonging to an alphabet A = {1, 2, . . . , Ns}. We use a single random
variable S, with a probability mass function p(s), to represent samples from this source. A
vector called p is used to represent the set of symbol probabilities, and ps = p(s) denotes
the probability of data symbol s ∈ A.

The entropy of this source is

H(p) =
∑
s∈A

ps log2

(
1

ps

)
bits/symbol. (3)

In the computation of entropies we use the definition p log(1/p) = 0 when p = 0.

We are assuming memoryless sources only to simplify the notation: the analysis below
can be easily extended to context-based coding by simply replacing the probabilities with
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conditional probabilities.

We create a partition P = {G1,G2, . . . ,GNg} of the source alphabet A by defining Ng

nonempty sets of data symbols Gn, such that

Ng⋃
n=1

Gn = A, Gm ∩ Gn = ∅ if m 6= n. (4)

Each set Gn is called the group of data symbols with number n. We represent the group
number of symbol s by the function

g(s) = {n : s ∈ Gn} , s = 1, 2, . . . , Ns. (5)

Representing the number of elements in the set Gn by | Gn|, we identify each data symbol
inside a group by defining the index of symbol s using a function x(s) that assigns new
numbers for each symbol in a group, such that

⋃
s∈Gn

x(s) = {1, 2, . . . , | Gn|} , n = 1, 2, . . . , Ng. (6)

With these two definitions we have a one-to-one mapping between s and the ordered pair
(g(s), x(s)).

The probability that a data symbol s belongs to group Gn, Prob(g(s) = n), is represented
by

ρn =
∑
s∈Gn

ps, n = 1, 2, . . . , Ng, (7)

and the conditional probability of symbol s, given the symbol’s group number n, is

ps|n =

{
ps/ρn, g(s) = n,
0, g(s) 6= n.

(8)

With the notation defined above we can analyze an ideal entropy-coding method in which
we code symbol s ∈ A by first coding its group number g(s), and then coding the symbol
index x(s). The coding rate, here equal to the combined entropy, is

H(p) =

Ng∑
n=1

ρn log2

(
1

ρn

)
+

∑
s∈A

ps|n log2

(
1

ps|n

)

=

Ng∑
n=1

ρn log2

(
1

ρn

)
+

Ng∑
n=1

∑
s∈Gn

ps log2

(
ρn

ps

)
. (9)

The first term in the right-hand side of (9) is the rate to code the group number, and the
second term is the rate to conditionally code the symbol index.
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The combined rate is here clearly equal to the source entropy, since there is no loss in
separating the coding process in two steps, as long as the optimal number of bits is used for
each symbol [11]. Now, for the analysis of symbol grouping, we assume that all indexes of
the group Gn are coded with the same number of bits, log2 | Gn|, knowing that there is loss
in compression whenever log2 | Gn| is different from log2(1/ps|n).

For practical applications we are mainly interested in dyadic partitions, i.e., in the cases
in which | Gn| is constrained to be a power of two, because the symbol indexes can be coded
using their binary representation without further redundancy. However, we believe it is
better to add this and other constraints only at the end of the analysis, since we can obtain
more general results without complicating the notation. Furthermore, with arithmetic coding
we can have some complexity reduction even if | Gn| is not a power of two, because some
operations can be eliminated when the probability distribution is set to be uniform [31, 32].
There is also the possibility of using one or two number of bits for coding the symbol indexes
in a group (cf. Section 3.6).

The bit rate of the simplified coding method, which is the entropy of the group numbers
plus an average of the fixed rates used to code the symbol indexes, is obtained with a simple
modification of (9):

R(P ,p) =

Ng∑
n=1

ρn

[
log2

(
1

ρn

)
+ log2 | Gn|

]
(10)

=

Ng∑
n=1

ρn log2

(
1

ρn

)
+

Ng∑
n=1

∑
s∈Gn

ps log2 | Gn|. (11)

The loss due to symbol grouping, called grouping redundancy and represented by `(P ,p),
is the difference between the new coding rate (11) and the source entropy (9), which can be
computed as

`(P ,p) = R(P ,p)−H(p) =

Ng∑
n=1

∑
s∈Gn

ps log2

(
ps| Gn|

ρn

)
. (12)

Denoting the average symbol probability in each group by

p̄n =
ρn

| Gn| , n = 1, 2, . . . , Ng, (13)

we can rewrite (12) as

`(P ,p) =

Ng∑
n=1

∑
s∈Gn

ps log2

(
ps

p̄n

)
=

Ns∑
s=1

ps log2

(
ps

p̄g(s)

)
. (14)

Equation (14) shows that the grouping redundancy is in the form of a relative entropy,
or, equivalently, the Kullback-Leibler distance [11] between the original source probability
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distribution, and a distribution in which the probabilities of all the symbols inside each group
Gn are equal to p̄n. The Kullback-Leibler distance is always non-negative, and can be infinite
when ps 6= 0 and p̄g(s) = 0, but from (7) and (13) we conclude that in our case the distance
is always finite.

The analysis of equations (10) and (14) shows that the relative redundancy `(P ,p)/H(p)
can be made small if we partition the alphabet in such a way that

1. (ρn log2 | Gn|)/H(p) is small, i.e., the relative contribution of the symbols in the group
Gn to R(P ,p) is small.

2. ps ≈ p̄n, for all s ∈ Gn, i.e., the distribution inside group Gn is approximately uniform.

The first condition exploits the fact that there may be little loss if we code sub-optimally
symbols that occur with very low probability. The second, on the other hand, shows that
small losses are possible even when grouping the most probable symbols. What makes the
symbol grouping technique so effective, in such a wide range of probability distributions, is
that `(P ,p) can be small even if not all the terms in (14) are small, since

1. In (14) the probabilities ps are multiplied by log2(ps/p̄n), which have magnitudes typi-
cally much smaller than log2(1/p̄n) or log2(1/ps). Consequently, the product is typically
much smaller than each of these terms.

2. There is a cancellation of positive and negative terms log(ps/p̄n), making the sum
in (14) significantly smaller than the sum of the magnitudes.

The second property is not easily recognized in (14), but can be made clear with the help
of an approximation.

2.3 Approximation of Kullback-Leibler Distances

Some properties of the Kullback-Leibler distance are commonly identified using simple ap-
proximations. For instance, if we apply the approximation derived in [15, p. 239] to (14) we
obtain

`(P ,p) ≈ 1

ln(2)

Ns∑
s=1

[
ps − p̄g(s)

]2

ps

, (15)

This approximation shows that when we have ps ≈ p̄g(s) in (14) the distance grows slowly,
i.e., with the square of ps − p̄g(s). However, because the squared difference is divided by ps,
it is an approximation that is good only in a very narrow range. In fact, because its error
grows quite fast and goes to infinity when ps → 0, we may get a grossly incorrect intuition
about the redundancy.
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We found that the approximation

r ln(r) ≈ r − 1 +
(1− r)2

1 + r2/3
(16)

is also simple enough, and is much better for approximating Kullback-Leibler distances.
Similar to other approximations, (16) is more precise when r ≈ 1. The magnitude of the
approximation’s error, ε, is shown in Fig. 3. Note that we have ε < 10−5 in the interval
0.6 ≤ r ≤ 1.5, and also note that (16) is a very good approximation in a much wider
interval, being exact at r = 0, and having ε < 10−2 for all r ≤ 3.8.

The series expansion of both sides of (16) yields

r ln(r) = r − 1 +
(1− r)2

1 + r2/3
+

(1− r)5

1620
+

(1− r)6

1080
+ · · · (17)

which shows that the approximation is exceptionally precise because the exponent 2/3 guar-
antees that in the point r = 1 the first four derivatives of the two functions are identical.

Using (16) we can exploit the fact that
∑

s∈Gn
(ps − p̄n) = 0 and obtain the following

approximation for the grouping redundancy

`(P ,p) ≈ 1

ln(2)

Ng∑
n=1

p̄n

∑
s∈Gn

(1− ps/p̄n)2

1 + (ps/p̄n)2/3
, (18)

Since groups with zero probability have no redundancy, we can ignore the terms with p̄n = 0.
Furthermore, since p̄n is the average probability of the symbols in the group, normally the
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values of ps/p̄n are not large, which means that the approximation is quite precise, except
in the very unusual cases when we have ps À p̄n.

Note that (18) is a sum with only non-negative terms, enabling a more intuitive interpre-
tation of the cancellation of positive and negative terms that occur in (14). The consequence
is that the redundancy grows very slowly with the difference ps − p̄n because it is approxi-
mately proportional to the sum of the squares of the normalized differences 1− ps/p̄n, which
is divided by number that is never smaller than one. Furthermore, it also shows that the
overall sum can be very small because these sums are in turn multiplied by p̄n. In conclu-
sion, the approximation (18) let us see all the different conditions that can make the overall
grouping redundancy small, and that with the proper alphabet partition the redundancy can
be relatively very small in a wide range of probability distributions.

2.4 Convexity of the Grouping Redundancy Function

An interesting formula for the grouping redundancy is obtained when we normalize the
probabilities of the symbols in a group. Let us define, for each group Gn

qx(s),n = ps|n = ps/ρn, s ∈ Gn ⇒
| Gn|∑
i=1

qi,n = 1. (19)

The substitution into (12) yields

`(P ,p) =

Ng∑
n=1

[
ρn log2 | Gn| −

∑
s∈Gn

ps log2 (ρn/ps)

]

=

Ng∑
n=1


ρn log2 | Gn|+ ρn

| Gn|∑
i=1

qi,n log2 (qi,n)




=

Ng∑
n=1

ρn [log2 | Gn| −H(qn)] (20)

where qn is the probability vector containing all probabilities qi,n, and H(qn) is its entropy.

We can see in (20) that the grouping redundancy can be computed with terms that
depend only on the logarithm of the number of elements in the group and the entropy of the
normalized probabilities, which is multiplied by the group’s probability to produce its average
redundancy. Using this formula we can use our knowledge of the entropy function [11] to
reach some interesting conclusions. For example, since 0 ≤ H(qn) ≤ log2 | Gn|, we conclude
that, if the group’s probability is fixed, the largest redundancy occurs when | Gn|−1 symbols
in the group have zero probability, and H(qn) = 0.
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Some other interesting properties concerning the convexity of `(P ,p) can also be derived
from (20), but we prefer to start with a more conventional approach, calculating the partial
derivatives of `(P ,p), which are

∂`(P ,p)

∂ps

= log2

(
ps

p̄g(s)

)
, s = 1, 2, . . . , Ns, (21)

where p̄g(s) is the average probability of the symbols in the group of symbol s. Note that we
have undefined derivatives if ps = 0, so we assume in this section that all probabilities are
positive. The extension to cases with zero probabilities can be based on the fact that the
redundancy function is continuous.

The second derivatives of `(P ,p) are given by

∂2`(P ,p)

∂pr∂ps

=
1

ln 2
×





0, g(r) 6= g(s),
−1/ρg(s), r 6= s, g(r) = g(s),
1/ps − 1/ρg(s), r = s.

(22)

For example, if P = {{1, 2, 3}, {4}, {5, 6}} then the Hessian matrix (which contains the
second partial derivatives) is

H`(P ,p) =
1

ln 2




1
p1
− 1

ρ1
− 1

ρ1
− 1

ρ1
0 0 0

− 1
ρ1

1
p2
− 1

ρ1
− 1

ρ1
0 0 0

− 1
ρ1

− 1
ρ1

1
p3
− 1

ρ1
0 0 0

0 0 0 0 0 0
0 0 0 0 1

p5
− 1

ρ3
− 1

ρ3

0 0 0 0 − 1
ρ3

1
p6
− 1

ρ3




Note how this matrix is composed of independent sub-blocks, each corresponding to a
different group. From the equations above we can derive a more general result.

Theorem 2.1 For every alphabet partition P, the grouping redundancy `(P ,p) is a convex
function of p.

Proof: We show that the function is convex because the Hessian matrix is semi-definite
positive for all probabilities p. Since each block of the matrix corresponding to a group is
independent of all the others, the properties of the full matrix are defined by the properties
of each sub-matrix. Thus, we can show that they are semi-definite positive by considering
the Hessian corresponding to a single group.

For that purpose we assume that Ng = 1, and consequently vector p contains the symbol
probabilities in the group G1 = A. We also define the vector v = [

√
p1
√

p2 · · · √pNs ]
′. Note

that |v|2 = 1 and ρ1 = 1.
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The Hessian matrix of the redundancy of this single group is

H`({A},p) =
1

ln 2

{
[diag(p)]−1 − 11′

}
, (23)

where 1 is the vector with Ns ones, and diag(·) is the Ns×Ns diagonal matrix with diagonal
elements equal to the vector elements.

We can define D =
√

ln 2 diag(v) and

H̃ = DH`({A},p)D = I− vv′,

such that for any vector x we have

x′H̃x = x′x− (v′x)
2

= |x|2(1− cos2 θvx),

where θvx is the angle between vectors v and x.

Since this quadratic form cannot be negative, and is zero only if θvx = 0 or θvx = π,
the conclusion is that matrix H̃ is semi-definite positive, has one zero eigenvalue, and its
corresponding eigenvector is v. This means that H`({A},p) is also semi-definite positive,
with one zero eigenvalue, and corresponding eigenvector p.

In the general case the sub-matrix corresponding to each group is semi-definite positive,
and the Hessian matrix contains Ng zero eigenvalues (one for each group), and Ns − Ng

positive eigenvalues.

We can now interpret the last results using equation (20). The zero eigenvalue for each
group, and the fact that the corresponding eigenvector is in the direction of the probabilities,
means that the function is linear in radial directions. We can reach the same conclusion
from (20) observing that, if the conditional probabilities are fixed, then the redundancy of a
group is a linear function of the group’s probability. In the orthogonal directions we have the
redundancy defined by a constant minus the entropy function. Since the entropy function is
strictly concave, the projection of the redundancy function to subspaces orthogonal to radial
directions is strictly convex.

For example, Fig. 4 shows the three-dimensional plot of the redundancy of a group with
two symbols. The two horizontal axes contain the symbol probabilities, and the vertical axis
the redundancy. Note that in the radial direction, i.e., when the normalized probabilities
are constant, the redundancy grows linearly, and we have straight lines. In the direction
orthogonal to the line p1 = p2 the redundancy is defined by scaled versions of one minus
the binary entropy function. We can also see in this example how the redundancy function
defines a convex two-dimensional surface.
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Grouping redundancy (γ1,2)
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1

p2

1

1

1
- p1 + p2 = 1
- p1 + p2 = 7/8
- p1 + p2 = 6/8
- p1 + p2 = 5/8

6

Figure 4: The redundancy of a group with two symbols: it is a convex function, linear in
the radial directions, and strictly convex in subspaces orthogonal to the radial directions.

3 Optimal Alphabet Partition

3.1 Problem Definition

The optimal alphabet partition problem can be defined as the following: given a random
data source with alphabet A and symbol probabilities p, we want to find the partition P∗ of
A with the smallest number of groups (minimization of complexity), such that the relative
redundancy is not larger than a factor ε. Formally, we have the optimization problem

MinimizeP |P|
subject to `(P ,p) ≤ εH(p).

(24)

Alternatively, we can set the number of groups and minimize the grouping redundancy

MinimizeP `(P ,p)
subject to |P| = Ng.

(25)

It is interesting to note that, since the entropy of the source is the same for all partitions,
i.e., `(P ,p) = R(P ,p) −H(p), we can use the bit rate R(P ,p) instead of the redundancy
`(P ,p) in the objective function of this optimization problem. However, in our analysis it
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is more convenient to use the redundancy because it has properties that are similar to those
found in other optimization problems (cf. Section 3.4).

This is a combinatorial problem which has a solution space—all the different partitions
of a set—that had been extensively studied [8]. For instance, the total number partitions of
an Ns-symbol alphabet (set) into Ng groups (nonempty subsets), Ξg(Ns, Ng), is equal to the
Stirling Number of the Second Kind

Ξg(Ns, Ng) = S(Ns, Ng) =

Ng∑

k=0

kNs(−1)Ng−k

k!(Ng − k)!
, (26)

which is a number that grows very fast with Ns and Ng.

Finding the optimal partition in the most general cases can be an extremely demanding
task due to its combinatorial nature. There are many other important practical problems
that can be formulated as optimal set-partitioning, and there is extensive research on efficient
methods to solve them [4, 28]. On one hand, our alphabet partitioning problem is somewhat
more complicated because its objective function is nonlinear, and can only be computed
when the group sizes and probabilities are fully defined. For example, it is not possible to
know the cost of assigning a symbol to a group without knowing all the other symbols in
the group. On the other hand, the alphabet partitioning has many useful mathematical
properties that allow more efficient solution methods, and which we are going to explore
next.

Given the original order of the data symbols, we can constrain the partitions to include
only adjacent symbols. For example, we allow partitioning {1, 2, 3, 4} as {{1, 2}, {3, 4}},
but not as {{1, 3}, {2, 4}}. This way the Ng symbol groups can be defined by the strictly
increasing sequence of Ng + 1 thresholds T = (t0 = 1, t1, t2, . . . , tNg = Ns + 1), such that

Gn = {s : tn−1 ≤ s < tn} , n = 1, 2, . . . , Ng. (27)

In this case, the redundancy resulting from grouping (14) can be computed as

`(T ,p) =

Ng∑
n=1

tn−1∑
s=tn−1

ps log2

(
ps

p̄n

)
, (28)

where

p̄n =
1

tn − tn−1

tn−1∑
s=tn−1

ps, n = 1, 2, . . . , Ng. (29)

The new set partitioning problem, including these constraints, corresponds to finding the
optimal linear partition, which is also a well known optimization problem [20]. The number
of possible linear partitions is

Ξl(Ns, Ng) = C(Ns − 1, Ng − 1) =
(Ns − 1)!

(Ng − 1)!(Ns −Ng)!
, (30)
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which also grows fast, but not as fast as S(Ns, Ng). For instance, we have Ξg(50, 6) ≈ 1036,
while Ξl(50, 6) ≈ 2 · 106.

The determination of optimal linear partitions is a computational problem that is rela-
tively much easier to solve then the general set partitioning problem. In fact, it has long
been demonstrated that many of these partition problems can be solved with polynomial
complexity via dynamic programming [10, 20].

The number of possible linear partitions is further greatly reduced when we consider
only dyadic linear partitions, i.e., we add the constraint that the number of symbols in
each group must be a power of two. In this case, the total number of solutions, which we
denote by Ξd(Ns, Ng), is not as well known as the other cases. However, for our coding
problem it is important to study some of its properties, given that it corresponds to the
most useful practical problems, and because it has some unusual characteristics that can
affect the usefulness of the solutions.

For instance, the fact that Ξd(50, 6) = 630 shows that the number of possible dyadic
partitions is much smaller, and in fact, we may even consider enumerating and testing
all possibilities. However, when we try other values, we find cases like Ξd(63, 5) = 0, while
Ξd(64, 5) = 75. This shows that with dyadic partitions we may actually have too few options,
and may need to extend the alphabet, adding symbols with zero probability, in order to find
out better alphabet partitions for coding.

Appendix A contains some analysis of the total number of dyadic partitions, and a
C++ code showing that functions for enumerating of all possible linear partitions (including
the option for dyadic constraints) can be quite short and simple. This code proved to be
very convenient, since it is good to perform a few exhaustive searches to be sure that the
implementations of the faster techniques are correct.

3.2 A Necessary Optimality Condition

From the complexity analysis above, it is clearly advantageous to consider only linear par-
titions of source alphabets. In addition, an intuitive understanding of the symbol grouping
problem enabled us to see the necessity of sorting symbols according to their probability [18].
However, we could only determine if an alphabet partition is sufficiently good, but not know
if it is optimal. In this section we present the theory that allows us to ascertain optimality.

The following theorem proves that among all possible alphabet partitions, only those that
correspond to linear partitions on symbols sorted according to probability can be optimal.
Thus, this necessary optimality condition guarantees that nothing is lost if we solve this
easier partitioning problem. In Section 3.3 we show how to use this result to find optimal
solutions, in polynomial time, using dynamic programming.

Theorem 3.1 A partition P∗ is optimal only if for each group Gn, n = 1, 2, . . . , Ng there is
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no symbol s ∈ A− Gn such that

min
i∈Gn

{pi} < ps < max
i∈Gn

{pi} . (31)

Proof: Assume P∗ is the optimal partition. We show that, unless P∗ satisfies the condition of
Theorem 3.1, we can define another partition with smaller loss, contradicting the assumption
that P∗ is optimal.

Without loss of generality we consider only the first two groups in the partition P∗,
namely, G1 and G2. We define two other partitions P ′ and P ′′ which are identical to P∗ except
for the first two groups. These first two groups of P ′ and P ′′ are represented respectively, as
G ′1 and G ′2, and as G ′′1 and G ′′2 , and they have the following properties

G1 ∪ G2 = G ′1 ∪ G ′2 = G ′′1 ∪ G ′′2 ,
| G1| = | G ′1| = | G ′′1 |. (32)

In addition, the groups are defined such that G ′1 contains the symbols with smallest proba-
bilities, and the group G ′′1 contains the symbols with largest probabilities, i.e.,

max
s∈G′1

{ps} ≤ min
s∈G′2

{ps} ,

min
s∈G′′1

{ps} ≥ max
s∈G′′2

{ps} .
(33)

The analysis of these partitions is simplified if we normalize probabilities. First, we define

σ =
∑

s∈G1∪G2

ps = ρ1 + ρ2 > 0.

We do not have to analyze the case σ = 0, since it implies that all symbols in G1 ∪ G2 have
zero probability, and that consequently these two groups have no redundancy. Assuming
that σ > 0 we can define

f1 = ρ1/σ, f2 = ρ2/σ, f ′1 = ρ′1/σ, f ′2 = ρ′2/σ, f ′′1 = ρ′′1/σ, f ′′2 = ρ′′2/σ.

Note that (32) implies that f1 + f2 = f ′1 + f ′2 = f ′′1 + f ′′2 = 1.

The difference between the coding losses of the different partitions is computed using (10)

ϕ′ = `(P∗,p)− `(P ′,p) = R(P∗,p)−R(P ′,p)

= ρ1 log2

( | G1|
ρ1

)
+ ρ2 log2

( | G2|
ρ2

)
− ρ′1 log2

( | G1|
ρ′1

)
− ρ′2 log2

( | G2|
ρ′2

)

= σ

[
f1 log2

( | G1|
σf1

)
+ f2 log2

( | G2|
σf2

)
− f ′1 log2

( | G1|
σf ′1

)
− f ′2 log2

( | G2|
σf ′2

)]
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Using the binary entropy function

H2(p) = −p log2(p)− (1− p) log2(1− p), (34)

and the fact that f1 − f ′1 = f ′2 − f2, we obtain

ϕ′ = σ

[
H2(f1)−H2(f

′
1) + (f1 − f ′1) log2

( | G1|
| G2|

)]
, (35)

and, in a similar manner, obtain

ϕ′′ = `(P∗,p)− `(P ′′,p)

= σ

[
H2(f1)−H2(f

′′
1 ) + (f ′′1 − f1) log2

( | G2|
| G1|

)]
. (36)

Next we show that, because sorting the probabilities as defined by (33) guarantees that
f ′1 ≤ f1 ≤ f ′′1 , we always have either ϕ′ ≥ 0 or ϕ′′ ≥ 0, with equality only if either f1 = f ′1 or
f1 = f ′′1 .

We use the fact that the binary entropy H2(p) is a concave function, which means that

H2(x) ≤ H2(f1) + (x− f1)
dH2(p)

dp

∣∣∣∣
p=f1

= H2(f1) + (x− f1) log2

(
1− f1

f1

)
, (37)

as shown in Fig. 5.

The substitution of (37) into (35) and into (36), with x = f ′1 and x = f ′′1 , respectively,
results in

ϕ′ ≥ σ

[
(f1 − f ′1) log2

( | G1|(1− f1)

| G2|f1

)]
,

ϕ′′ ≥ σ

[
(f ′′1 − f1) log2

( | G2|f1

| G1|(1− f1)

)]
,

which means that ϕ′ ≥ 0 whenever f1 ≤ |G1|/(| G1| + | G2|), and ϕ′′ ≥ 0 whenever f1 ≥
|G1|/(| G1|+ | G2|).

Since having ϕ′ > 0 or ϕ′′ > 0 means that P∗ is not optimal, the conclusion is that P∗
can only be optimal if f1 = f ′1 or if f1 = f ′′1 , i.e, the first two groups of P∗ must be defined
in one of the two ways that satisfy the ordering of probabilities, as defined by (33). Since
this fact was proved without any constraints on the groups G1 and G2, it is thus valid for any
pair of groups Gm and Gn, and we reach the conclusion that only the partitions that satisfy
the condition of the theorem can be optimal
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Figure 5: Bound for the grouping redundancy exploiting the fact that the binary entropy is
a concave function.

3.3 Optimal Partitions via Dynamic Programming

Since Theorem 3.1 let us solve the alphabet partition problem (25) as a simpler linear
partition problem, we first need to sort the Ns data symbols according to their probability,
which can be done with O(Ns log Ns) complexity [10]. Many of the results that follow depend
only on the probabilities being monotonic, i.e., they are valid for both non-increasing and
non-decreasing sequences. To simplify notation we assume that all the symbols had been
renumbered after sorting. For instance, if we have non-increasing symbol probabilities, then
p1 ≥ p2 ≥ p3 ≥ · · · ≥ pNs .

Next, we need to define some new notation. We assume that the optimal linear partition
of the reduced alphabet with the first j symbols into i groups has redundancy equal to `∗i,j,
and represent the redundancy resulting from having the symbols i, i + 1, . . . , j in a single
group as

γi,j =

j∑
s=i

ps log2

(
[j − i + 1]ps

ρi,j

)
, 1 ≤ i ≤ j ≤ Ns, (38)

where

ρi,j =

j∑
s=i

ps. (39)

Note that we always have γi,i = 0.

The dynamic programming solution is based on the following theorem.
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Theorem 3.2 Given a source alphabet A with Ns symbols and monotonic symbol probabil-
ities p, the set of all minimal grouping redundancies `∗i,j, can be recursively computed using
the initial values defined by

`∗1,j = γ1,j, 1 ≤ j ≤ Ns. (40)

followed by
`∗i,j = min

i≤k≤j

{
`∗i−1,k−1 + γk,j

}
, 2 ≤ i ≤ j ≤ Ns, (41)

Proof: The justification of the initial values (40) is quite simple: there is only one way to
partition into one group, and the optimal solution value is the resulting redundancy. The
rest of the proof is done by induction.

Given a sub-alphabet with the first j symbols, and a number of groups i, let us assume
that all the values of `∗i,k, i ≤ k ≤ j, are known. If we add the symbol j + 1, and allow an
extra group to include it, we know from Theorem 3.1 that, if the symbol probabilities are
monotonic, then the last group of the new optimal partition (including symbol j + 1) is in
the form Gi+1 = {k + 1, k + 2, . . . , j + 1}. Our problem now is to find the optimal value of
k, which can be done by finding the minimum redundancy among all possible choices, i.e.,
computing the minimum redundancy corresponding to all values k = i, i + 1, . . . , j. Using
the redundancy equation (28), defined for linear partitions, we have

`∗i+1,j+1 = min
t0=1<t1<···<ti+1=j+2

{
i+1∑
n=1

tn−1∑
s=tn−1

ps log2

(
ps

p̄n

)}

= min
i≤k≤j

{
γk+1,j+1 + min

t0=1<t1<···<ti=k+1

{
i∑

n=1

tn−1∑
s=tn−1

ps log2

(
ps

p̄n

)}}

= min
i≤k≤j

{
γk+1,j+1 + `∗i,k

}
.

The desired result (41) is obtained by simply changing the indexes.

Note that we used the fact the redundancy can be divided in the sum of two factors that
are independent, since the total redundancy of the i groups containing the first k symbols
does not depend on the redundancy of the last group. The conclusion is that the computed
value of `∗i,j is indeed optimal because it is found by implicitly testing all possible linear
partitions.

The last fact to consider is that, if the values of `∗i,j are computed following the sequence
i = 1, 2, . . . , Ng, and for each i the sequence j = i, i + 1, . . . , Ns, then all the values required
for the computation of `∗i,j using (41) are already known.

Fig. 6 shows an example of how the values of `∗i,j can be arranged in a two-dimensional
matrix. In the figure we show the values needed for the computation

`∗3,6 = min
{
`∗2,2 + γ3,6, `∗2,3 + γ4,6, `∗2,4 + γ5,6, `∗2,5 + γ6,6

}
.
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`∗i,j = min
i≤k≤j

{
`∗i−1,k−1 + γk,j

}
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`∗2,2 `∗2,3 `∗2,4 `∗2,5

`∗3,6

γ6,6

γ5,6

γ4,6

γ3,6

Figure 6: Diagram of the dynamic programming recursion to find optimal linear partitions:
`∗i,j is the minimum redundancy due to grouping the first j symbols into i groups; γi,j is the
redundancy occured by having symbols i to j in a single group. The figure shows the data
required for computing `∗3,6 = min

{
`∗2,2 + γ3,6, `∗2,3 + γ4,6, `∗2,4 + γ5,6, `∗2,5 + γ6,6

}

On the right side we show the matrix with values of `∗i,j. Note that the elements in a row
only need the values in the previous row for their computation. In the left side of Fig. 6 we
show the matrix with values of γi,j, and how the minimum redundancy is computed using a
sequence of values in the same column.

The recursion (41) provides only the value of the optimal solutions, not the optimal group
sizes. They can be recovered if we store all the values of index k that corresponds to the
minimum in (41) when the value of `∗i,j is computed, and which we represent as

κ∗(i, j) =

{
1, 1 = i ≤ j ≤ Ns,
min

{
k : `∗i,j = `∗i−1,k−1 + γk,j, i ≤ k ≤ j

}
, 2 ≤ i ≤ j ≤ Ns.

(42)

We choose this specific definition because it makes the value of κ∗(i, j) unique, simplifying
the presentation of some of its properties.

The optimal group sizes are computed by backtracking the optimal decisions. For exam-
ple, the optimal partition into Ng groups is defined by

tNg = Ns + 1,
tn−1 = κ∗(n, tn − 1), n = Ng, Ng − 1, . . . , 1,
| Gn| = tn − tn−1, n = Ng, Ng − 1, . . . , 1.

(43)
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3.4 Mathematical Properties

The results in Section 3.3 already show that the optimal alphabet partitions can be com-
puted using much less computational effort than exhaustive search. In fact, in the end we
find all the optimal partitions of the alphabet. In Section 4 we analyze the computational
implementation and its complexity. In this section we show that γi,j and `∗i,j have a set
of mathematical properties that are useful for further reduction of computational complex-
ity, enabling more efficient methods for computing (41). In addition, they are useful for
identifying features of optimal alphabet partitions.

Theorem 3.3 For any set of symbol probabilities p, the redundancy γi,j resulting from cre-
ating a group with symbols i, i + 1, . . . , j, is such that

0 ≤ γi,j ≤ ρi,j log2(j − i + 1). (44)

Proof: We can rewrite (38) as

γi,j = ρi,j log2

(
j − i + 1

ρi,j

)
+

j∑
s=i

ps log2(ps). (45)

Using (20) and (45) we obtain

γi,j = ρi,j

[
log2(j − i + 1) +

j∑
s=i

ps

ρi,j

log2

(
ps

ρi,j

)]

= ρi,j [log2(j − i + 1)−H(q)]

where qk+1 = pi+k/ρi,j, k = 0, 1, . . . , j − i, and H(q) is its entropy. The desired inequalities
follow from the fact that 0 ≤ H(q) ≤ log2(j − i + 1).

Theorem 3.4 For any set of symbol probabilities p, the redundancy γi,j resulting from cre-
ating a group with symbols i, i + 1, . . . , j, is such that, for all integer values of i, j and k
satisfying 1 ≤ i ≤ k < j ≤ Ns, we have

γi,j ≥ γi,k + γk+1,j. (46)

Proof: Let us define
na = k − i + 1, nc = j − k,

and
fa = ρi,k/na, fb = ρi,j/(na + nc), fc = ρk+1,j/nc.
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From definition (39) we can see that ρi,j = ρi,k + ρk+1,j, and consequently we can write
fb as the following linear combination of fa and fc

fb = αfa + (1− α)fc ⇒ α =
na

na + nc

, 1− α =
nc

na + nc

.

Note that this result shows that the average probabilities are such that fb is between fa and
fc, i.e.,

min {fa, fc} ≤ fb ≤ max {fa, fc} .

From (45) we obtain

γi,j − γi,k − γk+1,j = ρi,j log2

(
j − i + 1

ρi,j

)
− ρi,k log2

(
k − i + 1

ρi,k

)
− ρk+1,j log2

(
j − k

ρk+1,j

)

= ρi,j log2

(
1

fb

)
− ρi,k log2

(
1

fa

)
− ρk+1,j log2

(
1

fc

)

= (na + nc)fb log2

(
1

fb

)
− nafa log2

(
1

fa

)
− ncfc log2

(
1

fc

)
.

Since the function p log2(1/p) is concave, and since 0 ≤ α ≤ 1, we can obtain a lower bound
on fb log2(1/fb) as shown in Fig. 7, which results in the inequality

(na + nc)fb log2

(
1

fb

)
≥ (na + nc)

[
αfa log2

(
1

fa

)
+ (1− α)fc log2

(
1

fc

)]
.

The substitution of the value of α yields the inequality

(na + nc)fb log2

(
1

fb

)
≥ nafa log2

(
1

fa

)
+ ncfc log2

(
1

fc

)
,

which produces the desired result

γi,j − γi,k − γk+1,j ≥ 0.

Theorem 3.5 For any set of symbol probabilities p, the redundancy γi,j resulting from cre-
ating a group with symbols i, i + 1, . . . , j, is such that, for all integer values of i, j, k and l
satisfying 1 ≤ i ≤ k ≤ l ≤ j ≤ Ns, we have

γk,l ≤ γi,j. (47)
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Figure 7: Use of the concavity of function p log2(1/p) for obtaining lower bounds on redun-
dancy.

Proof: From Theorem 3.4, and from the fact that we always have γj,j = 0, we conclude that
for all values of 1 ≤ i < j ≤ Ns we have

γi,j−1 = γi,j−1 + γj,j ≤ γi,j, (48)

and, similarly, for all 1 < i ≤ j ≤ Ns

γi+1,j = γi,i + γi+1,j ≤ γi,j. (49)

The general result (47) is obtained by induction, with the sequential use of (48) followed
by (49)

γk,l ≤ γk,l+1 ≤ · · · ≤ γk,j−1 ≤ γk,j ≤ γk−1,j ≤ · · · ≤ γi+1,j ≤ γi,j,

or (49) followed by (48)

γk,l ≤ γk−1,l ≤ · · · ≤ γi+1,l ≤ γi,l ≤ γi,l+1 ≤ · · · ≤ γi,j−1 ≤ γi,j.

Theorem 3.6 For any monotonic set of symbol probabilities p1, p2, . . . , pNs, the redundancy
γi,j resulting from creating a group with symbols i, i + 1, . . . , j, is such that, for all integer
values of i, j, k and l satisfying 1 ≤ i ≤ k ≤ l ≤ j ≤ Ns, we have

γi,j + γk,l ≥ γi,l + γk,j. (50)
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Proof: Let us define

na = j − i + 1, nb = l − k + 1, nc = l − i + 1, nd = j − k + 1,

and
fa = ρi,j/na, fb = ρk,l/nb, fc = ρi,l/nc, fd = ρk,j/nd.

We can write fa and fb as linear combinations of fc and fd, as

fa = αfc + (1− α)fd ⇒ α =
fa − fd

fc − fd

, 1− α =
fc − fa

fc − fd

,

fb = βfc + (1− β)fd ⇒ β =
fb − fd

fc − fd

, 1− β =
fc − fb

fc − fd

.

Because the sequence of probabilities is monotonic we have

min {fc, fd} ≤ min {fa, fb} ≤ max {fa, fb} ≤ max {fc, fd} ,

which means that 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.

From (45) we have

γi,j + γk,l− γi,l− γk,j = nafa log2

(
1

fa

)
+ nbfb log2

(
1

fb

)
−ncfc log2

(
1

fc

)
−ndfd log2

(
1

fd

)
.

Using again the lower bound shown in Fig. 7, we obtain

γi,j +γk,l−γi,l−γk,j ≥ [αna+βnb−nc]fc log2

(
1

fc

)
+[(1−α)na+(1−β)nb−nd]fd log2

(
1

fd

)
.

From the fact that na + nb = nc + nd, and the substitution of the values of α and β

αna + βnb − nc =
(fa − fd)na + (fb − fd)nb + (fd − fc)nc

fc − fd

=
ρi,j + ρk,l − ρi,l − ρk,j

fc − fd

= 0.

A similar calculation shows that (1− α)na + (1− β)nb − nd = 0, and consequently

γi,j + γk,l − γi,l − γk,j ≥ 0.

Note that Theorems 3.4 and 3.5 are valid for any set of probabilities, while Theorem 3.6
is valid only for monotonic probabilities. In fact, Theorem 3.6 is enough to guarantee all the
desired properties when the probabilities are sorted.
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Theorem 3.5 shows that the matrix containing the values of γi,j, assuming γi,j = 0 if
j < i, is a monotonic matrix, and Theorem 3.6 shows that its elements satisfy the quadrangle
inequalities, i.e., it is a Monge matrix. Both these properties had been shown to be useful for
designing faster algorithms for sorting and for dynamic programming (cf. Section 4). The
minimum redundancy values `∗i,j have similar properties, as shown below.

Theorem 3.7 For any set of monotonic symbol probabilities p, the minimum redundancy
`∗i,j, resulting from grouping the first j symbols in i groups, is such that, for all integer values
of i and j we have, when 1 ≤ i < j ≤ Ns

`∗i+1,j ≤ `∗i,j, (51)

when 1 ≤ i ≤ j < Ns

`∗i,j ≤ `∗i,j+1, (52)

and when 1 < i < j < Ns

`∗i+1,j ≤ `∗i+1,j+1 ≤ `∗i,j ≤ `∗i,j+1. (53)

Proof: Let us first prove (51). Since i < j, the optimal partition corresponding to `∗i,j has
at least one group such that | Gn| > 1. From Theorem 3.4 we know that the redundancy
cannot increase when we divide a group in two, increasing the number of groups by one.
Thus, since `∗i+1,j cannot be larger than the redundancy of this new partition, we conclude
that `∗i,j ≥ `∗i+1,j. Note that this is also valid for dyadic partitions, since any dyadic group
with more than one element can always be divided in two dyadic groups.

Inequality (52) can be proved by induction. It is valid in the first row because, from (40)
and Theorem 3.5, we have

`∗1,j+1 = γ1,j+1 ≥ γ1,j = `∗1,j.

The cases when i > 1 follow from (41), the fact that γj,j = 0, γk,j+1 ≥ γk,j, and (51):

`∗i,j+1 = min

{
`∗i−1,j, min

i≤k≤j

{
`∗i−1,k−1 + γk,j+1

}}

≥ min

{
`∗i−1,j, min

i≤k≤j

{
`∗i−1,k−1 + γk,j

}}

≥ min
{
`∗i−1,j, `∗i,j

}
= `∗i,j.

The next inequality follows from (41)

`∗i+1,j+1 = min
i≤k≤j

{
`∗i,k + γk+1,j+1

} ≤ `∗i,j + γj+1,j+1 = `∗i,j.
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Corollary 3.8 For any set of monotonic symbol probabilities p, the minimum redundancy
resulting from grouping the first j symbols in i groups, `∗i,j, is such that, for all integer values
of i, j, k and l satisfying 1 ≤ i ≤ k ≤ l ≤ j ≤ Ns, we have

`∗k,l ≤ `∗i,j. (54)

Proof: This result follows from Theorem 3.7, and two chains of inequalities

`∗k,l ≤ `∗k,l+1 ≤ · · · ≤ `∗k,j−1 ≤ `∗k,j ≤ `∗k−1,j ≤ · · · ≤ `∗i+1,j ≤ `∗i,j,

`∗k,l ≤ `∗k−1,l ≤ · · · ≤ `∗i+1,l ≤ `∗i,l ≤ `∗i,l+1 ≤ · · · ≤ `∗i,j−1 ≤ `∗i,j.

Theorem 3.9 For any set of monotonic symbol probabilities p, the minimum redundancy
`∗i,j, resulting from grouping the first j symbols in i groups, is such that, for all integer values
of i, j, k and l satisfying 1 ≤ i ≤ k ≤ l ≤ j ≤ Ns, we have

`∗i,j + `∗k,l ≥ `∗i,l + `∗k,j. (55)

Proof: Our proof uses two stages of induction. First, we prove the result for pairs of
consecutive rows, and then generalize to any combination of rows.

Let us begin proving the theorem for the first pair of rows. From Theorem 3.2 we can
compute, for all 2 ≤ l < j ≤ Ns, the difference

`∗1,j − `∗1,l + `∗2,l − `∗2,j = `∗1,j − `∗1,l + min
2≤k≤l

{
`∗1,k−1 + γk,l

}− min
2≤k≤j

{
`∗1,k−1 + γk,j

}

= γ1,j − γ1,l + min
2≤k≤l

{γ1,k−1 + γk,l} − min
2≤k≤j

{γ1,k−1 + γk,j}

Let u = κ∗(2, l), defined in (42), be the value of k corresponding to the minimum in the
computation of `∗2,l. Since 2 ≤ u ≤ l < j, we have the inequality

`∗2,j = min
2≤k≤j

{γ1,k−1 + γk,j} ≤ γ1,u−1 + γu,j,

and hence

`∗1,j − `∗1,l + `∗2,l − `∗2,j ≥ γ1,j − γ1,l + γ1,u−1 + γu,l − γ1,u−1 − γu,j.

From Theorem 3.6 we know that

γ1,j + γu,l − γ1,l − γu,j ≥ 0,
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and consequently, we obtain our first result: if 1 ≤ l ≤ j ≤ Ns then

`∗1,j + `∗2,l ≥ `∗1,l + `∗2,j. (56)

Now, assume (55) is valid for all values `∗i−1,j, and `∗i,j, j = i, i + 1, . . . , Ns, i.e., rows i− 1
and i. We use Theorem 3.6 again to establish that the inequality is valid for values of row
i + 1 (`∗i+1,j). Given i, for all l and j such that i < l < j ≤ Ns, we have

`∗i,j + `∗i+1,l − `∗i,l − `∗i+1,j = min
i≤k≤j

{
`∗i−1,k−1 + γk,j

}
+ min

i+1≤k≤l

{
`∗i,k−1 + γk,l

}− (57)

− min
i≤k≤l

{
`∗i−1,k−1 + γk,l

}− min
i+1≤k≤j

{
`∗i,k−1 + γk,j

}
.

Let us define u = κ∗(i, j) and v = κ∗(i + 1, l). Note that this implies that i ≤ u ≤ j and
i < v ≤ l. First, we consider the cases in which u ≤ v. Since i ≤ u ≤ v, and v ≥ i + 1 we
have the inequalities

`∗i+1,j = min
i+1≤k≤j

{
`∗i,k−1 + γk,j

} ≤ `∗i,u−1 + γu,j,

`∗i,l = min
i≤k≤l

{
`∗i−1,k−1 + γk,j

} ≤ `∗i−1,v−1 + γv,l.

Therefore, the substitution into (57) produces

`∗i,j + `∗i+1,l − `∗i,l − `∗i+1,j = `∗i−1,u−1 + γu,j + `∗i,v−1 + γv,l − `∗i,l − `∗i+1,j

≥ γu,j + γv,l − γu,l − γv,j.

Using Theorem 3.6 again we conclude that

u ≤ v ⇒ `∗i,j + `∗i+1,l ≥ `∗i,l + `∗i+1,j.

In the cases in which u ≥ v, we can use the fact that i < v ≤ u ≤ j, and v ≤ l, and
interchange the use of the indexes for computing upper bounds to obtain

`∗i+1,j = min
i+1≤k≤j

{
`∗i,k−1 + γk,j

} ≤ `∗i,v−1 + γv,j,

`∗i,l = min
i≤k≤l

{
`∗i−1,k−1 + γk,j

} ≤ `∗i−1,u−1 + γu,l.

The substitution into (57) now yields

`∗i,j + `∗i+1,l − `∗i,l − `∗i+1,j ≥ `∗i−1,u−1 + `∗i,v−1 − `∗i,u−1 − `∗i−1,v−1.

note that the right-hand-side of this inequality contains only elements in the rows i− 1 and
i, which we assume already satisfy (55). Thus, we cover all possible cases, since

v ≤ u ⇒ `∗i,j + `∗i+1,l ≥ `∗i,l + `∗i+1,j.
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The conclusion is that the theorem is valid for all pairs of rows (1,2), (2,3), . . . , (i, i +
1), . . . (Ns− 2, Ns− 1). The second part is of the proof simply extends the inequalities using
consecutive pairs of rows. Thus, for all integer values of i, j, k and l satisfying 1 ≤ i ≤ k ≤
l ≤ j ≤ Ns, we have

`∗i,j − `∗i,l ≥ `∗i+1,j − `∗i+1,l ≥ · · · ≥ `∗k−1,j − `∗k−1,l ≥ `∗k,j − `∗k,l.

and consequently
`∗i,j − `∗i,l ≥ `∗k,j − `∗k,l.

Theorem 3.10 For any set of monotonic symbol probabilities p with minimum grouping
redundancy `∗i,j, the values of κ∗(i, j) (defined by (42)) are such that, for all integer values
of i, j, k and l satisfying 1 ≤ i ≤ k ≤ l ≤ j ≤ Ns, we have

κ∗(i, l) ≤ κ∗(i, j) ≤ κ∗(k, j). (58)

Proof: Let us consider the values used in the minimization in (41), which are

λi,n,j = `∗i−1,k−1 + γk,j, 2 ≤ i ≤ n ≤ j ≤ Ns.

From Theorem 3.9 we have, if i ≤ k ≤ m ≤ n then

λi,m,j − λi,n,j = `∗i−1,m−1 + γm,j − `∗i−1,n−1 − γn,j

≤ `∗k−1,m−1 + γm,j − `∗k−1,n−1 − γn,j = λk,m,j − λk,n,j

This results means that

λi,m,j ≥ λi,n,j ⇒ λk,m,j ≥ λk,n,j.

In addition, for a given value of j we have

`∗i,j = min
i≤n≤j

{λi,n,j} , `∗k,j = min
k≤n≤j

{λk,n,j} .

Consequently, if we know κ∗(i, j), then we know that

λi,m,j ≥ λi,κ∗(i,j),j ⇒ λk,m,j ≥ λk,κ∗(i,j),j, m = k, . . . , κ∗(i, j),

and the conclusion is that κ∗(i, j) ≤ κ∗(k, j).

Similarly, from Theorem 3.6 we know that if m ≤ n ≤ l ≤ j then

λi,n,j − λi,m,j = `∗i−1,n−1 + γn,j − `∗i−1,m−1 − γm,j

≤ `∗i−1,n−1 + γn,l − `∗i−1,m−1 − γm,l = λi,n,l − λi,m,l
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Figure 8: Example of modified redundancy values γ̃i,j, used for finding the optimal dyadic
partitions (groups with a number of symbols equal to a power of two).

and therefore
λi,n,j ≥ λi,m,j ⇒ λi,n,l ≥ λi,m,l.

For this case, if we know κ∗(i, j), then we know that

λi,n,j ≥ λi,κ∗(i,j),j ⇒ λi,n,l ≥ λi,κ∗(i,j),l, n = κ∗(i, j), . . . l,

and the conclusion now is that κ∗(i, j) ≥ κ∗(i, l).

3.5 Dyadic Partitions

As explained in Section 2.2, practical applications may require all the groups to have a
number of symbols that is a power of two (dyadic groups). In this section we consider which
properties are conserved when we add these constraints on group size. We show that many
of the strong properties identified for the general case are not valid for dyadic partitions
because of the limitations in the number of possible partitions. In fact, in Appendix A we
explain why, for pairs of values of Ns and Ng that are not uncommon, there are no possible
dyadic partitions.

Below we explain the how the use of dyadic partitions affects the results of the theorems
in the previous sections.

1. The result of Theorem 3.1—a necessary optimality condition for the alphabet parti-
tioning problem—does not depend on the size of the symbol groups. Thus, it also
applies to the optimal solutions that have limited choices of group sizes, which means
that the dyadic groups also must contain symbols ordered by probability.
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2. Theorem 3.2 (dynamic programming recursion) is based only on the fact that we look
for the optimal linear partition, and on the fact that the grouping redundancy can
be divided as the sum of two independent terms. Since these are not changed by
constraints on group size, the same type of solution can be used. The simplest way to
analyze the required modification is to define

γ̃i,j =

{
γi,j, if j − i + 1 is a power of 2,
∞, otherwise.

(59)

The dynamic programming recursion is the same as in the general case, but using γ̃i,j

instead of γi,j in (41), noting that the value ‘∞’ may be represented by a sufficiently
large number. Fig. 8 shows an example of a matrix containing values of γ̃i,j.

3. The properties of γi,j, i.e., theorems 3.4, 3.5, and 3.6 are not valid for all cases, but are
valid when all the γ̃ values in the inequalities are equal to γ.

4. Only some of the cases covered by Theorem 3.8 are satisfied by optimal dyadic parti-
tions. All results derived from (51) are valid, while those derived from (52) are not.
Furthermore, since Theorem 3.2 is valid, we still can use the fact that `∗i+1,j+1 ≤ `∗i,j.

3.6 Two Numbers of Bits for Symbol Indexes

Using the same number of bits for all symbol indexes in a group has many practical advan-
tages, but it is not the only manner to reduce complexity. For any group size we can use
two numbers of bits to code all the possible symbol indexes in a group. In a group with size
| Gn| = m we can assign the following number of bits for the symbol with index x

Λ(x,m) =

{ blog2 mc , 1 ≤ x ≤ 2dlog2 me −m,
dlog2 me , 2dlog2 me −m < x ≤ m.

(60)

The main theoretical problem with this assignment of bits is that Theorem 3.1 (require-
ment for sorted probabilities) does not hold. Since the symbols with larger indexes use more
bits, it is clear that the first modification that is required is to sort the symbols in a group in
non-increasing order of probabilities. We do not have a proof that the optimal partition is a
linear partition on non-increasing probabilities. However, if we want to search the optimal
solution only among those partitions, we can use the same type of dynamic programming of
Theorem 3.2, only changing the value of the redundancy of single groups from (38) to

γ̄i,j =

j∑
s=i

ps

[
Λ(s− i + 1, j − i + 1) + log2

(
ps

ρi,j

)]
, 1 ≤ i ≤ j ≤ Ns. (61)

and replacing γ with γ̄ in (40) and (41).
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Since the number of bits used to code the symbol indexes are approximately equal to
log2 | Gn|, it is reasonable to assume that the partitions designed with this modification are
not too different from those designed with the original values of γ, and in most cases have
the same properties.

4 Analysis of the Computational Complexity

In this section we study how to use the theoretical results from the last sections for imple-
menting algorithms for finding optimal alphabet partitions for symbol grouping. We start
by demonstrating that we only need to pre-compute two arrays with dimension Ns + 1 for
the calculation of all values of γi,j.

Using (45), if we pre-compute

cj =

j∑
s=1

ps, j = 0, 1, . . . , Ns, (62)

hj =

j∑
s=1

ps log2(ps), j = 0, 1, . . . , Ns, (63)

then we can compute all values of γi,j using

γi,j = (cj − ci−1) log2

(
j − i + 1

cj − ci−1

)
+ hj − hi−1. (64)

The direct use of dynamic programming equation (refeqEllRecursion) for computing all
the optimal alphabet partitions (i.e., from one to Ns groups) requires the calculation of
O(Ns

3) terms. To recover all the optimal group sizes we need to store all values of κ∗(i, j)
(cf. (42) and (43)), which needs O(Ns

2) memory. On the other hand, if only the values of
`∗i,Ns

are desired, we can use the fact that recursion (refeqEllRecursion) can be computed
using only two rows at a time, i.e., O(Ns) memory. When we need to compute the optimal
solution for only one number of groups, Ng, we still need to compute the first Ng − 1 rows
of `∗i,j, so the complexity is O(NgNs

2) operations, and O(NgNs
2) memory.

Using the mathematical properties of Section 3.4 we can reduce the computational com-
plexity significantly, using a technique similar to that proposed by Yao [6].

Theorem 4.1 All optimal partitions of an alphabet with Ns symbols can be computed with
O(Ns

2) operations and O(Ns
2) memory complexity.

Proof: The memory complexity is defined by the need to store Ns(Ns + 1)/2 values of `∗i,j
and κ∗(i, j), 1 ≤ i ≤ j ≤ Ns.
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From Theorem 3.10 we know that

κ∗(i, j − 1) ≤ κ∗(i, j) ≤ κ∗(i + 1, j),

and thus we can rewrite equation (41) as

`∗i,j = min
κ∗(i,j−1)≤k≤κ∗(i+1,j)

{
`∗i−1,k−1 + γk,j

}
, 2 ≤ i < j ≤ Ns. (65)

Note that if we compute the values of `∗i,j and κ∗(i, j) in the order following diagonals, i.e.,
(2, j), (3, j + 1), (4, j + 2), . . . , (Ns− j + 2, Ns), then all the values required for using (65) are
already known. Using (65) we need a much smaller number of computations and comparisons
to find each `∗i,j. The total number of comparisons is, for the diagonal starting at column j,

Ns−j+2∑
i=2

[κ∗(i, j)− κ∗(i− 1, j − 1) + 1] = Ns − j + 1 + κ∗(Ns − j + 2, j)− κ∗(1, j − 1),

which is proportional to Ns and smaller than 2Ns. The computation of Ns − 1 diagonals
results in the complexity of O(Ns

2) operations.

Note that this proof defines the improved algorithm, which consists simply of using
recursion (65) following diagonals. Also observe that this faster technique is also very simple.
The constant factor in O(Ns

2) can be quite small because there is no need for complicated
programming or data structures.

Since we normally have Ns À Ng, if we need to know the optimal solution to only a
few group sizes we need to avoid spending time computing solutions that are not needed. A
practical solution is to stop the algorithm described above in the row Ng − 1 and use full
search only in the last row, but that is not asymptotically optimal.

Theorem 4.2 The optimal partition of an alphabet with Ns symbols in Ng can be computed
with O(NgNs) operations and O(NgNs) memory complexity.

Proof: We can compute the values of `∗i,j and κ∗(i, j) one row at a time. To do that, for
each row i we can define the matrix A with elements

am,n =

{
`∗i−1,i+m−2 + γi+m−1,i+n−1, 1 ≤ m ≤ n ≤ Ns − i,
∞, 1 ≤ n < m ≤ Ns − i,

,

and note that the problem of finding all the minimum values in (41) for a given value of i
(finding κ∗(i, i+1), κ∗(i, i+2), . . .) is the same as finding the minimum values in each column
of A.
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From the definition above and Theorem 3.6 we conclude that, given values m1 < m2 and
n1 < n2,

am1,n1 − am2,n1 = `∗i−1,i+m1−2 + γi+m1−1,i+n1−1 − `∗i−1,i+m2−2 − γi+m2−1,i+n1−1

≤ `∗i−1,i+m1−2 + γi+m1−1,i+n2−1 − `∗i−1,i+m2−2 − γi+m2−1,i+n2−1,

which means that
am1,n1 − am2,n1 ≤ am1,n2 − am2,n2 ,

and thus matrix A is totally monotone, i.e., its elements satisfy the property

am1,n1 ≥ am2,n1 ⇒ am1,n2 ≥ am2,n2 .

An algorithm for the computation of all the minimum row values of such a totally mono-
tone matrix with complexity with O(Ns − i) operations was proposed by Aggarval et al.,
and it commonly knwon as SMAWK [9]. Using this algorithm for each row, the complexity
of computing Ng − 1 rows is O(NgNs).

Note that the SMAWK algorithm is somewhat more elaborate than that used in the proof
of Theorem 4.1, so it may not be the best choice when Ng = Ns.

The faster algorithms described above cannot be used on the search for optimal dyadic
partitions, since they are based on Theorems 3.6 and 3.9, which are are not valid for dyadic
groups. However, the complexity of recursion (41) can be reduced simply by eliminating the
terms in which ˜̀

i,j = ∞. Since these are defined by powers of two, the number of values of
k tested is not larger than log2 Ns, and in consequence the complexity is O(Ns

2 log Ns) for
finding all optimal partitions, and O(NgNs log Ns) for finding one optimal partition.

The analysis above only covers the worst-case complexity. There are other ways of using
the results in Section 3.4 for accelerating the search for optimal partitions. For instance, we
can use the fact that the values of γi,j (or finite values of γ̃i,j) are monotonic, and we can
stop the search in (41) when they exceed the value of the current best solution.

5 Conclusions

In this work we study symbol grouping: a technique for the reduction of the complexity of
entropy coding that is quite effective, and that can be used in a wide range of situations.
While this method had proved its effectiveness and usefulness in many practical coding
methods, there were few studies of its properties.

The reduction in complexity provided by symbol grouping comes at the expense of loss in
compression. Some simple calculations show that this loss is in the form of relative entropy,
i.e., the Kullback-Leibler distance between two probability distributions. However, this form
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does not provide an intuitive insight on the potential of symbol grouping. We propose a
new approximation of the Kullback-Leibler distance that is very precise in the full range of
practical applications, and that let us see that the compression loss (coding redundancy)
due to symbol grouping can be very small in many types of source probability distributions.

We also show how the redundancy function can be decomposed in independent parts
defined by the entropy of the normalized distribution inside each group. Each part is shaped
as a scaled version of a constant minus the entropy. Thus, we conclude that the redundancy
function is linear in certain directions, while its projection to certain subspaces is strictly
convex.

While the analysis shows that in many situations the symbol grouping redundancy can
be practically insignificant, the challenge is to find the partition of the source alphabet
(symbol groups) that maximizes the complexity reduction. This basically corresponds to
finding the partition with the smallest number of groups such that the relative redundancy
is smaller than a constant, or equivalently, given a number of groups, finding the partition
that minimizes the symbol grouping redundancy.

We explain how this type of problem is related to well-known set-partitioning problems,
and present some information about the number of solutions of the combinatorial problems.
We show that in our case it is important to consider these facts because when we constrain the
group sizes to be powers of two (dyadic groups), the reduction in the number of possibilities
can be so large that we may not be able to find good partitions, and the optimization problem
has to be slightly modified.

From particular properties of our optimization problem we show a necessary optimality
condition that enables us to solve the problem with much more efficient methods, based on
dynamic programming. Next we present the dynamic programming recursive equations, and
a rich set of mathematical properties of the problem data and of the optimal solutions. We
show that these properties correspond to properties of Monge matrices, which can be used
in the design of more efficient dynamic programming algorithms.

Finally, we analyze the complexity of algorithms for the computation of optimal alphabet
partitions. The direct implementation of the dynamic programming recursion needs O(Ns

3)
operations and O(Ns

2) memory to find all the optimal partitions of an alphabet with Ns data
symbols. We show that, by using the special properties of our problem, it can be solved with
O(Ns

2) operations and O(Ns
2) memory. In addition, methods to find only the minimum

redundancy values, without the information about the optimal groups, require only O(Ns)
memory. The complexity of finding only the optimal partition in Ng groups is shown to be
O(NgNs) operations and O(NgNs) memory.

36



A Enumeration of Linear Partitions

The total number of linear partitions is defined by a well-known combinatorial function:
Ξl(Ns, Ng) = C(Ns − 1, Ng − 1). The total number of dyadic linear partitions Ξd(Ns, Ng) is
related to the number of binary paritions of a number [27].

Values of Ξd(Ns, Ng) can be computed recursively using

Ξd(Ns, Ng) =

blog2(Ns−1)c∑

k=0

Ξd(Ns − 2k, Ng − 1). (66)

While this formula is quite simple, and is good for obtaining many values of Ξd(Ns, Ng),
it does not provide much intuition about the expected behavior of the function.

The easiest cases to evaluate analytically are those in which Ng is nearly equal to Ns,
since most subsets have only one element. For example, when Ng = Ns − 1, we can only
have groups with one or two elements, and the total number of partitions is the same as in
the general case. When Ng = Ns − 2, we can have groups with one, two or three elements,
and the number of dyadic partitions is the total number when we exclude all partitions that
have groups with three elements. The formulas obtained for the first cases are

Ξd(m,m) = 1
Ξd(m,m− 1) = m− 1
Ξd(m,m− 2) = (m− 2)(m− 3)/2
Ξd(m,m− 3) = (m− 3)[6 + (m− 4)(m− 5)]/6
Ξd(m,m− 4) = (m− 4)(m− 5)[24 + (m− 6)(m− 7)]/24
Ξd(m,m− 5) = (m− 5)(m− 6)(m− 7)[60 + (m− 8)(m− 9)]/120
Ξd(m,m− 6) = (m− 6)(m− 7){360 + (m− 8)(m− 9)[120 + (m− 10)(m− 11)]}/720.

We can compare these values with the linear partition case

Ξl(m,m− k) = (m− 1)(m− 2) · · · (m− k)/k!,

and observe that, for these particular values, the growth of Ξd is indeed significantly slower
than the growth of Ξl.

In our applications we have to consider a more unusual property of Ξd: when Ng is rela-
tively small the value of Ξd can change abruptly with Ng. Let WH(n) be the Hamming weight
of the integer number n, i.e., the number of nonzero coefficients in its binary representation.
Consider the following properties of Ξd:

Ng < WH(Ns) ⇒ Ξd(Ns, Ng) = 0,
Ng = WH(Ns) ⇒ Ξd(Ns, Ng) = Ng!,
Ng = WH(Ns) + 1 ⇒ Ξd(Ns, Ng) = c10Ng!/2 + c11Ng!/6.
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The first case is a consequence of the fact that the binary representation is unique, and
the Hamming weight is therefore the minimum number of dyadic components. When the
number of groups is equal to the Hamming weight the size of the subsets is uniquely defined
by the binary representation of Ns, and the number of partitions corresponds to the number
of permutations of these subsets.

In the third case, c10 and c11 are, respectively, the total number of occurrences of the bit
patterns 10 and 11 in the binary representation of Ns. The number of partitions is dependent
on the number of groups with same size. The 11 bit pattern implies three groups with same
size, and thus its number of possibilities is 1/3 the number of possibilities defined by the 10
bit pattern. The next cases are increasingly more complicated, but they show how Ξd can
change abruptly from a very large number to zero. For example, Ξd(2

n− 1, n− 1) = 0 while
Ξd(2

n− 1, n) = n!, and Ξd(2
n− 1, n+1) = (n+1)!(n− 1)/6. The conclusion is that we have

to be careful in the choice of Ns and Ng when searching for optimal dyadic partitions.

As explained in Section 3.1, a linear partition of a set of Ns elements (data symbols) in
Ng nonempty subsets (symbol groups) can be defined with a sequence of Ng + 1 numbers
t0 = 1 < t1 < t2 · · · < tNg = Ns + 1. The enumeration of all possible linear partitions
is a simple programming task, which can be easily solved with recursive function calls.
The enumeration of dyadic partitions can exploit some properties for faster execution, so
we add here a C++ program that enumerates all linear partitions, including the option of
enumerating only dyadic partitions.

Fig. 9 shows the required functions. The first function implements the enumeration using
an inverted stack, since it is more efficient than recursive function calls. When its Boolean
parameter ‘dyadic’ is false it generates all possible linear partitions, which are represented
in the array ‘t[n].’ We assume that a function called ‘Test Partition’ is used to test
each partition, which is normally the computation of the resulting redundancy. Note that
‘t[n]’ contains all the information required for controlling the stack, so no other arrays are
necessary.

When parameter ‘dyadic’ is true the function will only generated dyadic partitions. Note
that it uses the same variables and stack structure. However, the generated partition sizes
are always powers of two, and it uses the Hamming weight function to avoid generating
partition size values that cannot produce a full dyadic partition. For completeness, the
function to compute the Hamming weight of an integer is also in Fig. 9.

A simple improvement to the algorithm in Fig. 9 is to compute a group’s contribution to
the overall redundancy as soon as the group size is fixed, and create partial sums for each
stack level. This way the function to evaluate partitions just has to add the contribution of
the last group, greatly decreasing the number of computations.
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void Enumerate Partitions(bool dyadic, int groups, int symbols)
{
int * t = new int[groups+1], n = groups - 1;

t[0] = 1;
t[groups] = t[n] = symbols + 1;

while (true) {
t[n] += (dyadic && (t[n] < t[n+1]) ? t[n] - t[n+1] : -1);

if (t[n] <= n)
if (++n < groups) continue; else break;

if (dyadic && (Hamming Weight(t[n] - 1) > n)) continue;

if (n == 1)
Test Partition(groups, t);

else {
--n;
t[n] = t[n+1];

}
}
delete [] t;

}

int Hamming Weight(unsigned n)
{
const int HW[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 };
int w = HW[n&0xF];
while (n >>= 4) w += HW[n&0xF];
return w;

}

Figure 9: C++ functions for enumerating all linear partitions of Ns symbols in Ng nonempty
groups.
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