

Using Object-Oriented Constraint Satisfaction for Automated
Configuration Generation

Tim Hinrich, Nathaniel Love, Charles Petrie, Lyle Ramshaw, Akhil Sahai,
Sharad Singhal
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2004-141
August 17, 2004*

E-mail: {asahai@hpl.hp.com}

constraint
satisfaction,
configuration
generation, utility
computing, CIM

In this paper, we describe an approach for automatically generating
configurations for complex applications. Automated generation of system
configurations is required to allow large-scale deployment of custom
applications within utility computing environments. Our approach models
the configuration management problem as an Object-Oriented Constraint
Satisfaction Problem (OOCSP) that can be solved efficiently using a
resolution-based theorem-prover. We outline the approach and discuss
both the benefits of the approach as well as its limitations, and highlight
certain unresolved issues that require further work. We demonstrate the
viability of this approach using an e-Commerce site as an example, and
provide results on the complexity and time required to solve for the
configuration of such an application.

* Internal Accession Date Only Approved for External Publication
 Copyright Springer-Verlag. To be published in the 15th IFIP/IEEE Distributed Systems: Operations and
Management, 15-17 November 2004, Davis, California, USA

Using Object-Oriented Constraint Satisfaction
for Automated Configuration Generation

Tim Hinrichs, Nathaniel Love, Charles Petrie Lyle Ramshaw, Akhil Sahai, Sharad Singhal
Stanford University Hewlett-Packard

Abstract: In this paper, we describe an approach for automatically generating configurations for com-
plex applications. Automated generation of system configurations is required to allow large-scale de-
ployment of custom applications within utility computing environments. Our approach models the
configuration management problem as an Object-Oriented Constraint Satisfaction Problem (OOCSP)
that can be solved efficiently using a resolution-based theorem-prover. We outline the approach and
discuss both the benefits of the approach as well as its limitations, and highlight certain unresolved is-
sues that require further work. We demonstrate the viability of this approach using an e-Commerce
site as an example, and provide results on the complexity and time required to solve for the configura-
tion of such an application.

1. Introduction
Automated resource configuration has gained more importance with the advent of utility computing initia-
tives such as HP’s Utility Data Center product [1], IBM’s “on-demand” computing initiative [2], Sun’s N1
vision [3], Microsoft’s DSI initiative [4] and the Grid initiative [5] within the Global Grid Forum. All of
these require large resource pools that are apportioned to users on demand. Currently, the resources that
are available to these resource management systems are “raw” computing resources (servers, storage, or
network capacity) or simple clusters of machines. The user still has to manually install and configure
applications, or rely upon a managed service provider to obtain pre-configured systems from service pro-
viders.

Creating custom environments is usually not possible because every user has different requirements.
Managed service providers rely on a small set of pre-built (and tested) application environments to meet
user needs. However, this limits the ability of users to ask for applications and resources that have been
specially configured for them. In our research, we are focusing on how complex application environments
(for example, an e-Commerce site) can be automatically “built-to-order” for users. In order to create a
custom solution that satisfies user requirements, many different considerations have to be taken into ac-
count. Typically, the underlying resources have technical constraints that need to be met in order for valid
operations—not all operating systems will run on all processors, and not all application servers will work
with all databases. In addition, system operators may impose constraints on how they desire such composi-
tions to be created. For example, when resources are limited, only certain users may be able to request
them. Finally, the users themselves have requirements on how they want the system to behave. Thus,
automating the design, deployment and configuration of such complex environments is a hard problem.

2. Problem Definition
A number of languages/standards [6] [7] exist which can be used to describe resource configurations. Of
these, the Common Information Model (CIM) of the Distributed Management Task Force (DMTF) [8] is
widely used in the industry to represent resource configurations. CIM captures the resources as a set of
classes (types) described using the Managed Object Format (MOF) representation with resource attributes
described by attribute names and data types within the classes. The type model captures the resource types,
and the inheritance, aggregation, and association relationships that exist between them. Instances of the
classes with the attribute values filled in correspond to resource instances. Typically, the resource types
deal with a large number of classes, because the models have to describe not only the “raw” resources, but
also those that can be composed out of those resource types.

When resources are combined to form other higher-level resources, a variety of rules need to be fol-
lowed. For example, when operating systems are loaded on a host, it is necessary to validate that the proc-

essor architecture assumed by the operating system is indeed the architecture of the host. Similarly, when
an application tier is composed from a group of servers, it may be necessary to ensure that all network
interfaces are configured to be on the same subnet or that the same version of the application is loaded on
all machines in the tier. To ensure correct behavior of a reasonably complex application, several hundred
such rules may be necessary. This is further complicated by the fact that a large fraction of these rules are
not inherent to the resources, but depend on preferences (policies) provided by the system operator or
indeed, by the customer as part of the request itself.

The current CIM meta model does not provide the capability to capture such rules. To accommodate
these rules, we have extended the CIM meta-model to associate policies with the resource types. These
policies capture the technical constraints and choices made by the operators or administrators that need to
be obeyed by every instance of the associated class. An example of a resource type declaration in MOF is
shown below, as well as an example of policies that could be associated with the type. The example shows
how a database server might be represented using MOF. By capturing the constraints on what is possible
(or permitted) for the values of the model attributes within an instance of policy that is attached to the
resource type (as opposed to within the model itself), it becomes possible to customize the configurations
that are valid without constantly extending the models.

[Version (“1.0.0”), Description (“A database server.”)]
class DatabaseServer : Resource
{
 [Description (“Type of DB server.”)]
 String type;
};

[Association, Composition, Description (“Server type in database
server”)]
class DbServerType
{
 [Description (“Type of machine used for database server”)]
 Server REF server;
 [Description (“Database containing this machine type”]
 DatabaseServer REF database;
}

[Association, Composition, Description (“Software image in database
server”)]
class SwImageInDbServer
{
 [Description (“Software image used for Database Server”)]
 InstalledSoftware REF swImage;
 [Description (“Database containing this software image”)]
 [DatabaseServer REF database;
}

instance of ClassScopedPolicy
{
 Id = “Policy01”;
 AssociatedClasses = {“DatabaseServer“};
 Assertions = {

 “swImage.name == \”Database\””,
 “(type == \”Oracle\”) ∨ (type == \”mySQL\”)”,

 “(type == \”Oracle\”) ⇒ (swImage.version == 9)”,
 “(type == \”mySQL\”) ⇒ (server.osImage.name == \”Linux\”)”
 };
};

The users can request customization of particular resources from the available resource types by speci-

fying additional constraints1 on their attribute values and on their arrangement in the system. These re-
quests could be for instances of “raw” resources or for composite resources. Our goal is to automatically

1 The terms policy, constraint, and rule are frequently used interchangeably. From this point forward we will use only

the term constraint.

generate a system configuration by selecting the appropriate resource classes and assigning values to their
attributes so that all constraints specified in the underlying resource models are satisfied.

3. A Running Example
We will start by describing a particular utility computing problem that will be used for illustration
throughout the paper. We will be using a more compact representation [9] for MOF specifications and
their associated constraints. In all that follows we represent a constraint on a particular MOF specification
by surrounding it with the keyword satisfy and including it within the specification itself.

The example in question models a collection of hardware and software components that can be assembled
to build an e-Commerce site. The objects themselves can be defined hierarchically with e-Commerce at
the top. An e-Commerce site includes three tiers of servers, including web, database, and applications
servers; additional resources include a variety of operating systems, software applications, computers, and
networking components. The class definitions in this environment contain the expected compositional
constraints, like restricting mySQL to Linux servers. The example also contains mathematical con-
straints—resources have cost attributes with values constrained to be the sum of the costs of the objects
contained within the resource. One portion of a class definition from this example—the DatabaseServer
class—appears below. It is the compressed version of the example in Section 2.

class DatabaseServer
{

type: String;
server: Server;
swImage: InstalledSoftware;
satisfy (swImage.name == “Database”);
satisfy ((type == “Oracle”) ∨ (type == “mySQL”));
satisfy ((type == “Oracle”) ⇒ (swImage.version == 9));
satisfy ((type == “mySQL”) ⇒ (server.osImage.name == “Linux”));

}

Here type is a String variable; likewise server and swImage are variables of type Server and In-

stalledSoftware, respectively. Note that unlike MOF, server and swImage are fields that refer to classes,
while type is defined as a primitive type. Four constraints must be satisfied for all objects of type Databas-
eServer. The first dictates the value of the name field of the swImage object to be “Database”. The next
constraint defines a domain for the variable type via disjunction; it can either take on the value “Oracle”
or “mySQL”. The last two constraints explain the repercussions of assigning type to each of the values in
its domain: assigning “Oracle” to type means swImage.version must be set to 9. Assigning “mySQL”
to type means server.osImage.name must be set to “Linux”. Notice how dot-notation can be used to
access sub-components of non-primitive types. From the statement

swImage.version == 9

we deduce that the InstalledSoftware type must include a declaration for the variable named version.
Likewise, Server must include a variable osImage, which in turn must include a variable name.

An instance of type DatabaseServer includes an instance of a Server and an instance of InstalledSoft-
ware, which can be represented as shown here.

DatabaseServer(“mySQL”, Server(...), InstalledSoftware(...))

User requests in our example consist of a distinguished target class usually called main, which contains

a variable of type eCommercesite. Any user requirements appear as constraints on that variable. For ex-
ample, the request

main {
 ecomm: eCommercesite;
 satisfy (ecomm.tier1.numservers >= 10);
 satisfy (ecomm.tps == 5000);

}

asks for an instance of an e-Commerce site with at least ten servers in tier1, supporting 5,000 transactions
per second. A solution is simply an instance of an eCommercesite object, represented just as Database-
Server is represented above. Thus generating an e-Commerce configuration amounts to building an in-
stance of the eCommercesite class.

The full example includes around twenty of these class definitions, ranging in complexity from an e-
Commerce site down to specifications for a particular type of computer. Snippets from this problem will
show up repeatedly in what follows as illustration, but the principles illustrated will be applicable to a
broad range of configuration management problems.

4. Configuration Management as an OOCSP
As shown above, configuration management problems such as utility computing can often be modeled as a
hierarchy of class definitions with embedded constraints. Abstracting away from the details of any particu-
lar problem can allow a more comprehensive understanding of not only the problem but also the possible
routes for solution. Paltrinieri [10] outlines the notion of an Object-Oriented Constraint Satisfaction Prob-
lem (OOCSP), which turns out to be a natural abstraction for a broad class of configuration management
problems. Similarly, Alloy [11] uses an object oriented specification for describing and analyzing software
models.

An OOCSP is defined by a set of class definitions, a set of enumerations, and a distinguished target
class, much like main in a JAVA program. Each class definition includes an ordered set of variables, each
with a declared type, and a set of constraints on those variables; each class also has a name, a set of super
classes, and a function Dot (.) that gives access to its variables. An enumeration is simply a set of values;
declaring a variable as an enumeration forces the variable to be assigned to one of the elements in that set.
A solution to an OOCSP is an instance of the target class. In an OOCSP, the constraints are embedded
hierarchically so that if an object is an instance of the target class (i.e. it satisfies all the constraints within
the class) it includes instances of all the target’s subclasses, which also satisfy all constraints within those
classes.

The OOCSP for the e-Commerce example includes class definitions for eCommercesite, Database-
Server, Server, and InstalledSoftware among others. The class definitions contain a set of variables, each
with a declared type. DatabaseServer includes (in order) a String variable type, a variable server of
type Server, and a variable swImage of type InstalledSoftware. One of the constraints requires the name
component of swImage to be “Database”. It has no superclasses, and the function Dot is defined implic-
itly.

While it is clear how to declare variables within a class, many options exist for how to the express con-
straints on those variables. In our examples we use standard logical connectives, like ∨ and ⇒, to mean
exactly the same thing they do in propositional and first-order logic. We have formally defined the lan-
guage chosen for representing constraints both by giving a logician a particular vocabulary and by giving
a grammar; these definitions are virtually identical. The vocabulary follows, and the grammar can be
found in Appendix A.

The constraint language includes all quantifier-free first-order formulas over the following vocabulary.
1. r is a relation constant iff r is the name of a class, equality or an inequality symbol
2. f is a function constant iff f is the binary Dot or a mathematical function
3. v is a variable iff v is declared as a variable or starts with a letter from the end of the alphabet, e.g. x, y,
z
4. c is an object constant iff c is an atomic symbol and not one of the above

The constraints seen in the DatabaseServer example are typical and have been explained elsewhere.

Two types of constraints that do not appear in our example deserve special mention. Consider the fol-
lowing snippet of a class definition.

 x: DatabaseServer;
 y: DatabaseServer;
 x == y;

We define equality to be syntactic; two objects are equal exactly when all their properties are equal. That
means that two objects that happen to have all the same properties are treated as essentially the same ob-
ject. The exception to this interpretation of equality is arithmetic. Not only is 7==7 satisfied, but so is
2*2==4, as one would hope, even though syntactically 4 is different than 2*2.

The other type of notable constraint is more esoteric; consider the following.

 x: Any;
 y: Any;
 satisfy (DatabaseServer(“Oracle”, x, y));

This constraint requires x and y to have values so that DatabaseServer(“Oracle”, x, y) is a valid
instance of DatabaseServer. These constraints become valuable when one wants to define an object of
arbitrary size, like a linked list:

class List {
data: Any;
tail: Any;
satisfy ((tail == nil) ∨ List(tail.data, tail.tail));

 }

This List class is recursively defined, with a base case given by the disjunct tail == nil; the recursive
case is the second disjunct, which requires tail itself to be a List object. Our constraint language allows
us to define these complex objects and also write constraints on those objects.

Given what it means to satisfy a constraint we can precisely describe what it means for an object to be
an instance of a particular class. An instance of a class T is an ordered set of objects, one for each vari-
able, such that (1) the object assigned to a variable of type R is an instance of R and (2) the constraints of
T are satisfied. The base case for this recursive definition is the enumerations, which are effectively ob-
jects without subcomponents. Objects are instances of an enumeration if they are one of the values listed
in that enumeration.

To illustrate, an instance of a DatabaseServer is an object with three components: an instance of String,
an instance of Server, and an instance of InstalledSoftware. Those components must satisfy all the con-
straints in the DatabaseServer class. The instance of Server must likewise include some number of com-
ponents that together satisfy all the constraints within Server. The same applies to InstalledSoftware.

This section has detailed how one can formulate configuration management problems as OOCSPs2. The
next section confronts building a system to solve these configuration management problems.

5. Solving Configuration Management Problems by Solving OOCSPs
Our approach to solving configuration management problems is based on an OOCSP solver. The two
main components of the system communicate through the OOCSP formalism. The first component in-
cludes a model of the utility computing environment at hand. It allows administrators to change and ex-
pand that model, and it allows users to make requests for specific types of systems without worrying too
much about that model. The second component is an OOCSP solver based on a first-order resolution-style
[12] theorem prover Epilog, provided by the Stanford Logic Group. It is treated as a black box that takes
an OOCSP as input and returns a solution if one exists. The rest of this paper focuses on the design and
implementation of the OOCSP solver and discusses the benefits and drawbacks in the context of configu-
ration management.

2 We believe the notion of an OOCSP is equivalent to a Context Free Grammar in which each production rule in-

cludes constraints that restrict when it can be applied.

The architecture of the OOCSP solver can be broken down into four parts. Given a set of class defini-
tions, a set of enumerations, and a target class, a set of first-order logical sentences is generated. Next,
those logical sentences are converted to what is known as clausal form, a requirement for all resolution-
style theorem provers. Third, a host of optimizations are run on the resulting clauses so that Epilog can
more easily find a solution. Lastly, Epilog is given the result of the third step and asked to find an instan-
tiation of the analog of the target class. If such a solution exists, Epilog returns an object that represents
that instantiation, which by necessity includes instantiations of all subcomponents of the target class,
instantiations of all the subcomponents’ subcomponents, and so on. Epilog also has the ability to return an
arbitrary number of solutions or even all solutions. Because the conversion to clausal form is mechanical
and the optimizations are Epilog-specific, we will discuss in detail only the translation of an OOCSP to
first-order logic, the results of which can be used by any first-order theorem prover.

Consider the class definition for DatabaseServer. Recall we can represent an instance of a class with a
term, e.g.

DatabaseServer(“Oracle”, Server(...), InstalledSoftware(...))

Notice this is intended to be an actual instance of a DatabaseServer object. It includes a type, Oracle, and
instances of the Server class and the InstalledSoftware class. To define which objects are instances of
DatabaseServer given our representation for such instances we begin by requiring the arguments to the
DatabaseServer term be of the correct type.

DatabaseServer.instance(DatabaseServer(x, y, z)) ⇐

String.instance(x) ∧
Server.instance(y) ∧
InstalledSoftware.instance(z) ∧ ...

But because a DatabaseServer cannot be composed of any String, any Server instance, and any Installed-
Software instance this sentence is incomplete. The missing portion of the rule represents the constraints
that appear within the DatabaseServer class definition. These constraints can almost be copied directly
from the original class definition giving the sentence shown below.

DatabaseServer.instance(DatabaseServer(x, y, z)) ⇐
(String.instance(x) ∧
 Server.instance(y) ∧
 InstalledSoftware.instance(z) ∧

 z.name == “Database” ∧
 ((x == “Oracle”) ∨ (x == “mySQL”)) ∧

 ((x == “Oracle”) ⇒ (z.version == 9)) ∧
 ((x == “mySQL”) ⇒ (y.osImage.name == “Linux”)))

Similar translations are done for all class definitions in the OOCSP.

Once these translations have been made for all classes and enumerations in the OOCSP to first-order
logic, the conversion to clausal form is entirely mechanical and a standard step in theorem-proving. For
any particular class definition these first two steps operate independently of all the other class definitions;
consequently, if an OOCSP has been translated once to clausal form and changes are made to a few
classes, only those altered classes must undergo this transformation again.

Once the OOCSP has been converted into clausal form the result is a set of rules that look very similar
to the sentence defining DatabaseServer above. Several algorithms are run on these rules as optimizations.
These algorithms prune unnecessary conjuncts, discard unusable rules, and manipulate rule bodies and
heads to improve efficiency in the final step. Doing all this involves reasoning about both syntactic equal-
ity and the semantics of the object-oriented Dot function. These algorithms greatly reduce the number and
lengths of the rules, consequently reducing the search space without eliminating any possible solutions.
Some of these optimizations are global, which means that if any changes are made to the OOCSP those
algorithms must be run again. Because one of the optimizations pushes certain types of constraints down
into the hierarchy, it is especially important to apply it once a new query arrives.

The final step invokes Epilog by asking for an instantiation of the (translated) target class. If the target
class were DatabaseServer, the query would ask for an instance x such that DatabaseServer.instance(x) is
entailed by the rules left after optimization, i.e. x must be an instance of DatabaseServer. Moreover one
can ask for an arbitrary number of these instances or even all the instances.

6. Consequences of Our Approach
We have made many choices in modeling and solving problems in the configuration management domain,
both in how we represent a configuration management problem as an OOCSP and in how we solve the
resulting OOCSP. This section explores those choices and their consequences.

6.1 Modeling Configuration Management Problems

The choice of the object-oriented paradigm is natural for configuration management--coupling this idea
with constraint satisfaction leads to easier maintenance and adaptation of the problem so modeled. Our
particular choice of language for expressing these constraints has both benefits and drawbacks and our
decision to define equality syntactically may raise further questions.

Benefits
Modeling a configuration management problem as an OOCSP gives benefits similar to those gained by
writing software in an object-oriented language. Class definitions encapsulate the data and the constraints
on that data that must hold for an object to be an instance of the class. One class can inherit the data and
constraints of another, allowing specializations of a more general class to be done efficiently. Configura-
tion management naturally involves reasoning about these hierarchically designed objects; thus it is a
natural fit with the object-oriented paradigm.

Modeling configuration management as a constraint satisfaction problem also has merits, mostly be-
cause stating a CSP is done declaratively instead of imperatively. Imperative programming requires ex-
plaining how a change in one of an object’s fields must change the data in its other fields to ensure the
object is still a valid instance. Doing this declaratively requires only explaining what the relationship
between the fields must be for an object to be a valid instance. How those relationships are maintained is
left unspecified. An imperative program describes a computational process, while the declarative version
describes the results of that computational process. The extra detail an imperative object provides makes it
more efficient to manipulate than its declarative equivalent, but makes maintenance and alteration more
difficult.

Take a class with four fields, a, b, c, d, all of which are boolean. Say the relationship we want to ex-
press is that if a is set to true then either b or c must be set to true. If one were to write this imperatively,
when a is set to true an arbitrary choice might be made between setting b or c to true. Now consider what
happens when someone adds a new relationship to the fields: b is true exactly in the same cases as when d
is true. If a is set to true and then b is set to true, d must also be set to true. But if d is subsequently set to
false b must also be set to false, which means c must be set to true. Certainly all that could be written
imperatively, but one could argue the below is easier to understand and modify:

a ⇒ b ∨ c
b ⇔ d

Regardless whether one models objects imperatively or declaratively, both approaches require a search

for a configuration that meets all such constraints. While it is unclear how one would search through a set
of imperative objects to find such a configuration, solving constraint satisfaction problems has been well
studied, although not all of the techniques for solving CSPs may be applicable to solving OOCSPs. The
declarative language we have chosen for writing constraints, first-order logic, has the advantage that it
comes equipped with powerful techniques for answering queries about sets of constraints. In the above
example, a query might ask if the given sentences jointly are contradictory—do they at the same time

require d to be set to true and d to be set to false. Another query might ask for assignments of the vari-
ables that satisfy the sentences—in the above example we may set a, b, and d all to true. It is also note-
worthy that everything that can be said in an imperative programming language can be said in first order
logic, which as shown in Section 4 allows the definition of recursive classes such as linked lists. This
enables the description of OOCSPs where the number of instances of a particular class is constrained by
the values of other variables.

Design configuration problems have previously been addressed in three primary ways. The first is as a
standard CSP problem. The OOCSP has the obvious advantage that configuration problems are easier to
formulate as a set of component classes and constraints among them. In particular, a CSP requires the
explicit enumeration of every possible variable that could be assigned and the OOCSP does not. For in-
stance, suppose in the DatabaseServer class the field swImage can either be assigned an instance of In-
stalledSoftware or an instance of InstalledServerSoftware because of inheritance. Suppose InstalledSoft-
ware has a single field package and that InstalledServerSoftware has both a package field and a li-
cense field. A CSP formulation must explicate a variable corresponding to the possibility of swI-
mage.license with a domain that includes the legitimate enumerations of license field as well as a
special null value. Otherwise the CSP cannot account for the possibility of a solution with a choice of class
InstalledServerSoftware.

Design configuration has also been attempted with expert systems [13] but domain knowledge rules are
too difficult to manage because of implicit control dependencies, so the approach does not scale. The
OOCSP has the advantage that the formalism is clear and the ordering of the domain knowledge has no
impact on the set of possible solutions. A third approach has been to add search control as heuristics to a
structure of goals and constraints [14] [15], but this approach is more complex and slower than the
OOCSP approach.

Limitations
The choices outlined above do have drawbacks. In particular first-order logic is very expressive, so using
it as our constraint language comes at a cost: first-order logic is fundamentally undecidable—there is no
algorithm that can ensure it will always give the correct answer and at the same time halt on all inputs. If
there is a solution it will be found in a finite amount of time; otherwise the algorithm may run forever. We
have not yet determined the decidability and complexity of the subset of first-order logic we are using in
our research. Simpler languages might lead immediately to certain complexity bounds, but as mentioned
above we are interested in solving problems where we are selecting both the classes that need to be instan-
tiated, as well as the number of instances of those classes based on arbitrary constraints. We have chosen
to start with a language expressive enough to write such constraints, and we can restrict if further if de-
cidability or complexity become practical issues for particular applications.

The OOCSP described in this paper makes a commitment to a particular notion of equality–two objects
are equal whenever they are syntactically equal. The constraint

x.computer == y.computer

ensures the variables x and y are assigned instances such that their computers have all the same proper-
ties. Thus two objects are equal exactly when all their fields are equal. More importantly two objects that
happen to have the same properties are treated as the same object; thus, there is no way to write the con-
straint that two objects have the same properties but are different objects. This becomes troublesome when
one introduces resource pools and needs to know the number of servers that must be allocated for a par-
ticular configuration. Under some mild assumptions, in our implementation instances of objects always
begin with unique attribute values; they are set to something different only if constraints require it. Giving
each object an extra field of type Any (perhaps called ID) thus resolves this ambiguity.

These design decisions could have been made differently. The object-oriented approach seems a good
fit, and using a declarative language is not a surprising choice. The use of first-order logic could be criti-
cized as overkill, though its expressiveness does allow one to create more complex types of objects, like
lists and trees. The commitment to syntactic equality is probably the most questionable but may be suffi-
cient for the purposes of solving a broad category of configuration management problems.

6.2 Solving OOCSPs by Translation to First-Order Logic

Once a configuration problem has been modeled as an OOCSP, several options are available for building a
configuration that meets the requirements embedded in that OOCSP. We have chosen to find such con-
figurations by first translating the OOCSP into first-order logic sentences and then invoking a resolution-
based theorem prover. To rehash the system’s architecture, the input to the system is an OOCSP. That
input is first translated into first-order logic, which is in turn translated to a form suitable for resolution-
style theorem provers; this form is then optimized for execution in Epilog.

Benefits

Translating an OOCSP into first order logic can be done very quickly, in time linearly proportional to the
number of class definitions. Both this translation and the one from first-order logic to clausal form can be
performed incrementally; each class definition is translated independently of the others. The bulk of the
optimization step can also be run as each class is converted, but the global optimizations can be run only
once the user gives the system a particular query. These optimizations aggressively manipulate the set of
constraints so it is tailored for the query at hand.

Using Epilog as the reasoning engine provides capabilities common to first-order theorem provers. Epi-
log can both produce one answer and all answers. More interestingly it can produce a function that with
each successive call returns a new solution, giving us the ability to walk through as much or as little of the
search space as needed to find the solution we desire. As we will discuss in Section 7, Epilog can at times
find solutions very rapidly.

Limitations

While the translation from an OOCSP into first-order logic requires time linearly proportional to the size
of the OOCSP, our use of a resolution-based theorem prover requires those first-order sentences be con-
verted into clausal form. There may be an exponential increase in the number of sentences when doing
this conversion; thus not only the time but also the space requirements can become problematic.

Another source of discontent is the number of solutions found by Epilog. Many theorem provers treat
basic mathematics, addition, multiplication, inequality, etc., with procedural attachments. This means that
if one of the constraints requires x < 5, the theorem prover will find solutions only in those branches of
the search space where x is bound to a number that happens to be less than five. If x is not assigned a
value the theorem prover will not arbitrarily choose one for it. Our theorem prover, Epilog, has these same
limitations. Thus the version of Epilog we have been discussing will find no solutions to the following
OOCSP, where the target class is main.

class main {

x: int;
satisfy (x < 5);

}

While clearly we should get some solution for this example, we do not want infinitely many solutions.

A more computationally expensive version of Epilog has the ability to return an instance of the target
class and conditions under which that instance is valid. In this case Epilog would return

main(y), y < 5

We have not yet experimented with this capability, but it is the subject of future work.

Yet another problem with using first-order logic is derived from one of the benefits mentioned in Sec-
tion 6.1. It is as expressive as any programming language, i.e. first-order logic is Turing complete. That
means answering queries about a set of first-order sentences is formally undecidable; if the query can be
answered positively, Epilog will halt. If the query cannot be answered positively Epilog may run forever.

This problem is common to all algorithms and systems that soundly and completely answer queries about
first-order sentences. But it seems undecidability may also be a property of OOCSPs; our conversion to
first order logic may not be overcomplicating the problem of finding a solution at all. Theoretically our
approach to solving OOCSPs may turn out to be the right one; however, from a pragmatic standpoint
many OOCSPs will simply be hierarchical representations of CSPs, which means such OOCSPs are de-
cidable.

7. Experimental Results and Future Work
The OOCSP solver architecture is a fairly simple one, and for our running example results are promising,
even at this early stage. Translating the OOCSP with eighteen classes into clausal form requires four to
five minutes and results in about 1150 rules. The optimization process finishes in five seconds and reduces
the rule count to around 620. Those eighteen class definitions and the user request allow for roughly 150
billion solutions; in other words, our example is underconstrained. That said, Epilog finds the first solu-
tion in 0.064 seconds; it can find 39000 solutions in 147 seconds before filling 100 MB of memory, which
is a
rate of 1000 solutions every 3-4 seconds. If we avoid the memory problem by not storing any solutions but
only walking over them, it takes 114 seconds to find those same 39000 answers--the number of answers
returned by Epilog is entirely up to the user. These are results for a single example. More complicated
examples are the subject of future work3.

The limitations discussed in Section 6 present a host of problems: possible undecidability, exponential
blowup when converting to clausal form, inexpressiveness of syntactic equality, incompleteness of
mathematical operators. Undecidability might be dealt with by restricting the constraint language signifi-
cantly. Clausal form is fundamental to using a resolution-based theorem prover; changing it to eliminate
the accompanying conversion cost would require building an entirely new system. Syntactic equality,
while less expressive than we might like, may be sufficient for solving the class of problems we want to
solve. As mentioned in Section 6.2, entirely fixing the incompleteness of mathematical operators may do
more harm than good, and finding a balance between too many solutions and too few will be key to suc-
cess when iterating over solutions.

The system configuration problem, however, is not the only problem to be solved when building an
automatic configuration management service. In order to use one of the configurations the system has
produced, that configuration must be coupled with a workflow—a structured set of activities—that will
bring the configuration on line [16].

Deductive plan synthesis deals with constructing workflows (a.k.a. plans) by carefully writing logical
constraints. One must describe a set of properties that describe the world, a set of actions that change
those properties, a description of the current state of the world, and a description of the desired state of the
world. Once these have been written as logical sentences, one need only ask the proper query to produce a
workflow that achieves the desired state of the world. We have described here John McCarthy’s situation
calculus [17], which has been explored and expanded for 35 years. The convenient part is that an OOCSP
is expressive enough to embed these carefully crafted sentences. Thus one need only write the correct
OOCSP to produce both a configuration and a workflow. We are currently investigating this idea.

Once we have a system that automatically produces a configuration and a workflow, we plan to extend
the system to adjust incrementally to shifting resource demands or possible component failures. In the
utility computing domain, an e-Commerce site might be receiving more traffic than was initially expected;
the configuration must be changed to accommodate more transactions per second. This requires not only a
new configuration to be built (ideally with as few changes as possible), but also a workflow that alters the
current configuration to the new one. And just as in the configuration problem, a customer or system ad-
ministrator might want to choose from among several options.

3 These statistics are for a 500 MHz PowerPC G4 processor with 1 GB of RAM and Epilog running on MCL 5.0.

8. Conclusion
In this paper, we have described an approach to automated configuration management that relies on an
Object-Oriented Constraint Satisfaction Problem (OOCSP) formulation. By posing the problem as an
OOCSP, we can specify system configuration in a declarative form and apply well-understood techniques
to rapidly search for a configuration that meets all specified constraints. We discussed both the benefits
and limitations of this approach.

We are currently evaluating other examples to understand how this approach scales as both the problem
size and the number of constraints on the problem increases but in our initial experiments, we have found
that it is feasible for small to medium sized problems. We are also exploring how our approach can be
used to automatically generate both a configuration that satisfies all given constraints, as well as a work-
flow that can be used to instantiate that configuration.

References
1. HP Utility Data Center (UDC) http://www.hp.com/solutions1/infrastructure/solutions/utilitydata
2. IBM Autonomic Computing http://www.ibm.com/autonomic
3. SUN N1 http://wwws.sun.com/software/solutions/n1/
4. Microsoft DSI http://www.microsoft.com/management/
5. Global Grid Forum http://www.ggf.org
6. Unified Modeling Language (UML) http://www.uml.org/
7. SmartFrog http://www.smartfrog.org/
8. CIM http://www.dmtf.org/standards/cim/
9. A. Sahai, S. Singhal, R. Joshi, V. Machiraju, “Automated Policy-Based Resource Construction in

Utility Environments” Proceedings of the IEEE/IFIP Network Operations and Management Sym-
posium, Seoul, Korea, Apr. 19-23, 2004

10. M. Paltrinieri, “Some Remarks on the Design of Constraint Satisfaction Problems,” Second In-
ternational Workshop on the Principles and Practice of Constraint Programming, pp. 299-311,
1994.

11. Alloy http://sdg.lcs.mit.edu/alloy/
12. J. A. Robinson, “A machine-oriented logic based on the resolution principle,” Journal of the As-

sociation for Computing Machinery, 12:23-41, 1965.
13. M. R. Hall, K. Kumaran, M. Peak, and J. S. Kaminski, “DESIGN: A Generic Configuration

Shell,” Proceedings 3rd International Conference on Industrial & Engineering Applications of
AI and Expert Systems, 1990.

14. S. Mittal and A. Araya. “A Knowledge-Based Framework for Design,” Proceedings of the 5th
AAAI, 1986.

15. C. Petrie, “Context Maintenance,” Proceedings AAAI-91, pp. 288-295, 1991.
16. A. Sahai, S. Singhal, R. Joshi, V. Machiraju, “Automated Generation of Resource Configurations

through Policy,” to appear in Proceedings of the IEEE 5th International Workshop on Policies for
Distributed Systems and Networks, YorkTown Heights, NY, June 7-9, 2004

17. J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of artificial intel-
ligence. Machine Intelligence 4, pp. 463-502, 1969.

Appendix A: Constraint Language Grammar

<implication> ::=
<or> ⇔ <implication> |
<or> ⇐ <implication> |
<or> ⇒ <implication> |
<or>

<or> :=

<and> ∨ <or> |

<and>

<and> :=

<neg> ∧ <and> |
<neg>

<neg> := ¬ <atom> | <atom>
<atom> := <simple-atom> | <class-atom>
<simple-atom> :=

<term> == <term> |
<term> < <term> |
<term> > <term>

<class-atom> := <class-name>(<term>, . . . ,<term>)

<term> := <dot-term> | <simple-term>
<dot-term> := <dot-term>.<field-name> | <variable>
<simple-term> :=

<simple-term><mathematical-operator><simple-term> |
<variable> |
<atomic-symbol>

<variable> := <lower case symbol from end of alphabet or declared variable>
<field-name> := <atomic-symbol>
<mathematical-operator> := +| - | * | /

