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As two of the most important entanglement measures—the entanglement of formation and the
entanglement of distillation—have so far been limited to bipartite settings, the study of other en-
tanglement measures for multipartite systems appears necessary. Here, connections between two
other entanglement measures—the relative entropy of entanglement and the geometric measure of
entanglement—are investigated. It is found that for arbitrary pure states the latter gives rise to
a lower bound on the former. For certain pure states, some bipartite and some multipartite, this
lower bound is saturated, and thus their relative entropy of entanglement can be found analytically
in terms of their known geometric measure of entanglement. For certain mixed states, upper bounds
on the relative entropy of entanglement are also established. Numerical evidence strongly suggests
that these upper bounds are tight, i.e., they are actually the relative entropy of entanglement.

PACS numbers:

I. INTRODUCTION

Entanglement has been identified as a resource central to much of quantum information processing [1]. To date,
progress in the quantification of entanglement for mixed states has resided primarily in the domain of bipartite
systems [2]. For multipartite systems in pure and mixed states the characterziation and quantification of entanglement
presents even greater challenges. Even for multipartite pure states it is not clear whether there exists a finite minimal
reversible entanglement generating set (MREGS) [3] and, if it exists, what the set is. This complicates the task of
extending measures such as entanglement of distillation [4] and formation [5, 6] to multipartite systems [7]. Moreover,
the characterization of multipartite entanglement remains incomplete.
On the other hand, quantifying multipartite entanglement via other measures, such as relative entropy of entangle-

ment [7, 8], is still a challenging task, even for pure states. One reason for the difficulty is the absence, in general, of
Schmidt decompositions for multipartite pure states [9]. This implies that for multipartite pure states the entropies of
the reduced density matrices can differ, in contrast to bipartite pure states, as the following example shows. Consider
a three-qubit pure state |ψ〉ABC ≡ α|001〉+β|010〉+γ|100〉, where |α|2+ |β|2+ |γ|2 = 1. The reduced density matrices
for parties A, B, and C are, respectively,

ρA = (|α|2 + |β|2)|0〉〈0|+ |γ|2|1〉〈1|, (1a)

ρB = (|α|2 + |γ|2)|0〉〈0|+ |β|2|1〉〈1|, (1b)

ρC = (|γ|2 + |β|2)|0〉〈0|+ |α|2|1〉〈1|, (1c)

which, in general, have different entropies. Thus, for a multipartite pure state the entropy of the reduced density matrix
does not give a consistent entanglement measure. However, even in the case in which all parties have the identical
entropy, e.g., α = β = γ = 1/

√
3 [10], it is in general nontrivial to obtain the relative entropy of entanglement for

the state. More generally, for pure multipartite states, it is not yet known how to obtain their relative entropy of
entanglement analytically. The situation is even worse for mixed multipartite states.
Recently, a multipartite entanglement measure based on the geometry of Hilbert space has been proposed [11–13].

For pure states, this geometric measure of entanglement depends on the maximal overlap between the entangled state
and unentangled states, and is easy to compute numerically. The measure has been applied to several bipartite and
multipartite pure and mixed states [12, 13], including two distinct multipartite bound entangled states [14]. In the
present paper, we explore connections between this measure and the relative entropy of entanglement. For certain
pure states, some bipartite and some multipartite, this lower bound is saturated, and thus their relative entropy of
entanglement can be found analytically, in terms of their known geometric measure of entanglement. For certain
mixed states, upper bounds on the relative entropy of entanglement are also established. Numerical evidence strongly
suggests that these upper bounds are tight, i.e., they are actually the relative entropy of entanglement. These results,
although not general enough to solve the problem of calculating the relative entropy of entanglement for arbitrary
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multipartite states, may offer some insight into, and serve as a testbed for, future analytic progress related to the
relative entropy of entanglement.
The structure of the present paper is as follows. In Sec. II we review the two entanglement measures considered in

the paper: the relative entropy of entanglement and the geometric measure of entanglement. In Sec. III we explore
connections between the two, in both pure- and mixed-state settings. Examples are provided in which bounds and
exact values of the relative entropy of entanglement are obtained. In Sec. IV we give some concluding remarks.

II. ENTANGLEMENT MEASURES

In this section we briefly review the two measures considered in the present paper: the relative entropy of entanglement
and the geometric measure of entanglement.

A. Relative entropy of entanglement

The relative entropy S(ρ||σ) between two states ρ and σ is defined via

S(ρ||σ) ≡ Tr (ρ log2 ρ− ρ log2 σ) , (2)

which is evidently not symmetric under exchange of ρ and σ, and is non-negative, i.e., S(ρ||σ) ≥ 0. The relative
entropy of entanglement (RE) for a mixed state ρ is defined to be the minimal relative entropy of ρ over the set of
separable mixed states [8, 22]:

ER(ρ) ≡ min
σ∈D

S(ρ||σ) = min
σ∈D

Tr (ρ log2 ρ− ρ log2 σ) , (3)

where D denotes the set of all separable states.
In general, the task of finding the RE for arbitrary states ρ involves a minimization over all separable states, and

this renders the computation of the RE very difficult. For bipartite pure states, the RE is equal to entanglements
of formation and of distillation. But, despite recent progress [15], for mixed states—even in the simplest setting of
two qubits—no analog of Wootters’ formula [6] for the entanglement of formation has been found. Things are even
worse in multipartite settings. Even for pure states, there has not been a systematic method for computing relative
entropies of entanglement. It is thus worthwhile seeking cases in which one can explicitly obtain an expression for the
RE. A trivial case arises when there exists a Schmidt decomposition for a multipartite pure state: in this case, the
RE is the usual expression

−
∑

i

α2i log2 α
2
i , (4)

where the αi’s are Schmidt coefficients (with
∑
i α
2
i = 1). We shall see that there exist cases in which the RE can be

determined analytically, even though there is no Schmidt decomposition.
We remark that an alternative definition of RE is to replace the set of separable states by the set of postive partial

transpose (PPT) states. The RE thus defined, as well as its regularized version, gives a tighter bound on distillable
entanglement. There has been important progress in calculating the RE (and its regularized version) with respect to
PPT states for certain bipartite mixed states; see Refs. [16] for more detailed discussions. For multipartite settings
one could also use this definition, and define the set of states to optimize over to be the set of states that are PPT
with respect to all bipartite partitionings. However, we shall use the first definition, i.e., optimization over the set of
completely separable states, throughout the discussion of the present paper.

B. Geometric measure of entanglement

We continue by briefly reviewing the formulation of this measure in both pure-state and mixed-state settings. Let
us start with a multipartite system comprising n parts, each of which can have a distinct Hilbert space. Consider a

general n-partite pure state (expanded in the local bases {|e(i)pi }):

|ψ〉 =
∑

p1···pn

χp1p2···pn
|e(1)p1 e

(2)
p2
· · · e(n)pn

〉. (5)
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As shown in Ref. [13], the closest separable pure state,

|φ〉 ≡
n
⊗
i=1
|φ(i)〉 =

n
⊗
i=1

(∑

pi

c(i)pi
|e(i)pi

〉
)
, (6)

satisfies the stationarity conditions

∑

p1···p̂i···pn

χ∗p1p2···pn
c(1)p1 · · · ĉ

(i)
pi · · · c(n)pn

= Λ c(i)pi

∗
, (7a)

∑

p1···p̂i···pn

χp1p2···pn
c(1)p1

∗ · · · ĉ(i)pi

∗
· · · c(n)pn

∗
= Λ c(i)pi

, (7b)

in which the eigenvalues Λ are associated with the Lagrange multiplier enforcing the constraint 〈φ|φ〉=1, and lie in
[−1, 1], and the symbol ̂ denotes exclusion. Moreover, the spectrum of Λ’s can be interpreted as the cosine of the
angle between |ψ〉 and |φ〉; the largest, Λmax (i.e. cos θmin with the smallest angle θmin), which we call the entanglement
eigenvalue, corresponds to the closest separable state, and is the maximal overlap with unentangled states:

Λmax(|ψ〉) = max
φ
|〈φ|ψ〉|, (8)

where |φ〉 is an arbitrary separable pure state. In Ref. [13], the particular form Esin2 ≡ 1−Λ2max(|ψ〉) = sin2 θmin was
defined to be the geometric measure of entanglement (GME) for any pure state |ψ〉. Here, we shall be concerned with
the related quantity Elog2(ψ) ≡ −2 log2 Λmax(|ψ〉), which we shall show to be a lower bound on the relative entropy
of entanglement for |ψ〉. Although this quantity is not, as we shall see later, an entanglement monotone for mixed
states, it is a good measure of pure-state entanglement.
Given the definition of entanglement for pure states just formulated, the extension to mixed states ρ can be built

upon pure states via the convex hull construction (indicated by “co”), as was done for the entanglement of formation;
see Ref. [6]. The essence is a minimization over all decompositions ρ =

∑
i pi |ψi〉〈ψi| into pure states:

E(ρ) ≡ (coEpure)(ρ) ≡ min
{pi,ψi}

∑
i
piEpure(|ψi〉). (9)

This convex hull construction ensures that the measure gives zero for separable states; however, in general it also
complicates the task of determining mixed-state entanglement.

Illustrative examples: We consider several examples involving symmetric states, mostly restricting our attention to
n-qubit systems. First, one can classify permutation-invariant pure states, as follows:

|S(n, k)〉 ≡
√
k!(n− k)!

n!

∑

Permutations

P| 0 · · · 0︸ ︷︷ ︸
k

1 · · · 1︸ ︷︷ ︸
n−k

〉. (10)

As the amplitudes are all positive, one can assume that the closest separable (equivalently, Hartree) state is of the
form

|φ〉 =
(√
p |0〉+

√
1− p |1〉

)⊗n
, (11)

for which the maximal overlap (w.r.t. p) gives the entanglement eigenvalue for |S(n, k)〉:

Λmax(n, k) =

√
n!

k!(n−k)!

(
k

n

) k
2
(
n− k
n

)n−k
2

. (12)

More generally, for n parties each a (d+ 1)-level system, the state

|S(n; {k})〉 ≡
√
k0!k1! · · · kd!

n!

∑

Permutations

P | 0 . . . 0︸ ︷︷ ︸
k0

1 . . . 1︸ ︷︷ ︸
k1

. . . d . . . d︸ ︷︷ ︸
kd

〉 (13)

has the entanglement eigenvalue

Λmax(n; {k}) =
√

n!∏
i(ki!)

d∏

i=0

(
ki
n

) ki
2

. (14)
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Now consider the totally antisymmetric state |Detn〉, defined via

|Detn〉 ≡
1√
n!

n∑

i1,...,in=1

εi1,...,in |i1, . . . , in〉. (15)

It has been shown [17] that Λ2max = 1/n!. The generalization of the antisymmetric state to the n = p dp-partite
determinant state is via [17]

φ(1) = (0, 0, . . . , 0, 0),

φ(2) = (0, 0, . . . , 0, 1),

...

φ(dp − 1) = (d− 1, d− 1, . . . , d− 1, d− 2),
φ(dp) = (d− 1, d− 1, . . . , d− 1, d− 1),

and

|Detn,d〉 ≡
1√
(dp!)

∑

i1,...,idp

εi1,...,idp |φ(i1), . . . , φ(idp)〉. (16)

In this case, it can be shown that Λ2max = 1/(d
p)!.

Although the above states were discussed in terms of the GME [13], we shall, in the following section, show the
rather surprising fact that the RE of these example states, is given by the corresponding expression: −2 log2 Λmax.

III. CONNECTION BETWEEN THE TWO MEASURES

In bipartite systems, due to the existence of Schmidt decompositions, the relative entropy of entanglement of a pure
state is simply the von Neumann entropy of its reduced density matrix. However, for multipartite systems there is,
in general, no such decomposition, and how to calculate the relative entropy of entanglement for an arbitrary pure
state remains an open question. We now connect the relative entropy of entanglement to the geometric measure
of entanglement for arbitrary pure states by giving a lower bound on the former in terms of the latter or, more
specifically, via the entanglement eigenvalue.

A. Pure states: lower bound on relative entropy of entanglement

Let us begin with the following theorem:

Theorem 1. For any pure state |ψ〉 with entanglement eigenvalue Λmax(ψ) the quantity −2 log2 Λmax(ψ) is a lower
bound on the relative entropy of entanglement of |ψ〉, i.e.,

ER(|ψ〉〈ψ|) ≥ −2 log2 Λmax(ψ). (17)

Proof : From the definition (3) of the relative entropy of entanglement we have, for a pure state |ψ〉,

ER(|ψ〉〈ψ|) = min
σ∈D

−〈ψ| log2 σ|ψ〉 = −max
σ∈D

〈ψ| log2 σ|ψ〉. (18)

Using the concavity of the log function, we have

〈ψ| log2 σ|ψ〉 ≤ log2(〈ψ|σ|ψ〉) (19)

and, furthermore,

max
σ∈D

〈ψ| log2 σ|ψ〉 ≤ max
σ∈D

log2(〈ψ|σ|ψ〉), (20)

although the σ’s maximizing the left- and right-hand sides are not necessarily identical. We then conclude that

ER(|ψ〉〈ψ|) ≥ −max
σ∈D

log2(〈ψ|σ|ψ〉). (21)
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As any σ ∈ D can be expanded as σ =∑i pi|φi〉〈φi|, where |φi〉’s are separable pure states, one has

〈ψ|σ|ψ〉 =
∑

i

pi|〈φi|ψ〉|2 ≤ Λ2max(ψ), (22)

and hence we arrive at the sought result

ER(|ψ〉〈ψ|) ≥ −2 log2 Λmax(ψ). (23)

We wish to point out that such an inequality was previously established and exploited in Refs. [18].
When does the inequality becomes an equality? The demand that Eq. (19) hold as an equality implies that σ

(un-normalized) can be decomposed into either (a)

σ =
∑

i

|i〉〈i|, (24a)

where {|i〉} are mutually orthogonal but not orthogonal to |ψ〉, or (b)

σ = |ψ〉〈ψ|+ τ⊥, (24b)

where τ⊥ (either pure or mixed) is orthogonal to ψ, i.e., 〈ψ|τ⊥|ψ〉 = 0. However, the separable σ that has either
property is not necessarily the one that maximizes both sides of the inequality (20), unless |ψ〉 (and hence σ) has high
symmetry. On the other hand, a corollary arises from Thereom 1 which says that for any multipartite pure state |ψ〉,
if one can find a separable mixed state σ such that S(ρ||σ)|ρ=|ψ〉〈ψ| = −2 log2 Λmax

(
|ψ〉
)
then ER = −2 log2 Λmax

(
|ψ〉
)
.

This result follows directly from the fact that when the lower bound on ER given in Eq. (17) equals an upper bound,
the relative entropy of entanglement is immediate. In all the examples we shall consider for which this lower bound
is saturated, it turns out that

σ∗ ≡
∑

i

pi |φi〉〈φi| (25)

is a closest separable mixed state, in which {|φi〉} are separable pure states closest to |ψ〉. (The distribution pi is
uniform, and can be either discrete or continuous, and {|φi〉} are not necessarily mutually orthogonal.)
We now examine several illustrative states in the light of the above corollary, thus obtaining ER for each of them.

We begin with the permutation-invariant states |S(n, k)〉 of Eq. (10), for which Λmax was given in Eq. (12). The
above theorem guarantees that ER

(
|S(n, k)〉

)
≥ −2 log2 Λmax(n, k). To find an upper bound we construct a separable

mixed state

σ∗ ≡
∫
dφ

2π
|ξ(φ)〉〈ξ(φ)|, (26a)

|ξ(φ)〉 ≡
(√

p|0〉+ eiφ
√
1− p|1〉

)⊗n
, (26b)

with p chosen to maximize ||〈ξ|S(n, k)〉|| =
√
Cnk p

k(1− p)n−k, which gives p = k/n. Direct evaluation then gives

σ∗ =
n∑

k=0

Cnk p
k(1− p)(n−k)|S(n, k)〉〈S(n, k)|, (27)

and S(ρ||σ) = −2 log2 Λmax(n, k), where ρ = |S(n, k)〉〈S(n, k)| and Λmax(n, k) is given in Eq. (12). The upper and
lower bounds on ER coincide, and hence we have that

ER
(
|S(n, k)〉

)
= −2 log2 Λmax(n, k). (28)

The closest separable mixed state σ∗ belongs to the case (b), i.e., Eq. (24b). Similar equalities can be established
for the generalized permutation-invariant n-party (d + 1)-dit states |S(n, {k})〉 of Eq. (13). We remark that the
entanglements of the symmetric states |S(n, k)〉 (which are also known as Dicke states) have been analyzed via other
approaches; see Ref. [19].
For our next example we consider the totally anti-symmetric states |Detn〉 of Eq. (15). It was shown in Ref. [17]

that for these states Λ2max = 1/n!, and hence it is straightforward to see that each of the n! basis states |i1, . . . , in〉
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is a closest separable pure state. Thus, one can construct a separable mixed state from these separable pure states
[cf. Eq. (25)]:

σ1 ≡
1

n!

∑

i1,...,in

|i1, . . . , in〉〈i1, . . . , in|. (29)

Then, by direct calculation one gets S(ρDetn ||σ1) = log2(n!), which is identical to −2 log2 Λmax, as mentioned above.
As in our previous examples, upper and lower bounds on ER coincide, and hence we have that ER(|Detn〉) = log2(n!).
The closest separable mixed state σ1 belongs to the case (a), i.e., Eq. (24a). Similarly, for the generalized determinant
state (16) one can show that ER = log2(d

p!).
We now focus our attention on three-qubit settings. Of these, the states |S(3, 0)〉 = |000〉 and |S(3, 3)〉 = |111〉 are

not entangled and are, respectively, the components of the the 3-GHZ state: |GHZ〉 ≡
(
|000〉+ |111〉)/

√
2. Although

the GHZ state is not of the form |S(n, k)〉, it has Λmax = 1/
√
2, and two of its closest separable pure states are |000〉

and |111〉 [13]. From these one can construct a separable mixed state

σ2 =
1

2

(
|000〉〈000|+ |111〉〈111|

)
, (30)

From the discussion given after Eq. (23), one concludes that ER(GHZ) = −2 log2 Λmax = 1 and that σ2 is one of the
closest separable mixed states to |GHZ〉. This closest separable mixed state σ2 belongs to the case (a), i.e., Eq. (24a).
With some rewriting, it can also be classified as case (b), i.e.,

σ2 =
1

2
|GHZ〉〈GHZ|+ 1

2
|GHZ−〉〈GHZ−|, (31)

where |GHZ〉 ≡
(
|000〉 − |111〉)/

√
2.

The states

|W〉 ≡ |S(3, 2)〉 =
(
|001〉+ |010〉+ |100〉

)
/
√
3, (32a)

|W̃〉 ≡ |S(3, 1)〉 =
(
|110〉+ |101〉+ |011〉

)
/
√
3, (32b)

are equally entangled, and have Λmax = 2/3 [13]. Again, from the discussion after Eq. (23) we have ER = log2(9/4),
and one of the closest separable mixed states to the W state can be constructed from

σ3 ≡
∫
dφ

2π
|ψ(φ)〉〈ψ(φ)|, with (33)

|ψ(φ)〉 ≡
(√
2/3|0〉+ eiφ

√
1/3|1〉

)⊗3
, (34)

which gives the result

σ3 =
4

9
|W〉〈W|+ 2

9
|W̃〉〈W̃|+ 8

27
|000〉〈000|+ 1

27
|111〉〈111|. (35)

We remark that the mixed state σ3 is not the only closest separable mixed state to the W state; the following state
σ4 is another example (as would be any mixture of σ3 and σ4):

σ4 ≡
1

3

2∑

k=0

|ψ(2πk/3)〉〈ψ(2πk/3)| = 4
9
|W〉〈W|+ 2

9
|W̃〉〈W̃|+ 1

3
|ξ〉〈ξ|, (36a)

where 3|ξ〉 ≡ 2
√
2|000〉+ |111〉. These closest separable mixed states of W state belong to the case (b), i.e., Eq. (24b).

Having obtained RE for W and W̃, it is interesting to examine the RE of the following superposition of the two:
|WW̃(s)〉 ≡ √s |W〉 +

√
1− s |W̃〉. We have not been able to find an analytical result for RE, but we can compare

the analytical expression for −2 log2 Λmax(WW̃(s)) with the numerical evaluation of ER(WW̃(s)), and we do this in
Fig. 1. As we see in this figure, the qualitative behavior of the two functions is similar, but −2 log2 Λmax and ER only
coincide at the two end-points, s = 0 and s = 1.
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FIG. 1: The solid curve represents Elog2
(s) of the pure state

√
s |W〉 +

√
1− s |W̃〉 vs. s. The dots are corresponding relative

entropies of entanglement obtained numerically.

B. Mixed states: upper bound on relative entropy of entanglement

In Ref. [13] the procedure was given to find the geometric measure of entanglement, Esin2 , for the mixed state
comprising symmetric states:

ρ({p}) =
∑

k

pk |S(n, k)〉〈S(n, k)|. (37)

Here, we focus instead on the quantity Elog2 , but the basic procedure is the same. The first step is to find the
entanglement eigenvalue Λn({q}) for the pure state

∑

k

√
qk |S(n, k)〉, (38)

thus arriving at the quantity

E({q}) ≡ −2 log2 Λn({q}). (39)

Then the quantity Elog2 for the mixed state (37) is actually the convex hull of the expression (39):

Elog2 (ρ({p})) = co E({p}). (40)

This prompts us to ask the question: Can we find RE for the mixture of |S(n, k)〉 in Eq. (37)? To answer it, we
shall first construct an upper bound to RE, and then compare this bound with the numerically evaluated RE. To
accomplish the first step, bearing in mind the fact that any separable mixed state will yield an upper bound, we
consider the state formed by mixing the separable pure states |ξ(θ, φ)〉 [cf. Eq. (27)]:

σ(θ) =

∫
dφ

2π
|ξ(θ, φ)〉〈ξ(θ, φ)| =

n∑

k=0

Cnk cos
2k θ sin2(n−k) θ|S(n, k)〉〈S(n, k)|, (41)

where

|ξ(θ, φ)〉 ≡
(
cos θ|0〉+ eiφ sin θ|1〉

)⊗n
. (42)

We then minimize the relative entropy between ρ({p}) and σ(θ),

S (ρ({p})||σ(θ)) =
∑

k

pk log
pk

Cnk cos
2k θ sin2(n−k) θ

, (43)

with respect to θ, obtaining the stationarity condition

tan2 θ ≡
∑
k pk (n− k)∑

pk k
. (44)
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Due to the convexity of the relative entropy,

S

(∑

i

qiρi‖
∑

i

qiσi

)
≤
∑

i

qiS(ρi||σi), (45)

we can further tighten the expression of the relative entropy by taking its convex hull. (Via the convexification process,
i.e., the convex hull construction, the corresponding separable state can also be obtained.) Therefore, we arrive at an
upper bound for the relative entropy of entanglement of the mixed state ρ({p}):

ER (ρ({p})) ≤ coF ({p}), (46)

where

F ({p}) ≡
∑

k

pk log2
pk

Cnk cos
2k θ sin2(n−k) θ

=
∑

k

pk log2
pk n

n

Cnkα
k(n− α)n−k , (47)

where the angle θ satisfies Eq. (44), Cnk ≡ n!/
(
k!(n− k)!

)
, and α ≡∑k pk k.

Having established an upper bound for RE for the state ρ({p}), we now make the restriction to mixtures of two
distinct n-qubit states |S(n, k1)〉 and |S(n, k2)〉 (with k1 6= k2):

ρn;k1,k2(s) ≡ s|S(n, k1)〉〈S(n, k1)|+ (1− s)|S(n, k2)〉〈S(n, k2)|. (48)

One trivial example is ρn;0,n(s), which is obviously unentangled as it is the mixture of two separable pure states |0⊗n〉
and |1⊗n〉. Other mixtures are generally entangled, except possibly at the end-points s = 0 or s = 1 when the mixture
contains either |S(n, 0)〉 or |S(n, n)〉. We first investigate the two-qubit (i.e. n = 2) case. Besides the trivial mixture,
ρ2;0,2, there is only one inequivalent mixture, ρ2;0,1(s) [which is equivalent to ρ2;2,1(s)], which is—up to local basis
change—the so-called maximally entangled mixed state [20, 21] (for a certain range of s)

ρ2;0,1 = s |11〉〈11|+ (1− s)|Ψ+〉〈Ψ+|, (49)

where |Ψ+〉 ≡ (|01〉+ 10)/
√
2. The function F for this state [denoted by F2;0,1(s)] is

F2;0,1(s) = s log2
4s

(1 + s)2
+ (1− s) log2

2

1 + s
, (50)

which is convex in s. It is exactly the expression for the relative entropy of entanglement for the state ρ2;0,1 found by
Vedral and Plenio [22] (see their Eq. (56) with λ replaced by 1− s).
For n = 3 there are three other inequivalent mixtures: ρ3;0,1(s) [equivalent to ρ3;3,2(s)], ρ3;0,2(s) [to ρ3;3,1(s)], and

ρ3;1,2(s) [to ρ3;2,1(s)]. In Fig. 2 we compare the function F in Eq. (47), its convex hull coF , and numerical values
of ER obtained using the general scheme described in Ref. [22] extended beyond the two-qubit case. The agreement
between coF and the numerical values of ER appears to be exact.
For n = 4 there are five inequivalent nontrivial mixtures: ρ4;0,1(s), ρ4;0,2(s), ρ4;0,3(s), ρ4;1,2(s), and ρ4;1,3(s). In

Figs. 3 and 4 we again compare the function F in Eq. (47), its convex hull coF , and numerical values of ER. Again
the agreement between coF and the numerical values of ER appears to be exact.
From these agreements, we are led to the following conjecture:

Conjecture 1: The relative entropy of entanglement ER (ρ({p})) for the mixed states ρ({p}) is given exactly by
coF ({p}).
For the states that we have just considered, we now pause to give the formulas for ER suggested by the conjecture.

For the three-qubit mixed state ρ3;2,1(s), its conjectured ER is

s log2
9s

(1 + s)2(2− s) + (1− s) log2
9(1− s)

(2− s)2(1 + s) . (51a)

For ρ3;0,1(s), it is

s log2
27s

(2 + s)3
+ (1− s) log2

9

(2 + s)2
. (51b)

For ρ4;0,1(s), it is

s log2
256s

(3 + s)4
+ (1− s) log2

64

(3 + s)3
. (52a)
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FIG. 2: Comparison of F (solid curve), coF (convexification indicated by dashed line) and the numerical value of ER (dots)
for the states ρ3;0,1(s), ρ3;0,2(s), and ρ3;1,2(s) (from top to bottom). Note that the log function is implicitly base-2.
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FIG. 3: Comparison of F , its convex hull, and the numerical value of ER for the state ρ4;0,3(s). Upper panel shows the whole
range s ∈ [0, 1], whereas the lower panel shows a blow-up of the range s ∈ [0, 0.01].
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FIG. 4: Comparison of F , its convex hull, and the numerical value of ER for the states ρ4;0,1(s), ρ4;0,2(s), ρ4;1,2(s), and ρ4;1,3(s)
(from top to bottom).

For ρ4;1,2(s), it is

s log2
64s

(2−s)(2+s)3 + (1−s) log2
128(1− s)

3(2−s)2(2+s)2 . (52b)

For ρ4;1,3(s), it is

s log2
64s

(3−2s)(1+2s)3 + (1−s) log2
64(1− s)

(3−2s)3(1+2s) . (52c)

For states such as ρ3;0,2, ρ4;0,2, and ρ4;0,3, convexifications (i.e. convex hull constructions) are needed; see Figs. 2, 3,
and 4. In Fig. 5 we give an example of a seven-qubit state, viz., ρ7;2,5(s).
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FIG. 5: The function F (solid curve) and its convex hull (dashed line indicates convexification) for the seven-qubit mixed state
ρ7;2,5(s).

Although we have not been able to prove our conjecture, we have observed some supporting evidence, in addition to
the numerical evidence presented above. We begin by noting that the states ρ({p}) are invariant under the projection

P : ρ→
∫
dφ

2π
U(φ)⊗nρU(φ)†⊗n (53)

with U(φ)
{
|0〉, |1〉

}
→
{
|0〉, e−iφ|1〉

}
. Vollbrecht and Werner [23] have shown that in order to find the closest separable

mixed state for a state that is invariant under projections such as P, it is only necessary to search within the separable
states that are also invariant under the projection. We can further reduce the set of separable states to be searched
by invoking another symmetry property possessed by ρ({p}): these states are also, by construction, invariant under
permutations of all parties. Let us denote by Πi one of the permutations of parties, and by Πi(ρ) the state obtained
from ρ by permuting the parties under Πi. We now show that the set of separable states to be searched can be reduced
to the separable states that are invariant under the permutations. To see this, suppose that ρ is a mixed state in the
family (37), and that σ∗ is one of the closest separable states to ρ, i.e.,

ER(ρ) ≡ min
σ∈D

S(ρ||σ) = S(ρ||σ∗). (54)

As ρ is invariant under all Πi, we have

ER(ρ) =
1

NΠ

∑

i

S
(
ρ
∥∥Πi(σ∗)

)
, (55)

where NΠ is the number of permutations. By using the convexity of the relative entropy we have

ER(ρ) ≥ S

(
ρ
∥∥[∑

i

Πi(σ
∗)/NΠ

]
)
. (56)

However, because of the extremal property, Eq. (54), the inequality must be saturated, as the left-hand side is already
minimal. This shows that

σ∗∗ ≡ 1

NΠ

∑

i

Πi(σ
∗) (57)

also a closest separable mixed state to ρ, and is manifestly invariant under all permutations. Thus, we only need to
search within this restricted family of separable states.
It is not difficult to see that the set DS of all separable mixed states that are diagonal in the basis of {|S(n, k)〉}

can be constructed from a convex mixture of separable states in Eq. (41). That is, for any σs ∈ DS we have a
decomposition

σs =
∑

i

ti σ(θi), (58)

where ti ≥ 0,
∑
i ti = 1, and σ(θi) is of the form (41). This is because the separability of the states (37) implies that

there exists a decomposition into pure states such that each pure state is a separable state. Furthermore, because
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FIG. 6: Comparision of E (dashed curve) and F (solid curve) for the eleven-qubit mixed state ρ11;2,6(s).

{|S(n, k)〉} are eigenstates of ρ({p}), the most general form of the pure state in its decomposition is
∑

k

√
qk e

iφk |S(n, k)〉. (59)

This pure state is separable if and only if it is of the form (42), up to an overall irrelevant phase. As ρ({p}) is invariant
under the projection P (53), a pure state in Eq. (42) will be projected to the mixed state in Eq. (41) under P. Thus,
every separable state that is diagonal in {|S(n, k)〉} basis can be expressed in the form (58).
Hence, our conjecture (46) ensures (via any necessary convexification) that it is at least the minimum (of the relative

entropy) when the separable mixed states are restricted to DS . However, in order to prove the conjecture, one would
still need to show that the expression is also the minimum when the restirction to DS is relaxed.
We remark that our conjecture is consistent with the results of Ishizaka [24], in that our conjectured σ∗ satisfies

the condition that [ρ, σ∗] = 0 and that σ∗ has the same reduction as ρ for every party. Furthermore, suppose σ∗

(diagonal in the basis {|S(n, k)〉}) represents the separable state that gives the conjectured value of RE:

σ∗ =
∑

k

rk|S(n, k)〉〈S(n, k)|, (60)

where the r’s can be obtained by finding the convex hull of the function F in Eq. (47). Now consider any separable
state τ in the Hilbert space orthogonal to the subspace spanned by {S(n, k)}. We need to show that the separable
state σ(x) ≡ xσ∗ + (1 − x)τ , for any x ∈ [0, 1], gives greater relative entropy with ρ({p}) in Eq. (37) than σ∗ does
with ρ({p}), i.e.,

S (ρ({p})‖σ(x)) ≥ S (ρ({p})‖σ∗) . (61)

Writing out the expression explicitly, we have that

S (ρ({p})‖σ(x)) =
∑

k

pk log
pk
x rk

≥
∑

k

pk log
pk
rk
= S (ρ({p})‖σ∗) . (62)

Note that τ gives no contribution in the relative entropy, as it is orthogonal to ρ({p}), and that we have not used
the fact that τ is separable. But to prove Conjecture 1 we need to show that Eq. (61) holds if separable τ is not
orthogonal to the subspace spanned by {S(n, k)}.
Recall that for pure states we found the inequality Elog2 ≤ ER. Does this inequality hold for mixed states? We

do not know the complete answer to this question, but for the mixed state ρ({p}) we shall at least find that this
inequality would hold if Conjecture 1 holds. To see this, we first establish that E({q}) is a lower bound on F ({q});
see the example in Fig. 6. The proof is as follows. Recall that

E({p}) = −2 log2

[
max
θ

∑

k

√
pk
√
Cnk cos

k θ sinn−k θ

]
. (63a)

By the concavity of log, we then have

−2 log2

[∑

k

√
pk
√
Cnk cos

k θ sinn−k θ

]
≤
∑

k

pk log2
pk

Cnk cos
2k θ sin2(n−k) θ

. (63b)
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Hence

min
θ
−2 log2

[∑

k

√
pk
√
Cnk cos

k θ sinn−k θ

]
≤ min

θ

∑

k

pk log2
pk

Cnk cos
2k θ sin2(n−k) θ

, (63c)

or equivalently

E({p}) ≤ F ({p}). (63d)

If Conjecture 1 is correct then by taking the convex hull of both sides of this inequality we would have

Elog2 ≤ ER (63e)

for the family of states (37). Notice that we have also shown that this relation holds for arbitrary pure states. It
would be interesting to know whether it also holds for arbitrary mixed states.

IV. CONCLUDING REMARKS

We have provided a lower bound on the relative entropy of entanglement for arbitrary multipartite pure states in
terms of their geometric measure of entanglement. For several families of pure states we have shown that the bound
is in fact saturated, and thus provides the exact value of the relative entropy of entanglement. For mixtures of certain
permutation-invariant states we have conjectured analytic expressions for the relative entropy of entanglement.
It is possible that our results on the relative entropy of entanglement might be applicable to the checking of

the consistency of some equalities and inequalities [7, 25, 26] regarding minimal reversible entanglement generating
sets (MREGSs). Consider, e.g., the particular family of n-qubit pure states {|S(n, k)〉}, the relative entropy of
entanglement of which we have given in Eq. (28). Now, if we trace over one party we get a mixed (n− 1)-qubit state:

Tr1|S(n, k)〉〈S(n, k)| =
n−k
n
|S(n−1, k)〉〈S(n−1, k)|+ k

n
|S(n−1, k−1)〉〈S(n−1, k−1)|. (64)

We have also given a conjecture for the relative entropy of entanglement for this mixed state. If we trace over m
parties, the reduced mixed state would be a mixture of {|S(n−m, q)〉} [with q ≤ (n−m)], and again we have given
a conjecture for its relative entropy of entanglement. For example, if we start with |S(4, 1)〉, and trace over one party
and then another, we get the sequence:

|S(4, 1)〉 → ρ3;0,1(1/4)→ ρ2;0,1(1/2), (65)

for which we have given the corresponding relative entropies of entanglement in Eqs. (28), (51b) and (50). (To be
precise, the second formula is a conjecture; the others are proven.) The afore-mentioned equalities and inequalities
concerning MREGS usually involve only the von Neumann entropy and the regularized (i.e. asymptotic) relative
entropy of entanglement of the pure state and its reduced density matrices. The regularized relative entropy of
entanglement is defined as

E∞R (ρ) ≡ lim
n→∞

1

n
ER(ρ

⊗n). (66)

The calculation of the regularized relative entropy of entanglement is, in general, much more difficult than for the
non-regularized case, and the (in)equalities involving the regularized relative entropy of entanglement are thus difficult
to check. Nevertheless, it is known that E∞R ≤ ER, so we can check their weaker forms by replacing E

∞
R by ER, and

the corresponding (in)equalities by weaker inequalities.
Plenio and Vedral [7] have derived a lower bound on the RE of a tripartite pure state ρABC = |ψ〉〈ψ| in terms of

the the entropies and RE’s of the reduced states of two parties:

max{ER(ρAB) + S(ρAB), ER(ρAC) + S(ρAC), ER(ρBC) + S(ρBC)} ≤ ER(ρABC), (67)

where ρAB = TrC(ρABC) (and similarly for ρAC and ρBC) and S(ρ) ≡ −Trρ log2 ρ is the von Neumann entropy. They
have further found that this lower bound is saturated by |GHZ〉 and |W〉. This raises an interesting question [27]:
is the above lower bound (for n-partite pure states) saturated by the states that saturate the lower bound Elog2 =
−2 log2 Λmax(ψ) ≤ ER(ψ)? Numerical tests seem to suggest that the Plenio-Vedral bound is tighter than Elog2 . If this
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FIG. 7: The function f(4, x). It shows the violation of monotone condition (74) when the function is negative.

is the case then all states that saturate the lower bound Elog2 on ER will saturate the Plenio-Vedral bound. Based
on Conjecture 1, we can show that for ρ12...n = |S(n, k)〉〈S(n, k)| the inequality

max
i
{ER(ρ12...̂i...n) + S(ρ12...̂i...n)} ≤ ER(ρ12...n) (68)

is saturated, where ρ12...̂i...n ≡ Tri(ρ12...n) is the reduced density matrix obtained from ρ12...n by tracing out the i-th
party. The proof is as follows. As |S(n, k)〉 is permutation-invariant, there is no need to maximize over all parties,
and we can simply take i = 1, obtaining the reduced state ρn−1;k−1,k(k/n) as in Eq. (64). As the corresponding
function Fn−1;k−1,k(s) of ρn−1;k−1,k(s) is convex for s ∈ [0, 1], we immediately obtain from Conjecture 1 that, for
ρn−1;k−1,k(k/n),

ER (ρn−1;k−1,k(k/n)) = log2

[
Cnk

(
k

n

)k (
n−k
n

)n−k]
+
k

n
log2

k

n
+
n−k
n
log2

n−k
n

(69a)

= ER (|S(n, k)〉)− S (ρn−1;k−1,k(k/n)) . (69b)

Therefore, the bound in Eq. (68) is saturated for ρ12...n = |S(n, k)〉〈S(n, k)|.
A major challenge is to extend the ideas contained in the present Paper from the relative entropy of entanglement

to its regularized version, the latter in fact being of wider interest than the former. The alternative way of defining
the relative entropy via the optimization over PPT states may also been used, in view of the recent progress on the
bipartite regularized relative entropy of entanglement [16].
We now explore the possibility that the geometric measures can provide lower bounds on yet another entanglement

measure—the entanglement of formation. If the relationship ER ≤ EF between the two measures of entanglement—the
relative entropy of entanglement ER and the entanglement of formation EF—should continue to hold for multipartite
states (at least for pure states), and if EF should remain a convex hull construction for mixed states, then we would
be able to construct a lower bound on the entanglement of formation:

Elog2(ρ) ≡ min
pi,ψi

∑

i

piElog2(|ψi〉) ≤ minpi,ψi

∑

i

piER(|ψi〉)

≤ min
pi,ψi

∑

i

piEF(|ψi〉) ≡ EF(ρ), (70)

where {pi} and {ψi} are such that ρ =
∑
i pi|ψi〉〈ψi|. Thus, Elog2(ρ) is a lower bound on EF(ρ). By using the

inequality (1− x2) log2 e ≤ −2 log2 x (for 0 ≤ x ≤ 1), one further has has that (log2 e)Esin2(ρ) ≤ Elog2(ρ) ≤ EF(ρ).
We remark that Esin2 has been shown to be an entanglement monotone [12, 13], i.e., it is not increasing under local

operations and classical communication (LOCC). However, Elog2 is not a monotone, as the following example shows.
Consider the bipartite pure state

|ψ〉 ≡ 1√
1 +Nx2

|00〉+ x√
1 +Nx2

(
|11〉+ |22〉+ · · ·+ |NN〉

)
, (71)

with |x| ≤ 1, for which Elog2 = log2(1 +Nx2). Suppose that one party makes the following measurement:

M1 ≡ |0〉〈0|, M2 ≡ |1〉〈1|+ |2〉〈2|+ · · ·+ |N〉〈N |. (72)
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With probability P1 = 1/(1 +Nx
2) the output state becomes |ψ1〉 = |00〉; with probability P2 = Nx2/(1 +Nx2) the

output state becomes |ψ2〉 =
(
|11〉+ |22〉+ · · ·+ |NN〉

)
/
√
N , for which Elog2 = log2N . For Elog2 to be a monotone

it would be necessary that

Elog2(ψ) ≥ P1Elog2(ψ1) + P2Elog2(ψ2). (73)

Putting in the corresponding values for the P ’s and Elog2 ’s, we find that this inequality is equivalent to

f(N,x) ≡ log2(1 +Nx2)−
Nx2

1 +Nx2
log2N ≥ 0. (74)

As this is violated for certain values of x with N > 2, as exemplified in Fig. 7 for the plot of f(4, x), we arrive at the
conclusion that Elog2 is, in general, not a monotone.

Note added. Certain results reported in the present Paper have recently been applied by Vedral [28] to the macroscopic
entanglement of η-paired superconductivity.
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