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We show how to construct a near deterministic CNOT using several single photons sources, linear
optics, photon number resolving quantum non-demolition detectors and feed-forward. This gate
does not require the use of massively entangled states common to other implementations and is
very efficient on resources. Only two ancilla photons are required for the operation of the gate and
these are not destroyed in the conditioning process. The key element of this gate are non-demolition
detectors that use a weak cross Kerr nonlinearity effect to conditionally generate a phase shift on a
coherent probe, if a photon is present in the signal mode. These potential phase shifts can then be
measured using highly efficient homodyne detection.
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In the past few years we have seen the emergence of
single photon optics with polarisation states as a real-
istic path for achieving universal quantum computation.
This started with the pioneering work of Knill, Laflamme
and Milburn [KLM][1] who showed that with only single
photon sources and detectors and linear elements such
as beam-splitters, a near deterministic CNOT gate could
be created, through with the use of significant but poly-
nomial resources. With this architecture for the CNOT
gate and trivial single qubit rotations a universal set of
gates is hence possible and a route forward for creating
large devices can be seen. Since this original work there
has been significant progress both theoretically[2–8] and
experimentally[9–13], with a number of CNOT gates ac-
tually demonstrated.

Much of the theoretical effort has focused on determin-
ing more efficient ways to perform the controlled logic.
The standard model for linear logic uses only[1]:

• Single photon sources,

• Linear optical elements including feed-forward,

• Photon number resolving single photon detectors,

and it has been shown by Knill[6] that the maximum
probability for achieving the nonlinear sign shift (NS)
gate (a component gate within the CNOT gate) that per-
form the transformation c0|0〉 + c1|1〉 + c2|2〉 → c0|0〉 +
c1|1〉− c2|2〉) is 1/2 (and 3/4 for the CNOT gate). While
these upper bounds are not thought to be tight, with the
best success probabilities for the NS (CNOT) gate be-
ing 1/4 (2/27) respectively[1, 5, 14], it does indicate that
near deterministic gates are not possible using only the
above resources and strategy. These gates can be made
efficient using the ”standard” optical teleportation tricks
which require the use of massively entangled resources.
Are there other natural ways to increase the efficient of
these gate operations? Franson et al.[2] showed that if
you can increase your allowed physical resources to in-
clude maximally entangled two photon states, then the
CNOT gate can have its probability of success boosted to

1/4, though this is still far below the 3/4 maximum. Al-
ternatively it is possible to use single photons for the clus-
ter state method of one way quantum computation[7, 8].
This can dramatically decrease the number of single pho-
tons sources required to perform a CNOT gate (from up
to 10000 for KLM logic to 45 for the cluster approaches).
The overhead here in single photon sources is large (but
polynomial and hence still efficient in a sense). Can we
however build near deterministic (or deterministic) linear
optics gates with a low overhead for sources and detectors
by relaxing the constraints in the standard model?

There are several options here: we can change the way
in which we encode our information (from polarisation
encoded single photon qubits) or the mechanism by which
we condition and detect them. There have been schemes
by Yoran and Reznik[15] that encode there information
in both polarisation and which path. This encoding al-
lows a deterministic Bell state measurement but the ba-
sic gate operations are still relatively inefficient. Alter-
natively one could encode the information in coherent
states of light as proposed by Ralph et. al[16]. A key is-
sue here becomes the creation and detection of superpo-
sitions of coherent states. If we want to maintain encod-
ing our information in polarisation states of light, what
else is possible? The main architecture freedom we have
left to change are the single photon detectors. We could
move to nondestructive quantum non-demolition detec-
tors (QND) which would have the potential available of
be able to condition the evolution of our system but
without necessarily destroying the single photons[17, 18].
They can also resolve one photon from a superposition of
zero and two. QND devices are generally based on cross-
Kerr nonlinearities. Historically these reversible nonlin-
earities have been extremely tiny and unsuitable for sin-
gle photon interactions but recently giant Kerr nonlin-
earities have become available with electromagnetically
induced transparency (EIT)[19]. It is currently not clear
whether these nonlinearities are sufficient from the natu-
ral implementation of single photon-single photon quan-
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tum gates, however they can be used for QND detection
where we require a single photon- large coherent beam
interaction. Here the nonlinearity strength needs to be
sufficient only for a small phase shift to be induced onto
a coherent probe beam (which is distinguishable from the
original probe)[20].

Now that we have decided to use QND detection for
linear optical quantum computation we need to investi-
gate its effect on the CNOT gates and this is the key
purpose of this paper. We could investigate each of the
known gates in turn but we will focus on the FRANSON
CNOT gate[21], the reason being that it requires fewer
physical detectors but does require an entangled source.
Also as mentioned above it has naturally a higher prob-
ability of success. We will show that a near determin-
istic CNOT gate can be performed with such QND de-
tectors without destroying the ancilla photons provided
feed-forward is available. More generally we will show
that for a n qubit circuit, the number of single photon
sources requires scales as n+2 where the extra two pho-
tons are required to create the photon Bell pair resource
for the Franson gate[2]. They are however not destroyed
in the computation and are left at the end. This approach
can also be applied to achieve cluster state computing or
computing by measurement alone[7, 8].

Before we begin our detailed discussion, let us first
consider the photon number QND measurement using
a cross Kerr nonlinearity, which has a Hamiltonian of
the form HQND = h̄χa†sasa

†
pap where the signal (probe)

mode has the creation and destruction operators given
by a†s, as (a

†
p, ap) respectively and χ is the strength of the

nonlinearity. If we consider the signal state to have the
form |ψ〉 = c0|0〉s + c1|1〉s with the probe beam initially
in a coherent state |α〉p then the cross-Kerr interaction
causes the combined signal/probe system to evolve as

Uck|ψ〉s|α〉p = eiHQNDt/h̄ [c0|0〉s + c1|1〉s] |α〉p
= c0|0〉s|α〉p + c1|1〉s|αeiθ〉p (1)

where θ = χt with t being the interaction time. We ob-
serve immediately that the Fock state |na〉 is unaffected
by the interaction but the coherent state |αc〉 picks up a
phase shift directly proportional to the number of pho-
tons na in the |na〉 state. For na photons in the signal
mode, the probe beam evolves to |αeinaθ〉p. Assuming
αθ À 1 a measurement of the phase of the probe beam
(via homodyne/heterdyne techniques) projects the sig-
nal mode into a definite number state or superposition
of number states. The requirement αθ À 1 is interesting
as it tells us that a large nonlinearity θ is not absolutely
required to distinguish different |na〉, even for zero, one
and two Fock states. We could have θ small but would
then require α, the amplitude of the probe beam large.
This is entirely possible and means that we can oper-
ate in the regime θ ¿ 1 which is experimentally more
realizable. If this cross-Kerr nonlinearity were going to

be used directly to implement a CPhase/CNOT gate be-
tween single photons then we would require θ = π.

In this Fock state detection model we measure the
phase of the probe beam immediately after it has in-
teracted with the weak cross-Kerr nonlinearity. This is
the regime where the QND detector functions like the
standard single photon detector. However, if we want to
do a more ”generalised” type of measurement between
different signal beams, we could delay the measurement
of the probe beam instead having the probe beam in-
teract with several cross-Kerr nonlinearities where the
signal mode is different in each case. The probe beam
measurement then occurs after all these interactions in
a collective way which could for instance allow a nonde-
structive detection that distinguishes superpositions and
mixtures of the states |HH〉 and |V V 〉 from |HV 〉 and
|V H〉. The key here is that we could have no nett phase
shifts on the |HH〉 and |V V 〉 terms while having a phase
shift on the |HV 〉 and |V H〉 terms. We will call this gen-
eralization a two qubit polarisation parity QND detector

and it is this type of detector that allows us to circumvent
the Knill bounds.

|ψini1

|ψini2

|αi +θ +θ−θ −θ  |XihX|  

Homodyne

FIG. 1: Schematic diagram of a two qubit polarisation QND
detector that distinguishes superpositions and mixtures of the
states |HH〉 and |V V 〉 from |HV 〉 and |V H〉 using several
cross Kerr nonlinearities nonlinearities and a coherent laser
probe beam |α〉. The scheme works by first splitting each
polarisation qubit into a which path qubit; the |H〉 qubit is
transformed to |10〉 while the |V 〉 transforms to |01〉. Thus the
two polarisation encoded qubits can be encoded into four spa-
tial modes, |HH〉 → |1010〉, |HV 〉 → |1001〉, |V H〉 → |0110〉
an |V V 〉 → |0101〉. The action of the first (and fourth) cross
Kerr nonlinearity put a phase shift θ on to the probe beam
only if a photon was present in that mode. The second (and
third) cross Kerr nonlinearity put a phase shift −θ on to the
probe beam only if a photon was present in that mode (it is
not absolutely necessary to include these −θ nonlinearities,
instead the same effect can be achieved by starting with a
pump in the state |αpe

−iθ). After the four nonlinear interac-
tions the which path qubit are converted back to polarisation
encoded qubits. The probe beam only picks up a phase shift
if the states |HV 〉 and/or |V H〉 were present and hence the
appropriate homodyne measurement allows the states |HH〉
and |V V 〉 to be distinguished from |HV 〉 and |V H〉. The
two qubit polarisation QND detector thus acts like a parity
checking device.

Consider two polarisation qubits initially prepared in
the states |Ψ1〉 = c0|H〉a + c1|V 〉a and |Ψ2〉 = d0|H〉b +
d1|V 〉b. These qubits are split individually on polar-
izing beam-splitters (PBS) into spatial modes which
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then interact with cross Kerr nonlinearities as shown
in Figure (1). The action of the PBS’s and cross Kerr
nonlinearities evolve the combined system |Ψ1〉|Ψ2〉|α〉p
will evolve to |ψ〉T = [c0d0|HH〉+ c1d1|V V 〉] |α〉p +
c0d1|HV 〉|αe2iθ〉p + c1d0|V H〉|αe−2iθ〉p. We observe im-
mediately that the |HH〉 and |V V 〉 pick up no phase
shift and remain coherent with respect to each other.
The |HV 〉 and |V H〉 pick up opposite sign phase shift
θ which could allow them to be distinguished by a gen-
eral homodyne/heterodyne measurement. However if we
choose α initially real, then an X homodyne measure-
ment will not allow the states |αe±2iθ〉p to be distin-
guished as |〈X|αe2iθ〉p| = |〈X|αe−2iθ〉p|. More specifi-
cally with α real an X homodyne measurement condi-
tions |ψ〉T to

|ψX〉T = f (X,α) [c0d0|HH〉+ c1d1|V V 〉] (2)

+f (X,αcos2θ)
[

c0d1e
iφ(X)|HV 〉+ c1d0e

−iφ(X)|V H〉
]

where f (x, β) = exp
[

− 1
4 (x− 2β)

2
]

/2
√
π and φ(X) =

αx sin 2θ − α2 sin 4θ(Mod2π). We see that f (X,α) and
f (X,αcos2θ) are two Gaussian curves with the mid point
between the peaks located at X0 = α [1 + cos 2θ] and the
peaks separated by a distance Xd = 2α [1− cos 2θ]. As
long as this difference is large 4αθ2 À 1, then there is
little overlap between these curves. Hence for X > X0

we have

|ψX>X0
〉T ∼ c0d0|HH〉+ c1d1|V V 〉 (3)

while for X < X0

|ψX<X0
〉T ∼ c0d1eiφ(X)|HV 〉+ c1d0e

−iφ(X)|V H〉 (4)

We have used the approximate symbol ∼ in these equa-
tion as there is a small but finite probability that the state
(3) can occur for X < X0. The probability of this error
occurring is given by Perror =

1
2 (1− Erf [Xd/4]) which is

less than 10−5 when the distance Xd ∼ 4αθ2 > 12. This
shows that it is still possible to operate in the regime of
weak cross Kerr nonlinearities, θ ¿ π.

The action of this two mode polarisation non-
demolition parity detector is now very clear; it splits the
even parity terms (3) nearly deterministically from the
odd parity cases (4). This is really the power enabled by
non-demolition measurements and why we can engineer
strong nonlinear interactions using weak cross Kerr ef-
fects. Above we have chosen to call the even parity state
{|HH〉, |V V 〉} and the odd parity states {|HV 〉, |V H〉},
but this is an arbitrary choice primarily dependent on
the form/type of PBS used to convert the polarisation
encoded qubits to which path encoded qubits. Any other
choice is also acceptable and it does not have to be sym-
metric between the two qubits.

It is also interesting to look at the X < X0 solution
given by (4). We observe immediately that this state is

dependent on the measuredX homodyne value and hence
the state is conditioned dependent on our measurement
result X. However simple local rotations using phase
shifters dependent on the measurement result X can be
performed via a feed forward process to transform this
state to c0d1|H〉a|V 〉b + c1d0|V 〉a|H〉b which is indepen-
dent of X. These transformations are very interesting as
it seems possible with the appropriate choice of c0, c1 and
d0, d1 to create arbitrary entangled states near determin-
istically. For instance if we choose d0 = d1 = 1/

√
2, then

our device outputs either the state c0|HH〉 + c1|V V 〉 or
c0|HV 〉+ c1|V H〉. A simple bit flip on the second polar-
isation qubit transforms it into the first. Thus our two
mode parity QND detector can be configured to acts as
a near deterministic entangler (see figure 2). This gate

|ψini1

|ψini2

|αi +θ +θ−θ −θ  |XihX|  

Homodyne

φ(X)σx

|ψouti

  classical  

feedforward

Entangler

}

FIG. 2: Schematic diagram of a two polarisation qubit en-
tangling gate. The basis of the scheme uses the QND-based
parity detector described in Fig (1). If we consider that the
input state of the two polarisation qubit is |HH〉 + |HV 〉 +
|V H〉+|V V 〉 then after the parity gate we have conditioned on
anX homodyne measurement either the state |HH〉+|V V 〉 or

eiφ(X)|HV 〉+e−iφ(X)|V H〉 where φ(X) is a phase shift depen-
dent on the result of the homodyne measurement. A simple
phase shift achieved via classical feed-forward then allows this
second state to be transformed to the first.

allows us to take two separable polarisation qubits and
efficiently entangle them (near deterministically). If each
of our qubits are initially |H〉+|V 〉 then the action of this
entangling gate is to create the maximally entangled state
|HH〉+ |V V 〉. Generally it was thought that strong non-
linearities are required to do this near deterministically,
however our scheme here is using only weak nonlinearities
θ ¿ π. This gate is critical and forms the key element
for our efficient Franson CNOT gate. It can also obvi-
ously be used to generate the maximally entangled state
required as a resource in that gate.

Now let us move our attention to the construction of
the CNOT gate (depicted in Fig 3). This is the ana-
logue of the Franson CNOT gate from [2] but with the
key PBS and 45-PBS replaced with {H,V} and {D =
H + V, D̄ = H − V } two polarisation qubit entangling
gates. Franson’s photon number resolving detectors have
also been replaced with single photon number resolving
QND detectors. Consider an initial state of the form
[c0|H〉c + c1|V 〉c] ⊗ [|HH〉+ |V V 〉] ⊗ [d0|H〉t + d1|V 〉t].
The action of the left hand side entangler evolves the sys-
tem to [c0|HHH〉+ c1|V V V 〉] ⊗ [d0|H〉t + d1|V 〉t]. The
second mode is then split on a 45-PBS and then measured
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FIG. 3: Schematic diagram of a near deterministic CNOT
composed of a Bell state generator, two polarisation qubit
entangling gates (one with PBS in the {H,V} basis and one
with PBS in the {H+V,H-V} basis), feed-forward elements
and four single photon resolving QND detectors.

via a single photon QND detector. The conditioned state
is [c0|HH〉 ± c1|V V 〉]⊗ [d0|H〉t + d1|V 〉t] where the + is
obtained for the photon detection at H + V and − at
H − V . Simple feed-forward[22] for this − case allows a
sign flip so that for both cases we get the resultant state

[c0|HH〉+ c1|V V 〉]⊗ [d0|H〉t + d1|V 〉t] (5)

Now the action of the 45-entangling gate (where the PBS
in the original gate have been replaced with 45-PBS’s)
transforms the state to {c0|H〉 − c1|V 〉} (d0−d1)|D̄, D̄〉+
{c0|H〉+ c1|V 〉} (d0 + d1)|D,D〉. The last mode is now
split on a normal {H,V} PBS and a QND photon num-
ber measurement performed. A bit flip is performed if a
photon is detected in the V mode. The final state from
these interactions and feed forward operations is

c0d0|HH〉+ c0d1|HV 〉+ c1d0|V V 〉+ c1d1|V H〉, (6)

which is the same state obtained by performing a
CNOT operation on the state [c0|H〉c + c1|V 〉c] ⊗
[d0|H〉t + d1|V 〉t]. This shows that our QND-based gates
has performed a near deterministic CNOT operation.
The core element of this gate is the two qubit polarisa-

tion parity QND detector which engineers a two polari-
sation qubit interaction via a strong probe beam. At the
heart of this detector are weak cross-Kerr nonlinearities
that make it possible to distinguish subspaces of basis
states from others which is not possible with convenient
destructive photon counters. It is this that allows us to
exceed the Knill bounds presented in [6]. From a different
perceptive our two mode QND entangling gate is acting
like a polarizing beam-splitter but that does not allow the
photon bunching effects. Without these photon bunching
effects simple feed-forward operations allows our overall
CNOT gate to be made near deterministic. This repre-
sents a huge saving in the physical resources to implement
single photon quantum logic.

The resources required to perform this QND based
CNOT gate as presented are: four single photon sources,
two to encode the control and target qubits and two
to generate the required maximally entangled state, six-
teen weak cross Kerr nonlinearities, 6 coherent light laser

probe beams and homodyne detectors plus basic linear
optics elements to convert polarisation encoded qubits to
spatial coding ones and perform the feed-forward. Two
of these single photons are not consumed in the gate op-
eration and be recycled for further use. This compares
with potentially thousands of single photon sources, de-
tectors and linear optical elements to implement the orig-
inal KLM gate. It is possible to construct this near deter-
ministic CNOT with fewer cross-Kerr nonlinearities (po-
tentially as few as 6) but as a cost of more feed-forward
operations and a larger probe field. Finally we should
discuss the size of the weak cross Kerr nonlinearity re-
quired. Previously we have specified a constraint that
4αθ2 À 1. Thus for realistic pumps with mean pho-
ton number on the order of 109 a weak nonlinearity of
the order of θ = 10−2 could be sufficient. While this is
still a technological challenge it is likely to be achievable
in the near future and really shows the potential power
of weak (but not tiny) cross Kerr nonlinearities. Strong
nonlinearities are not a prerequisite to be able to perform
quantum computation.

To summarize, We have shown in this letter that weak
cross-Kerr nonlinearities can be used to construct near
deterministic CNOT gates with far fewer physical re-
sources than other linear optical schemes. At the core
of the scheme are generalised QND detectors that allow
us one to distinguish subspaces of the basis states, rather
than all the basis states which occurs with the classic
photon counters. The strength of the nonlinearities re-
quired for our gate are orders of magnitude weaker than
those required to perform CNOT gates naturally between
the single photons. Such nonlinearities are potentially
available today using doped optical fibers, cavity QED
and EIT. We hope this work motivates the search for
weak cross Kerr nonlinearities which now have applica-
tions beyond for instance single photon number resolving
detectors.
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