

Sustaining the Integration of Long-Lived Systems with .NET

Rajesh Shenoy, Keith Moore
Imaging Systems Laboratory
HP Laboratories Palo Alto
HPL-2004-133
August 2, 2004*

E-mail: {rajesh.shenoy, keith.moore}@hp.com

.NET, C#, ORB,
IDL, Compact
Framework, Web
Services

The continued evolution of web services infrastructures like .NET
complicates their integration with long- lived devices (such as printers,
cameras, scanners, etc.). The issue is that the lifetime of these devices far
exceed the effective lifetime of the clients and the protocols in vogue
when the devices were deployed. While upgrading device firmware to
track the standards might be theoretically possible, in practice it is not.
This paper presents a novel approach for sustaining the integration of
long- lived systems with .NET applications using a C# application- level
bridge. This approach exploits the inherent stability of the programming
language APIs on the .NET platform, and uses code autogenerators to
minimize the effort to deploy stable protocols on evolving platforms. We
demonstrate the technology by connecting .NET applications resident on
handheld and desktop computers to applications resident on a remote
printer.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2004

Sustaining the Integration of Long-Lived Systems with
.NET

Rajesh Shenoy and Keith Moore

Hewlett-Packard Laboratories, 1501 Page Mill Rd, MS 1203, Palo Alto, CA 94304, USA
{rajesh.shenoy, keith.moore}@hp.com

Abstract. The continued evolution of web services infrastructures like .NET
complicates their integration with long-lived devices (such as printers, cameras,
scanners, etc.). The issue is that the lifetime of these devices far exceed the ef-
fective lifetime of the clients and the protocols in vogue when the devices were
deployed. While upgrading device firmware to track the standards might be
theoretically possible, in practice it is not. This paper presents a novel approach
for sustaining the integration of long-lived systems with .NET applications us-
ing a C# application-level bridge. This approach exploits the inherent stability
of the programming language APIs on the .NET platform, and uses code auto-
generators to minimize the effort to deploy stable protocols on evolving plat-
forms. We demonstrate the technology by connecting .NET applications resi-
dent on handheld and desktop computers to applications resident on a remote
printer.

Keywords: .NET, C#, ORB, IDL, Compact Framework, Web Services

1 Introduction

A problem for any developer of long-lived devices (such as printer, scanners, cam-
eras, etc.) is how to connect these devices to the rapidly evolving desktop and hand-
held environments (such as WindowsXP and WindowsCE). The problem is not which
protocol to put in the device, but rather whether that choice is appropriate even a few
years from now. With the advent of web services standards, it is tempting to think
that heterogeneous systems can interoperate using common communication protocols
[1]. The reality is that the lifetime of long-lived devices far exceed the effective life-
time of the clients and the particular interoperability protocols that were in vogue
when the devices were deployed. Many hope that consortia such as WS-I [2] will ad-
dress interoperability issues between J2EE [3], [4] and .NET [5]; however, these con-
sortia are still addressing simple SOAP message exchange [2]. Even if an agreement
is reached on a set of protocols, there will continue to be a reason1 to evolve the pro-
tocols (e.g., WS-Security, WS-Routing etc.) and the protocols will evolve faster than
these deployed devices. Printers, for example, often outlive the desktop platform to

1 One reason that will always exist is vendor differentiation.

which they are attached, and hence there is a fundamental issue in getting stability
while the platform, protocols, and infrastructure evolve.

While it continues to be tempting to trust that stability will come to object commu-
nication protocols and that programming languages will have a common inter-
language calling convention, our experience is that the only point of stability on a cli-
ent is the programming language and associated class libraries that all applications
depend on.

This disappointing result led us to reconsider how to provide access to long-lived
devices and components from NET. Rather than trying to dictate a common wire pro-
tocol, or even to try for .NET interoperability with multiple vendors’ products, we
decided to aim for application level interoperability. To achieve application-level in-
teroperability, a device access library is brought to the .NET platform. The access li-
brary is auto-generated and communicates with the device using a controlled, stable
protocol.

The key insights of this work are:
• Stability can be accomplished by moving interoperability to the application

level, rather than purely at the protocol level.
• Application-level interoperability can be achieved by using a controlled proto-

col and tracking the interoperability through code generators.
• The best approach for bridging from a .NET platform to remote native applica-

tions through a controlled protocol is by deploying a C# Object Request Broker
on the .NET platform.

The rest of the paper is organized as follows. The different approaches for sustaining
interoperability with .NET applications written in C# are described in Section 2. We
evaluate the different approaches in Section 3. In Section 4, we describe our solution,
the C# bridge and its implementation. Our demonstration of the use of the bridge is
described in Section 5. Related work is discussed in Section 6 and conclusions in
Section 7.

2 Approaches for C#.NET interoperability

Long-lived
System
(device).NET

infrastructure
(host)

controlled
protocol

ac
ce

ss
 li

br
ar

y.NET
application

Fig. 1. Access library and proprietary protocol for sustaining integra-
tion of long-lived systems with .NET

In this section, we give an overview of existing approaches for C#.NET interoperabil-
ity at the application layer. Unlike protocol interoperability where the .NET applica-
tion communicates directly with a wire protocol, for application layer interoperability
an access library is used. As Fig. 1 shows, the long-lived system exports an access li-
brary that is hosted on the .NET platform. This device access library exposes inter-
faces presented by the device, and interacts with the device using a controlled proto-
col2. This could be a version of a standard protocol such as SOAP [6] or IIOP [7],
which has been frozen until the device vendor decides to upgrade the protocols. The
.NET applications are developed using the access libraries, without being aware of
the controlled protocol. Since the access library is in the control of the device vendor,
the protocols can be kept stable even as the platforms evolve. Since the programming
language and function call mechanism on the .NET platform is far more stable than
the wire protocols, the access library need not be changed frequently. In contrast, if
there is no access library, the long-lived system shown in Fig. 1 has to be directly
connected to the .NET application. This requires the long-lived system to implement
the protocols that are currently supported by the .NET infrastructure and the device
vendor must keep pace with the new protocols as the .NET infrastructure evolves.

Achieving application-level interoperability requires installing an access library
onto each client that needs access to the device or consolidating on a server (three-tier
architecture). However, from our experience with device drivers, this installation is
far less expensive than tracking wire protocols.

As the platform evolves, in the worst case, the access library has to be recompiled
for the new platform. However, the platform vendors typically provide migration
tools for moving applications to the new platform and these tools could be leveraged
for the device access library. The important fact is that the device can remain un-
changed as the platform evolves since the protocol is stable. To simplify code-
generation and tracking of the device exposure, we use IDL [8] to specify the inter-
faces that are exposed from the device.

We now give an overview of the approaches for creating the access library. In the
following discussion, we use the term “managed” code in the same sense as the .NET
Common Language Runtime (CLR) defines it; as code, which is in the control of the
.NET runtime (e.g. C#). “Unmanaged” or “native” code is the code that is not under
the control of the .NET run time (e.g. Java, C++).

The approaches we consider are
• Bridging managed and unmanaged code

o Platform Invoke Services (P/Invoke) [9],
o Managed C++ [10],
o COM Interop [11],
o Localhost XML Web Services [12],

• NET Remoting [13] and
• C#ORB.
The first four approaches require assumes that the access library can be generated

in the unmanaged form (Java or C++) and address bridging from the managed to this

2 We use the term “controlled protocol” in this paper to mean a protocol that is stable and con-

trolled by the long-lived system vendor for the lifetime of the system.

unmanaged code. These access libraries contain a proxy for the remote object and a
remote procedure call library (RPC library) to make the remote call using the con-
trolled protocol. However, for pure .NET applications to communicate with the de-
vice, the access library has to be exposed using C#. As seen in Fig. 2, this requires an
“interop” layer between the native (C++) application and the managed (C#) code. The
four approaches differ in the mechanism used to provide the “interop” layer.

RPC Library

Proxy (C/C++)

A
ccess library

controlled
protocol

C# Application

Interop

pure .NET
application

.NET
infrastructure Long-lived

System
(device)

Fig. 2. Managed-Unmanaged bridging for creating access library on
.NET

NET Remoting

Controlled
protocol

A
ccess library

controlled
protocol

C# Applicationpure .NET
application

.NET
infrastructure Long-lived

System
(device)

Fig. 3. NET Remoting for creating access library on .NET

C#ORB

A
ccess library

controlled
protocol

C# Applicationpure .NET
application

.NET
infrastructure

Controlled
Protocol

Long-lived
System
(device)

Fig. 4. C#ORB for creating access library on .NET

The fifth approach we consider is to support the controlled protocol directly on

.NET using .NET Remoting [13]. As seen in Fig. 3, the controlled protocol has to be
implemented underneath the Remoting framework.

The sixth approach consists of using a C#ORB to perform the remote procedure
call. As seen in Fig. 4, this approach bypasses the Remoting framework and directly
supports the controlled protocol.

These are described and evaluated in the following sections.

3 Evaluation of interoperability approaches

For our evaluation, we consider six criteria. These are
• Type system support - whether a rich variety of types are supported
• Compact Framework support -whether the feature is available on the compact

framework platform
• Callbacks - whether callback and events can be easily programmed
• Stability – is there legacy which depends on this feature, thus making the feature

stable in future releases of the .NET framework
• Usability - how easy is it for the developer to use the approach
• Maintainability – how easy is it to maintain code written using the approach

Support for the compact framework is needed if WindowsCE handheld devices are
part of the solution, as they were in our case. For the case of callbacks, we evaluate
whether an object reference can be passed from C# into the long-lived system, which
the long-lived system can call back upon. For maintainability, we consider the
amount of code that need to be written when a new interface is added.

To evaluate the different bridging techniques, we consider the use case of event

handling. The .NET service implements an event handler which the device calls when
events occur on the device. The interface for the event handler is:

interface EventHandler{
 void report (in Event evt);
};

The device has to implement an interface where event handlers could be registered.
This becomes:

interface Device{
 void register(in EventHandler hndlr);

 }

This use case demonstrates passing complex types (EventHandler and Event)
objects through the bridge and passing object references (EventHandler) which
the device uses to call back when events occur.

Based upon these criteria in a realistic use case described above , the various op-

tions are summarized in Table 1 with detailed discussion in the following sections.

Table 1 Evaluation of different approaches for C#.NET interoperability

 Approach

Feature

P/Invoke Managed
C++

COM
Interop

Localhost
XML Web
Services

.NET
remoting

C# ORB

Type system Limited Good Good Fair Good Good
CF support Limited None Poor Fair None Good
Callbacks Poor Good Fair Poor Fair Good
Stability Good Good Good Good Poor Good
Useability Poor Limited Fair Good Good Good
Maintainability Poor Good Fair Good Poor Limited

3.1 P/Invoke

The P/Invoke mechanism works only for flat APIs and not for class libraries.
P/Invoke works best when the call is made from the managed code into the unman-
aged code. The reverse call and callbacks are not very easy to implement. For a par-

ticular flat API exposed from a Windows format dynamic link library (DLL), an
equivalent function has to be specified in the managed language by the developer.

To use P/Invoke, the interface class has to be flattened and the implementation
wrapped in a DLL declaration. For our example, after interface flattening, the method
call becomes:

// flattened C++
 void EventHandler_report(Event val){..};

This is wrapped in a DLL declaration as

 extern “C” void __declspec(dllexport) __stdcall Even-
tHandler_report(Event val){..}; // DLL C++

Once this method is implemented in a DLL EventHandler.dll, a C# class can

call into this unmanaged code by defining an equivalent method using the DllIm-
port attribute.

public class EventHandler{
 [DllImport(“EventHandler.dll”,EntryPoint= ”EventHan-
dler_report”)]
 public static extern void report(Event val);
…
};

The unmanaged methods declared this way can be called from managed code as if

the call is being made on a managed method.
• Type system support: Only a limited set of basic types are permitted for the re-

turn value of the methods. Most notably, string, float or double cannot be a return
value if P/Invoke has to be used on an unmanaged method. All complex types have
to be completely flattened into structures before converting into a DLL.

• Compact framework support: In the compact framework, P/Invoke can support
only simple (32-bit or smaller) types inside a structure. Thus, strings, arrays,
nested structures, nested objects, unions or reference types inside a structure are
not supported. Function pointers, arrays of complex types or arrays of strings can-
not be passed as arguments to methods. Apart from the limited type support, there
is limited tool support for P/Invoke on the compact framework. For example, one
cannot step into the unmanaged code while debugging P/Invoke methods. If a
P/Invoke method fails, the resulting exception raised does not sufficient informa-
tion to identify the cause of failure. On the compact framework, callbacks from
unmanaged code into managed code are not supported. There are workarounds that
use the windowing event subsystem to listen to call back events. However, these
are very difficult to program.

• Callbacks: P/Invoke on the .NET full framework has support for callbacks by us-
ing C- style function pointers on the unmanaged side and delegates on the man-
aged side. This approach has the problem that the developer has to manage the
memory and layout of the pointers passed through the bridge.

• Stability: .NET applications depend on P/Invoke to get access to a large set of leg-
acy Win32 DLLs. For this reason, P/Invoke is expected to remain stable, since the
legacy Win32 DLLs would exist in the near future.

• Usability: For class libraries, flattening of the APIs are required. In cases where
particular types are not supported (such as string inside a structure), memory point-
ers have to be used and marshalling has to be done in the application code. Thus,
advanced uses of P/Invoke are error prone, unsafe, and difficult to automate.

• Maintainability: Code written using P/Invoke is not object-oriented. Currently,
there are no automated tools to convert a generic class library into P/Invoke calls.

3.2 Managed C++

Managed C++ (MC++) is a Microsoft extension to C++. MC++ code can make bidi-
rectional calls to C# without any extra work on the developer’s part since MC++ is
also managed by the .NET runtime. MC++ also allows managed and unmanaged code
to be mixed in the same source file as well as in the same assembly, but the unman-
aged classes have to be first recompiled into the Microsoft Intermediate Language
(MSIL) code. To bridge into unmanaged C++ code, the developer has to create a
MC++ wrapper around the unmanaged classes. For our example, a class called
MEventHandler is created, which delegates calls to it to the unmanaged Even-
tHandler class.

public __gc MEventHandler{
 void report(Event val){…}; // header file
};
// implementation

 void MEventHandler::report(Event val){
 EventHandler* unmged = new EventHandler();
 iumged->report(val);
 delete unmged;
 return;
}

• Type system support: MC++ has rich type support. But, MC++ does not support
multiple implementation inheritance, so C++ code that uses multiple inheritance
has to be rewritten before compilation into MSIL. This was a problem with the
RPC library where multiple inheritance was extensively used.

• Compact framework support: MC++ is not supported in the compact frame-
work. This is due to the large footprint and resources necessary to support both
managed and unmanaged code in the same assembly.

• Callbacks: MC++ allows bidirectional communication with unmanaged code as
long the unmanaged libraries are recompiled into the MSIL Code. Without recom-
pilation, MC++ has to use P/Invoke for callbacks and has the same limits as
P/Invoke.

• Stability: .NET framework depends on MC++ to move legacy C++ code bases
into the .NET framework, and thus is very likely to be stable in the near future.

The large install base of Visual C++ developers also require Managed C++ to de-
velop for the CLR.

• Usability: Wrapping each of the types and methods into the corresponding man-
aged types required for MC++ is error prone. Furthermore, the wrapped call also
takes a performance penalty since one additional layer of function calls are needed
for each call. In addition, C# has simpler syntax than MC++ and has compiler sup-
port to warn the developer if unverifiable code is being used (such as pointers).

• Maintainability: Since there is no clear way to support original C++ code that has
multiple inheritance, tools which generate unmanaged C++ (such as the IDL to
C++ compiler) have to rewritten to generate managed C++ code.

3.3 COM Interop

COM Interop was developed to support legacy COM objects. This approach provides
a richer object model than flat APIs. The objects from the C++ have to be converted
into COM objects to use this technology. For this, the interfaces are first converted
into Microsoft IDL (MIDL). Our example interfaces gets converted to

[
 uuid(2bcf8246-e42b-43b8-a936-91de09faf554)
]
interface IEventHandler:IUnknown
{
 HRESULT report([in] Event val);
}
[
 uuid(c445a87d-362c-404d-b099-92810f60d3d8)
]
coclass CEventHandler
{
 interface IEventHandler;
}

The MIDL file is compiled to obtain stubs and skeletons. The implementation

along with the stubs is used to create a type library. The type library is converted into
.NET callable libraries by using a tool called tlbimp.
• Type system support: COM Interop supports a rich variety of types and conver-

sion of types from COM to .NET is automatic on the .NET full framework.
• Compact framework support: There is limited support for COM interop on com-

pact framework. Tools for importing the type library and runtime support for COM
are available from third party vendors [14].

• Callbacks: COM has support for callbacks, but it is difficult to program since in-
termediate wrappers have to be created.

• Stability: .NET depends on COM Interop to access legacy COM/ActiveX compo-
nents. COM Interop is likely to be available, since COM components are likely to
exist in the near future

• Usability: Class libraries that are not COM based require conversion to COM be-
fore the automatic import tools can be used. Knowledge of COM is required for
performing conversions. In the compact framework, P/Invoke has to be used to
simulate COM Interop.

• Maintainability: If the original class libraries are not COM based, there is an ad-
ditional step to generating the MIDL file in addition to the steps for bridging be-
tween C# and COM.

3.4 Localhost XML Web Services

Localhost XML Web Services allows the managed and unmanaged code to call each
other locally using XML over HTTP (using a Microsoft controlled version of SOAP).
The instability of the XML Web Services is not of concern in this case as we are us-
ing XML Web Services only to call between the managed and unmanaged on the
.NET platform. To create a Web Service on the unmanaged end, the class has to be
wrapped as a COM object using techniques described in Section 4.1.3. A tool can
then be used to extract the WSDL file [15] corresponding to the service from the
COM object. For our example, the snippet of the WSDL file created for our example
looks as below.

<message name='EventHandler.report'>
 <part name='val' type='Service:Event'/>
</message>
<message name='EventHandler.reportResponse'>

 <portType name='EventHandlerSoapPort'>
 <operation name='report' parameterOrder='val'>
 <input message='wsdlns: EventHandler.report' />
 <output message='wsdlns: EventHan-
dler.reportResponse' />
 </operation>
</portType>

On the managed side, this WSDL file is used by the tools to generate C# code.

• Type system support: XML Web Services has a rich type support and most of the
types in IDL can be mapped to types in WSDL. However, WSDL does not support
object references, an important construct in IDL.

• Compact framework support: XML Web Services client functionality is sup-
ported on the compact framework in both native as well as managed domain.
Server functionality is supported only in the unmanaged domain.

• Callbacks: Since object references are not supported, callbacks are not possible.
• Stability: Web Services are an important component of the .NET framework and

would have increased support in the future.
• Usability: There is a rich toolset to export and import WSDL descriptors. How-

ever, using Web Services incur a performance penalty as the message is trans-
ported over HTTP XML channels on the platform.

• Maintainability: Conversion of IDL to WSDL and then to C# source are auto-
mated and thus easy to support.

3.5 .NET Remoting

.NET Remoting is a technique used in the .NET framework to communicate between
two distributed .NET applications. We cannot use the .NET remoting protocols di-
rectly for our application as this does not satisfy our requirement for a controlled pro-
tocol. But .NET Remoting allows adding a new protocol underneath it. This new pro-
tocol can be our chosen controlled protocol. .NET Remoting has the advantage that
there is no need to bridge to unmanaged code; all code on the service platform is now
in the managed domain. To simplify invoking the Remoting APIs, the IDL files can
be converted automatically into C# interface classes. The implementation object in-
herits from the .NET class called MarshalByRefObject and the auto-generated inter-
faces.

public interface IEventHandler
{
 void report (Event val); // from IDL
}
public class EventHandler : MarshalByRefOb-
ject,IEventHandler
{
 …
 public void report(Event val){..}; // implementa-
tion
}

Remoting allows customization of the formatters (which perform serialization and

deserialization of types), transport channels (which transports the data to the remote
process), proxies (so additional operations can be performed before the message is
formed) and channel sinks (which can be chained to perform custom operations on
serialized data such as encryption, compression etc.). Each of these layers could be
modified to create the controlled protocol. Once the protocol is created, it can be used
in the Remoting channel. The example shown is that of a server activated singleton
object model [13] that implements our example interface description.

public class Server {
public static void Main(string[] args){
 // creating the transport
HP_Channel channel = new HP_Channel(4467);

 // registering with runtime
 ChannelServices.RegisterChannel(chan);
 // create and publish implementation
 EventHandler svr = new EventHandler();
 RemotingServices.Marshal(svr,”EventHandlerServer”);
 …..
 }
}

The client communicates with this object using :

public class Client{
 public static void Main (string[] args){
 // creating the transport no port specified

HP_Channel channel = new HP_Channel();
// registering with runtime

 ChannelServices.RegisterChannel(chan);
 // creating a local object
 IEventHandler rsvr = (IEventHandler) Activa-
tor.GetObject(typeof(IEventHandler),“hp_chan://15.25.40.4
4/EventHandlerServer”);
 // call the method
 rsvr.report(val); ..};

In prior work, IIOP has been developed as an additional channel for .NET remot-
ing [16].
• Type system support: Remoting can use all the types in .NET and most of these

have mappings to IDL.
• Compact framework support: Remoting is not supported on the compact frame-

work.
• Callbacks: Remoting has the notion of object references and thus callbacks and

events are possible.
• Stability: Microsoft is moving towards a new architecture called Indigo [17] for

the next generation .NET architecture. With Indigo, the lower level Remoting
features such as channels and sinks (required for custom transport) will undergo
major changes. Thus the custom channel would have to be entirely rewritten with
Indigo. There is also no legacy reason for maintain customizable channels. Thus,
the custom channel is likely to be unstable.

• Usability: Remoting is a better approach than MC++ or COM Interop since differ-
ent object models or languages are not involved. All development is done in C#
and with the .NET type system. However, the transport details and the asynchro-
nous/synchronous call selection have to be done by the developer.

• Maintainability: Since Indigo would deprecate the protocol layers in the Remot-
ing framework, it would become much more difficult to support it in the future.

3.6 C# Object Request Broker

C# ORB is our final approach to simplify the creation of the device access libraries.
This approach is like .NET Remoting that it does not require bridging between man-
aged and unmanaged code. However, unlike .NET Remoting, the C# ORB does not
require any support from the .NET infrastructure other than the normal language and
API support. Thus, the C#ORB can be also made compliant to the compact frame-
work.
• Type support: All IDL types can be supported with an appropriate C# mapping

for IDL.

• Compact framework support: Since no feature specific to the .NET full frame-
work is used, all ORB functionality can be exploited in the compact framework

• Callbacks: Mapping of object references allow callbacks to be implemented.
• Stability: Since the C# ORB is an application level entity and uses only the .NET

APIs, it is expected to remain fairly stable.
• Usability: The C#ORB does not require changing object models or languages. In

our case, the details of the transport can also be hidden from the developer and dis-
covered at run time by the infrastructure. All method calls into the access library
are inter-library calls and thus does not incur any performance penalty.

• Maintainability: We can expect the C#ORB to remain stable. However, since this
is not part of the .NET platform as the other methods, it has to be distributed along
with the access library.

3.7 Summary of the evaluation

The usability of the approaches increases in the order we had evaluated them.
P/Invoke requires flattening of the class library structure and thus loses the benefits of
object orientation (such as polymorphism). COM Interop, MC++ and .NET Remoting
are not available on the compact framework. XML Web Services incur a performance
penalty since calls are made on an HTTP channel. Callbacks cannot be implemented
easily with XML Web Services. None of these disadvantages is present with the C#
ORB approach. Furthermore, this approach has the benefit that the stubs and skele-
tons are created automatically and the developer has a simpler programming model.
There is no need for the developer to specify neither the attributes of the transport (as
in Remoting) nor the mapping of different types on the wire (as in P/Invoke).

However, the C#ORB approach has the following disadvantages.
• The C#ORB require maintaining an additional infrastructure on the .NET platform
• There is a development cost associated with the development of a new infrastruc-

ture.
Since the ORB is an application level entity, we expect the maintenance cost to be

same as that of maintaining any other application on the .NET platform. We expect
this cost to be much less than the cost of maintaining the wire protocol compatibility
in the device. With regard to the development cost, we found that to a large extent,
existing tools could be used to simplify the tasks. Developing the ORB involves two
distinct activities, one is the creation of a mapping for IDL in C# and the other is the
development of the run time. Both these can be simplified using existing technologies
and standards. We describe these below.

4. C#ORB development
We found that C# and Java are similar languages [18]. We leveraged this observation
to use the IDL2Java mapping [19] as the reference for obtaining the C# mapping. Our
mapping follows the spirit of the specification and addresses the most commonly used

constructs. However since the ORB is never exposed to the developer (developer
only sees the application class library), we do not require strict adherence to the stan-
dard. This limitation should be removed if the ORB APIs are exposed to the devel-
oper or if a third party ORB has to be used. We also deviated from the standard to re-
duce the footprint and maintainability of the access library. The following are not
supported in our mapping:
1. Portability interfaces: The portability interfaces were developed for the case when

an application developed in one vendor’s ORB can be downloaded into another
vendor’s ORB. In practice, we have found that when the application is loaded, the
corresponding ORB is also typically loaded. Thus, portability interfaces are not
necessary.

2. Attributes and read only attributes: Attributes and read only attributes can be im-
plemented using the methods corresponding to the accessors and mutators. An at-
tribute is replaced with get and set methods. A read only attribute is replaced with
a get method.

3. Pseudo interfaces, Pseudo Objects, Abstract interfaces: We do not attempt to map
these are used in practice only to specify interfaces used within the ORB libraries.
We however specify a mapping for TypeCode and Any.

4. Value types and Value box types: We do not pass value types on the wire. Thus
this was not necessary.
We also found that there are differences between C# and Java relevant to the map-

ping. We do not describe the detailed mapping here (as this can be gleaned from the
Java mapping), but only the differences with the IDL2Java mapping. These are:
• Type system differences: Since C# has signed types, several of the basic IDL

types can be more correctly mapped into C# than in Java. C# interfaces cannot
contain fields. This creates a few mapping differences since the fields have to be
mapped into separate classes.

• Access modifier differences: Java access modifier protected does not have a
strict counterpart in C#. The closest mapping we could obtain is to map the Java
protected keyword to internal protected in C#. The protected
modifier in Java declares that the member is accessible to all subclasses of the
class (regardless of the package where they reside) and to all classes in the pack-
age containing the class (regardless of any subclass relationship). In C#, the in-
ternal protected modifier declares that the member is accessible to other
classes in the same assembly and all the subclasses of the class (regardless of the
assembly they exist). However, the .NET assembly is typically a larger unit of
compilation and serves different purposes than a Java package. The equivalent of a
Java package is a C# namespace. However, C# does not provide a modifier that re-
stricts access with a namespace. In addition, the default access for members of a
class in Java is package-level, while for C# is private. For mapping members
with the default access level in Java to C#, we use the modifier internal. Thus,
our mapping gives wider access to the member than the Java mapping.

• Keywords: C# uses the readonly keyword to qualify constant variables deter-
mined at runtime and the const keyword to qualify constants using compile-time.
The equivalent in Java is final, which denotes both runtime and compile-time
constants. We map final to readonly. value is a keyword in C# used for

the property construct. Where this keyword occurs in the mapping, we replace it
with _value.

• Syntax differences: C# does not allow static initialization blocks as in Java. These
are mapped to the static constructer construct.In C#, instance class members with
non-constant initialization expressions have to be initialized inside a method body.
C# arrays are declared with the array brackets on the type name instead of the vari-
able name, ie. int[] foo, compared to Java syntax of int foo[].

• Inheritance: C#’s inheritance mechanism is very different from Java. In Java, all
inherited methods are implicitly polymorphic. In C#, the inherited methods that
need to be polymorphic must be specified by the modifier virtual in the base
class and by the modifier override in the derived class. However, if the method
is an implementation of an interface or of an abstract method, use of the
override modifier is illegal. If the method has to hide an inherited function with
the same signature, the modifier new has to be used (the default modifier is new).
In this case, the method is no longer polymorphic for instances of that particular
class.

• Call-by-value/result: In C# the IDL inout and out semantics can be mapped
without holder classes for the arguments of methods. C# has the keyword ref,
which denotes that the variable being passed points to the same memory as the
variable in the calling method. This implies that any change in the variable by the
called function is reflected in the variable in the callee when the function returns.
This can be used to map the call-by-value/result semantics of the IDL inout pa-
rameter. The keyword out has similar effect as the ref keyword, but out vari-
ables need not be initialized. This can be used to map the call-by-result semantics
of the IDL out parameter. This mapping gives a more natural mapping for the de-
veloper that use of holder classes.

• Property: C# has the construct called “property” which is a smart field with a get
and set method. The property is used just as a field; however, the compiler in-
vokes the correct method based on whether the field is used as l-value or r-value.
This construct reduces the number of accessor functions.

The C#ORB itself was developed by leveraging an existing Java ORB based on the
ORBlite architecture [20] and using off-the-shelf code conversion tools [21]. We
found that on an initial release, we could get the C#ORB to a memory footprint of
105 Kbytes. This enabled us to target it for compact framework platform.

5. Demonstration

The C#ORB solution was used for our application of communicating with a printer
from a handheld device and a desktop computer. The printer did not natively support
our chosen remote controlled protocol. However, the object model used in the device
allowed us to install our controlled protocol as a downloadable module3. The

3 Note that this is a one-time install of the controlled protocol. In contrast, to support the evolv-

ing protocols, this has to be done each time the protocol changes.

download mechanism also provided us access to several interfaces exposed in IDL.
The C#ORB was deployed on two configurations. In the first, it was deployed on a
WindowsXP desktop. In the second configuration, we deployed the C# ORB on a
WindowsCE platform, which supports the Compact Framework. Using our ORB and
compiler, we were able to develop application code in C# in both configurations to
control the printer. The same code base (access library including the C#ORB runtime)
was used for both the .NET full framework and the compact framework. An example
for the EventHandling service is shown below. The code shown below is complete.
All remaining code is auto-generated. This shows the usability of the approach com-
pared to the other approaches studied.

// Main thread of execution for .NET event handling
// service
 public class Server
{
 public static void Main(System.String[] argv)
 {
 org.omg.corba.ORB.init();
 //Get a reference to the Device
 ObjectRef obj =theRegistry.find("MyDevice");
 DeviceRef dev = DeviceStub.narrow(obj);
 // Create the EventHandler
 EventHandlerImpl serv = new EventHandlerImpl();
 obj = EventHandlerSkeleton.createRef(serv);
 //Start the EventHandler
 SOA.run()
 //Register the eventHandler with the device
 dev.register(obj);

 }
}
public class EventHandlerImpl:EventHandlerServant
 {
 public void report(Event val)
 {
 //Store it in a database
 }
 }

As seen from the example, there is no need to specify the transport channel in the

application code. The C#ORB is able to add new protocols exploiting the reflection
mechanism and static constructors available in .NET.

Using the infrastructure, we were able to get into the Event Subsystem and the
Front Panel objects of the printer (both these required use of object references and
callbacks similar to the example we considered). This gave us notifications on job
complete, paper jams, out of paper and other management related events.

Installing libraries on clients is similar to existing approaches for installing a de-
vice driver on desktops for a new hardware device, except we are installing “drivers”
at the application level and are auto-generating part of the driver. We have turned an

interoperability problem into an installation problem; but gratefully this problem is
well understood.

When device interfaces change, the drivers have to be updated and distributed.
Thus, strong versioning mechanisms have to be in place for reducing incompatibili-
ties between the driver and the device. Another issue is that there has to be an access
library on each platform the long-lived system vendor wants to support (e.g. IBM
WebSphere and BEA WebLogic in addition to .NET). Using a tool chain to automate
code generation is expected to mitigate these problems. A limitation of our approach
is that as the platforms evolve, the device vendor would have to maintain the old
“drivers” in addition to the new ones. However, we have found that programming
languages and application level APIs change much slower than wire protocols. Fur-
thermore, this migration is in the control of the device vendor.

6. Related Work

There have been other efforts to develop a C#ORB such as Borland’s Janeva [22] and
Middtech’s C#ORB [23] products. Both these products have tools that could be used
for application bridging; however, it would require support for their protocols in the
long-lived device, including which version of which protocol. Presently, Janeva does
not support the compact framework that is necessary for integration with handheld
devices.

.NET Remoting with an IIOP channel has been used to support integration of
CORBA components with .NET [16]. This has the advantage of using .NET tools and
CLR directly; however, it suffers from the longevity of the exposed .NET Remoting
extensibility API.

Several CORBA vendors support interoperability with .NET. One solution [24]
uses the .NET Remoting channel and managed C++ to provide a bridge. The focus is
on hiding the details of CORBA for the .NET developer. However, this solution has
the same disadvantages of .NET Remoting. JNBridge [25] is an automated tool chain
to link Java applications to .NET application when both run on the same platform. A
Java ORB and the JNBridge could be used to bridge into C#. However, the C#ORB
does not require moving between multiple languages.

The approach of installing libraries on clients is similar to existing approaches for
installing a device driver on desktops for a new hardware device, except we are in-
stalling “drivers” at the application level and auto-generating the libraries. In contrast
to device drivers, being at the application level has advantage that a single “driver”
could provide access to multiple devices.

7. Conclusions

This paper presents an approach on how to sustain the integration of long-lived sys-
tems with C#.NET. To maintain stability and interoperate when wire protocols
evolve, a device access library is hosted on a .NET platform. This allows C#.NET

applications that access the device to be developed, transparent to the underlying con-
trollable protocol used to communicate with the device, at the expense of calling a set
of device APIs. To support a wide variety of languages, we use IDL specifications for
exposed device interfaces and have an IDL compiler tool to auto-generate the
stub/skeleton glue code.

For the access library exposed on a .NET platform, we evaluated existing ap-
proaches, and the approach using a C# ORB was found to be best for our solution.
We developed a low footprint C# ORB and a mapping of IDL to C#. Our single code
base works on both the compact framework as well as the full framework. We found
that a large part of an existing Java code base can be leveraged to produce the C#
ORB and the IDL language mappings for Java and C# are quite similar. C# however
has additional constructs and types which gives a better mapping for IDL than Java.

Our main finding in this work is that the approach for obtaining and sustaining in-
teroperability using common wire protocols has limitations when integrating with
long-lived systems. We find that interoperability can be achieved more naturally and
for greater duration by bridging at the application layer than at the protocol level. For
the case of .NET , a C#ORB deployed on the device has advantages over other ap-
proaches for interoperating with long-lived devices.

References
 1. Resources and Guidelines for Web Service Interoperability, http://www.ws-i.org
 2. Web Service Profiles – An Introduction, http://www.ws-i.org/docs/WS-I_Profiles.pdf
 3. IBM WebSphere software platform, http://www.ibm.com/websphere
 4. BEA Weblogic Server, http://www.bea.com/products/weblogic/server/index.shtml
 5. Microsoft .NET, http://www.microsoft.com/net/
 6. CORBA/IIOP specification version 3.0.2, Chapter 15, December 2002,

http://www.omg.org/docs/ formal/02-12-02.pdf
 7. SOAP specifications, http://www.w3.org/TR/soap/
 8. Interface Definition Language, ISO/IEC Standard No. 14750, 1999.
 9. Clark.J , “ Calling Win32 DLLs in C# with P/Invoke”, MSDN Magazine, July 2003.
10. Grimes.R, “Programming with Managed Extensions for Microsoft Visual C++.NET”, Mi-
crosoft Press, 1st Edition, July, 2003.
11. Troelson.A, “COM and .NET Interoperability”, APress, 1st Edition , April 2002.
12. Freeman.A and Jones.A, “Microsoft .NET XML Web Services Step by Step”, Microsoft

Press, 1st Edition, October 2002.
13. Rammer.I, “Advanced .NET Remoting”, APress, 1st Edition, April 2002.
14. Odyssey Software, “CFCOM”, <http://www.odysseysoftware.com/cfcom_main.html>
15. WSDL specification, http://www.w3.org/TR/wsdl
16. Oberleitner.J and Gschwind.T, ”Transparent Integration of CORBA and the .NET Frame-

work”, On the Move to Meaningful Internet Systems, Lecture Notes in Computer Science,
Springer Verlag, 2003.

17. Box.D, “A Guide to Developing and Running Connected Systems with Indigo”, MSDN
Magazine, Jan 2004.

18. Obasanjo.D, “Comparison of Microsoft’s C# programming language to Sun Microsystems’
Java programming language” http://www.25hoursaday.com/CsharpVsJava.html

19. Java2IDL mapping, http://www.omg.org/docs/formal/02-08-05.pdf
20. Moore.K and Kirshenbaum.E, “Building Evolvable Systems- the ORBlite project”, HP
 Laboratories Journal, February 1997. http://www.kirshenbaum.net/evan/publications
 /orblite-hpj.pdf

21. Microsoft Java Language Conversion Assistant 2.0, <http://msdn.microsoft.com
 keyword: “JLCA”>
22.Borland Janeva, http://www.borland.com/janeva/
23. Middtech Corporation, http://www.middtec.com/index.html
24. IONA Corporation http://www.iona.com/products/orbix.htm
25. JNIBridge http://www.jnbridge.com/

