

Nizza: A Framework for Developing Real-time Streaming Multimedia
Applications

Donald Tanguay, Dan Gelb, H. Harlyn Baker
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2004-132
August 2, 2004*

media processing,
video processing,
dataflow
architectures,
multimedia
middleware,
streaming media

Real-time multimedia applications require processing of multiple data
streams while maintaining responsiveness. Development of such
applications can be greatly accelerated by the use of a middleware
framework that abstracts operating system dependencies and provides
optimized implementations of frequently used components.

In this paper we present the Nizza multimedia framework which enables
rapid creation, analysis, and optimization of real-time media applications.
Our main goal is to provide a simplified modular design without
sacrificing application performance. The framework is based on the
dataflow paradigm. An integrated scheduler automates parallelism among
the modules and distinguishes between sequential and combinational
modules in order to leverage data parallelism. Nizza measures application
performance statistics, allowing rapid development of multimedia
applications and identification of performance bottlenecks. Our
framework is cross-platform and has been used to develop applications
on the Windows, Windows Mobile, and Linux operating systems. We
present several example applications that were implemented using our
framework that demonstrate the performance and usability of Nizza.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2004

Nizza: A Framework for Developing
Real-time Streaming Multimedia Applications

Donald Tanguay, Dan Gelb, H. Harlyn Baker
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94304
ABSTRACT
Real-time multimedia applications require processing of multiple
data streams while maintaining responsiveness. Development of
such applications can be greatly accelerated by the use of a middle-
ware framework that abstracts operating system dependencies and
provides optimized implementations of frequently used compo-
nents.

In this paper we present the Nizza multimedia framework which
enables rapid creation, analysis, and optimization of real-time
media applications. Our main goal is to provide a simplified modu-
lar design without sacrificing application performance. The frame-
work is based on the dataflow paradigm. An integrated scheduler
automates parallelism among the modules and distinguishes
between sequential and combinational modules in order to lever-
age data parallelism. Nizza measures application performance sta-
tistics, allowing rapid development of multimedia applications and
identification of performance bottlenecks. Our framework is cross-
platform and has been used to develop applications on the Win-
dows, Windows Mobile, and Linux operating systems. We present
several example applications that were implemented using our
framework that demonstrate the performance and usability of
Nizza.

Keywords
Media processing, video processing, dataflow architectures, multi-
media middleware, streaming media.

1. INTRODUCTION
Building robust systems for real-time streaming multimedia appli-
cations is difficult. A developer must overcome at least four types
of challenges — system: isolate and manage complexity, multime-
dia: support concurrent execution on multiple data formats,
streaming: operate on sequences of data, and real-time: deliver
responsive performance on variable-strength platforms under vary-
ing loads. Our goal is to help the developer overcome these chal-
lenges by building applications on top of an existing middleware
layer. This framework should lead to improved software design
and less prototyping time without sacrificing performance.

The fundamental idea is to design application software in a data-
flow style. In a dataflow design, the application is a connected
graph of functional modules linked together by directed arcs. A

dataflow design is well-suited for representing streaming multime-
dia applications: the modularity reduces complexity, the arcs repre-
sent streams of data, and the arcs can transmit multiple data
formats. Clearly the first three of the above challenges are rela-
tively easy to overcome, especially with the aid of modern object-
oriented programming languages. However, the real-time require-
ment is much more challenging. While any application will always
be responsive on an over-powered machine (e.g., webcam video
capture using a server-class machine), the real performance differ-
entiators are (1) taking full advantage of multiprocessing and (2)
delivering performance even when a machine is resource-limited.

Our basic approach to design and coding is to isolate the algo-
rithms (e.g., video processing or analysis) from the runtime system
(e.g., multithreading, synchronization). The developer concen-
trates on the algorithmic processing specific to the application at
hand, while at the same time leveraging the framework to over-
come the challenges above. In addition, such a dataflow middle-
ware provides other software engineering benefits, like improved
writability and readability (which simplifies maintenance), code
reuse to leverage the work of others, better testing methodologies
to simplify debugging and ensure software robustness, and
increased portability to other platforms.

2. RELATED WORK
This work is inspired by early dynamic dataflow computers (e.g.,
[2]) which potentially exploit the full parallelism available in a
program. In such a computer, each processing node is enabled
when tokens with identical tags are present at each of its inputs.
Thus, process scheduling is completely determined by the avail-
ability of data. While a dataflow computer can achieve fine-
grained parallelism at the instruction level, our framework oper-
ates at a much coarser granularity — that of typical multimedia
samples, such as a single video frame. Unfortunately, dataflow
computers are inherently unscalable because the number of nodes
in the hardware limits the number of live modules in an applica-
tion. Parallelism must be lost in order to implement an application
with more tasks than the hardware. Similarly, because we map an
arbitrarily large dataflow abstraction onto a symmetric multipro-
cessor (SMP) machine, the number of underlying processors limits
our amount of realizable parallelism.

Signal processing software environments (such as Ptolemy [4] and
Khoros [13]) have an established history of “visual dataflow pro-

gramming.” A thorough review of such systems and their relation-
ship to other dataflow styles is presented in [6]. The hierarchical
structure of a DSP application can be displayed and manipulated
graphically. The program can be compiled or interpreted and can
be executed on an SMP machine or on specialized DSP hardware.
The one-dimensional, fine-grained, deterministic nature of signal
processing often allows optimal scheduling at compilation time. In
our domain of generalized multimedia, the mapping of inputs to
outputs may not be deterministic, and the coarseness of the sam-
ples provides no guidance for “optimal” static scheduling.

Some commercial frameworks are available for multimedia pro-
cessing, including DirectShow [9], the Java Media Framework [5],
and Quicktime [14]. DirectShow provides useful plug-and-play
compatibility between third-party developers. For example, a com-
mercial video conferencing application can transparently use any
particular video camera if both adhere to a common DirectShow
interface. Some developers are using DirectShow as a general
dataflow framework, but the software is nonportable and the inter-
face is complex because each module is a service that augments
the operating system. Perhaps its biggest value is the large inven-
tory of reusable modules. The Java Media Framework has cross-
platform support, as well as integrated networking support via
RTP; however, performance of heavy media (e.g., video) is not
competitive with other frameworks. Existing frameworks rarely
provide scheduling options to the user. Because they don’t have an
explicit dataflow scheduler, the modules are subject to the vagaries
of the OS scheduler and are often competing with each other. In a
system without significant resource constraints this can be suffi-
cient, but problems arise in constrained environments. None of
these commercial offerings provide automated performance met-
rics.

Distributed computing extends the dataflow approach from a sin-
gle machine to a network of machines. Communication between
modules occurs across a network, which introduces different per-
formance considerations. For example, bandwidth may replace
computing as the limiting resource, and so different solutions are
necessary. The Berkeley Continuous Media Toolkit (CMT) [8] is
multi-platform and uses Tcl/TK. The open-source Network-Inte-
grated Multimedia Middleware (NMM) project [7] has demon-
strated applications with set-top boxes and wireless handhelds.
Space-time Memory [12] is a high-level programming abstraction
that unifies all the data distributed across a network into a single
memory model that is indexed both by network location and time.
This model, Stampede [11], and other distributed computing
notions are merged into D-Stampede [1]. We believe a distributed
computing approach can be very complementary to our frame-
work.

Our framework has already demonstrated its utility. In [3], we built
a sophisticated application that scaled with the number of users.
Our dataflow graphs had 20 to 100 audio, video, and network pro-
cessing modules. During tests for scalability, the two-processor
desktop machines were quickly overloaded to 100% CPU utiliza-
tion but maintained responsiveness throughout.

3. NIZZA FRAMEWORK
This section describes our design and development methodology,
model of computation, implementation, and runtime performance
metrics.

3.1 Design Methodology
Like all architectures based on the data flow paradigm, in Nizza
media flows through a directed graph of computational modules.
In order to view applications in this paradigm, it is important to
adopt a different methodology for software development. Our sug-
gested methodology has four steps: (1) dataflow analysis of the
application to determine the signals and processing phases on
those signals, (2) decomposition of the application into media rep-
resentations and processing modules, (3) composition of the mod-
ules into a directed graph network, and (4) runtime management of
the application graph. We describe these four steps, while high-
lighting how Nizza aids this process.

Dataflow analysis. In a streaming media application, the funda-
mental information content is a digital signal (e.g., audio or video)
that evolves over time. To perform a dataflow analysis of the appli-
cation, one identifies signal sources (e.g., microphone, camera, or
file) and follows the transformation path each signal takes as it
progresses through the application. Between each identifiable for-
mat along this transformation path, the signal undergoes a distinct
phase of processing. For example, an audio signal may begin life
in PCM format at the microphone source then undergo transforma-
tions into ADPCM, then UDP packets. In this example, the com-
pression stage lies between the PCM and ADPCM formats, and the
network packetization stage lies between the ADPCM and UDP
formats. Analyzing each signal in this manner identifies both the
signal formats and the different processing phases of the applica-
tion.

Decomposition. Next, the application is decomposed into its con-
stituents. The signal formats are media types, and the processing
phases operate on those media types. Nizza provides two abstrac-
tions to support this decomposition: Media objects are the basic
unit of data, and Task objects are the unit of processing. For each
unique signal format, the developer defines a separate media type,
inheriting from the Media base class such behaviors as timestamp
recording, memory management, and automatic serialization.
Likewise, for each novel processing phase, the developer defines a
new task module that inherits the behavior of the Task base class.
Inheritable behaviors include input/output buffer management and
multithreaded execution and synchronization. The code inside the
Task object is the algorithmic mapping from inputs to outputs and
is isolated from common threading or synchronization issues,
which will come for free by simply using the framework.

Composition. The media and tasks are now application building
blocks. To build an application, the developer makes directed con-
nections between the tasks, defining a directed graph. Each con-
nection is a one-way transfer of a particular media type and
represents a media stream. Unlike many other architectures, Nizza
supports arbitrary graph topologies, including cycles. Cycles are
important in any application with a feedback loop. For example,
mouse motion from a display module may determine a viewpoint

for novel view synthesis in another module; this may in turn send a
new image to the display module. In order to agree on the type of
media stream, two connected Tasks may have to negotiate the
media type. For example, a generalized UDP Task may accept any
media type, but the video source feeding it may deliver only
MPEG-4 video. Because the UDP Task is flexible, the two Tasks
simply agree to send/receive the MPEG-4 video media type. In the
end, the completed graph structure directly represents the task
dependencies of the application.

Graph management. At runtime, once the tasks are connected and
the media types are determined for each connection, the applica-
tion is ready to execute. The program issues the start command for
the application graph, and the framework’s internal threads
traverse the graph, performing the processing of each Task and
flowing Media across the Task connections. The internal scheduler
orchestrates the execution, taking advantage of parallelism when
available. In addition the internal memory manager optimizes
reuse of Media buffers. At a later time, the program can issue the
stop command, causing the framework threads to complete execu-
tion and exit the graph. In very dynamic applications, Tasks may
be added to or removed from the graph, and the start command
may be reissued to continue the application with the new graph.
Alternatively, the program may issue the destroy command, which
recursively destroys all the Tasks in the graph.

The last three steps of this methodology are graphically depicted in
Figure 1. In this example, after dataflow analysis the application is
decomposed into five processing tasks (represented by dark cir-
cles) and four signal formats (represented by small light squares).
The task dependencies are then made explicit during the composi-
tion step, and finally the application is executed by managing the
completed task graph.

Figure 2 shows how we use Nizza to build a small application.
First, the modules are instantiated, next they are connected to form
a single application graph, then the graph is managed through sim-
ple graph commands, such as start, stop, and destroy.

3.2 Model of Computation
While all dataflow architectures look very similar at the highest
level of abstraction, they can behave very differently when an
application has limited resources. This section describes our model
of computation, which determines the application behavior in
stressful situations. We have a principled approach to delivering
reasonable performance on limited resources.

Computing Service. Nizza is a computing service by design, and
this has major implications on our model of the execution environ-
ment on a single machine. First, we assume that only our frame-
work has control of the computing resources on a machine. In
other words, the framework should not be competing for CPU
resources through the vagaries of an OS scheduler. Of course, in a
typical non-real-time operating system, this assumption cannot
possibly be true due to preemption by normal OS operations. How-
ever, by using Nizza to implement all compute-intensive applica-
tions on a particular machine, we have a reasonable
approximation. Thus, we assume Nizza controls the computing
resources.

In fact, our model is stronger. Since external processes should not
affect Nizza performance, it is also reasonable that Nizza should
not affect external processes either. This clean separation is possi-
ble by dividing the processes into two categories: computing and I/
O. Computing processes take significant time and are throughput-
sensitive. For example, a video codec may have a significant
latency, but performance is good if it can maintain a frame-rate of
30 Hz. I/O processes, on the other hand, require less time to handle
but are latency-sensitive. For example, drawing a window at a new
location is relatively quick to do, but if there was a delay in per-
forming this task, a user would notice. A similar argument applies
to playing audio on an output device or capturing strokes on a key-
board. Therefore, we are careful to leave I/O operations (e.g., lis-
tening to camera devices or handling window events) to the native
platform. Thus, our separation of processing into computing and I/
O tasks translates into two assumptions: Nizza is not competing
against other compute-intensive applications, and the native plat-
form is not competing against Nizza for I/O responsiveness.

Fortunately, an easy way to implement this model of computation
is to artificially depress the priority of Nizza execution threads.
This counter-intuitive approach ensures that the OS has I/O
responsiveness. Since I/O is quick, the entirety of the remaining
CPU time is given to Nizza, which is the only compute-intensive
application. In other words, Nizza handles computation while (and
only after) the OS and other standard-priority threads handle I/O.

Execution Model. We have established our model that Nizza has
most of the computing resources on a machine. We now explain
what the framework will do with those resources. In a single pro-
cessor scenario, all dataflow architectures should behave in the
obvious way. The CPU will work on the initial signal and propa-
gate the signal and its descendent signals through the graph (in any
valid order guided by data dependencies) until the wave of signals
is entirely consumed. This procedure is repeated similarly on the
next initial signal, and so on. If the average arrival rate of the new
initial signals is greater than the average completion rate of each

Figure 1. Application creation. The application is (a)
decomposed into its constituent tasks and signals, then built
by (b) composing task dependencies into a graph structure,
then (c) executed by managing the flow of signals across the

task connections.

a b c

Display

Figure 2. Sample application. A graphical representation
concisely illustrates the flow of data between modules.

Sy
nc

hr
on

iz
ed Image

C
om

bi
na

tio
n

Conversion 1

C
am

er
as

Image
Conversion 2

image 1

image 2

image 1

image 2

image

image

image

image

image

wave, some initial signals must be dropped in order for the appli-
cation to remain current (i.e., to avoid continually falling behind
with ever-increasing latency).

In a multiprocessor scenario, potential parallelism significantly
changes the dynamic behavior of the application. In our model of a
computation module, it may have internal state that is a function of
previous computations. An example of this history is the tracked
coordinates of a hand, where the location in the previous frame
prunes the search for the location in the current frame. To allow
states of arbitrary history, the code in each module must be exe-
cuted sequentially (it is not thread-safe for programmer conve-
nience). This implies that only one execution thread may be
resident in a particular module at any given instant, which implies
that the largest number of “live” execution threads is the number of
modules in the graph. In other words, the best parallelism we can
achieve in a graph of sequential modules is task parallelism. A
computer with processors equal to the number of modules has
reached the limit of usable task parallelism. Each module essen-
tially has its own processor, and additional processors no longer
improve performance. In fact, the overall application throughput is
now limited by the latency of the slowest module. Data parallel-
ism, on the other hand, can enjoy linear performance improvement
as the number of processors increases.

Even within the limits of task parallelism, there are many options
in choosing which Task to execute next. We have chosen a policy
for our scheduler that favors minimal end-to-end latency. This pol-
icy is implemented by favoring descendents of the oldest initial
signal.

Combinational vs. Sequential. Modules can be categorized by
their temporal dependencies. Combinational modules produce out-
put that is solely a function of the current inputs. In other words,
these modules do not have any internal history of previous execu-
tions. Sequential modules, on the other hand, do have internal
memory, and so the output may depend both on the current input
and previous inputs. In this situation, the data must arrive at the
inputs in the correct order. It is well-known that a sequential mod-
ule can be converted to a combinational module by transferring the
current state to the next execution, achieved by linking an addi-
tional output to an additional input. This conversion is useful for
exposing more parallelism. However, we allow both types of mod-
ules because state transfer can be awkward or impossible for arbi-
trary module states (e.g., an unwieldy database or the state of a
device driver).

In a multiprocessor system, the choice of input processing can
have a significant impact on performance. As mentioned earlier, if
all modules are sequential, the best case scenario is task parallel-
ism. In Nizza, we provide a simple mechanism for specifying com-
binational modules. By removing some of the sequential
constraints, our scheduler can take advantage of data parallelism as
well. This is particularly key for a module that is a performance
bottleneck. In order to use data parallelism, the module’s algorith-
mic code must be reentrant because multiple threads may be exe-
cuting the code at the same time. Threads often vary in execution
time, and so the output may not be in sequence. If the downstream
module is combinational, the thread continues to run freely, taking

advantage of more data parallelism. If the downstream module is
sequential, however, the producing threads must block until the
correct sequence is attained on the input buffer. More scalable per-
formance, then is attained by minimizing the number and latencies
of the sequential modules in an application. When possible, a large
sequential module should be decomposed into a combination of a
small sequential module and a large combinational module. Unfor-
tunately, some modules can never be combinational, and their
inherently sequential behavior will always limit the amount of par-
allelism. Such modules are typically sources (e.g., a module that is
triggered by an inherently-sequential input device such as a cam-
era) or sinks (e.g., an audio module that writes speech data into an
output buffer).

Push vs. Pull. There are two major flavors of moving data through
a dataflow graph: push and pull. In a push architecture, the flow is
supply-driven, and data is injected into the graph at source mod-
ules (those without input pins). Either the source modules synchro-
nously generate the initial signal themselves, or the source
modules receive the initial signal asynchronously from an external
trigger (e.g., a camera driver). If the data comes from an asynchro-
nous process at a rate faster than the consumption rate, flow con-
trol (i.e., buffer management) must determine where to drop
signals in the graph. When signals are dropped inside the graph
(i.e., not at the entrance of a source), the previous stages of pro-
cessing on the signals wasted computing resources. On a multipro-
cessor, a push architecture with asynchronous sources (e.g.,
cameras) will have better performance in general because an idle
processor will be able to begin processing a new signal wave
before another processor has finished processing the previous
wave.

A pull architecture, on the other hand, is demand-driven. Data is
requested by sinks, which need to be “rendered,” and the request is
propagated upstream until a module can satisfy it. Because pro-
cessing only occurs when it is needed downstream, every signals is
fully propagated to the end without wasting any CPU resources.
However, if the sources are asynchronous and generating data
faster than consumption, the straightforward pull architecture will
under-utilize the CPU and throughput will be worse than the push
architecture. It is also not straightforward to implement a pull
architecture with a cyclic graph.

3.3 Implementation
Figure 3 depicts our implementation hierarchy. The SMP Abstrac-
tion Layer and the Nizza kernel form the middleware that lies
between the application and operating system. The SMP Abstrac-
tion Layer insulates the kernel from the host platform, keeping the
Nizza kernel platform-independent. The component library con-
tains many generically reusable modules. The application devel-
oper has access to all levels.

Native Platform. At the lowest level lies the host platform, which
must have three required elements: multithreading support, a tim-
ing mechanism, and an ANSI C++ compiler. Multithreading sup-
port includes a thread abstraction for controlling computation as
well as the synchronization objects necessary to control the
threads. Although Nizza can operate on a single processor

machine, the underlying hardware must be a symmetric multipro-
cessor (SMP) machine in order to benefit from parallel execution.
A timing mechanism is necessary for performance analysis, such
as latency measurement. Finally, an ANSI C++ compiler is neces-
sary to generate the executables, and it must have the C++ Stan-
dard Template Library (STL, described in [10]) as we use provided
abstractions (e.g., string, vector, map, set, deque) throughout our
framework. STL is implemented entirely of header files and is,
therefore, easily ported.

Abstraction Layer. The SMP Abstraction Layer is the first middle-
ware level; it simplifies porting Nizza to other platforms and oper-
ating systems. The Thread abstraction delivers the ability to name,
spawn, and debug an OS thread. Actual thread creation is per-
formed with the native platform calls, and each Thread has a log
file associated with its unique name, allowing the creation of an
execution trace for each thread. The Mutex and Semaphore
abstractions enable synchronization of the Threads. Mutex is the
standard mutual exclusion object for preventing more than one
thread from simultaneous code execution, and Semaphore is a
standard, efficient mechanism for signalling between Threads. The
StopWatch abstraction encapsulates the ability to measure time
using the platform timing functions. Measuring time is essential to
performance analysis, described in Section 3.4.

Kernel. The second middleware level, the Nizza kernel, imple-
ments the core dataflow functionality used by all Nizza applica-
tions. It supplies the extensible Task and Media abstractions for
building an application. Internally, however, the Nizza kernel also
has several abstractions for managing its own complexity. First,
the InputPin and OutputPin objects represent the connections
between Tasks for transferring Media. Second, the Graph object
manages the Tasks connected to one another and acts as the inter-
face for graph-wide commands, such as start() and stop(). Graph
commands have a single Task argument, but use connectivity to
traverse the entire application graph and apply the command to
each module in the graph. The MemoryManager object provides
the buffers for Media objects; it tracks buffer usage, has facilities
for reusing previously allocated buffers, and can report memory
statistics. Finally, the Scheduler manages the execution threads

that traverse the Task graphs, keeping track of computational sta-
tistics such as mean latency and throughput.

Component Library. An important layer is a continually growing
collection of reusable components lying between the application
and kernel. Rather than reimplementing common functionality
(e.g., audio recording or image color-space conversion), the appli-
cation developer may find useful, prebuilt Tasks from this reusable
component library. Cameras, graphics, codecs, networking, etc.
Leveraging the work of others is an important aspect of rapid
development.

The final implementation layer is the application, which has access
to all previous layers. To promote further platform-independence,
the application has access to all Rock objects. In the Nizza kernel,
however, only the Task and Media abstractions are accessible in
order to minimize the complexity of the Nizza interface. The inter-
nal objects are accessed indirectly through Task and Media or
through static Nizza procedures.

Implementation Features. Nizza has some distinguishing imple-
mentation features. First, there is a convenient mechanism for
grouping input or output pins if it is known a priori that the data on
those pins should always be associated together. For example, the
combination module of Figure 2 will always operate on a pair of
images. By placing the input pins in the same input group, the
module begins operating only when both images have arrived,
avoiding the need for the developer to manage and associate the
input images. Because this association is known a priori, we call
this static synchronization.

A second key implementation feature is automatic serialization.
The Media base class has a powerful serialization procedure that
can flatten any Media object, regardless of its complexity. Media
can have both fixed-length fields (e.g., image size, format specifi-
cation) and variable-length fields (e.g., image bytes, audio data).
The serialization procedure is able to traverse any deep Media
structure and translate it into a single flat buffer for output to a
serial representation, such as a file or network stream. Likewise,
the deserialization procedure can read the flattened representation
and translate it back into a deep Media structure in memory.

Finally, the programmer has the ability to specify the number of
execution threads in the Nizza service. In order to achieve the
maximal parallelism, the number of threads should equal the num-
ber of processors. However, during debugging of an application, it
is extremely helpful to use a single execution thread so that it can
easily be tracked.

3.4 Performance Metrics
There are many different metrics for multimedia applications: star-
tup latency, loss percentage, CPU utilization, memory usage, and
throughput, just to name a few. Because we are using a dataflow
architecture, we decided to focus on two metrics fundamental to
pipelined systems: latency and throughput. We measure the latency
per module as well as end-to-end latency. The module latency is
the time required to execute the developer’s algorithmic code in a
module. To determine the relative “computing weights” of the

Native Operating System

Nizza Kernel

SMP Abstraction Layer
threading timers

TaskMedia

synchronization

C++ compiler STL

Streaming Media Application

Component Library
video: converters, codecs, files, viewer
audio: capture, playback, codecs, files

networking: UDP, TCP, RTP

Figure 3. Implementation hierarchy. Nizza forms the
middleware between the application and native OS. While

the SMP abstraction layer keeps the kernel platform-
independent, some modules in the component library (e.g.,

camera drivers) must be device-specific.

modules, it is useful to first run an application with a single execu-
tion thread to get an accurate measure of the natural execution
times and a baseline for multiprocessor performance. The end-to-
end latency is the time required to consume an initial signal and all
of its descendants, i.e., the time from the birth of the initial signal
to the death of its last remaining descendant. All latencies and
throughput are measured automatically by the framework.

4. RESULTS
We have run and analyzed three applications; all applications were
run on a 700 MHz Pentium III, 6 processor machine. In the follow-
ing figures, we represent sequential modules with a thick border
and combinational modules with a thin border.

4.1 Overhead Measure
We constructed a minimal application that performs negligible
computation in each module to test the overhead latencies in our
system. Figure 4 illustrates the application graph. The first module
in the application is a source node that generates test media con-
sisting of a single character. The next modules are multiple pro-
cessing nodes that simply push the media out to the next module
and declare that they no longer need access to the media. The final
module retrieves the character from the media and also declares
that it is finished with the media. All modules are sequential in
order to produce the worst-case latency. Runs of the trivial applica-
tion on our test machine gave an average latency of less than 30
microseconds per processing node. This amount of latency over-
head per module is acceptable for typical multimedia applications.

4.2 Video Coding
The second application is designed to simulate a multi-user/multi-
stream video conferencing scenario. For this application each user
is imaged by a camera and the video stream is MPEG-4 com-
pressed, sent across a network, received at a remote client, decom-

pressed, and displayed. Color space conversion modules are also
used to convert to and from the camera color space to a YUV 4:2:0
format for MPEG-4 compression. We constructed this application
quickly because the converters and codecs were available in the
Nizza component library. Connecting the nodes is straightforward,
and modules such as the color space converters transform input
media to the specified format without the developer having to
worry about issues like pixel alignment and ordering. Network
serialization and deserialization is also automatic.

To enable repeatable experiments we removed the network trans-
mission and reception from the real application to create a simpli-
fied version running on a single machine. The graph of this
simplified version is shown in Figure 5a for an application using at
least two synchronized cameras. To ensure a repeatable experiment
the live cameras were also replaced with a stored image sequence.
For the following experiments a CIF version of the standard Fore-
man sequence was used for each data stream. A single source is
tied to each chain of modules, demonstrating a fan-out ability. To
further reduce possible I/O influences the source image sequence
nodes were configured to store the entire raw image sequences in
memory before performance measurements. Figure 5b shows the
average latencies per module for a single stream version of the
video coding test application run on a single processor on the test
machine.

Figure 5c shows the performance of the video coding application
when multiple streams are compressed and decompressed simulta-
neously, one per processor. As the number of processors increases,
the overall system throughput increases as well. This increase is
sub-linear, since other limitations in the system such as memory
and bus bandwidth are fixed. The graph shows results for enabling
combinational processing nodes for this application versus all
sequential modules. For the video coding application only the
color conversion modules can be made combinational, as the pro-
cessing intensive encode and decode modules depend on prior
inputs. As a result, the speedup achieved by enabling combina-
tional processing is limited. Our tests show that Nizza is able to
provide excellent real-time performance for this application.
Frame rates are sufficient for all streams, and the end-to-end

Figure 4. Graphical representation of the trivial application.

Generator
Pass-

Consumerthrough
Pass-

through
Pass-

through

1 2 3 4 5 6
30

40

50

60

70

80

90

Processors

Fr
am

es
 P

er
 S

ec
on

d

Throughput

All sequential nodes
Combinational conveters

RGGB/ MPEG-4 YUV/MPEG-4
Encoder DecoderYUV RGB Display

RGGB/ MPEG-4 YUV/MPEG-4
Encoder DecoderYUV RGB Display

Figure 5. Video coding: (a) Model application, with sequential modules illustrated with a thick boundary. (b) Experimental setup
showing mean module latencies for a single stream. (c) Plot for number of streams equals number of processors.

a

b c

RGGB/ MPEG-4 YUV/MPEG-4
Encoder DecoderYUV RGB Display

C
am

er
as

C
am

er
as

1.4 ms 1.5 ms 22.2 ms 4.2 ms 1.6 ms .7 ms

latency was less than 80 milliseconds for all tests. This latency is
sufficient for typical live video coding applications.

4.3 Panoramic Mosaicking
The third application is an example of multi-image streaming tasks
where a single element of the computation dominates all others. In
this case, we are constructing a panoramic mosaic from three con-
tributing image sources. Again, these sources are stored image
sequences rather than live cameras to allow repeatable perfor-
mance testing. Each contributing image is passed through a con-
verter module that maps from Bayer format to RGB. These are
then input to a lookup-table-driven resampling process that com-
poses the mosaic frame, resampling and integrating the contribut-
ing sources to a common viewpoint. The lookup table was derived
offline. Figure 6a shows the structure of this task's computational
graph. Mosaicking occupies over 90% of the processing time.
Because only a single processor is available for this sequential
task, throughput is limited to the rate of this most-demanding mod-
ule. Using Nizza performance statistics, we rapidly identified the
bottleneck and decided to restructure our computation. With n pro-
cessors available, the compositing task may be partitioned into n
slices, each producing 1/nth of the resulting mosaic frame. We
introduced an additional stage to combine the contributions of the
separate slices. The resulting architecture is shown in Figure 6b.
The times in these figures indicate the average processing time of
each stage.

Figure 6c plots performance measures against number of proces-
sors (from the left): the time per produced frame, the cost of the
compositing stage, the cost of the conversion stages, and the result-
ing framerate of the system. Notice that the end-to-end-latency and
the throughput improvements stop at five processors — the point
at which no additional parallelism is available. Similarly, the con-

version stage, having three modules, ceases to improve once those
three have separate processors for their work.

5. CONCLUSIONS
Nizza has proven very useful for developing real-time multimedia
applications without sacrificing execution performance. Unlike
other multimedia software architectures (e.g., DirectShow, Java
Media Framework), Nizza is designed specifically for SMP perfor-
mance. A significant feature is its ability to take advantage of data
parallelism, which significantly increases performance scalability
over a design with only task parallelism. Second, rather than rely-
ing on the OS, the kernel has its own integrated scheduler which
scheduled to minimize latency and prevents wasted CPU cycles by
disallowing dropped media. Finally, a developer can easily analyze
applications using the Nizza facilities for automated performance
metrics.

Nizza has also demonstrated flexibility. The kernel has been ported
to three platforms: WinXP, PocketPC, and Linux. It has extensible
data and module abstractions and allows dynamic application
building (adding/removing subgraphs). It is also easy to build new
applications from reusable modules.

We would like to extend Nizza in two ways. First, the performance
metrics could be fed into the scheduler to see if better performance
can be achieved. Second, we would like to fold Nizza into a dis-
tributed computing architecture. We believe the configurability,
library of reusable components, and the performance metrics
would be valuable to a network-level service framework.

6. ACKNOWLEDGMENTS
We thank the contributions of the vision and graphics group, espe-
cially Irwin Sobel, who has helped us track down numerous bugs
in our system. We also thank Mike Harville for testing the Linux

1 2 3 4 5 6
650

700

750

800

850

900

950

1000

1050

Processors

M
ill
is
ec

on
ds

End-to-End Latency

1 2 3 4 5 6
50

100

150

200

250

300

350

400

450

Processors

Compositor Latency

1 2 3 4 5 6
20

25

30

35

40

45

50

55

Processors

Converter Latency

1 2 3 4 5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Processors

FP
S

Throughput

b

RGGB/
RGB

DisplayRGGB/

M
os

ai
ck

in
g

RGB

C
am

er
as

RGGB/
RGB

RGGB/
RGB

DisplayRGGB/
RGB

C
am

er
as

RGGB/
RGB

Combine

.12 ms 58 ms 480 ms .15 ms

c

.12 ms 140 ms18 ms 53 ms .18 ms

M1

M2

M3

M4

Figure 6. Video Mosaicking: (a) model application, (b) experimental setup showing average module latencies,
(c) performance plots. The sequential modules are illustrated with a thick boundary.

a

port of the kernel. Finally, we thank John Ankcorn for pithy dis-
cussions that lead to scheduler modifications so that we could get
data parallelism.

7. REFERENCES
[1] Sameer Adhikari, Arnab Paul, and Umakishore

Ramachandran, “D-Stampede: Distributed Programming
System for Ubiquitous Computing,” 22nd International
Conference on Distributed Computing Systems, July 2002.

[2] Arvind, D. Culler, R. Iannucci, V. Kathail, K. Pingali, and R.
Thomas, “The tagged token dataflow architecture,” Technical
report, MIT Laboratory for Computer Science, 1984.

[3] Authors. Reference withheld to preserve anonymity during
review process.

[4] J. Buck, S. Ha, E. Lee, and D. Messerschmitt, “Ptolemy: A
framework for simulating and prototyping heterogeneous
systems,” International Journal of Computer Simulation,
April, 1994.

[5] Java Media Framework, Sun Corporation, http://java.sun.com/
products/java-media/jmf/

[6] Ed Lee and Thomas Parks, “Dataflow Process Networks,”
Proceedings of the IEEE, May 1995.

[7] Marco Lohse, Michael Repplinger, and Philipp Slusallek, “An
Open Middleware Architecture for Network-Integrated
Multimedia,” in Protocols and Systems for Interactive
Distributed Multimedia Systems, Proceedings of IDMS/
PROMS'2002 Joint International Workshops on Interactive

Distributed Multimedia Systems / Protocols for Multimedia
Systems, Coimbra, Portugal, November 26th-29th, 2002

[8] Ketan Mayer-Patel and Larry Rowe, “Design and Performance
of the Berkeley Continuous Media Toolkit,” Multimedia
Computing and Networking 1997, Proc. SPIE 3020, pp. 194-
206

[9] Microsoft DirectShow. Microsoft Corporation,
http://msdn.microsoft.com/

[10]David R. Musser, Gillmer I. Derge, and Atul Saini. The STL
Tutorial and Reference Guide, Second Edition: C++
Programming with the Standard Template Library, Addison-
Wesley, Boston, MA, 2001.

[11]R. Nikhil, U. Ramachandran, J. Rehg, R. Halstead, Jr., C.
Joerg, and L. Kontothanassis, “Stampede: A programming
system for emerging scalable interactive multimedia
applications,” 11th International Workshop on Languages and
Compilers for Parallel Computing, 1998.

[12]U. Ramachandran, R. S. Nikhil, N. Harel, J. M. Rehg, and K.
Knobe, “Space-time memory: A parallel programming
abstraction for interactive multimedia applications,” In
Proceedings of the Seventh ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP'99),
1999.

[13]J. Rasure and C. Williams, “An integrated visual language and
software development environment,” Journal of Visual
Languages and Computing, vol. 2, pp. 217-246, 1991.

[14]Quicktime, Apple Corporation, http://quicktime.apple.com/

	Dataflow analysis
	Decomposition.
	Composition
	Graph management
	Computing Service
	Execution Model
	Combinational vs. Sequential
	Push vs. Pull
	Native Platform
	Abstraction Layer
	Kernel
	Component Library
	Implementation Features

