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Abstract— We propose a technology strategy for en-
abling applications to scale to next-generation levels of
I/O scalability and communication performance on indus-
try standard platforms. The strategy combines efficient
packet processing and scalable I/O concurrency, potentially
enabling Ethernet and TCP to approach the latency and
throughput performance offered by today’s System Area
Networks. We target the performance of communication-
centric applications, initially using a web server as the
application for concept validation.

Our approach integrates two components to provide
a complete networking stack for user-level applications.
The first component is the ETA architecture developed at
Intel Labs, where one or more server processor cores are
dedicated for network packet processing. This architecture
reduces processing overhead by avoiding costly interrupts
and context switches, and by exposing VIA-style user-
level communication primitives which reduce data copies
and bypass the operating system for most I/O operations.
The second component is an asynchronous I/O (AIO)
programming model, which allows a single thread to issue
I/O operations without being blocked and to receive asyn-
chronous events that signify the completion of previously
issued I/O operations. The AIO programming model allows
applications to achieve scalable concurrency without the
overhead of software threads.

This paper will describe the components of our proposed
networking stack, a web server application designed to
take advantage of this networking stack, and our plans to
evaluate the performance benefits of this approach.

I. INTRODUCTION

Future computing platforms will require fast, low
overhead packet and protocol processing to accomodate
emerging high speed I/O interfaces such as 10 gigabit
Ethernet. At high packet and data rates, current systems
suffer high overhead from interrupts, context switches,
and data copies. These overheads hurt application perfor-
mance by consuming processor and memory bus cycles,
polluting caches, and disrupting processor pipelines.

Future platforms will require increased I/O concur-
rency, in addition to efficient packet processing, to take
full advantage of new high speed links. As improvements
in I/O bandwidth outstrip improvements in latency, an
increased number of operations must be in flight con-
currently to effectively utilize link bandwidth. How-
ever, conventional software multithreading approaches
to increase concurrency scale poorly, with intolerable
overhead for scheduling and coordination [1].

In this position paper, we propose a technology strat-
egy for enabling applications to scale to next-generation
levels of I/O performance on industry standard platforms.
The strategy combines efficient packet processing and
scalable I/O concurrency, potentially enabling Ethernet
and TCP to approach the latency and throughput per-
formance offered by today’s System Area Networks
(SANs). We target the performance of network-centric
applications, using a web server as the initial application
for concept validation.

The proposed approach integrates two components
to provide a complete networking stack for user-level
applications:

• Embedded Transport Acceleration (ETA) [2].
The ETA project at Intel Labs has developed a
prototype architecture in which all network packet
processing is segregated to one or more dedicated
processors or hardware threads that are fully in-
tegrated in the system’s cache coherence domain.
These dedicated Packet Processing Engines (PPEs)
interact with network interfaces and with applica-
tions via load/store instructions to cache-coherent
memory, avoiding costly interrupts and context
switches. The architecture exposes VIA-style [3]
user-level communication to applications, reducing
data copies and bypassing the operating system for
most I/O operations [4][5].

• Asynchronous I/O (AIO) API. To achieve scal-



able concurrency without the overhead of software
threads, we adopt APIs that expose high-level file
and socket asynchronous I/O (AIO) semantics to
applications [6][7][8][9]. The APIs support asyn-
chronous versions of traditional socket and file oper-
ations. Applications issue operations without being
blocked and without first verifying file and socket
descriptor status. Applications receive asynchronous
events that signify the completion of previously is-
sued I/O operations. This model allows multiple I/O
operations to be in-flight concurrently. We initially
focus on ETA support for socket AIO and rely on
existing OS support for file AIO. We envision that
ETA could support file AIO in the future using
network file system protocols such as Direct Access
File System (DAFS) [10].

The ETA architecture leverages microarchitecture
trends toward multiple processor cores on a single die
and multiple hardware threads per core [11][12]. De-
voting a small number of cores to packet processing
can be worthwhile in exchange for large improvements
in application performance on the remaining hardware.
Using standard processors ensures that the architecture
will automatically track dominant semiconductor cost-
performance trends (Moore’s Law). Specialized proces-
sors and custom logic, as used in most TCP Offload
Engines (TOEs), are in danger of falling behind the
curve [13].

The ETA architecture, with fully programmable PPEs,
can readily support evolving data center I/O functional-
ity. PPEs based on standard processors can leverage their
mature, widely used software development environments
to facilitate rapid development and implementation up-
grades. Wide deployment of commodity high speed links
and the universal IP protocol will allow data centers to
consolidate onto a cost-effective unified I/O fabric that
supports networking, storage, and inter-process commu-
nication. PPEs can support a unified fabric by efficiently
processing TCP/IP, upper layer protocols such as iSCSI
for storage, and network data transformations such as
encryption or compression.

By layering high-level asynchronous I/O APIs above
the ETA architecture, our approach enables the de-
velopment of highly concurrent, low overhead, event-
based network-centric applications. There are two ba-
sic approaches to structuring applications to scale to
highly concurrent operation: threads [1] and events [14].
Although good scaling can be achieved with special-
purpose thread packages [1], no general purpose software
threading package is currently available that can scale

efficiently to huge numbers of threads. In the alternative
event-based approach, the operating system or I/O de-
vices deliver events to applications to indicate changes
in system status (e.g., completion of an operation, or
readiness of a file descriptor to perform a write operation
without blocking). Applications are structured as state
machines in which a state transition occurs when the
application processes an event [14].

Using a high-level asynchronous I/O API, event-based
applications can issue socket and file operations by
placing operation descriptors into work queues. When an
operation completes, a completion descriptor is placed
by the PPE or OS kernel into an event queue accessible
to the application. An application processes events to
determine which operations to issue next. By exposing
work and event queues to applications, the program-
ming model naturally enables applications to process
events and issue operations using application-specific
scheduling policies to improve resource management and
performance [15].

The remainder of this paper is organized as follows.
Section II briefly presents background and related work.
Section III gives an overview of the ETA architecture.
Section IV discusses asynchronous I/O API alternatives
and presents our API implementation. Section V de-
scribes the userver [16], our highly instrumented and
flexible experimental web server we will use to validate
our approach. Section VI discusses the research ques-
tions we plan to investigate as we build and evaluate a
prototype implementation.

II. BACKGROUND AND RELATED WORK

Most efforts to increase server network performance
have centered on specialized TOE (TCP/IP Offload En-
gine) devices [17][18]. TOE devices generally offload
varying amounts of the TCP/IP protocol stack on a de-
vice that attaches to the I/O subsystem of a server. TOE
devices generally utilize separate, specialized processing
and memory resources. The ETA prototype described in
this paper differs from these devices in that it utilizes
processing and memory resources of the server itself,
making the packet processing engine a first class citizen
of the core CPU and memory complex.

Other related research efforts include the QPIP [19]
work at Berkeley that showed the effectiveness of
interfacing IP protocols implemented on an intelli-
gent network adapter using the Queue Pair model
of the InfinibandTMArchitecture [4]. The TCP Servers
project [20] at Rutgers University showed a framework
where the network processing could be partitioned onto



a dedicated node, processor or an intelligent adapter and
interface to the host applications through lightweight
communication mechanisms. TCP Servers is similar to
ETA in terms of a partitioned architecture, but it differs
in terms of interface functionality between the host and
the Packet Processing Engine.

Several asynchronous I/O API implementations exist
today, notably Microsoft’s Windows asynchronous I/O
with completion ports [9] and POSIX AIO [6], both
of which support socket I/O and file I/O, and Linux
AIO [7][21] which supports file I/O. These APIs are
directed towards OS-based I/O stack (socket or files)
implementations and, hence, do not have the primitives
necessary for bypassing the OS. Recently, the Open-
Group has begun to define asynchronous Sockets API
Extensions [8] for Unix designed for implementations
where I/O operations bypass the OS (e.g., with intelligent
InfiniBand host adapters).

III. OVERVIEW OF THE ETA ARCHITECTURE

The ETA architecture [2] partitions the server into
the host and the packet processing engine or PPE.
The host partition is where the operating system and
applications execute. The PPE includes the processing
and memory resources used for network-centric tasks,
including TCP/IP protocol processing. The interface be-
tween the host and the PPE is implemented as a set
of asynchronous queues in cache-coherent, shared host
memory. The queuing structures are used for control,
synchronization and for receiving and transmitting data
on the network. Figure 1 shows the ETA architecture.
Our ETA development vehicle is a multiprocessor server,
where one processor is a dedicated PPE, and the remain-
ing processors serve as the host.

ETA also defines the interface between the host and
the PPE. This interface is implemented through a set of
queuing structures called the Direct Transport Interface
or DTI (see Figure 2). The ETA interface is based on
the principles of the Virtual Interface Architecture [3]
and Infiniband [4], but have been optimized for TCP
streams and connection semantics. In particular, the
DTI structures directly support the socket connection
interfaces, and support the buffering semantics of TCP
streams. Each DTI consists of a send queue, a receive
queue, an event queue and doorbells. The send queue
is used to post data transmit operations, in the form of
a descriptor, to the PPE. The receive queue is used to
post, or pre-post application buffers for incoming data.
The doorbells are used to inform the PPE that new work
has been queued for the PPE to process. The event queue
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is the mechanism for synchronization, mainly informing
the application when operations have completed. ETA
also provides anonymous buffer pools in the shared
memory in order to support buffering semantics of
TCP streams by handling non-pre-posted or out-of-order
receive packets. Finally, DTI event queues and doorbells
can be shared across multiple DTI instances.

In order to achieve maximum performance, the ETA
interface supports a direct access socket interface to
user level applications. The direct access interface allows
applications to initiate network operations that bypass
the operating system and its associated overheads. Our
implementation of this interface is a thin software layer
called the Direct User Socket Interface or DUSI. DUSI
supports asynchronous connection operations (connect,
listen, accept) as well as send and receive data transfer
operations.



IV. API FOR ASYNCHRONOUS I/O

In addition to using ETA for low overhead messaging,
the second component of our approach is to provide APIs
for asynchronous socket and file I/O. Asynchronous I/O
(AIO) splits each I/O operation into two distinct phases:
posting an operation request, and retrieving completion
event information. An application thread can execute
a non-blocking call that posts a request for an I/O
operation to be performed. When the I/O operation
eventually completes, a completion event is delivered
asynchronously to the application, typically via an event
queue, to indicate the operation’s result. Split-phase I/O
processing enables an application thread to perform other
processing in between posting an operation and receiving
its completion event. The other processing could include
posting operations and processing completions for dif-
ferent I/O operations, thus increasing the level of I/O
concurrency compared to synchronous, blocking I/O.

Unlike synchronous I/O, AIO does not block the
calling application thread. We also distinguish AIO from
non-blocking I/O, in which the application ensures that
I/O operations will not block by first checking file or
socket status. For example, in a Unix system, a socket
or file can be set to non-blocking mode. Applications
can call select() or poll() to detect which read
or write calls can be performed without blocking the
caller. The calls that will not block can return with
only partial results, for example because of reaching
socket buffer limitations, in which case the operations
need to be submitted multiple times. Calls to read or
write that cannot be performed without blocking do
not succeed, and return EWOULDBLOCK. In contrast
to non-blocking I/O, AIO operations never block, and
therefore applications do not need to perform checks in
advance or deal with partial completion.

A. Our API Implementation Approach

The asynchronous I/O API layer above the ETA
architecture could be based on any of the existing AIO
APIs described in section II. In the case of Microsoft
Windows’ completion ports, POSIX AIO, and Linux
AIO, extensions are needed to support OS bypass in
ETA. These APIs would need to support calls for ap-
plications to register memory regions that are to be the
sources and destinations of packet data. Event delivery
mechanisms must also be made lighter weight by not
relying on the operating system (e.g., POSIX AIO relies
on signal queues for event delivery). In contrast, the
Open Group Sockets API Extensions, which is in devel-
opment, supports the necessary calls and is promising.

Since DUSI is similar to the Sockets API Extensions
and we wanted to avoid making ad-hoc extensions to
an arbitrarily chosen API, we have chosen a path which
leaves us open to the use of any of the existing AIO
APIs on an ETA platform. To this end, our web server
application is coded to a generic interface that can be
mapped to various AIO APIs. This AIO mapping is
intended to meet the requirements of the web server
application while avoiding any features that are peculiar
to specific AIO APIs. Currently, we are working to
complete the mapping to DUSI which provides the set of
essential socket operations and completion event delivery
operations.

The basic operations provided by DUSI are shown in
Table I. With DUSI, each socket is associated with one
DTI structure. This one-to-one binding simplifies socket
scheduling and resource management. DUSI provides
the DUSI Socket() call to create a socket. Separately,
the DUSI Create EvQ() call is used to create event
queues. Socket creation entails creating the socket’s DTI
structure, binding the DTI TX work queue to some event
queue, and binding the RX work queue to either the same
or some different event queue. The binding determines
where completion events are delivered for operations that
are posted to the work queues. In section V we discuss
how we plan to explore using the event queue binding
flexibility of DUSI to improve application performance.

AIO APIs differ in the granularity of event queue bind-
ing. Whereas with DUSI, each TX or RX work queue
is bound to an event queue, with Windows, binding to
an event queue (completion port) is at the granularity
of a socket. With Linux AIO (and POSIX AIO, where
event queues are implemented as POSIX realtime signal
queues), event queue binding is at the granularity of
each I/O operation as it is posted. With the Open Group
Sockets API Extensions, the binding is based on the
type of I/O operation (read, write, accept, etc.) for a
socket. In addition, the Sockets API Extensions allows
the binding to be changed dynamically, potentially before
posting each operation. Dynamic binding gives this API
the same effective granularity of event queue binding
as with Linux AIO. Per-operation event queue binding
can be useful in multi-threaded applications in which the
operation of each thread is specialized, and completion
events for operations posted by one thread should be
processed by another thread. For example, the threads
might form a processing pipeline in which each thread
is assigned to process from a unique event queue [14].
When a thread posts an operation, it can specify that the
completion event will be delivered to the event queue



TABLE I

BASIC DUSI OPERATIONS

Setup Operations:

Dusi Open Ual() Open an instance of an ETA User Adaptation Layer for user application for a
specified Doorbell Queue size and Anonymous Buffer Pool size.

Dusi Create EvQ() Create a DTI event queue of specified size in the attributes and return an opaque
handle to the queue. The call can register a signal for the event queue specified in
its attributes.

Socket Operations:

Dusi Socket() Create a DTI socket per connection for a specified sized Rx and Tx work queues.
Associate the Rx and Tx work queues with separate or common event queue.

Dusi Connect() Establishes a connection on the specified DTI for a specified destination address
and port.

Dusi Listen() Listen for connections on a specified DTI.
Dusi Bind() Binds a DTI to a specific IP address, address length, TCP port, and address family.
Dusi Accept() Post an asynchronous accept operation for socket connection on the specified

listening parent DTI socket and associate the new connection on the specified child
DTI socket.

Dusi Recv() Post asynchronous receive operation on the specified DTI socket.
Dusi Send() Post asynchronous transmit operation on the specified DTI socket.
Dusi Shutdown() Shutdown or close a specified DTI socket connection.
Dusi Set Socket Ops() Set operational parameters for the specified DTI socket.
Dusi Get Socket Ops() Get operational parameters for a specified DTI socket.
Completion Event Operations:

Dusi Wait All() Wait on the specified DTI event queue and return an event Vector containing all the
events completed so far and return the number of events completed. Block waiting
for an event until Timeout period if the event queue is empty.

Dusi EvQ Num Events() Poll the specified DTI event queue and return the number of events on the event
queue.

Dusi Done() Poll for an event on the specified DTI event queue.
Memory Registration:

Dusi Register Memory() Register a region of memory with ETA PPE.
Dusi Deregister Memory() Deregister previously registered memory with the ETA PPE.

for the next thread in the pipeline. Although DUSI
does not currently support per-operation event queue
binding, the work queue-based event queue binding that
it provides is adequate for the requirements of the web
server application described in section V.

DUSI requires applications to perform memory reg-
istration on application memory regions prior to using
them for asynchronous socket I/O operations. Memory
registration invokes the operating system to pin a region
in physical memory and provide the address to ETA to
enable zero-copy transfers. The cost of OS invocations

to register and de-register a memory region is amortized
over the intervening operations that use the region. A
second function of memory registration can be to issue
access keys (called protection tags) to a memory region.
If a region has a protection tag, ETA ensures it is
accessed only by operations that present a matching
protection tag.

Once a socket is created and memory regions have
been been registered, the application can post socket AIO
operations to DTI work queues for processing by an ETA
PPE. Since this process bypasses the OS, it is efficient to



post an operation. In contrast, OS kernel-based AIO APIs
may suffer high system call overhead unless multiple
operations are batched into a single call. Linux AIO, for
example, provides a batching mechanism [7]. Batching
complicates the application design and can delay I/O
operations if a work queue empties while a batch is being
prepared for submission.

When operations complete, completion events are de-
livered by a PPE to the appropriate DUSI event queues as
directed in socket creation. The application can retrieve
the events by calling DUSI Wait All(). A callback
mechanism is supported in which callback functions can
be invoked for each event in the queue. In addition,
applications can pass in a user-defined tag to an I/O
operation, and the tag is returned to the application via
the corresponding completion event.

A single application thread may need to process events
from multiple event queues to maintain single-threaded
operation while keeping separate the events of different
types. For example, processing multiple event queues
may be necessary if the application thread uses multiple
AIO APIs (e.g., one queue for socket AIO, and another
queue for file AIO). In an I/O intensive application,
occasionally it is possible that all the queues of interest
are empty. In this case, the application thread has no
work to do and should block until an event arrives
to any of the event queues. To support blocking on
multiple queues, DUSI allows a user-specified signal to
be registered with an event queue. When enabled, the
signal is generated on transition of the event queue from
empty to non-empty. When all queues are empty, the
application can enable this signal generation and block
on a call to sigsuspend().

B. Unifying AIO for Files and Sockets

Although our initial focus is on providing socket AIO
using DUSI and ETA, we also wish to ensure that
applications can use file AIO together with socket AIO.
File I/O is traditionally implemented in the OS kernel.
In addition, we envision that the kernel file system could
be layered on a block-level iSCSI layer implemented by
ETA for network-based storage. We further envision that
ETA could be used to bypass the kernel for network-
based file I/O using protocols such as Direct Access File
System (DAFS) [10].

Unless asynchronous file I/O operations can bypass
the kernel, applications may need to wait on file I/O
completion events from the kernel and on socket com-
pletion events from an ETA PPE. The signal mechanism
described in section IV-A can facilitate waiting for

multiple types of event queues. In addition, it may be
useful to have unified event queues that can receive
completion events for both files and sockets. This would
require solving the problem of efficiently coordinating
concurrent access to an event queue by both the PPEs
(for sockets) and the OS kernel (for files). Another
important issue is how ETA can support the popular Unix
sendfile() call which allows a file to be transmitted
to the network directly from the kernel-managed file
buffer cache in the system memory without intermediate
copies.

V. EXAMINING A WEB SERVER APPLICATION

To demonstrate the benefits of our approach we plan
to experimentally evaluate the performance gains that
can be obtained using a well known and widely used
network-centric application, namely a web server. A web
server is an excellent example of an application that
can place extremely high demands on system resources,
especially operating system resources. We believe that
our approach can enable demanding applications such as
web servers to multiplex among large numbers of active
connections with significantly reduced costs which will
significantly improve server performance.

Current approaches to implementing high-
performance network-centric applications require
special techniques for dealing with high levels of
concurrency. This point is illustrated by first considering
the logical steps taken by a web server to handle a single
client request. Almost all network-centric applications
follow similar steps. To simplify our illustration, our
example assumes a persistent connection initiated by
the client.

1) Wait for and accept an incoming network connec-
tion.

2) Read the incoming request from the network. If
the client has no more requests, it closes its end
of the connection and the server read() returns
EOF, so close the connection.

3) Parse the request.
4) For static requests, check the cache and possibly

open and read or mmap the file.
5) For dynamic requests, compute the result.
6) Send the reply to the requesting client.
7) Goto step 2
Figure 3 shows the socket calls that are required in

the case where the request is for a file that is found in
the cache.

Several of the steps listed above can block because
they require interaction with a remote host, the network,
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a database or some other subsystem, and potentially a
disk. Consequently, for high performance the server must
handle several thousands or tens of thousands of simul-
taneous connections [22], quickly multiplex connections
that are ready to be serviced, and dispatch network I/O
events at high rates.

One approach to satisfy this requirement is to use
a single process event driven (SPED) architecture (ter-
minology from [23]) for the web server. A SPED ar-
chitecture uses a single process and only issues calls
that will not block [15][24]. This allows the process
to service multiple connections concurrently without
being blocked on an I/O operation. With a non-blocking
I/O programming model, this requires using an event
notification mechanism such as select(), poll(),
or Linux’s epoll() to determine when a system call
can be made without blocking. In multiprocessor envi-
ronments multiple copies of a single process event driven
web server can be used to obtain excellent performance
relative to alternative architectures [25].

An alternative approach multiplexes simultaneous
connections by using processes or threads which nat-
urally block in the operating system when a system call
blocks. The multiplexing of connections occurs when the
the operating system context switches to a thread that is
ready to execute because an event that the thread was
blocked on has now arrived. This is known as an MP
(multi-process) or MT (multi-thread) model [26][23].
The Flash server implements an asymmetric multi-
process event driven architecture (AMPED) [23]. This is
a hybrid architecture combining event-driven socket I/O
with helper processes dedicated to perform (blocking)
disk accesses on behalf of the main event driven process.
The capability to perform true asynchronous I/O favors
the SPED model over alternatives based on threads.

A. The userver

To evaluate our architecture we will use an open
source micro web server called the userver [15], [16],

which is implemented using the SPED model. The
userver currently supports a non-blocking socket I/O
model and multiple event notification mechanisms (in-
cluding Linux’s epoll()), and it can run using mul-
tiple copies in multiprocessor environments. We will
modify the userver to utilize asynchronous socket I/O.
The userver has extensive tracing and statistics facilities
which enables analysis of server behavior and the im-
pact of various I/O and event notification interfaces on
performance.

We plan to use the userver to compare the web server
performance with and without the ETA engine. We will
compare performance when using a dedicated processor
for the ETA packet processing engine and the remaining
processors for the execution of web server processes with
the performance of a standard Linux implementation
with web servers running on all available processors.

When using a standard Linux kernel and TCP/IP
stack the separate userver processes will use the file
system buffer cache to share cached files across all pro-
cesses. Additionally, the Linux version of sendfile()
is a zero-copy implementation which permits high-
performance and a good basis for comparison. When
utilizing the ETA packet processing engine the userver
processes will share a file system buffer cache, although
in this case this will be accomplished using mmap()
to map files into the application’s address space. Data
will be transmitted using the DUSI API and the ETA
engine without copying and without operating system
involvement.

B. Web Server Event Scheduling

As noted in recent research an important issue in the
design of web servers is the scheduling of events. For
example, the balance between the rate at which new
connections are accepted by the server and the rate at
which forward progress is made on existing connections
impacts server throughput [15][27]. If too few asyn-
chronous accept() calls are initiated the server will
not be accepting connections at a high enough rate. The
server’s listen queue will fill, and connection requests
will be dropped. Conversely, if too many accept()
calls are asynchronously initiated too many connections
may be accepted and the server’s performance will suffer
because it’s spending too much time accepting new
connections and not enough time working on existing
connections. Other researchers have noticed that the
proper scheduling of asynchronous I/O reads and writes
can significantly impact the performance of database
queries [28].
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To facilitate event scheduling in the userver, we will
exploit DUSI’s ability to deliver asynchronous I/O com-
pletion events of different types to separate completion
queues. We plan to use DUSI to create and utilize
multiple event queues: one to indicate when initiated
accept() calls have completed, and additional queues
for completed read(), write(), and close() calls.
By combining the separation of queues by event type
with a method for obtaining the number of events
available in each queue the server can make informed
decisions about what operations should be initiated next
to obtain the balance required for peak performance.

Figure 4 demonstrates how this issue impacts the
performance of a traditional SPED model server (i.e.,
the userver using a non-blocking model interacting with
a standard Linux kernel). The server executes on a
500 MHz PIII-based HP NetServer LPr system running
Linux. The client load is generated using httperf [29]
and ten B180 PA-RISC machines running HP-UX 11.0
and consists of static requests conforming to the file size
distribution used in SPECweb99 [30].

The graph in Figure 4 plots the throughput observed at
the clients versus the targeted request rate. The different
lines in the graph indicate different frequencies at which
the server attempts to accept new incoming connection
requests. These results confirm that server throughput
suffers if the server accepts new connections too fre-
quently or too infrequently. We believe that this issue
will be important in our asynchronous I/O environment
and will be a topic of our investigation.

VI. EVALUATION PLAN

We plan to evaluate our approach through a combina-
tion of measurement and analysis, as well as comparison
to other design alternatives. We are building a functional
prototype to use for this purpose. The prototype will

0.18

0.09
0.15

0.32

0.52

0.28

0.39

0.75

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

tcp/ip bufmgt driver OTHER

C
P

U
s

S
p

en
t

ETA

SMP

Fig. 5. ETA efficiency

build upon the existing ETA proof-of-concept with the
addition of the Direct Socket User Interface (DUSI) to
bypass the operating system in the performance critical
path. In addition, we will provide an AIO mapping layer
between the userver and the ETA DUSI interface.

The existing ETA proof-of-concept implementation
uses a DUSI equivalent interface at kernel level. It is ex-
pected that DUSI will provide comparable performance
to the kernel version of the interface due to the fact
they both utilize the base DTI queuing and synchro-
nization structures. Performance analysis on the existing
kernel level interface shows that significant efficiency
and performance gains can be obtained when comparing
a dual processor server running ETA versus running
in Symmetric Multi-Processing (SMP) mode. Figure 5
shows measured results of the kernel level prototype
performing 1KB transmit operations to multiple client
computers. It shows the relative amount of processing
power consumed for various elements of the networking
stack, including the TCP/IP code, the buffer management
code, the driver code, and the remaining portions of
the total stack. It clearly shows that each element of
the ETA prototype stack is more efficient than its SMP
counterpart.

The initial ETA results, combined with the expected
gains from the AIO programming model, provide us
with the intuition that the combined benefits will yield
significantly improved scaling over existing Linux net-
work implementations. To support this intuition, we
will begin by measuring simple micro-benchmarks in
order to get a baseline performance of the prototype.
We will write simple tests based on the TTCP [31]
micro-benchmark using the AIO programming model in
order to get baseline throughput and round-trip latency
performance measurements. We will then quickly move
to more realistic workloads. A stretch goal will be to
apply other workloads, for example storage or trans-
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action processing, in order to understand the general
efficacy of our approach beyond web serving. In the
analysis phase, we will use existing analysis tools, such
as VTune [32] and/or oprofile [33], to analyze the impact
of our approach at the micro-architectural level. For
example, we will gather data on CPU, memory and cache
usage. In addition, we will analyze the effect of reduced
memory copies, device interrupts and context switches
on overall application performance.

Once we have run and analyzed our prototype, we
can compare it with other approaches. First we will
compare our prototype with a Linux distribution that
includes existing network acceleration features such as
checksum offload, TCP segmentation offload, and inter-
rupt moderation [34]. Specifically, this comparison will
compare our userver application for two cases. The first
case is the on standard Linux distribution using standard
sockets. The second case is userver running over the
DUSI interface to ETA. Figure 6 shows a side-by-side
view of the standard Linux networking stack on the left,
and our scalable networking prototype stack on the right.
This comparison will allow us to measure and analyze
the combined benefits of the ETA architecture and a non-
blocking, asynchronous application interface.

Given substantial industry activity developing TCP
Offload Engine (TOE) devices [13], we will also quali-
tatively compare our approach to a TOE-based solution
running a web-server application.

VII. SUMMARY

In this paper, we have proposed a technology strategy
that combines the ETA architecture and the asynchronous
I/O programming model to achieve scalable networking
on industry standard computing platforms. Our approach

potentially enables TCP and emerging high-speed com-
modity interconnects such as 10 gigabit Ethernet to
approach the performance levels of today’s SANs. More-
over, our proposed architecture can be a key enabler for a
cost-effective unified I/O fabric that supports networking,
storage, and inter-process communication.

Our initial experimental results using the existing ETA
architecture prototype for kernel-level applications are
very promising. Our ongoing work is to complete a
prototype of the combined architecture with ETA and
the AIO programming model, restructure our user-level
web server application to use this platform, and evaluate
the performance benefits delivered to the application.
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