
                                                                

       
On the number of t-ary trees with a given path length 
 
Gadiel Seroussi 
Information Theory Research  
HP Laboratories Palo Alto 
HPL-2004-127 
July 26, 2004* 
 
E-mail: gadiel.seroussi@hp.com 
 
 
binary trees, t-ary 
trees, path length, 
universal types 

We show that the number of t-ary trees with path length equal to p 

is 
))1(1(

log
)(

2

1
o

p
ptth

t
+

−

 where h(x) = –xlog2 x–(1–x) log2(1–x) is the binary 
entropy function.  Besides its intrinsic combinatorial interest, the 
question recently arose in the context of information theory, where 
the number of t-ary trees with path length p estimates the number of 
universal types, or, equivalently, the number of different possible 
Lempel-Ziv'78 dictionaries for sequences of length p over an 
alphabet of size t. 

 
"Some of the most instructive applications of the mathematical theory of 
trees to the analysis of algorithms are connected with formulas for 
counting how many different trees there are of various kinds." D. E. 
Knuth, [7, p. 386]. 

 

    

    

* Internal Accession Date Only                              Approved for External Publication 
 Copyright Hewlett-Packard Company 2004 



On the number of t-ary trees with a given
path length

Gadiel Seroussi∗

July 23, 2004

Abstract

We show that the number of t-ary trees with path length equal to p is

t
h(t−1)

tp
log2 p (1+o(1))

, where h(x)=−x log2 x−(1−x) log2(1−x) is the binary entropy func-
tion. Besides its intrinsic combinatorial interest, the question recently arose in the
context of information theory, where the number of t-ary trees with path length p esti-
mates the number of universal types, or, equivalently, the number of different possible
Lempel-Ziv’78 dictionaries for sequences of length p over an alphabet of size t.
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“Some of the most instructive applications of the mathematical theory of trees to the
analysis of algorithms are connected with formulas for counting how many different
trees there are of various kinds.” D. E. Knuth, [7, p. 386].

1 Introduction

Fix an integer t ≥ 2. A t-ary tree T is defined recursively as either being empty or consisting
of a root node r and the nodes of t disjoint, ordered, t-ary (sub-)trees T1, T2, . . . , Tt, any
number of which may be empty [7, Sec. 2.3.4.5]. When Ti is not empty, we say that there is
an edge from r to the root r′ of Ti, and that r′ is a child of r. The total number of nodes of
T is zero if T is empty, or nT = 1 +

∑t
i=1 nTi

otherwise. A node of T is called a leaf if it has
no children. The depth of a node v ∈ T is defined as the number of edges traversed to get
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from the root r to v. We denote by D
(T )
j , j ≥ 0, the number of nodes at depth j in T . The

sequence {D(T )
j } is called the profile of T ; we only consider finite trees, so {D(T )

j } has finite
support. The path length of a non-empty tree T , denoted by pT , is the sum of the depths of
all the nodes in T , namely

pT =
∑
j≥1

jD
(T )
j

(the subscript T in nT and pT will be omitted when the tree being discussed is clear from
the context). We call a t-ary tree with n nodes a [t, n] tree. A [t, n] tree with path length
equal to p will be called a [t, n, p] tree, and a t-ary tree with path length equal to p and an
unspecified number of nodes will be referred to as a [t, ·, p] tree.

Path length is an important global parameter of a tree that arises in various compu-
tational contexts, where it often relates to execution time [7, Sec. 2.3.4.5]. For example,
when the access time of the data stored in a tree node is proportional to the depth of the
node, the path length, after normalization, represents the average access time for a uniformly
distributed random node of the tree.

Let Ct(n) denote the number of [t, n] trees, and Lt(p) the number of [t, ·, p] trees. It is
well known [7, p. 589] that

Ct(n) =
1

(t− 1)n + 1

(
tn
n

)
. (1)

In the binary case (t = 2), these are the well known Catalan numbers that arise in many
combinatorial contexts. The determination of Lt(p), on the other hand, has remained elusive,
even for t = 2. Consider the bivariate generating function B(w, z) defined so that the
coefficient of wpzn in B(w, z) counts the number of [2, n, p] trees. B(w, z) satisfies the
functional equation [7, p. 595]

zB(w,wz)2 = B(w, z)− 1.

However, solving this equation for the generating function B(w, 1) of the numbers L2(p)
appears quite challenging. Nevertheless, the equation, and others of similar structure, has
been studied in the literature. In particular, the limiting distribution of the path length
for a given number of nodes is related to the area under a Brownian excursion [11, 12, 13],
which is also known as an Airy distribution. This distribution occurs in many combinatorial
problems of theoretical and practical interest (cf. [4] and references therein).

These studies, however, have not yielded explicit asymptotic estimates for the numbers
Lt(p). The numbers recently arose in an information-theoretic context, in connection with
the notion of universal type [9, 10], based on the incremental parsing of Ziv and Lempel
(LZ78) [14]. When applied to a t-ary sequence, the LZ78 parsing produces a dictionary
of strings that is best represented by a t-ary tree whose path length corresponds to the
length of the sequence. Two sequences are said to be of the same universal type if they
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yield the same t-ary parsing tree. Sequences of the same universal type are, in a sense,
statistically indistinguishable, as their empirical probability distributions of any finite order
converge in the limit [9, 10]. Universal types generalize the notion underlying the classical
method of types, which has lead to important theoretical results in information theory [3]. Of
great interest in this context is the estimation of the number of different types for sequences
of a given length p. For universal types, this translates to the number of different LZ78
dictionaries, or trees with a given path length, namely, Lt(p).

Let lg x = log2 x, and let h(x) = −x lg x−(1−x) lg(1−x) denote the binary entropy
function. The main result of this paper is the following asymptotic estimate of Lt(p).

Theorem 1 Let α = t h(t−1). Then, Lt(p) = t
αp
lg p

(1+o(1))
.

The theorem is derived by proving matching upper and lower bounds on Lt(p). The proof
is presented in Section 2.

We remark that Knessl and Szpankowski [6] have recently applied the WKB heuristic [1]
to obtain an asymptotic expansion of lg L2(p) using tools of complex analysis. The heuristic
makes certain assumptions on the form of asymptotic expansions, and is often considered a
practically effective albeit non-rigorous method. The proofs in this paper, on the other hand,
use mostly combinatorial arguments. The main term in the expansion of [6] is consistent
with Theorem 1 for t = 2.

2 Proof of the main result

In the following lemma, we list some elementary properties of t-ary trees that will be referred
to in the proof of Theorem 1. For a discussion of these properties, see [7, Sec. 2.3.4.5].1

Lemma 1 (i) Let ` be a positive integer, and let T be a [t, n, p] tree achieving minimal path
length among all t-ary trees with ` leaves. Then,

n = `−
⌈

`− 1

t− 1

⌉
(2)

and the profile of T is given by

D
(T )
j =


tj, 0 ≤ j ≤ m− 1,
`1, j = m,
0, j > m,

(3)

1A slight change of terminology is required: nodes of t-ary trees in our terminology correspond to internal
nodes of extended t-ary trees in [7].
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where
m = d logt ` e, (4)

and

`1 = `−
⌊

tm − `

t− 1

⌋
. (5)

In particular, all the leaves of T are either at depth m or m− 1.

(ii) A [t, n, p] tree with minimal path length satisfies

p = pmin =

(
n +

1

t− 1

)
µ− t(tµ − 1)

(t− 1)2
= n logt n−O(n), (6)

where µ = m whenever n 6≡ 2 mod t, or µ = m+1 otherwise, with m defined in (4)
for the number of leaves, `, of the tree. In particular, the tree of (i) satisfies (6) with
µ = m.

(iii) The number of nodes of a [t, n, p] tree satisfies

n ≤ p

logt p−O(log log p)
=

p

logt p
(1 + o(1)). (7)

(iv) The maximal path length of a [t, n] tree is achieved by a tree in which each internal
node has exactly one child (and, hence, there is exactly one leaf). The path length of
such a tree is

pmax =
n(n− 1)

2
. (8)

(v) There is a [t, n, p] tree for each p in the range pmin ≤ p ≤ pmax.

Proof. Items (i),(ii), and (iv) follow immediately from the discussion in [7, Sec. 2.3.4.5].
For convenience in the proof of Theorem 1, we characterize, in Item (i), trees with minimal
path length for a given number of leaves, while the discussion in [7] does so for trees with a
given number of nodes. The two characterizations coincide, except for values of n such that
n ≡ 2 mod t, which never occur in (2). In that case, a tree with n− 1 nodes would have the
same number of leaves and a shorter path length. A tree that has minimal path length for
its number of leaves, on the other hand, always has minimal path length also for its number
of nodes (given in (2)).

Item (iii) follows from (ii) by solving for n in an equation of the form p = n logt n −
O(n). Solutions of equations of this form are related to the Lambert W function, a detailed
discussion of which can be found in [2].

To prove the claim of Item (v), consider a [t, n, p] tree T such that D
(T )
j > 1 for some

integer j. Let jT be the largest such integer for the tree T . It follows from these assumptions
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that T must have nodes u and v at depth jT , such that u is a leaf, v 6= u, and v has at most
one child. Thus, we can transform T by deleting u and adding a child to v, and obtain a
[t, n, p+1] tree. Starting with a [t, n, pmin] tree, the transformation can be applied repeatedly
to obtain a sequence of trees with consecutive values of p, as long as the transformed tree
has at least two leaves. When this condition ceases to hold, we have the tree of Item (iv),
which has path length pmax.

We will also rely on an estimate of Ct(n), which is derived from (1) using Stirling’s
approximation to express a binomial coefficient in terms of the binary entropy function (see,
e.g., [8, Ch. 10]). Specifically, for positive real numbers c1 and c2, which depend on t but
not on n, we have

c1n
− 3

2 2αn ≤ Ct(n) ≤ c2n
− 3

2 2αn, (9)

where, as before, α = t h(t−1).

Proof of Theorem 1.

(a) Upper bound: Lt(p) ≤ t
αp
lg p

(1+o(1)).

Let T be a [t, n, p] tree. T can be completely determined by specifying n and the the
index of T in an exhaustive enumeration of all [t, n] trees. Thus, given p, but without other
prior assumptions on n, T can be described in K = lg p + lg Ct(n) + O(1) bits. Using the
estimate (9), we can write K = αn− 3

2
lg n + lg p + O(1), and, applying (7), it follows that

K ≤ Kmax = αp
logt p

(1 + o(1)). Thus, every [t, ·, p] tree can be completely specified using at

most Kmax bits, and, hence, we must have Lt(p) ≤ 2Kmax , from which the desired upper
bound follows. The asymptotic error term o(1) in the upper bound is, by (7), of the form
O(log log p/ log p).

(b) Lower bound: Lt(p) ≥ t
αp
lg p

(1+o(1)).

We prove the lower bound by constructing a sufficiently large class of [t, ·, p] trees.

Let ` be a positive integer. We start with a t-ary tree T with ` leaves and shortest
possible path length, as characterized in Lemma 1(i). Let q be the integer satisfying

Ct(q − 1) < `− 1 ≤ Ct(q), (10)

and let τ1, τ2, . . . , τ`−1 be the first `−1 [t, q] trees when these trees are arranged in increasing
order of path length. Additionally, let τF be a tree with βq nodes, for some positive constant
β to be specified later. Finally, let π be a permutation on {1, 2, . . . , `− 1}. We construct a
tree Tπ by attaching the trees τ1, τ2, . . . , τ`−1 and τF to the leaves of T , so that the i-th leaf
(taken in some fixed order) becomes the root of a copy of τπ(i), 1 ≤ i < `, with τF attached
to the last leaf of T , which is assumed to be at (the maximal) depth m. The construction is
illustrated in Figure 1.

Next, we compute the path length, p, of Tπ. By Lemma 1(i), all the leaves of T are either
at depth m = dlogt `e or at depth m−1. Assume τi, 1 ≤ i ≤ `−1, is attached to a leaf of
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Figure 1: Tree Tπ

depth m−1+εi, εi ∈ {0, 1}, of T . The contribution of τi (excluding its root) to p is

pi =
∑
j≥1

(m− 1 + εi + j)D
(τi)
j = (m− 1 + εi)

∑
j≥1

D
(τi)
j +

∑
j≥1

jD
(τi)
j = (m− 1 + εi)(q− 1) + νi,

where νi denotes the path length of τi. Similarly, denoting by νF the path length of τF, the
contribution of this tree to p is pF = m(βq− 1) + νF. Considering also the contribution of T
according to its profile (3), we obtain

p =
`−1∑
i=1

(m− 1 + εi)(q − 1) +
`−1∑
i=1

νi + m(βq − 1) + νF +
m−1∑
j=1

jtj + `1m . (11)

Further, observing that
∑`−1

i=1 εi = `1, and defining ν = (`− 1)−1
∑`−1

i=1 νi, we obtain

p = ((`− 1)(m− 1) + `1) (q − 1) + (`− 1)ν + m(βq − 1) + νF +
m−1∑
j=1

jtj + `1m . (12)

Recall that the τi were selected preferring shorter path lengths, so their average path length
ν is at most as large as the average path length of all [t, q] trees. The latter average is known
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to be O(q3/2) (this follows from the results of [5]; see also [7, Sec. 2.3.4.5] for t = 2). Observe
also that, by (4),(9), and (10), we have

q =
lg t

α
m + O(log m). (13)

Recalling now that nτF
= βq, and, hence, νF = O(q2), it follows, after standard algebraic

manipulations, that (12) can be rewritten as

p =
lg t

α
m2` + O(m3/2`). (14)

It also follows from (12) that p is independent of the choice of permutation π. Moreover, by
construction, each permutation π defines a different tree Tπ. Therefore, we have

Lt(p) ≥ (`− 1)! . (15)

Now, from (14), (4) and (15), using Stirling’s approximation, we obtain

logt Lt(p)

p
≥ logt((`− 1)!)

p
=

` logt `−O(`)

p
=

m`−O(`)

α−1 (lg t) m2` + O(m3/2`)
. (16)

Also, from (14) and (4) we have lg p = lg ` + O(log m) = m lg t + O(log m). Combining
with (16), and simplifying asymptotic expressions, we obtain

logt Lt(p)

p
≥ α

lg p
(1− o(1)), (17)

from which the desired lower bound follows. The o(1) term in (17) is O((log p)−
1
2 ).

The above construction yields large classes of trees of path length p for a sparse sequence
of values of p, controlled by the parameter `. Next, we show how the gaps in the sparse
sequence can be filled, yielding constructions, and validating the lower bound, for all (suffi-
ciently large) integer values of p. In the following discussion, to emphasize the dependency
of m, `1, q, and p on `, we use the notations m(`), `1(`), q(`), and p(`), respectively. Also,
for any such function f(`), we denote by ∆f the difference f(` + 1) − f(`). We start by
estimating ∆p.

Assume first that ` is such that ∆q = 0 and ∆m = 0. Then, substituting ` + 1 for `
in (12), and subtracting the original equation, we obtain

∆p = (m− 1 + ∆`1)(q − 1) + ν` + ∆`1 m. (18)

It follows from (5) that, with m fixed, we have 0 ≤ ∆`1 ≤ 2. Also, by (8), we have ν` < 1
2
q2.

Hence, recalling (13), it follows from (18) that

∆p <

(
α

lg t
+

1

2

)
q2 + O(q log q). (19)
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Figure 2: Bridging the gap in q-breaks

Notice that, in (12), with all other parameters of the construction staying fixed, any incre-
ment in νF produces an identical change in p. By Lemma 1(v), by an appropriate evolu-
tion of τF, we can make νF assume any value in the range (νF)min ≤ νF ≤ (νF)max, where
(νF)min = O(βq logt q), and (νF)max = 1

2
βq(βq − 1). Choosing β >

√
2α(lg t)−1 + 1, this

range of νF will make p span the gap between p(`) and p(` + 1) as estimated in (19), for all
sufficiently large ` satisfying the conditions of this case. Still, the variation in the value of p
is asymptotically negligible and does not affect the validity of (17).

If ∆m = 1, we must have ` = `1(`) = tm, and `1(` + 1) = 2. In this case, using (12)
again, we obtain

∆p = (`m + 2)(q − 1) + βq−1 + ν` + m` + 2(m + 1)− ((`− 1)(m− 1) + `)(q − 1)− `m

= (m + 1)(q + 1) + ν` + βq − 1,

which admits the same asymptotic upper bound as ∆p in (19). Thus, the gap between p(`)
and p(` + 1) is filled also in this case by tuning the structure of τF.

The above method cannot be applied directly when ∆q = 1. We call a value of ` such that
q(`+1) = q(`)+1 a q-break. At a q-break, ∆p is exponential in q, and a tree τF of polynomial
size cannot compensate for such a gap. However, we observe that the construction of Tπ,
and its analysis in (12)–(17) would also be valid if we chose q′ = q + 1, instead of q, as the
size of the trees τi. This choice would produce a different sequence of path length values
p′(`), which would also satisfy (17) and would validate the lower bound of the theorem. It
follows from (12) that p′(`) > p(`). Equivalently, for any given (sufficiently large) value `,
there exists an integer `′ < ` such that p′(`′) ≤ p(`) ≤ p′(`′ + 1).
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Consider a q-break `. To construct large classes of trees for all values of p, proceed
as follows (refer to Figure 2): use the original sequence of values p(`), filling the gaps as
described above, until ` = `. At that point, find the largest integer `′ such that p′(`′) ≤ p(`),
and “backtrack” to ` = `′. Continue with the sequence p′(`), ` = `′, `′ + 1, . . ., filling
the gaps accordingly. Notice that q′(`) to the left of ` is the same as q(`) to the right of
that point. Thus, p′(`) continues “smoothly” (i.e., with gaps ∆p as in (19)) into p(`) at
` = `. The process now rejoins the sequence p(`) as before, until the next q-break point.
By (12), since the function m(`) remains the same for both p and p′, we have, asymptotically,
`′ ≈ (1− 1/q)` ≈ `− c3`/ log `, for some positive constant c3. Thus, for sufficiently large `,
although the difference between `′ and ` is negligible with respect to `, `′ is guaranteed to
fall properly between q-breaks, and the number of sequence points p′(`) used between `′ and
` is unbounded.

Acknowledgment. Thanks to Wojciech Spankowski and Alfredo Viola for very useful
discussions.
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