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 We describe a family of defect-tolerant demultiplexers based on error-correcting 

codes. A conventional demultiplexer with a k-bit input address and 2k-bit output 
may be fortified against certain defect types by widening its address bus to n > k
bits to permit an encoded address to be used within the demultiplexer. The 
redundant address is computed by an encoder that guarantees a minimum 
Hamming distance d between addresses, which sparsely populate an expanded 
address space. The increased Hamming distances between addresses are 
especially tolerant of stuck-open defects (and broken wires, which are
equivalent to multiple stuck-open defects). For each address width k , there are a 
series of demultiplexer designs with increasing internal redundancy, increasing 
d, and increasing capability for defect tolerance. These circuit designs are 
especially suitable for nano-scale crossbars; in particular, they may be realized 
at the interface where the CMOS wires of conventional microelectronics cross 
nano-wires to form a mixed-scale interconnect crossbar. Thus, a small number 
(2n) of CMOS wires may be used to control a much larger number (2k) of nano-
wires; the family of encoded demultiplexer designs provides a robust interface 
to the nano-circuitry, giving significant protection from manufacturing mistakes 

at the cost of a relatively small amount of area overhead ƒA ≅
k

n
 . This is a 

qualitatively new application of error-correcting codes, the analysis of which 
combines elements of the conventional coding-theoretic notions of full-error and 
erasure correction. In particula r, a code with minimum distance d guarantees 
tolerance to up to d-l defects per nano-wire, in analogy to conventional erasure 
correction. 
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Abstract 

 

We describe a family of defect-tolerant demultiplexers based on error-correcting codes.  A 

conventional demultiplexer with a k-bit input address and 2k-bit output may be fortified against 

certain defect types by widening its address bus to n > k  bits to permit an encoded address to be 

used within the demultiplexer.  The redundant address is computed by an encoder that guarantees 

a minimum Hamming distance d between addresses, which sparsely populate an expanded 

address space.  The increased Hamming distances between addresses are especially tolerant of 

stuck-open defects (and broken wires, which are equivalent to multiple stuck-open defects).  For 

each address width k, there are a series of demultiplexer designs with increasing internal 

redundancy, increasing d, and increasing capability for defect tolerance.  These circuit designs 

are especially suitable for nano-scale crossbars; in particular, they may be realized at the 

interface where the CMOS wires of conventional microelectronics cross nano-wires to form a 

mixed-scale interconnect crossbar.  Thus, a small number (2n) of CMOS wires may be used to 

control a much larger number (2k) of nano-wires; the family of encoded demultiplexer designs 

provides a robust interface to the nano-circuitry, giving significant protection from 

manufacturing mistakes at the cost of a relatively small amount of area overhead k
nfA ≅ .  

This is a qualitatively new application of error-correcting codes, the analysis of which combines 

elements of the conventional coding-theoretic notions of full-error and erasure correction. In 

particular, a code with minimum distance d guarantees tolerance to up to d-1 defects per nano-

wire, in analogy to conventional erasure correction.
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1.  Introduction 

 

Manufacturing perfect electronic circuits is expensive, and the cost is increasing steeply 

as the requirements for improved precision become more stringent with shrinking feature sizes.   

The cost of perfection may very well become prohibitive long before the feature sizes in 

integrated circuits shrink to the point where quantum phenomena dominate their properties.  

Thus, defect tolerance – defined as the ability of a circuit to perform perfectly even with broken 

components that result from manufacturing mistakes – will be essential in the electronics of the 

future.   

A practical defect-tolerant computing architecture was demonstrated by the Teramac 

experimental supercomputer, which worked reliably even though 3% of its components were 

defective [1].  To configure Teramac for a particular computation, a discovery process was first 

used to identify bad components, which were then avoided at the time a program was compiled 

onto the hardware.  This was possible because of the high-bandwidth, redundant routing network 

that linked the components within the machine; at the defect rate that actually occurred (3%), 

working components could be efficiently linked together (through reconfigurable signal paths) to 

build a perfect machine.   

The simplest example of such a high-communications-bandwidth structure is the 

crossbar, which is illustrated schematically in Fig. 1.  Such structures can serve as both memory 

[2] and configurable logic arrays [3] if the switches can be toggled electrically [4].  

Demonstrations of nanoscale crossbars have utilized monolayer molecular films trapped between 

the upper and lower wires [5,6] that provide the switching function.   
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A switch can be set to its high-impedance state by putting a relatively large positive 

voltage across it, and can be set to its low impedance state by putting a large negative voltage 

across it [7] — we consider this to be configuring the switch.  At lower absolute voltages, the 

switch will “remember” its setting to high or low impedance and simply act as a resistor in the 

electrical circuit.   Thus, the topology of the crossbar, as an electrical circuit, consists of N 

vertical wires crossing M horizontal wires, with the wires linked at each crosspoint by a voltage-

controlled switch.   

The Teramac defect-tolerant computing architecture provides guidance in creating defect-

tolerant designs for the crossbar structure because of the high-bandwidth, redundant, and 

configurable data paths present in the crossbar.  These are simply the wires and the switches.  

Thus, it should be possible to repeat the strategy used successfully with Teramac – to first locate 

bad components through a search, and then route around the bad components when configuring 

the crossbar to perform a computation.  We call this method for defect tolerance the “locate and 

avoid” strategy.   

A practical design for a nano-scale memory system must be defect tolerant, and will 

probably contain several different types [8] and hierarchies [9] of defect tolerance.  We will 

focus in this paper on one of the main subsystems needed for building a nano-scale crossbar 

memory – a demultiplexer (demux) [10, 11].  In particular, we will describe how to use error-

correcting codes [13] to build an encoder-demultiplexer system that can provide a high degree of 

defect tolerance to a crossbar memory with only a small amount of redundancy in the circuit.  

The method described does not use the “locate and avoid” strategy, but can enable the use of the 

strategy at higher levels of the system by significantly decreasing the effective defect rate “seen” 

by those levels. 
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1.1  Some Obstacles 

We first survey some of the problems we face: the unreliability of components, 

limitations on the geometric complexity of structures that can be fabricated, and the difficulty in 

achieving interconnect between nanocircuitry and conventional microcircuitry.  Since 

conventional, lithographically-fabricated microcircuitry is today primarily implemented with 

Complementary Metal-Oxide-Semiconductor (CMOS) circuits, we will use the term CMOS to 

mean conventional circuitry manufactured at whatever scale is available. 

The manufacturing yield of nano-components will be worse than that of CMOS 

components.  The defect rate for CMOS components is measured in parts per million (ppm)—for 

example, in an early 1990’s RAM chip designed with defect-tolerant techniques [12], the 

component defect rate was approximately 22 ppm.  In contrast, in nano-circuitry, we may have to 

deal with defect rates in the range of 1% to 10%, either because that is the best we can do in 

manufacturing, or because it is too expensive to manufacture with extremely precise tolerances, 

and we are forced to loosen the tolerances for economic reasons.     

Another problem is that, in comparison with CMOS lithography, we are limited in the 

geometric complexity of the nano-structures we can fabricate, primarily by alignment precision.  

Crossbar structures have the advantage of being highly regular, and thus fairly simple and 

inexpensive to fabricate.   

A third problem is the difficulty in achieving interconnect between nanocircuitry and 

CMOS-scale microcircuitry.  To be of any use, we must be able to get electrical signals 

containing data into and out of  nano-circuitry.   We must find methods of electrically connecting 

CMOS wires to nano-wires and techniques that allow a small number of CMOS wires to control 
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many nano-wires – otherwise the input and output busses would be bigger than the nano-

structure being accessed.   

 

2.  Nano-scale Crossbar Memory and its Interconnect to CMOS 

Our solution for overcoming these obstacles is a defect-tolerant demultiplexer that fits 

efficiently onto the crossbar.  In a demux, a relatively small number (k) of input lines controls a 

much large number (2k) of output lines.  The job of a demux is to turn on exactly one of its 

output lines (corresponding to the address on the input lines) while keeping all the other output 

lines turned off.   

A demultiplexer is one of the primary subsystems needed to build a nano-scale crossbar 

memory.  In the normal structure of a memory system based on a 2D grid of memory cells, we 

wish to use some address bits to indicate a single row and a single column to be activated in the 

memory grid (as in a standard CMOS DRAM memory chip), so that we can read or write the bit 

stored in the junction where those two wires cross, as shown in Fig. 2.     

We have  fabricated a  nano-scale crossbar memory as an experimental proof-of-principle 

system [6].  This circuit was built on a 8×8 crossbar structure, which was configured so that a 

4×4 subarray functioned as a memory grid, and two other 4×4 subarrays functioned as row and 

column selectors (demultiplexers).  The entire 8×8 crossbar occupied 1 µm2 of chip area.  This 

small crossbar had so few components that it could be made to work without defect-tolerant 

techniques.  But for realistically-sized memories with large numbers of nanowires, defect 

tolerance will be essential.   

Note that in a nano-scale crossbar memory, the demultiplexers  are at the interface to the 

CMOS circuitry.  The demux is therefore a very vulnerable part of a system, since if it is 
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defective, all the downstream nano-circuitry is lost.  Thus, it is especially valuable to improve the 

operating capability of this crucial component.  What we need is an interconnect design that is 

defect-tolerant, that is compatible with the crossbar structure, and that allows a small number of 

CMOS wires to control or access a much larger number of nano-wires.    

 

3.  A Defect-Tolerant Demultiplexer 

Before showing the layout of the demux circuit on the crossbar, we present the analog 

circuit that implements an AND gate in the crossbar.  We focus on one nano-wire in Fig. 3 to 

illustrate how it implements a 2-bit AND function.   

 

3.1  Layout of Demultiplexer onto Crossbar 

Fig. 4 shows how an ordinary (non-defect-tolerant) demux can be laid out on the 

crossbar.   For a k-bit address, there are 2k possible addresses, and thus, if we have 2k nano-wires,  

there is a one-to-one correspondence between addresses and nano-wire output lines.  The 

traditional demux circuit is designed so that (1) each wire has a unique address, and (2) the 

addresses of the wires are dense – they completely fill the address space.   

To keep the diagram simple, we have shown a demux in Fig. 4 with a 2-bit address and 4 

output lines, but a similar layout is valid for larger, realistically-sized demux circuits.  The circuit 

layout conforms to the crossbar with no wasted space.  The demux activates a single wire, as 

determined by the input address, and is suitable for use as a row or column recognizer in 

implementing a nano-scale crossbar memory.  However, a major problem is that this design is 

vulnerable to manufacturing defects.   
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3.2  The Effect of Defects 

In the demux of Fig. 4, a single defective connection on any nanowire will cause that 

nanowire to give an erroneous output (Fig. 5).  The AND gate on each nano-wire may be thought 

of as a specialized circuit that recognizes only its own address, and thus we call it a recognizer.  

For example, in Fig. 5, wire S11 should respond only to address “11”.  The defect shown on wire 

S11 causes the recognizer to become less selective, and it responds to the class of addresses 

“1X”, where “X” is a “don’t care” bit.  That is, wire S11 now turns on for both address “11” (as 

it should) and address “10” (as it should not).  We therefore give this defective nanowire the 

label “1X”.  Since all the address bits are needed to uniquely identify a wire in this densely-

populated address space, a defective connection (a stuck-open defect) on any nano-wire will 

cause that wire to erroneously turn on for some other input address.   

This illustrates the failure mechanism when stuck-open defects occur as manufacturing 

mistakes.  Before presenting a technique for dealing with this problem, we note that the types of 

defects we have encountered so far in fabricating crossbars are stuck-open connections, stuck-

closed connections, shorts between adjacent wires and broken wires.  The coding technique in 

this paper applies primarily to stuck-open defects.  Methods for handling other defect types will 

be presented elsewhere.  The manufacturing process can be adjusted to make tractable defect 

types more likely than intractable ones.   

 

3.3  A Defect-Tolerant, Internally-Redundant Demultiplexer Circuit 

A design for a  demultiplexer (2-bit address, 4 output lines) that can perform correctly in 

the presence of stuck-open defects is shown in Fig. 6, and may be compared with the normal 

design shown in Fig. 4b.  The basic idea is to add a few more address lines (vertical wires) to the 
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demux circuit, forming an  address with redundant bits for each nano-wire in an expanded 

address space, so that a single-bit error in an address (caused by a defect) will not cause the 

defective wire to interfere with a wire having an “adjacent” address (in address space).  The 

“sparsely-populated” address space, in which neighboring addresses are no longer adjacent, 

allows the circuit to tolerate some defects.   

 

3.4  Distance Between Addresses: Hamming Distance 

The Hamming distance between addresses is defined as the number of address-bits that 

are different in two equal-length addresses.  For example, the 4-bit addresses “1110” and “0111” 

are separated by 2 units of Hamming distance – they differ in the first and last bit-positions.  

(Hamming distance applies only to a pair of bit-strings of the same length, and is undefined 

between bit-strings of different lengths.)  Given two arbitrary k-bit addresses a and a’, the 

maximum possible Hamming distance is k, meaning that a and a’ differ in every single bit, and 

are thus complements of each other (e.g., “1110” and “0001”).  The minimum possible Hamming 

distance is 0, meaning that a and a’ match in every bit-position and are thus equal (e.g., “1110” 

and “1110”).  What we loosely called “adjacent addresses” above could be defined more 

precisely as two addresses separated by 1 unit of Hamming distance – in other words, addresses 

that differ in only a single address-bit (e.g., “1110” and “1111”).   

In a normal demux, such as that of Fig. 4, the address space is densely filled: every 

possible address occurs – namely {00, 01, 10, 11}.  For any particular address (11), flipping one 

bit yields another valid address (10), at a Hamming distance of 1 from the original address.  

Thus, in the dense address space of a normal demux circuit, every output line has exactly k 

nearest neighbors at Hamming distance 1.   
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The defect-tolerant demux circuit of Fig. 6 is designed so that in the expanded (3-bit) 

address space, the addresses of the nano-wires are all separated by 2 units of Hamming distance.  

The addresses of the output lines are {000, 011, 101, 110}.  At least 2 bits must be flipped to 

transform any of these addresses to any other in the set.   

 

3.5  Coding Theory 

The challenge in designing demultiplexers that can withstand one or more bad 

connections is to generate an appropriate set of supplemental address bits that increases the 

minimum Hamming distance between nano-wire addresses without adding too much additional 

circuitry.  This is a classical problem in the area of information theory known as coding theory 

[13,14], which we will use to systematically add redundant bits and obtain good Hamming 

distances between addresses.  These codes are called error-correcting codes, from the 

application for which they were originally invented, namely, correcting errors in noisy 

communication channels.  We first introduce some terminology from coding theory.   

For the set of addresses {000, 011, 101, 110} just discussed, each member of the set is 

called a codeword, and the entire set is considered to be a particular code.  A binary code uses 

the set {0,1} as its alphabet, and thus a binary vector, or binary matrix, contains only 0’s and 

1’s.  So a k-bit address, for example, can be considered to be a length-k binary vector.  A binary 

code C, of length n, is a set of binary vectors (codewords ui) of length n. The cardinality, or size 

of C, will be denoted M. The dimension of C, denoted by k, is given by 

 ,log2 Mk =          

while its minimum distance, denoted by d,  is defined by 

 ),(distmin 21  ,, 2121

uu
uuuu ≠∈

=
C

d ,       
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where ),dist( 21 uu denotes the Hamming distance between two binary vectors. We refer to C as 

an (n, M, d) code, or an [n, k, d] code. The latter notation, which emphasizes dimension rather 

than size, is generally used in the important special case of linear codes.  

In a binary linear code C, the codewords can be represented by binary n-vectors, and the 

encoding operation can be realized by means of a linear transformation, u=a·G, where a is the 

input (a binary k-vector), u is its encoded counterpart (a binary n-vector), and G is a k×n binary 

matrix.  G is referred to as the generator matrix of the code.  The dot operation (·) is matrix 

multiplication defined over the finite field [13] F2, namely, the set {0, 1} together with Boolean 

XOR and AND as addition and multiplication operations, respectively. Equivalently, F2 can be 

regarded as the set {0,1} with arithmetic operations modulo 2.   

A binary linear code C is closed under bitwise XOR operations of its codewords.  A 

binary linear code always contains the all-zero codeword 0, and its number of codewords is 

always a power of 2, i.e., kM 2= . In fact, assuming that the matrix G has full rank k, running all 

possible binary k-vectors (messages) a through the linear transformation u = a·G produces the 2k 

codewords comprising the code. An encoder for a code C is an implementation of the linear 

transformation u = a·G.  The ease of this operation makes linear codes attractive in practice. 

In our application, the “messages” are the unencoded addresses of the nano-wires we 

wish to access (signal vector a in Fig. 6).  The codewords (signal vector u in Fig. 6) are the 

encoded addresses for the nano-wires, which are redundant representations of their payload 

messages.  With linear codes, it is usual to employ a systematic encoding, where u contains a as 

a prefix, with s supplemental check-bits appended.  The generator matrix for such systematic 

encoding assumes the form G = [ I  | A ],  where I  is a k×k identity matrix, and A is a k×s  binary 

matrix defining the check bits. Thus, n = k + s, and the matrix G has full rank k. Notice that in a 



Error Correcting Codes for Nanoelectronic Circuits  Kuekes, Robinett, Seroussi & Williams  

 12  

systematic encoding, only the check bits require computation circuitry; the “message” bits of u 

are passed to the encoded address untouched. The size of the encoding circuitry is proportional to 

the number of non-zero entries in A. 

The [n,k,d] nomenclature for a linear binary code summarizes the most important 

parameters of a code: 

• n bits in each codeword (binary vector u in Fig. 6); 

• k bits in the bitstrings to be encoded (binary vector a in Fig. 6); 

• d units of Hamming distance as the minimum distance between different codewords. 

 

3.6  Example Codes 

Some examples will help to clarify these mathematical definitions and properties.  In the 

small example we have been considering, the code C = {000, 011, 101, 110} has size M = 4, 

dimension k=2, length n=3, and minimum distance d=2.  Thus, using the [n,k,d] terminology, it 

is a [3,2,2] code.  Its encoding function is shown in Fig. 7, along with its systematic generator 

matrix G = [ I  | A ], with ⎥
⎦

⎤
⎢
⎣

⎡
=

1
1

A .  The encoder circuit of Fig. 8b precisely implements the 

computation  u = a·G, with the generator matrix G “hard-wired” into the circuit as the 

interconnect pattern, and the XOR gate performing the required summation to compute the last 

component of the output vector.   

 

3.7  Densely-Populated Versus Sparsely-Populated Address Spaces 

Fig. 9 shows visualizations for how the nano-wire addresses fill their address spaces for 

the two demux designs we have considered so far – the normal, non-defect-tolerant demux of 

Fig. 4, and the defect-tolerant demux of Fig. 6.  Thus the code of Fig. 9a is a [2,2,1] code (2-bit 
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output, 2-bit input, 1 unit of separation between codewords), while the code of Fig. 9b is a 

[3,2,2] code (3-bit output, 2-bit input, 2 units of separation between codewords).   

 

3.8  Finding Codes 

It can be  difficult to construct good codes; but once a code is known, it can be used 

simply by knowing its generator matrix.  The systematic generator matrix immediately yields a 

digital circuit implementing the encoding function for the code.  Thus, we can capitalize on over 

50 years of mathematical research in coding theory simply by looking up codes that have already 

been discovered.  For the applications in which we are interested (demultiplexers used to build 

crossbar memories), the number of nanowires addressed in one demultiplexer block will be 

fewer than ten thousand in the foreseeable future, which means that k is bounded (say, k ≤ 14).  

In the context of coding theory, codes of this size are considered relatively short. Tables of the 

best known short codes can be found in the literature [13, Appendix A] or on the web [15].  For a 

given set of parameters, the “mathematically” best code (e.g.,  largest minimum Hamming 

distance given the code length and size) might be non-linear and relatively complex to encode. 

We prefer linear codes for the simplicity of their encoding circuitry.  

The parity codes, which have d=2, are the simplest.  A parity code adds a single 

redundant bit to an input bitstring, computed as the XOR of all the input bits.  Parity codes have 

been traditionally used in magnetic tapes and other memory systems to detect single-bit errors.  

The encoder of Fig. 8 uses a parity code.   

The family of Hamming codes and their variants provides a range of useful codes, with 

minimum distance d=3 or d=4.  Hamming codes are, in a sense, the simplest non-trivial codes 

and a full treatment of their properties can be found in almost every coding theory book (cf. 
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[13]).  For every code order m, there is a Hamming code with parameters [2m-1, 2m-1-m, 3]. 

Appending an overall parity check to each codeword, this code yields an “extended” Hamming 

code with parameters [2m, 2m-1-m, 4].  These codes, in turn, can be shortened to obtain families 

of codes with parameters [2m-1-r, 2m-1-m-r, 3], and  [2m-r, 2m-1-m-r, 4], respectively, for integers 

r, 120 −<≤ mr . For m=4, and r=4, for example, there is a [11,7,3] shortened Hamming code and 

a [12,7,4] shortened extended Hamming code.  For simplicity, we will omit the qualifier 

“shortened” in the discussion to follow, letting it be assumed from the context. 

 

3.9  Operation of the Defect-Tolerant Demultiplexer: How It Tolerates Defects 

An important area of design latitude in a circuit that includes (unreliable) nano-circuitry 

on the same substrate with (reliable) CMOS circuits is that we can decide which parts of the 

circuit we wish to protect from defects simply by choosing those that are implemented in CMOS.  

Fig. 10 shows that for the defect-tolerant demux, we have chosen to implement the encoder and 

code balancer (NOT gates) in CMOS, and only the AND operations (recognizer array) at the 

nano-level.  This choice still leaves the bulk of the circuitry at the nano level, since there are 2k 

n-input AND gates, but only n NOT gates and n-k XOR gates, of k or less inputs each.  Thus, 

only the AND gates (and their associated interconnect) in the circuit are required to tolerate 

defects.  Downstream of the reliable CMOS, the first place that defects can occur is in the 

recognizer array, where the connections between the larger CMOS wires and the narrow nano-

wires may be defective.   

We can now describe how the defect-tolerant demux of Fig. 10 is able to tolerate defects.  

Recall that the effect of a stuck-open defect on a particular nano-wire, as illustrated in Fig. 5, is 

to “disconnect” one of the inputs to the AND gate circuit on that wire.  The result is that the 
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nano-wire becomes less selective, and responds, in the example of Fig. 5,  to address “1X”, and 

thus responds to both addresses “10” and “11”.   

Note that an address label with a single “X” in it will respond to an address at most 1 unit 

of Hamming distance away from its correct address.  In general, a nano-wire with e stuck-open 

defects on that same wire will have a label containing e X’s, and will be activated by 2e different 

addresses, the most distant of which will be at Hamming distance e from the wire’s correct 

address.  The addresses of the nano-wires in the defect-tolerant demux of Fig. 10 are the 

codewords {000, 011, 101, 110}.  A single stuck-open defect on a nano-wire will introduce a 

single “X” into the wire’s label, which will not be damaging enough to get it to interfere with 

another nano-wire, since the nearest neighbors are 2 units of Hamming distance away.  Thus, the 

circuit of Fig. 10 can tolerate a single stuck-open defect on each nano-wire.  If two defects occur 

on the same wire, then it will interfere with a neighboring wire.  This defect-tolerant demux is 

certainly better than the ordinary demux of Fig. 4, which cannot tolerate any defects at all; but it 

also has its limits, being unable to tolerate two or more defects on a single nano-wire.   

 

3.10  Family of Defect-Tolerant Demultiplexer Designs 

The defect-tolerant demux of Fig. 10 is actually a prototype for a family of circuit 

designs.  Any [n,k,d] code can be used to construct a demux with these properties: 

• it has a k-bit input address;  

• it uses n-bit encoded addresses, and has 2n vertical wires (the v signal vector of Fig. 6) 

going from the CMOS circuitry to the nano-level; 

• it has 2k nano-wire output lines, each implementing an n-input AND gate; 

• the addresses of the nano-wires are the codewords of the code; 
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• the minimum distance between codewords (and thus nano-wire addresses) is d; 

• the demux can tolerate up to d-1 stuck-open defects on each nano-wire; 

• if d or more defects occur on the same nano-wire, an error will occur (the wire will 

interfere with some other nano-wire for some input address). 

These properties may be summarized by saying that for any [n,k,d] code, we can build a 

corresponding defect-tolerant demultiplexer that can tolerate up to d-1 stuck-open defects on 

each nano-wire.  When we need a demux of a particular size (k) and degree of defect-tolerance 

(d), we may search the mathematical archives to find a code that is efficient (low n) and therefore 

requires as few redundant address lines as possible.   

 

3.11  Four Example Demultiplexer Designs, of Increasing Defect-Tolerance 

To explore the behavior of this family of demux designs, considered over a range of 

plausible defect rates, we will now develop four example circuits, based on codes with minimum 

Hamming distances d=2, d=3, and d=4; and an uncoded (d=1) demux design for comparison.  

We will use more realistically-sized (k=7) demuxes in these examples.  All the demuxes will 

therefore have 7-bit input addresses and 128 nano-wire output lines.  They will differ in the 

degree of internal redundancy that is added to the circuit, with more  (judiciously chosen) 

redundancy conferring more  defect-tolerance.   

The four example demultiplexers are based on these codes: 

• Example D1: [7,7,1] code.  A normal, non-defect-tolerant demux (d=1) against which the 

other examples may be compared.  

• Example D2: [8,7,2] code.  This demux is based on a simple parity code (d=2).   

• Example D3: [11,7,3] code.  This demux is based on a Hamming code (d=3).  
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• Example D4: [12,7,4] code.  This demux is based on an extended Hamming code (d=4).   

The respective generator matrices are shown in Fig. 11 and Fig. 12a.   

Together with the explanations of Fig. 8, the demultiplexer of Fig. 6 may be used as a 

prototype to show how to use the generator matrix for an arbitrary [n,k,d] code to construct a 

defect-tolerant demux circuit.  For realistically-sized cases, there will be more bits in each of the 

signal vectors: 

• k bits in the input a to the encoder; 

• n bits in the encoded address u; 

• 2n vertical wires (signal vector v) linking the CMOS circuitry to the nano-wires; 

• 2k nano-wire output lines wires (signal vector s). 

For example, the generator matrix for the [12,7,4] code (Fig. 12a) gives rise to a demux 

(Example D4) in which the lengths of the signal vectors are 7 bits (a), 12 bits (u), 24 bits (v), and 

128 bits (s).  The encoder circuit for this code is shown in Fig. 12b.   

 

4.  Evaluating the Four Demultiplexer Designs 

Bearing in mind that these demuxes are intended to be used as subsystems (row and 

column selectors) within nano-scale crossbar memories, we evaluate their quality by asking the 

question:  How many of the nano-wire output lines can be used to select a row or column in a 

memory grid?  A nanowire (with address u) can fail to be usable for either of two reasons:  

• The nanowire has too many defective connections, and is erroneously selected when 

another nanowire is addressed.  We call wire u a villain in this case.   
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• Some other nanowire has too many defective connections, and is selected when u is 

addressed.  We call this u a victim, because it may be completely defect-free – but its 

address conflicts with a wire that is defective (a villain).     

We assume that both nanowires are disabled when a conflict occurs.  Stuck-open defects make 

the nano-wire respond to an overly-broad set of addresses.  When enough defects occur on the 

same nano-wire, it will interfere with some other nano-wire, thus becoming a villain (and 

causing the other wire to become a victim).  For a demux based on a particular code C, we can 

compute the (normalized) expected number of usable lines Eusable(p), as a function of the 

defect probability p.  An exact formula for this expectation is derived in Appendix A. It is based 

on the combinatorial structure of the code C, and takes the form of a polynomial function of  p.   

The probability analysis leading to the formulas in Appendix A assumes an idealized 

model where defects occur independently of each other, and with a uniform probability. 

Although this model is a reasonable first-order approximation, it is clear that “real life” 

implementations will not necessarily obey it precisely, and the yield and probability calculations 

will require some combination of physical measurements, modeling, simulation, and 

mathematical derivations. With this need in mind, a circuit simulator was developed, with 

defects generated pseudo-randomly with probability p, followed by evaluation of the circuit’s 

performance, and counting up the usable lines (Appendix B). In the case of the idealized 

probability model, the simulator could be checked against the analytic formulas of Appendix A, 

and verified to produce accurate results to within expected statistical deviations. The simulator is 

described in Appendix B. 

We can now use the graphs of the function Eusable(p) to evaluate each of the four demux 

circuits.  The four plots in Fig. 13 show how much each demux degrades (by having fewer and 
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fewer usable lines) as the defect rate p increases.  We see that, for the case of the normal demux, 

the expected number of usable nanowires decreases rapidly as the defect rate p increases.  A 

single supplemental bit provided by the [8,7,2] parity code creates substantial defect tolerance by  

allowing each nano-wire to tolerate just one defect.  We see a further improvement by utilizing 

an [11,7,3] Hamming code, which requires an additional three address bits to be able to tolerate 

two bad connections per nano-wire.  The [12,7,4] extended Hamming code, which can tolerate 

up to three defects per nano-wire, represents a further significant improvement.   

It is clear from the plots of Fig. 13 that codes of increasing d yield increasing defect-

tolerance.  If the defect rate is known to have some fixed value, then as d increases, the fraction 

of usable lines improves.  To express it another way, if some other part of the system required 

that at least, say, 95% of the lines were usable (perhaps a requirement of a higher-level defect-

tolerance mechanism), then codes of increasing d can tolerate greater component defects rates 

while still satisfying the requirement.  The probability calculations of Table 1 show that having 

multiple defects on the same nano-wire is not unlikely, even for a case in which there are only 8 

CMOS connections to that nano-wire.  At a p=10% defect rate, for example, 0.5% of the output 

lines will have defects at 4 or more of their 8 connections.   

 

4.1  Cost-Benefit Analysis 

To properly evaluate this family of defect-tolerant demultiplexer designs, we need to 

consider not only the benefits, but also the cost of the defect-tolerant circuitry introduced into 

these demultiplexers.  Some principal benefits are: 
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• More usable resources (demux output lines).  In the crossbar memory application, more 

usable output lines (in the row and column recognizers) lead directly to more usable bits 

in the memory system.   

• Ability to tolerate higher defect rates.  This can lead to greatly improved manufacturing 

economics.  The expense of the fabrication process will decrease significantly with 

increasing p that can be tolerated in a circuit, and thus we want to design a system that 

can tolerate as large a defect rate as possible. 

But these benefits incur certain costs: 

• More wires are required in the address bus linking the CMOS circuits and nano-circuit.   

• Some kind of higher-level defect-tolerant system is required to identify and keep track of 

the addresses of the unusable nano-wires.   

Thus, the benefits must be judged against the costs, and furthermore, the magnitude of both the 

benefits and costs is strongly dependent on the underlying defect rate p.  Our approach here, 

offered as an example of how to assess such a situation, will be to focus on one benefit (more 

usable demux output lines, leading to more bits in the crossbar memory) and one cost (chip area 

consumed due to wider address busses).  Combining these two will give us a numerical measure 

of goodness (usable bits per chip unit area) that will allow us to judge which of the four example 

demux designs is best, for any given defect rate p.   A more comprehensive analysis would 

include the area consumed by the higher-level defect-tolerant system in the cost calculation, and 

the relation between manufacturing tolerance (as reflected by the value of  p) and actual 

manufacturing costs. However, these parameters are not known at present. 

4.2  Evaluation Function: Bits Per Unit Area 
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One way to view the economic consequences of appending supplemental bits to the nano-

wire addresses is to examine the effect of the supplemental bits on a “yield” quantity, defined as 

the number of addressable bits per unit of chip area.  In the early stages of nano-electronics, the 

chip area, and thus the cost of a chip, will still be dominated by the CMOS components.  Thus, 

we can ask how much area will be sacrificed by widening the address bus with supplemental 

address bits.  We will consider the specific case of a large crossbar memory with an architecture 

as illustrated in Fig. 14, constructed of several 128×128 nano-scale crossbar blocks, each 

containing 214 cross-point junctions.  Each crossbar block has two arrays of 128 nanowires 

crossed over each other, with each array of nanowires addressed by a demultiplexer.   

In this example, only ~10% of the circuit area contains nanocircuitry – the other ~90% is 

taken up by CMOS circuitry and recognizer arrays, in which CMOS wires cross nano-wires [17].  

Each encoder can drive many recognizer arrays simultaneously, with specific recognizers 

activated by a signal generated from a “master” encoder.  The great advantage of this scheme is 

that a relatively small amount of CMOS can be used to control a large number of nanocircuit 

elements.  Thus, even if the blocks of nanocircuitry only cover 10% of the total circuit area, the 

total functionality of a hybrid electronic circuit can be much larger than that constructed from the 

conventional circuitry alone.   

To calculate areas, we will start with realistic values for the pitch of nano-wires ( Nλ = 30 

nm) and the pitch of CMOS wires ( Cλ = 130 nm), based on plans for DRAM production in 2007 

[18].  We can then calculate the width of the nano-scale crossbar circuit, composed of 2k nano-

wires ( N
k

Nw λ2= ), and the width of the address bus, composed of 2n CMOS wires 

( CA nw λ2= ).   
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The defect-tolerant demux has three subsystems (Fig. 6c): a CMOS encoder (n-k XOR 

gates), a CMOS balancer (n NOT gates), and a mixed-length-scale recognizer array (2k AND 

gates).  For reasonable values of n and k, most of the demux circuitry is in the recognizer array.  

The balancer is so small in area that it is negligible.  In our application, the encoder is shared by 

many recognizer arrays, so that its effective area is small.  Thus, the areas of the encoder and 

recognizer array are, respectively, 

0),( ≅nkAE   (encoder area amortized across many recognizer arrays) 

CN
k

AND nwwnkA λλ 22),( ×=×=  

We may therefore calculate the redundancy of the circuit as an area overhead factor fA for the 

defect-tolerant demux (with respect to an unencoded  [k,k,1] demux, which has no encoder) as  

),(
),(),(

_]1,,[ofarea
],,[ofarea_],,[ 

kkA
nkAnkA

arrayecognizerrkk
encoderdknarrayecognizerrdknof areaf

D

ED
A

+
=

+
=

This yields  k
nfA ≅  ,  which expresses the fact that when the encoder’s area is negligible, the  

area of the recognizer array is controlled by the address bus width: 2n wires (coded) versus 2k 

wires (uncoded).   

We can calculate the area of one of the crossbar blocks of Fig. 14 (including the two 

associated recognizers) by putting the crossbar width and the address bus width together and 

squaring: 

( ) ( )22 22),( CN
k

NAB nwwnkA λλ +=+=  

To assess the additional area consumed by widening the address busses, we note that k=7 for all 

four of the codes, whereas n takes on the values 7, 8, 11, and 12.  Taking the n=7 (uncoded) 

demux as a baseline, we find that the area penalty is a factor of 1.09, 1.39 and 1.51 for the codes 

with n = 8, 11 and 12, respectively.  Defining a unit of area as that needed to address one bit in a 
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defect-free uncoded system, the normalized expected number of addressable bits per unit of area 

in a crossbar memory using code-based demux circuits is: 

( ) ( )( )2
),(
),( pE

nkA
kkApB usable

B

B= ,        

where ( )pEusable
 is the (normalized) expected number of usable lines, in a defect-tolerant demux 

based on an [n,k,d] code.  An exact expression for the function ( )pEusable , given the underlying 

code structure, is derived in Appendix A.  Using the derived expression, we plot the function 

B(p), for each of the four codes under consideration, in Figure 15.  

For the case where there are no supplemental bits, the number of usable bits per unit area 

decreases rapidly with defect rate.  Appending a single parity bit ([8,7,2] code) to supplement the 

address of the nanowires improves the number of usable bits substantially for any defect rate p ≥ 

1%.  The [11,7,3] modified Hamming code imposes a significant penalty on the density of 

addressable bits if the defect rate is < 5%, but it enables a reasonably high density of bits for a 

defect probability in the range of 5 to 12%.  The [12,7,4] modified Hamming code provides 

better defect tolerance for defect probabilities greater than 12%. Although we have shown only 

four examples (based on codes with d=1,2,3 and 4) in this paper, there are more powerful known 

codes (with d>4) that could be used to define demuxes with even higher degrees of defect-

tolerance, if the defect rate was high enough to justify the wider address bus, and other costs.   

If we know the defect rate of our manufacturing process (perhaps we have driven it as 

low as we are able), then we can use Fig. 15 to tell us which demux design is optimal.  For 

example, if p=10%, then the demux of example D3 (based on the [11,7,3] code) is the best 

choice – as shown by the [11,7,3] curve being above the others at p=10%.  The demux designs 

based on the [8,7,2] or [7,7,1] codes would be insufficiently powerful to cope with that defect 
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rate, and would deliver fewer bits per unit area.  On the other hand, the demux design based on a 

[12,7,4] code would be more powerful than needed, and its overhead would make it less efficient 

than the d=3 demux design.   

The plots of Figure 15 can be interpreted as showing a coding gain in the defect-tolerant 

demultiplexers, analogous to the notion used in coding for communications [14].  For a given 

acceptable density of usable memory per unit area (yield), a coded system can tolerate a higher 

defect rate.  For example, one observes in Figure 15 that a 50% yield requires manufacturing to a 

defect rate of 2% with an uncoded system, whereas the same yield can be obtained with a defect 

rate of 21% when the [12,7,4] code is used. This gap in defect tolerance can translate to 

significant economic gains, or even feasibility, since low defect rates might be very difficult or 

even impossible to attain. 

 

4.3 Higher-Level Defect-Tolerant System 

The basis of comparison we have used for the four k=7 defect-tolerant demux designs has 

been to ask how many of the 128 output lines we can expect to be usable.  We have assumed that 

it is acceptable to have some bad lines, since the coding scheme cannot compensate for all 

defects in the demux.  This implies that the overall system contains a higher-level defect-tolerant 

mechanism [17] to deal with the bad lines in the demux; this is the only way the overall system 

can achieve error-free performance.   

Note that each bad output line in the demux will have a fixed address.  This makes it 

possible to use the “locate and avoid” strategy – first locate the bad output lines in a demux, store 

their addresses in some kind of memory, and provide a mechanism for avoiding them thereafter.  
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It is also possible to use other defect-tolerance strategies, such as error-correcting codes, to deal 

with the bad lines in a demux.   

 

 

5.  Conclusions 

A defect-tolerant demultiplexer allows a circuit designer to build an interface to a 

significant number of nano-wires, from a much smaller set of CMOS wires, by assigning 

addresses to the nano-wires.  By adding redundant bits to the address, each wire can be uniquely 

addressed, even in the presence of manufacturing defects in the connections between the nano-

wires and the CMOS driving circuits.  We have described a systematic method for generating a 

set of supplemental address bits and designing the circuitry required to implement the new 

addressing scheme.  This generates a family of demultiplexer designs, each based on an [n,k,d] 

error-correcting code, such that increasingly powerful codes (higher d) yield demultiplexer 

circuits that can tolerate higher defect rates p.  In comparison with normal, uncoded 

demultiplexers, these defect-tolerant demultiplexer circuits have a redundancy (area penalty) 

factor of approximately k
nfA ≅ .   

 To design an efficient and reliable demultiplexer, it is necessary to know approximately 

what the component defect rate is.  If the defect rate is significantly greater than planned, the 

system reliability can plummet drastically; while if the defect rate is significantly over-estimated, 

unnecessary circuitry will reduce the efficiency of the design.  In the coded demultiplexer design 

presented here, a Hamming distance d guarantees tolerance to e=d–1 defects per nano-wire (Fig. 

16).  This is akin to erasure correction in coding theory, i.e., a situation where the locations of the 

errors are known, and the remaining task of the error correcting decoder is to reconstruct the 
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transmitted values in these location [13].  In full error correction, on the other hand, the 

locations of the errors are unknown, and an [n,k,d] code can only guarantee correction of 

⎟
⎠
⎞

⎜
⎝
⎛ −

=
2

1dfloore  errors in this case (Fig. 16). Interestingly, the probability analysis for our 

demultiplexer design, presented in Appendix A,  does not correspond to either conventional case 

in coding theory, but contains a combination of elements of both cases.   

As feature sizes shrink, it becomes increasingly more expensive to avoid mistakes in 

manufacturing.  At some stage, only circuits designed to tolerate manufacturing defects will be 

practical to build.  This design for an internally-redundant demultiplexer circuit has shown how a 

standard digital building block (a demultiplexer) can be re-designed to tolerate manufacturing 

defects.   

 

7.  Appendix A.    

Exact Calculation of the Expected Value of the Number of Usable Output Lines 

We will now derive an exact expression, based on the structure of the code, of the 

probability pusable of a nano-wire output line of the demux being usable.  This probability takes 

the form of a polynomial function of the stuck-open defect rate p.   

Let u be a codeword of C, which is therefore the address of a nanowire. The nanowire 

can fail to be usable for either of two reasons:  

• The nanowire has too many defective connections, and is erroneously selected when 

another nanowire is addressed.  The probability of this event is denoted pvillain.   

• Some other nanowire has too many defective connections, and is selected when u is 

addressed.  The probability of this event is denoted pvictim.   
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We assume that both nanowires are disabled when a conflict occurs, and the overall probability 

of a nanowire being usable is the probability that the wire is neither a villain nor a victim.  Thus, 

we can write 

( ) ( ),11 victimvillainusable ppp −⋅−=  

since defects are assumed to be statistically independent. 

We compute the probability pvictim first. Let y be an address (codeword) different from u. 

Address y disables address u if the bits of y in its non-defective positions coincide with the bits 

of u in those positions, or equivalently, y is defective in all positions where its bits differ from 

those of u and it can be either defective or non-defective in other positions . The probability of 

this event is pdist(u,y). Since we assume that defects are statistically independent, the overall 

probability that u is not disabled by any other address is given by 

 ,)1()1(1
1

)(

}\{

),( ∏∏
=∈

−=−=−
n

i

iWi

C

dist
victim

Cppp
uy

yu    2. 

where )(iWC  denotes the number of codewords of Hamming weight  i  in C (since C is linear, the 

number of codewords at distance i  from u is independent of u; the weight corresponds to taking 

u=0). When C is the identity code, we have ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i
n

iWC )( , a binomial coefficient. We observe that 

the probability of a nanowire being disabled depends on the entire distance profile of the code, 

and not just the minimum distance, although the latter is likely to be dominant when p is small.  

We now compute the probability pvillain of a nanowire being a villain.  As before, since 

the code is linear, we can assume that the nanowire corresponds to the zero codeword. Let e be 

the characteristic vector of an error pattern, i.e., ei =1 if there is a disconnect in position i, or 0 

otherwise. The set of locations where ei =1 is called the support of e. We say that e dominates an 

n-vector u if the support of e includes the support of u.  An error pattern e on address 0 disables 
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address u if and only if e dominates u. Contrary to the previous case, however, events are not 

independent, and an error pattern e can disable more than one nonzero address. Let D(C) denote 

the set  

{ }CCD ∈= uuee  somefor   dominates | )( . 

Then, the probability that e acting on 0 disables some other address is equal to ))((Prob CD∈e , 

or, equivalently, the probability that 0 is disabled because it disables some other address is given 

by 

 .)1()())((Prob
1

)(
in

n

i

i
CDvillain ppiWCDp −

=

−=∈= ∑e    3. 

The complement of this expression for  pvillain  occurs in coding theory also as the probability of 

success of a code C  in correcting an erasure event in an erasure channel with probability p, when 

the events are taken over blocks of length n.  

The weight profiles of our four example codes, and those of the corresponding sets of 

dominating vectors, can be obtained by explicit enumeration, since the codes are small. The 

profiles are shown in Table 2. Therefore, we can compute  pvillain and pvictim  precisely for these 

codes.   

Clearly, the normalized expected number of usable wires in a demux is  

Eusable(p)  =  pusable(p) 

The expression derived for pusable(p) assumes full knowledge of the profiles WC and WD for the 

code. For longer codes for which these profiles might be difficult to characterize completely, 

partial profiles could be used, which would yield fairly accurate approximations of pusable(p).  

 

8.  Appendix B.   The Digital Circuit Simulator 



Error Correcting Codes for Nanoelectronic Circuits  Kuekes, Robinett, Seroussi & Williams  

 29  

A simulator was created to synthesize digital circuits for the family of defect-tolerant 

demultiplexers described in this paper, to randomly generate simulated defects, to simulate the 

operation of the demux circuits, and to evaluate their performance.  The simulator also computes 

the exact function pusable(p) described in Appendix A, and compares the results for the simulated 

sample to the exact expectation.  The results agree within expected statistical variations (Fig. 17).  

 Some goals of the simulator are to: 

• analyze demuxes based on any arbitrary binary linear error-correcting code, defined by a 

generator matrix G;  

• evaluate error-correcting codes by calculating their distance profile and other code 

properties; 

• explicitly simulate, at the digital level, the operation of the circuits of the demux in the 

presence of randomly generated defects (digital circuit model) and assess the 

performance of the simulated demux with appropriate measures; 

• simulate circuits for which the errors are correlated or otherwise violate the assumptions 

of the model originally posed for the exact calculation of Appendix A. 

The simulator is written in the J programming language [19], a dialect of the language APL.  J is 

an interpreted, mathematically-oriented, vector language that is well-suited for this task.   

   

The simulator accepts as inputs a generator matrix G defining a specific binary linear 

code and a defect probability p.   The simulator uses the input  G  to construct the connection 

network for the digital encoder, as described in Figure 12.   The recognizer array is represented 

by the ideal connection matrix Ci, which represents the interconnect pattern of the AND gates 

that compute the output address.  The Ci matrix is synthesized as a list of all 2k n-bit codewords 
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in the code, with the complement of each codeword appended (by the balancer), resulting in a 

2k×2n matrix.    

   The simulator then calculates a 2k×2n defect matrix E (a binary matrix in which each 

entry has a one, meaning defect with probability p, or else a zero, meaning no defect) using a 

random number generator and the input defect rate p,   The Ci and E matrices are combined 

bitwise to define the recognizer with defective connections.  All possible 2k addresses are run 

through this circuit, and the outputs are tabulated.  From this complete set of inputs and outputs, 

we can detect the “villains” and “victims” described earlier, and thus calculate, for this particular 

defect matrix, how many bad output lines there are.   This procedure is applied Q times for each 

of a sequence of values of the defect rate p. Figure 17 shows the results obtained for the [7,7,1] 

and [12,7,4] codes with Q = 100.  
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Tables 

Table 1.  Probabilities of various numbers of defects on a single nanowire with eight connections 

for defect rate p=10%.   

 

 # defects e 

per nano-

wire 

Formula for 

exactly e 

defects 

Probability 

of exactly e defects 

(for p=10%) 

Cumulative probability 

of e or more defects 

(for p=10%) 

 8 p8 0.000001% 0.000001% 

 7 8(1-p)p7 0.000072% 0.000073% 

 6 28(1-p)2p6 0.0022% 0.0023% 

 5 56(1-p)3p5 0.041% 0.043% 

 4 70(1-p)4p4 0.46% 0.50% 

 3 56(1-p)5p3 3.3% 3.8% 

 2 28(1-p)6p2 15% 19% 

 1 8(1-p)7p 38% 57% 

 0 (1-p)8 43% 100% 

 

Note that the formulas in the second column of the table are the terms in the binomial 

expansion of  ( )( )81 pp −+ , and thus sum to 1.  The probability of a nanowire having e or 

more defects, out of n connections, is given by the formula 

iin
n

ei

e
n pp

i
n

pF −

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑ )1()( . 
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Table 2.  Weight profiles for codes and dominating sets.   

 

 code [7,7,1] code [8,7,2] code [11,7,3] code [12,7,4] 

i WC(i) WD(C)(i) WC(i) WD(C)(i) WC(i) WD(C)(i) WC(i) WD(C)(i)

0 1 1 1 1 1 1 1 1 

1 7 7 0 0 0 0 0 0 

2 21 21 28 28 0 0 0 0 

3 35 35 0 56 13 13 0 0 

4 35 35 70 70 26 130 39 39 

5 21 21 0 56 24 462 0 312 

6 7 7 28 28 24 462 48 924 

7 1 1 0 8 26 330 0 792 

8 0 0 1 1 13 165 39 495 

9 0 0 0 0 0 55 0 220 

10 0 0 0 0 0 11 0 66 

11 0 0 0 0 1 1 0 12 

12 0 0 0 0 0 0 1 1 
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Figure Captions 

 

Fig. 1.  Circuit topology of a crossbar of switches, each of which connects one horizontal wire to 

one vertical wire.   

 

Fig. 2.  Schematic layout diagram of a crossbar memory, showing the role of the row selector 

and column selector subsystems.  (The selectors are demultiplexers.) 

 

Fig. 3.  Diode-logic circuit with pull-up resistor that implements an AND gate.  Blue symbolizes 

a low voltage (“logic 0”) and red symbolizes a high voltage (“logic 1”).  Two cases are shown: 

(a) input 11 producing output 1, and (b) input 10 producing output 0.  A low voltage (Ground) on 

any input will force the output low (because of the low-resistance path to Ground through the 

forward-biased diode), and only if all inputs are high (VDD) does the output go high.  With more 

input lines, this same circuit design implements a k-input AND gate.   

 

Fig. 4.  (a) Layout of a normal (non-defect-tolerant) demux circuit onto the crossbar.  It has a 2-

bit input (A0, A1) and a 4-bit output (S00, S01, S10, S11).  The thick vertical lines represent 

wires from the CMOS circuit level, while the thin horizontal lines represent nano-wires.   (b) The 

digital circuit implemented by this layout.  (c) Logic equations for the demux digital circuit.  (d) 

The operation of the demux expressed in mathematical form, showing that exactly one of the 2k 

wires in the output array s will turn on, corresponding to the k-bit address a coming into the 

demux as input.  Note that the output wires are labeled in binary  to emphasize how they 

correspond with the set of possible addresses that may occur as inputs on a (00, 01, 10, 11).  
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Each output line has its own address, and the purpose of the AND gate is to “recognize” the 

wire’s address when it appears on the CMOS lines.   

 

Fig. 5.  (a) A stuck-open defect (green) causes an AND circuit to give an erroneous output 

(purple) – a high voltage (“logic 1”) when it should have been low (“logic 0”).  Compare with 

Fig. 3, which shows the correct behavior.  (b) The erroneous output in the context a demux  – 

two output lines are activated by the address illustrated (10).   

 

Fig. 6.  (a) Defect-tolerant demultiplexer.   The 2-bit input address a passes through an encoder  

to produce a 3-bit address u.  Signal vector u and its complement are appended to give the 6-bit 

signal vector v, a redundant representation of the input address, which drives the vertical wires in 

the crossbar.  Finally, each horizontal nano-wire computes an AND function, which recognizes 

the wire’s own (encoded) address when it occurs on the vertical wires.  The outputs of these four 

AND gates or recognizers form the 4-bit output vector s.  This circuit can tolerate one defect on 

each nanowire output line, and still perform perfectly.  (b) Example of the demux circuit with a 

defect.  A single stuck-open defect (green) on output line S11 does not cause an erroneous 

output.  The input address signal is a=10, the encoded address is u=101, the balanced codeword 

is v=101010, and the (correct) output word is s=0010.  Because of the internal redundancy of the 

encoded address, there are two signal lines to pull output line S11 down to zero (blue) for this 

particular input signal (a=10).  Either signal line can pull the output low by itself, and so even if 

one of these two inputs is disconnected (dotted line) by a defect, output line S11 still produces 

the correct result .  Note that the other two unselected output lines (S00 and S01) for this input 

signal each have two low (blue) voltage connections, and therefore one defect could be tolerated 
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on each of these nanowires as well.  The selected output line (S10) has all of its inputs driven by 

ones (red), and disconnecting any of these inputs would not affect its output.  Single defects on 

every output line can be tolerated simultaneously.  (c) Subsystems of the defect-tolerant 

demultiplexer.  The encoder maps the k-bit input address a to an n-bit codeword u.  The balancer 

maps every bit of u to a pair of bits (one off, one on), resulting in a 2n-bit balanced codeword v 

(balanced means equal numbers of ones and zeroes).   The purpose of the balancer is to provide 

an active-high signal for both the “1” and “0” states of each address bit, as required by the nano-

wire AND gates.  The signal vector v drives the recognizer array, in which the 2k nano-wires 

each compute an AND function, which collectively make up the 2k-bit output vector s.  

 

Fig. 7.  Two representations for an encoding function for the code {000, 011, 101, 110}.  (a) 

tabulation of inputs and outputs; (b) linear transformation with the given generator matrix G.   

 

 

Fig. 8.  Equivalent representations of the encoding function for the code {000, 011, 101, 110}:   

(a) expanded version of u=a·G using the definition of matrix multiplication; (b) digital circuit 

implementing this encoding function.  The interconnect pattern in the encoder circuit comes 

directly from the pattern of 1’s and 0’s in the generator matrix G of the code.  

 

Fig. 9.  Geometrical visualizations of two codes, depicting the  addresses in the demuxes of Fig. 

4a and Fig. 6b.  The set of all connected vertices represents an address space.  The Hamming 

distance between a pair of addresses is the number of edges that connect them.  The green nodes 

indicate codewords.  It can be seen that in code (a), all the codewords have neighbors at distance 
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1; whereas in code (b), the nearest neighbor for each codeword is at distance 2.   

 

Fig. 10.  Choosing which parts of the demux circuit to implement in nano-circuitry (the 

recognizer array), versus at the CMOS level (the encoder and balancer circuits).   

 

Fig. 11.  Generator matrices for three k=7 codes. 

 

Fig. 12.  (a) Generator matrix G for the [12,7,4] code; and (b) the corresponding encoder circuit.  

The pattern of ones in the generator matrix determines the interconnect pattern in the encoder.  

Each output bit is computed as the binary sum (XOR) of a subset of the input signals, as 

specified by the ones in the corresponding column of G.  If five input signals must be summed, a 

5-input XOR is required; however, when there is only one term (as in the first seven columns), 

no XOR is required – the single input is wired directly to the output wire.   

 

Fig. 13.   The expected percentage of nanowires that can be addressed by different k=7 

demultiplexers as a function of the probability p of a defective connection between a nano-wire 

and a CMOS signal wire.  Shown are the cases for demultiplexers based on the codes with d=1, 

2, 3 and 4.  The d=1 code is the identity function and corresponds to the uncoded demultiplexer, 

which serves as the baseline in the comparison.   

 

Fig. 14. A schematic illustration of a hybrid electronic circuit that involves blocks of crossbars 

and demultiplexers (Fig. 2) to enable data from the outside world to be routed into and out of the 

nanocircuitry.  The balancer circuits are included with the encoders in this diagram.  Separating 
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the encoder from the recognizer arrays allows each encoder to control many recognizers; a 

separate enable signal selects the crossbar to which the data is routed.  The black lines denote 

CMOS wires; the smaller nano-wires are not shown.  The encoders are CMOS; the recognizers 

contain both CMOS wires and nanowires; and the crossbar circuits contain only nanowires.   

 

Fig. 15.  Normalized number of expected usable memory bits per chip unit area (as a function of 

defect rate p) in a crossbar memory system using repeated 128×128 nanowire crossbar blocks.  

The total circuit area is calculated as in the text, with the encoders shared by many recognizers 

(as in Fig.14).  Shown are the functions for demuxes based on the codes with d = 1, 2, 3 and 4.  

Note that to achieve a 50% yield, the d=4 coded demux can tolerate up to a p=21% defect rate, 

whereas an uncoded (d=1) demux can tolerate only 2% defects. We refer to this improvement as 

the net coding gain of the design.   

 

Fig. 16.  Similarly to the case of erasure correction in a communication channel, the defect-

tolerant demux (based on a particular code) can tolerate more mistakes than can be corrected 

when the same code is used for full error-correction. The small black dots are points in the 

address space, separated according to Hamming distance, and the dots shaded blue are 

codewords for the d=7 code represented.  The circles represent r-spheres, the set of all addresses 

within r units of Hamming distance from a given address.   (a) For the full error correction case, 

a received (noise-corrupted) message can land anywhere in the address space, and we must find 

the closest codeword to it.  The sphere of radius r=3 around the codewords shows how far a 

corrupted codeword can stray from its actual value and still be correctable.  (b)  For the demux 

circuit, the radius r=6 sphere around a codeword shows that nano-wires occur only at codewords, 
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and that a pair of nano-wires with neighboring addresses can each have up to 6 defects and still 

not interfere with each other. 

 

 

Fig. 17.  Plots of (normalized) expected addressable nanowires vs. defect probability p for two 

128-wire demuxes --a [7,7,1] uncoded demux (green) and a demux based on a [12,7,4] code 

(red).  The solid curves show the expected value calculated using the exact expression derived in 

Appendix A.  The black dots and error bars show the results of runs with the digital circuit 

simulator.  The dots and error bars show the mean and variance (one standard deviation)  for 100 

simulation runs at each value of p, where p was stepped through the values p = 0.00, 0.05, 0.10, 

... 1.00.   

 

 

Fig. 1.   
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Fig. 2.   

 

 

row 
selector 
(demux) 

memory grid 

selected 
column

column 
selector 
(demux) 

selected 
row 

k-bit 
address 

selected 
memory 
cell

k-bit 
address 



Error Correcting Codes for Nanoelectronic Circuits  Kuekes, Robinett, Seroussi & Williams  

 42  

Fig. 3.   
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Fig. 4  
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Fig. 5.   

1 
S11 

A0 A1 VDD 
0 1 a 

defect error 

1 

b 

0 

1 
0 

1 0
A1 A0 

S00 

S01 

S10 

S11 

defecterror 



Error Correcting Codes for Nanoelectronic Circuits  Kuekes, Robinett, Seroussi & Williams  

 45  

 

Fig. 6.   
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Fig. 6.  (continued) 
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Fig. 6 (continued). 
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Fig. 7.   
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Fig. 8.   
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Fig. 9.   
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Fig. 10.   

A0 

A1 

S00 

S01 

S10 

S11 

CMOS 
circuits

Nano-circuits



Error Correcting Codes for Nanoelectronic Circuits  Kuekes, Robinett, Seroussi & Williams  

 52  

 

Fig. 11.   
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Fig. 12.   
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Fig. 13.    
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Fig. 14.   
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Fig. 15.   
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Fig. 16.    
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Fig. 17.   
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