

Defect-Tolerant Interconnect to Nanoelectronic Circuits: Internally-
Redundant Demultiplexers Based on Error-Correcting Codes

Philip J. Kuekes, Warren Robinett, Gadiel Seroussi, R.Stanley Williams
Quantum Science Research
HP Laboratories Palo Alto
HPL-2004-121
July 13, 2004*

E-mail: stan.williams@hp.com

 We describe a family of defect-tolerant demultiplexers based on error-correcting

codes. A conventional demultiplexer with a k-bit input address and 2k-bit output
may be fortified against certain defect types by widening its address bus to n > k
bits to permit an encoded address to be used within the demultiplexer. The
redundant address is computed by an encoder that guarantees a minimum
Hamming distance d between addresses, which sparsely populate an expanded
address space. The increased Hamming distances between addresses are
especially tolerant of stuck-open defects (and broken wires, which are
equivalent to multiple stuck-open defects). For each address width k , there are a
series of demultiplexer designs with increasing internal redundancy, increasing
d, and increasing capability for defect tolerance. These circuit designs are
especially suitable for nano-scale crossbars; in particular, they may be realized
at the interface where the CMOS wires of conventional microelectronics cross
nano-wires to form a mixed-scale interconnect crossbar. Thus, a small number
(2n) of CMOS wires may be used to control a much larger number (2k) of nano-
wires; the family of encoded demultiplexer designs provides a robust interface
to the nano-circuitry, giving significant protection from manufacturing mistakes

at the cost of a relatively small amount of area overhead ƒA ≅
k

n
 . This is a

qualitatively new application of error-correcting codes, the analysis of which
combines elements of the conventional coding-theoretic notions of full-error and
erasure correction. In particula r, a code with minimum distance d guarantees
tolerance to up to d-l defects per nano-wire, in analogy to conventional erasure
correction.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2004

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 2

Abstract

We describe a family of defect-tolerant demultiplexers based on error-correcting codes. A

conventional demultiplexer with a k-bit input address and 2k-bit output may be fortified against

certain defect types by widening its address bus to n > k bits to permit an encoded address to be

used within the demultiplexer. The redundant address is computed by an encoder that guarantees

a minimum Hamming distance d between addresses, which sparsely populate an expanded

address space. The increased Hamming distances between addresses are especially tolerant of

stuck-open defects (and broken wires, which are equivalent to multiple stuck-open defects). For

each address width k, there are a series of demultiplexer designs with increasing internal

redundancy, increasing d, and increasing capability for defect tolerance. These circuit designs

are especially suitable for nano-scale crossbars; in particular, they may be realized at the

interface where the CMOS wires of conventional microelectronics cross nano-wires to form a

mixed-scale interconnect crossbar. Thus, a small number (2n) of CMOS wires may be used to

control a much larger number (2k) of nano-wires; the family of encoded demultiplexer designs

provides a robust interface to the nano-circuitry, giving significant protection from

manufacturing mistakes at the cost of a relatively small amount of area overhead k
nfA ≅ .

This is a qualitatively new application of error-correcting codes, the analysis of which combines

elements of the conventional coding-theoretic notions of full-error and erasure correction. In

particular, a code with minimum distance d guarantees tolerance to up to d-1 defects per nano-

wire, in analogy to conventional erasure correction.

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 3

1. Introduction

Manufacturing perfect electronic circuits is expensive, and the cost is increasing steeply

as the requirements for improved precision become more stringent with shrinking feature sizes.

The cost of perfection may very well become prohibitive long before the feature sizes in

integrated circuits shrink to the point where quantum phenomena dominate their properties.

Thus, defect tolerance – defined as the ability of a circuit to perform perfectly even with broken

components that result from manufacturing mistakes – will be essential in the electronics of the

future.

A practical defect-tolerant computing architecture was demonstrated by the Teramac

experimental supercomputer, which worked reliably even though 3% of its components were

defective [1]. To configure Teramac for a particular computation, a discovery process was first

used to identify bad components, which were then avoided at the time a program was compiled

onto the hardware. This was possible because of the high-bandwidth, redundant routing network

that linked the components within the machine; at the defect rate that actually occurred (3%),

working components could be efficiently linked together (through reconfigurable signal paths) to

build a perfect machine.

The simplest example of such a high-communications-bandwidth structure is the

crossbar, which is illustrated schematically in Fig. 1. Such structures can serve as both memory

[2] and configurable logic arrays [3] if the switches can be toggled electrically [4].

Demonstrations of nanoscale crossbars have utilized monolayer molecular films trapped between

the upper and lower wires [5,6] that provide the switching function.

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 4

A switch can be set to its high-impedance state by putting a relatively large positive

voltage across it, and can be set to its low impedance state by putting a large negative voltage

across it [7] — we consider this to be configuring the switch. At lower absolute voltages, the

switch will “remember” its setting to high or low impedance and simply act as a resistor in the

electrical circuit. Thus, the topology of the crossbar, as an electrical circuit, consists of N

vertical wires crossing M horizontal wires, with the wires linked at each crosspoint by a voltage-

controlled switch.

The Teramac defect-tolerant computing architecture provides guidance in creating defect-

tolerant designs for the crossbar structure because of the high-bandwidth, redundant, and

configurable data paths present in the crossbar. These are simply the wires and the switches.

Thus, it should be possible to repeat the strategy used successfully with Teramac – to first locate

bad components through a search, and then route around the bad components when configuring

the crossbar to perform a computation. We call this method for defect tolerance the “locate and

avoid” strategy.

A practical design for a nano-scale memory system must be defect tolerant, and will

probably contain several different types [8] and hierarchies [9] of defect tolerance. We will

focus in this paper on one of the main subsystems needed for building a nano-scale crossbar

memory – a demultiplexer (demux) [10, 11]. In particular, we will describe how to use error-

correcting codes [13] to build an encoder-demultiplexer system that can provide a high degree of

defect tolerance to a crossbar memory with only a small amount of redundancy in the circuit.

The method described does not use the “locate and avoid” strategy, but can enable the use of the

strategy at higher levels of the system by significantly decreasing the effective defect rate “seen”

by those levels.

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 5

1.1 Some Obstacles

We first survey some of the problems we face: the unreliability of components,

limitations on the geometric complexity of structures that can be fabricated, and the difficulty in

achieving interconnect between nanocircuitry and conventional microcircuitry. Since

conventional, lithographically-fabricated microcircuitry is today primarily implemented with

Complementary Metal-Oxide-Semiconductor (CMOS) circuits, we will use the term CMOS to

mean conventional circuitry manufactured at whatever scale is available.

The manufacturing yield of nano-components will be worse than that of CMOS

components. The defect rate for CMOS components is measured in parts per million (ppm)—for

example, in an early 1990’s RAM chip designed with defect-tolerant techniques [12], the

component defect rate was approximately 22 ppm. In contrast, in nano-circuitry, we may have to

deal with defect rates in the range of 1% to 10%, either because that is the best we can do in

manufacturing, or because it is too expensive to manufacture with extremely precise tolerances,

and we are forced to loosen the tolerances for economic reasons.

Another problem is that, in comparison with CMOS lithography, we are limited in the

geometric complexity of the nano-structures we can fabricate, primarily by alignment precision.

Crossbar structures have the advantage of being highly regular, and thus fairly simple and

inexpensive to fabricate.

A third problem is the difficulty in achieving interconnect between nanocircuitry and

CMOS-scale microcircuitry. To be of any use, we must be able to get electrical signals

containing data into and out of nano-circuitry. We must find methods of electrically connecting

CMOS wires to nano-wires and techniques that allow a small number of CMOS wires to control

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 6

many nano-wires – otherwise the input and output busses would be bigger than the nano-

structure being accessed.

2. Nano-scale Crossbar Memory and its Interconnect to CMOS

Our solution for overcoming these obstacles is a defect-tolerant demultiplexer that fits

efficiently onto the crossbar. In a demux, a relatively small number (k) of input lines controls a

much large number (2k) of output lines. The job of a demux is to turn on exactly one of its

output lines (corresponding to the address on the input lines) while keeping all the other output

lines turned off.

A demultiplexer is one of the primary subsystems needed to build a nano-scale crossbar

memory. In the normal structure of a memory system based on a 2D grid of memory cells, we

wish to use some address bits to indicate a single row and a single column to be activated in the

memory grid (as in a standard CMOS DRAM memory chip), so that we can read or write the bit

stored in the junction where those two wires cross, as shown in Fig. 2.

We have fabricated a nano-scale crossbar memory as an experimental proof-of-principle

system [6]. This circuit was built on a 8×8 crossbar structure, which was configured so that a

4×4 subarray functioned as a memory grid, and two other 4×4 subarrays functioned as row and

column selectors (demultiplexers). The entire 8×8 crossbar occupied 1 µm2 of chip area. This

small crossbar had so few components that it could be made to work without defect-tolerant

techniques. But for realistically-sized memories with large numbers of nanowires, defect

tolerance will be essential.

Note that in a nano-scale crossbar memory, the demultiplexers are at the interface to the

CMOS circuitry. The demux is therefore a very vulnerable part of a system, since if it is

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 7

defective, all the downstream nano-circuitry is lost. Thus, it is especially valuable to improve the

operating capability of this crucial component. What we need is an interconnect design that is

defect-tolerant, that is compatible with the crossbar structure, and that allows a small number of

CMOS wires to control or access a much larger number of nano-wires.

3. A Defect-Tolerant Demultiplexer

Before showing the layout of the demux circuit on the crossbar, we present the analog

circuit that implements an AND gate in the crossbar. We focus on one nano-wire in Fig. 3 to

illustrate how it implements a 2-bit AND function.

3.1 Layout of Demultiplexer onto Crossbar

Fig. 4 shows how an ordinary (non-defect-tolerant) demux can be laid out on the

crossbar. For a k-bit address, there are 2k possible addresses, and thus, if we have 2k nano-wires,

there is a one-to-one correspondence between addresses and nano-wire output lines. The

traditional demux circuit is designed so that (1) each wire has a unique address, and (2) the

addresses of the wires are dense – they completely fill the address space.

To keep the diagram simple, we have shown a demux in Fig. 4 with a 2-bit address and 4

output lines, but a similar layout is valid for larger, realistically-sized demux circuits. The circuit

layout conforms to the crossbar with no wasted space. The demux activates a single wire, as

determined by the input address, and is suitable for use as a row or column recognizer in

implementing a nano-scale crossbar memory. However, a major problem is that this design is

vulnerable to manufacturing defects.

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 8

3.2 The Effect of Defects

In the demux of Fig. 4, a single defective connection on any nanowire will cause that

nanowire to give an erroneous output (Fig. 5). The AND gate on each nano-wire may be thought

of as a specialized circuit that recognizes only its own address, and thus we call it a recognizer.

For example, in Fig. 5, wire S11 should respond only to address “11”. The defect shown on wire

S11 causes the recognizer to become less selective, and it responds to the class of addresses

“1X”, where “X” is a “don’t care” bit. That is, wire S11 now turns on for both address “11” (as

it should) and address “10” (as it should not). We therefore give this defective nanowire the

label “1X”. Since all the address bits are needed to uniquely identify a wire in this densely-

populated address space, a defective connection (a stuck-open defect) on any nano-wire will

cause that wire to erroneously turn on for some other input address.

This illustrates the failure mechanism when stuck-open defects occur as manufacturing

mistakes. Before presenting a technique for dealing with this problem, we note that the types of

defects we have encountered so far in fabricating crossbars are stuck-open connections, stuck-

closed connections, shorts between adjacent wires and broken wires. The coding technique in

this paper applies primarily to stuck-open defects. Methods for handling other defect types will

be presented elsewhere. The manufacturing process can be adjusted to make tractable defect

types more likely than intractable ones.

3.3 A Defect-Tolerant, Internally-Redundant Demultiplexer Circuit

A design for a demultiplexer (2-bit address, 4 output lines) that can perform correctly in

the presence of stuck-open defects is shown in Fig. 6, and may be compared with the normal

design shown in Fig. 4b. The basic idea is to add a few more address lines (vertical wires) to the

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 9

demux circuit, forming an address with redundant bits for each nano-wire in an expanded

address space, so that a single-bit error in an address (caused by a defect) will not cause the

defective wire to interfere with a wire having an “adjacent” address (in address space). The

“sparsely-populated” address space, in which neighboring addresses are no longer adjacent,

allows the circuit to tolerate some defects.

3.4 Distance Between Addresses: Hamming Distance

The Hamming distance between addresses is defined as the number of address-bits that

are different in two equal-length addresses. For example, the 4-bit addresses “1110” and “0111”

are separated by 2 units of Hamming distance – they differ in the first and last bit-positions.

(Hamming distance applies only to a pair of bit-strings of the same length, and is undefined

between bit-strings of different lengths.) Given two arbitrary k-bit addresses a and a’, the

maximum possible Hamming distance is k, meaning that a and a’ differ in every single bit, and

are thus complements of each other (e.g., “1110” and “0001”). The minimum possible Hamming

distance is 0, meaning that a and a’ match in every bit-position and are thus equal (e.g., “1110”

and “1110”). What we loosely called “adjacent addresses” above could be defined more

precisely as two addresses separated by 1 unit of Hamming distance – in other words, addresses

that differ in only a single address-bit (e.g., “1110” and “1111”).

In a normal demux, such as that of Fig. 4, the address space is densely filled: every

possible address occurs – namely {00, 01, 10, 11}. For any particular address (11), flipping one

bit yields another valid address (10), at a Hamming distance of 1 from the original address.

Thus, in the dense address space of a normal demux circuit, every output line has exactly k

nearest neighbors at Hamming distance 1.

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 10

The defect-tolerant demux circuit of Fig. 6 is designed so that in the expanded (3-bit)

address space, the addresses of the nano-wires are all separated by 2 units of Hamming distance.

The addresses of the output lines are {000, 011, 101, 110}. At least 2 bits must be flipped to

transform any of these addresses to any other in the set.

3.5 Coding Theory

The challenge in designing demultiplexers that can withstand one or more bad

connections is to generate an appropriate set of supplemental address bits that increases the

minimum Hamming distance between nano-wire addresses without adding too much additional

circuitry. This is a classical problem in the area of information theory known as coding theory

[13,14], which we will use to systematically add redundant bits and obtain good Hamming

distances between addresses. These codes are called error-correcting codes, from the

application for which they were originally invented, namely, correcting errors in noisy

communication channels. We first introduce some terminology from coding theory.

For the set of addresses {000, 011, 101, 110} just discussed, each member of the set is

called a codeword, and the entire set is considered to be a particular code. A binary code uses

the set {0,1} as its alphabet, and thus a binary vector, or binary matrix, contains only 0’s and

1’s. So a k-bit address, for example, can be considered to be a length-k binary vector. A binary

code C, of length n, is a set of binary vectors (codewords ui) of length n. The cardinality, or size

of C, will be denoted M. The dimension of C, denoted by k, is given by

 ,log2 Mk =

while its minimum distance, denoted by d, is defined by

),(distmin 21 ,, 2121

uu
uuuu ≠∈

=
C

d ,

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 11

where),dist(21 uu denotes the Hamming distance between two binary vectors. We refer to C as

an (n, M, d) code, or an [n, k, d] code. The latter notation, which emphasizes dimension rather

than size, is generally used in the important special case of linear codes.

In a binary linear code C, the codewords can be represented by binary n-vectors, and the

encoding operation can be realized by means of a linear transformation, u=a·G, where a is the

input (a binary k-vector), u is its encoded counterpart (a binary n-vector), and G is a k×n binary

matrix. G is referred to as the generator matrix of the code. The dot operation (·) is matrix

multiplication defined over the finite field [13] F2, namely, the set {0, 1} together with Boolean

XOR and AND as addition and multiplication operations, respectively. Equivalently, F2 can be

regarded as the set {0,1} with arithmetic operations modulo 2.

A binary linear code C is closed under bitwise XOR operations of its codewords. A

binary linear code always contains the all-zero codeword 0, and its number of codewords is

always a power of 2, i.e., kM 2= . In fact, assuming that the matrix G has full rank k, running all

possible binary k-vectors (messages) a through the linear transformation u = a·G produces the 2k

codewords comprising the code. An encoder for a code C is an implementation of the linear

transformation u = a·G. The ease of this operation makes linear codes attractive in practice.

In our application, the “messages” are the unencoded addresses of the nano-wires we

wish to access (signal vector a in Fig. 6). The codewords (signal vector u in Fig. 6) are the

encoded addresses for the nano-wires, which are redundant representations of their payload

messages. With linear codes, it is usual to employ a systematic encoding, where u contains a as

a prefix, with s supplemental check-bits appended. The generator matrix for such systematic

encoding assumes the form G = [I | A], where I is a k×k identity matrix, and A is a k×s binary

matrix defining the check bits. Thus, n = k + s, and the matrix G has full rank k. Notice that in a

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 12

systematic encoding, only the check bits require computation circuitry; the “message” bits of u

are passed to the encoded address untouched. The size of the encoding circuitry is proportional to

the number of non-zero entries in A.

The [n,k,d] nomenclature for a linear binary code summarizes the most important

parameters of a code:

• n bits in each codeword (binary vector u in Fig. 6);

• k bits in the bitstrings to be encoded (binary vector a in Fig. 6);

• d units of Hamming distance as the minimum distance between different codewords.

3.6 Example Codes

Some examples will help to clarify these mathematical definitions and properties. In the

small example we have been considering, the code C = {000, 011, 101, 110} has size M = 4,

dimension k=2, length n=3, and minimum distance d=2. Thus, using the [n,k,d] terminology, it

is a [3,2,2] code. Its encoding function is shown in Fig. 7, along with its systematic generator

matrix G = [I | A], with ⎥
⎦

⎤
⎢
⎣

⎡
=

1
1

A . The encoder circuit of Fig. 8b precisely implements the

computation u = a·G, with the generator matrix G “hard-wired” into the circuit as the

interconnect pattern, and the XOR gate performing the required summation to compute the last

component of the output vector.

3.7 Densely-Populated Versus Sparsely-Populated Address Spaces

Fig. 9 shows visualizations for how the nano-wire addresses fill their address spaces for

the two demux designs we have considered so far – the normal, non-defect-tolerant demux of

Fig. 4, and the defect-tolerant demux of Fig. 6. Thus the code of Fig. 9a is a [2,2,1] code (2-bit

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 13

output, 2-bit input, 1 unit of separation between codewords), while the code of Fig. 9b is a

[3,2,2] code (3-bit output, 2-bit input, 2 units of separation between codewords).

3.8 Finding Codes

It can be difficult to construct good codes; but once a code is known, it can be used

simply by knowing its generator matrix. The systematic generator matrix immediately yields a

digital circuit implementing the encoding function for the code. Thus, we can capitalize on over

50 years of mathematical research in coding theory simply by looking up codes that have already

been discovered. For the applications in which we are interested (demultiplexers used to build

crossbar memories), the number of nanowires addressed in one demultiplexer block will be

fewer than ten thousand in the foreseeable future, which means that k is bounded (say, k ≤ 14).

In the context of coding theory, codes of this size are considered relatively short. Tables of the

best known short codes can be found in the literature [13, Appendix A] or on the web [15]. For a

given set of parameters, the “mathematically” best code (e.g., largest minimum Hamming

distance given the code length and size) might be non-linear and relatively complex to encode.

We prefer linear codes for the simplicity of their encoding circuitry.

The parity codes, which have d=2, are the simplest. A parity code adds a single

redundant bit to an input bitstring, computed as the XOR of all the input bits. Parity codes have

been traditionally used in magnetic tapes and other memory systems to detect single-bit errors.

The encoder of Fig. 8 uses a parity code.

The family of Hamming codes and their variants provides a range of useful codes, with

minimum distance d=3 or d=4. Hamming codes are, in a sense, the simplest non-trivial codes

and a full treatment of their properties can be found in almost every coding theory book (cf.

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 14

[13]). For every code order m, there is a Hamming code with parameters [2m-1, 2m-1-m, 3].

Appending an overall parity check to each codeword, this code yields an “extended” Hamming

code with parameters [2m, 2m-1-m, 4]. These codes, in turn, can be shortened to obtain families

of codes with parameters [2m-1-r, 2m-1-m-r, 3], and [2m-r, 2m-1-m-r, 4], respectively, for integers

r, 120 −<≤ mr . For m=4, and r=4, for example, there is a [11,7,3] shortened Hamming code and

a [12,7,4] shortened extended Hamming code. For simplicity, we will omit the qualifier

“shortened” in the discussion to follow, letting it be assumed from the context.

3.9 Operation of the Defect-Tolerant Demultiplexer: How It Tolerates Defects

An important area of design latitude in a circuit that includes (unreliable) nano-circuitry

on the same substrate with (reliable) CMOS circuits is that we can decide which parts of the

circuit we wish to protect from defects simply by choosing those that are implemented in CMOS.

Fig. 10 shows that for the defect-tolerant demux, we have chosen to implement the encoder and

code balancer (NOT gates) in CMOS, and only the AND operations (recognizer array) at the

nano-level. This choice still leaves the bulk of the circuitry at the nano level, since there are 2k

n-input AND gates, but only n NOT gates and n-k XOR gates, of k or less inputs each. Thus,

only the AND gates (and their associated interconnect) in the circuit are required to tolerate

defects. Downstream of the reliable CMOS, the first place that defects can occur is in the

recognizer array, where the connections between the larger CMOS wires and the narrow nano-

wires may be defective.

We can now describe how the defect-tolerant demux of Fig. 10 is able to tolerate defects.

Recall that the effect of a stuck-open defect on a particular nano-wire, as illustrated in Fig. 5, is

to “disconnect” one of the inputs to the AND gate circuit on that wire. The result is that the

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 15

nano-wire becomes less selective, and responds, in the example of Fig. 5, to address “1X”, and

thus responds to both addresses “10” and “11”.

Note that an address label with a single “X” in it will respond to an address at most 1 unit

of Hamming distance away from its correct address. In general, a nano-wire with e stuck-open

defects on that same wire will have a label containing e X’s, and will be activated by 2e different

addresses, the most distant of which will be at Hamming distance e from the wire’s correct

address. The addresses of the nano-wires in the defect-tolerant demux of Fig. 10 are the

codewords {000, 011, 101, 110}. A single stuck-open defect on a nano-wire will introduce a

single “X” into the wire’s label, which will not be damaging enough to get it to interfere with

another nano-wire, since the nearest neighbors are 2 units of Hamming distance away. Thus, the

circuit of Fig. 10 can tolerate a single stuck-open defect on each nano-wire. If two defects occur

on the same wire, then it will interfere with a neighboring wire. This defect-tolerant demux is

certainly better than the ordinary demux of Fig. 4, which cannot tolerate any defects at all; but it

also has its limits, being unable to tolerate two or more defects on a single nano-wire.

3.10 Family of Defect-Tolerant Demultiplexer Designs

The defect-tolerant demux of Fig. 10 is actually a prototype for a family of circuit

designs. Any [n,k,d] code can be used to construct a demux with these properties:

• it has a k-bit input address;

• it uses n-bit encoded addresses, and has 2n vertical wires (the v signal vector of Fig. 6)

going from the CMOS circuitry to the nano-level;

• it has 2k nano-wire output lines, each implementing an n-input AND gate;

• the addresses of the nano-wires are the codewords of the code;

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 16

• the minimum distance between codewords (and thus nano-wire addresses) is d;

• the demux can tolerate up to d-1 stuck-open defects on each nano-wire;

• if d or more defects occur on the same nano-wire, an error will occur (the wire will

interfere with some other nano-wire for some input address).

These properties may be summarized by saying that for any [n,k,d] code, we can build a

corresponding defect-tolerant demultiplexer that can tolerate up to d-1 stuck-open defects on

each nano-wire. When we need a demux of a particular size (k) and degree of defect-tolerance

(d), we may search the mathematical archives to find a code that is efficient (low n) and therefore

requires as few redundant address lines as possible.

3.11 Four Example Demultiplexer Designs, of Increasing Defect-Tolerance

To explore the behavior of this family of demux designs, considered over a range of

plausible defect rates, we will now develop four example circuits, based on codes with minimum

Hamming distances d=2, d=3, and d=4; and an uncoded (d=1) demux design for comparison.

We will use more realistically-sized (k=7) demuxes in these examples. All the demuxes will

therefore have 7-bit input addresses and 128 nano-wire output lines. They will differ in the

degree of internal redundancy that is added to the circuit, with more (judiciously chosen)

redundancy conferring more defect-tolerance.

The four example demultiplexers are based on these codes:

• Example D1: [7,7,1] code. A normal, non-defect-tolerant demux (d=1) against which the

other examples may be compared.

• Example D2: [8,7,2] code. This demux is based on a simple parity code (d=2).

• Example D3: [11,7,3] code. This demux is based on a Hamming code (d=3).

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 17

• Example D4: [12,7,4] code. This demux is based on an extended Hamming code (d=4).

The respective generator matrices are shown in Fig. 11 and Fig. 12a.

Together with the explanations of Fig. 8, the demultiplexer of Fig. 6 may be used as a

prototype to show how to use the generator matrix for an arbitrary [n,k,d] code to construct a

defect-tolerant demux circuit. For realistically-sized cases, there will be more bits in each of the

signal vectors:

• k bits in the input a to the encoder;

• n bits in the encoded address u;

• 2n vertical wires (signal vector v) linking the CMOS circuitry to the nano-wires;

• 2k nano-wire output lines wires (signal vector s).

For example, the generator matrix for the [12,7,4] code (Fig. 12a) gives rise to a demux

(Example D4) in which the lengths of the signal vectors are 7 bits (a), 12 bits (u), 24 bits (v), and

128 bits (s). The encoder circuit for this code is shown in Fig. 12b.

4. Evaluating the Four Demultiplexer Designs

Bearing in mind that these demuxes are intended to be used as subsystems (row and

column selectors) within nano-scale crossbar memories, we evaluate their quality by asking the

question: How many of the nano-wire output lines can be used to select a row or column in a

memory grid? A nanowire (with address u) can fail to be usable for either of two reasons:

• The nanowire has too many defective connections, and is erroneously selected when

another nanowire is addressed. We call wire u a villain in this case.

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 18

• Some other nanowire has too many defective connections, and is selected when u is

addressed. We call this u a victim, because it may be completely defect-free – but its

address conflicts with a wire that is defective (a villain).

We assume that both nanowires are disabled when a conflict occurs. Stuck-open defects make

the nano-wire respond to an overly-broad set of addresses. When enough defects occur on the

same nano-wire, it will interfere with some other nano-wire, thus becoming a villain (and

causing the other wire to become a victim). For a demux based on a particular code C, we can

compute the (normalized) expected number of usable lines Eusable(p), as a function of the

defect probability p. An exact formula for this expectation is derived in Appendix A. It is based

on the combinatorial structure of the code C, and takes the form of a polynomial function of p.

The probability analysis leading to the formulas in Appendix A assumes an idealized

model where defects occur independently of each other, and with a uniform probability.

Although this model is a reasonable first-order approximation, it is clear that “real life”

implementations will not necessarily obey it precisely, and the yield and probability calculations

will require some combination of physical measurements, modeling, simulation, and

mathematical derivations. With this need in mind, a circuit simulator was developed, with

defects generated pseudo-randomly with probability p, followed by evaluation of the circuit’s

performance, and counting up the usable lines (Appendix B). In the case of the idealized

probability model, the simulator could be checked against the analytic formulas of Appendix A,

and verified to produce accurate results to within expected statistical deviations. The simulator is

described in Appendix B.

We can now use the graphs of the function Eusable(p) to evaluate each of the four demux

circuits. The four plots in Fig. 13 show how much each demux degrades (by having fewer and

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 19

fewer usable lines) as the defect rate p increases. We see that, for the case of the normal demux,

the expected number of usable nanowires decreases rapidly as the defect rate p increases. A

single supplemental bit provided by the [8,7,2] parity code creates substantial defect tolerance by

allowing each nano-wire to tolerate just one defect. We see a further improvement by utilizing

an [11,7,3] Hamming code, which requires an additional three address bits to be able to tolerate

two bad connections per nano-wire. The [12,7,4] extended Hamming code, which can tolerate

up to three defects per nano-wire, represents a further significant improvement.

It is clear from the plots of Fig. 13 that codes of increasing d yield increasing defect-

tolerance. If the defect rate is known to have some fixed value, then as d increases, the fraction

of usable lines improves. To express it another way, if some other part of the system required

that at least, say, 95% of the lines were usable (perhaps a requirement of a higher-level defect-

tolerance mechanism), then codes of increasing d can tolerate greater component defects rates

while still satisfying the requirement. The probability calculations of Table 1 show that having

multiple defects on the same nano-wire is not unlikely, even for a case in which there are only 8

CMOS connections to that nano-wire. At a p=10% defect rate, for example, 0.5% of the output

lines will have defects at 4 or more of their 8 connections.

4.1 Cost-Benefit Analysis

To properly evaluate this family of defect-tolerant demultiplexer designs, we need to

consider not only the benefits, but also the cost of the defect-tolerant circuitry introduced into

these demultiplexers. Some principal benefits are:

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 20

• More usable resources (demux output lines). In the crossbar memory application, more

usable output lines (in the row and column recognizers) lead directly to more usable bits

in the memory system.

• Ability to tolerate higher defect rates. This can lead to greatly improved manufacturing

economics. The expense of the fabrication process will decrease significantly with

increasing p that can be tolerated in a circuit, and thus we want to design a system that

can tolerate as large a defect rate as possible.

But these benefits incur certain costs:

• More wires are required in the address bus linking the CMOS circuits and nano-circuit.

• Some kind of higher-level defect-tolerant system is required to identify and keep track of

the addresses of the unusable nano-wires.

Thus, the benefits must be judged against the costs, and furthermore, the magnitude of both the

benefits and costs is strongly dependent on the underlying defect rate p. Our approach here,

offered as an example of how to assess such a situation, will be to focus on one benefit (more

usable demux output lines, leading to more bits in the crossbar memory) and one cost (chip area

consumed due to wider address busses). Combining these two will give us a numerical measure

of goodness (usable bits per chip unit area) that will allow us to judge which of the four example

demux designs is best, for any given defect rate p. A more comprehensive analysis would

include the area consumed by the higher-level defect-tolerant system in the cost calculation, and

the relation between manufacturing tolerance (as reflected by the value of p) and actual

manufacturing costs. However, these parameters are not known at present.

4.2 Evaluation Function: Bits Per Unit Area

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 21

One way to view the economic consequences of appending supplemental bits to the nano-

wire addresses is to examine the effect of the supplemental bits on a “yield” quantity, defined as

the number of addressable bits per unit of chip area. In the early stages of nano-electronics, the

chip area, and thus the cost of a chip, will still be dominated by the CMOS components. Thus,

we can ask how much area will be sacrificed by widening the address bus with supplemental

address bits. We will consider the specific case of a large crossbar memory with an architecture

as illustrated in Fig. 14, constructed of several 128×128 nano-scale crossbar blocks, each

containing 214 cross-point junctions. Each crossbar block has two arrays of 128 nanowires

crossed over each other, with each array of nanowires addressed by a demultiplexer.

In this example, only ~10% of the circuit area contains nanocircuitry – the other ~90% is

taken up by CMOS circuitry and recognizer arrays, in which CMOS wires cross nano-wires [17].

Each encoder can drive many recognizer arrays simultaneously, with specific recognizers

activated by a signal generated from a “master” encoder. The great advantage of this scheme is

that a relatively small amount of CMOS can be used to control a large number of nanocircuit

elements. Thus, even if the blocks of nanocircuitry only cover 10% of the total circuit area, the

total functionality of a hybrid electronic circuit can be much larger than that constructed from the

conventional circuitry alone.

To calculate areas, we will start with realistic values for the pitch of nano-wires (Nλ = 30

nm) and the pitch of CMOS wires (Cλ = 130 nm), based on plans for DRAM production in 2007

[18]. We can then calculate the width of the nano-scale crossbar circuit, composed of 2k nano-

wires (N
k

Nw λ2=), and the width of the address bus, composed of 2n CMOS wires

(CA nw λ2=).

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 22

The defect-tolerant demux has three subsystems (Fig. 6c): a CMOS encoder (n-k XOR

gates), a CMOS balancer (n NOT gates), and a mixed-length-scale recognizer array (2k AND

gates). For reasonable values of n and k, most of the demux circuitry is in the recognizer array.

The balancer is so small in area that it is negligible. In our application, the encoder is shared by

many recognizer arrays, so that its effective area is small. Thus, the areas of the encoder and

recognizer array are, respectively,

0),(≅nkAE (encoder area amortized across many recognizer arrays)

CN
k

AND nwwnkA λλ 22),(×=×=

We may therefore calculate the redundancy of the circuit as an area overhead factor fA for the

defect-tolerant demux (with respect to an unencoded [k,k,1] demux, which has no encoder) as

),(
),(),(

_]1,,[ofarea
],,[ofarea_],,[

kkA
nkAnkA

arrayecognizerrkk
encoderdknarrayecognizerrdknof areaf

D

ED
A

+
=

+
=

This yields k
nfA ≅ , which expresses the fact that when the encoder’s area is negligible, the

area of the recognizer array is controlled by the address bus width: 2n wires (coded) versus 2k

wires (uncoded).

We can calculate the area of one of the crossbar blocks of Fig. 14 (including the two

associated recognizers) by putting the crossbar width and the address bus width together and

squaring:

() ()22 22),(CN
k

NAB nwwnkA λλ +=+=

To assess the additional area consumed by widening the address busses, we note that k=7 for all

four of the codes, whereas n takes on the values 7, 8, 11, and 12. Taking the n=7 (uncoded)

demux as a baseline, we find that the area penalty is a factor of 1.09, 1.39 and 1.51 for the codes

with n = 8, 11 and 12, respectively. Defining a unit of area as that needed to address one bit in a

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 23

defect-free uncoded system, the normalized expected number of addressable bits per unit of area

in a crossbar memory using code-based demux circuits is:

() ()()2
),(
),(pE

nkA
kkApB usable

B

B= ,

where ()pEusable
 is the (normalized) expected number of usable lines, in a defect-tolerant demux

based on an [n,k,d] code. An exact expression for the function ()pEusable , given the underlying

code structure, is derived in Appendix A. Using the derived expression, we plot the function

B(p), for each of the four codes under consideration, in Figure 15.

For the case where there are no supplemental bits, the number of usable bits per unit area

decreases rapidly with defect rate. Appending a single parity bit ([8,7,2] code) to supplement the

address of the nanowires improves the number of usable bits substantially for any defect rate p ≥

1%. The [11,7,3] modified Hamming code imposes a significant penalty on the density of

addressable bits if the defect rate is < 5%, but it enables a reasonably high density of bits for a

defect probability in the range of 5 to 12%. The [12,7,4] modified Hamming code provides

better defect tolerance for defect probabilities greater than 12%. Although we have shown only

four examples (based on codes with d=1,2,3 and 4) in this paper, there are more powerful known

codes (with d>4) that could be used to define demuxes with even higher degrees of defect-

tolerance, if the defect rate was high enough to justify the wider address bus, and other costs.

If we know the defect rate of our manufacturing process (perhaps we have driven it as

low as we are able), then we can use Fig. 15 to tell us which demux design is optimal. For

example, if p=10%, then the demux of example D3 (based on the [11,7,3] code) is the best

choice – as shown by the [11,7,3] curve being above the others at p=10%. The demux designs

based on the [8,7,2] or [7,7,1] codes would be insufficiently powerful to cope with that defect

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 24

rate, and would deliver fewer bits per unit area. On the other hand, the demux design based on a

[12,7,4] code would be more powerful than needed, and its overhead would make it less efficient

than the d=3 demux design.

The plots of Figure 15 can be interpreted as showing a coding gain in the defect-tolerant

demultiplexers, analogous to the notion used in coding for communications [14]. For a given

acceptable density of usable memory per unit area (yield), a coded system can tolerate a higher

defect rate. For example, one observes in Figure 15 that a 50% yield requires manufacturing to a

defect rate of 2% with an uncoded system, whereas the same yield can be obtained with a defect

rate of 21% when the [12,7,4] code is used. This gap in defect tolerance can translate to

significant economic gains, or even feasibility, since low defect rates might be very difficult or

even impossible to attain.

4.3 Higher-Level Defect-Tolerant System

The basis of comparison we have used for the four k=7 defect-tolerant demux designs has

been to ask how many of the 128 output lines we can expect to be usable. We have assumed that

it is acceptable to have some bad lines, since the coding scheme cannot compensate for all

defects in the demux. This implies that the overall system contains a higher-level defect-tolerant

mechanism [17] to deal with the bad lines in the demux; this is the only way the overall system

can achieve error-free performance.

Note that each bad output line in the demux will have a fixed address. This makes it

possible to use the “locate and avoid” strategy – first locate the bad output lines in a demux, store

their addresses in some kind of memory, and provide a mechanism for avoiding them thereafter.

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 25

It is also possible to use other defect-tolerance strategies, such as error-correcting codes, to deal

with the bad lines in a demux.

5. Conclusions

A defect-tolerant demultiplexer allows a circuit designer to build an interface to a

significant number of nano-wires, from a much smaller set of CMOS wires, by assigning

addresses to the nano-wires. By adding redundant bits to the address, each wire can be uniquely

addressed, even in the presence of manufacturing defects in the connections between the nano-

wires and the CMOS driving circuits. We have described a systematic method for generating a

set of supplemental address bits and designing the circuitry required to implement the new

addressing scheme. This generates a family of demultiplexer designs, each based on an [n,k,d]

error-correcting code, such that increasingly powerful codes (higher d) yield demultiplexer

circuits that can tolerate higher defect rates p. In comparison with normal, uncoded

demultiplexers, these defect-tolerant demultiplexer circuits have a redundancy (area penalty)

factor of approximately k
nfA ≅ .

 To design an efficient and reliable demultiplexer, it is necessary to know approximately

what the component defect rate is. If the defect rate is significantly greater than planned, the

system reliability can plummet drastically; while if the defect rate is significantly over-estimated,

unnecessary circuitry will reduce the efficiency of the design. In the coded demultiplexer design

presented here, a Hamming distance d guarantees tolerance to e=d–1 defects per nano-wire (Fig.

16). This is akin to erasure correction in coding theory, i.e., a situation where the locations of the

errors are known, and the remaining task of the error correcting decoder is to reconstruct the

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 26

transmitted values in these location [13]. In full error correction, on the other hand, the

locations of the errors are unknown, and an [n,k,d] code can only guarantee correction of

⎟
⎠
⎞

⎜
⎝
⎛ −

=
2

1dfloore errors in this case (Fig. 16). Interestingly, the probability analysis for our

demultiplexer design, presented in Appendix A, does not correspond to either conventional case

in coding theory, but contains a combination of elements of both cases.

As feature sizes shrink, it becomes increasingly more expensive to avoid mistakes in

manufacturing. At some stage, only circuits designed to tolerate manufacturing defects will be

practical to build. This design for an internally-redundant demultiplexer circuit has shown how a

standard digital building block (a demultiplexer) can be re-designed to tolerate manufacturing

defects.

7. Appendix A.

Exact Calculation of the Expected Value of the Number of Usable Output Lines

We will now derive an exact expression, based on the structure of the code, of the

probability pusable of a nano-wire output line of the demux being usable. This probability takes

the form of a polynomial function of the stuck-open defect rate p.

Let u be a codeword of C, which is therefore the address of a nanowire. The nanowire

can fail to be usable for either of two reasons:

• The nanowire has too many defective connections, and is erroneously selected when

another nanowire is addressed. The probability of this event is denoted pvillain.

• Some other nanowire has too many defective connections, and is selected when u is

addressed. The probability of this event is denoted pvictim.

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 27

We assume that both nanowires are disabled when a conflict occurs, and the overall probability

of a nanowire being usable is the probability that the wire is neither a villain nor a victim. Thus,

we can write

() (),11 victimvillainusable ppp −⋅−=

since defects are assumed to be statistically independent.

We compute the probability pvictim first. Let y be an address (codeword) different from u.

Address y disables address u if the bits of y in its non-defective positions coincide with the bits

of u in those positions, or equivalently, y is defective in all positions where its bits differ from

those of u and it can be either defective or non-defective in other positions . The probability of

this event is pdist(u,y). Since we assume that defects are statistically independent, the overall

probability that u is not disabled by any other address is given by

 ,)1()1(1
1

)(

}\{

),(∏∏
=∈

−=−=−
n

i

iWi

C

dist
victim

Cppp
uy

yu 2.

where)(iWC denotes the number of codewords of Hamming weight i in C (since C is linear, the

number of codewords at distance i from u is independent of u; the weight corresponds to taking

u=0). When C is the identity code, we have ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i
n

iWC)(, a binomial coefficient. We observe that

the probability of a nanowire being disabled depends on the entire distance profile of the code,

and not just the minimum distance, although the latter is likely to be dominant when p is small.

We now compute the probability pvillain of a nanowire being a villain. As before, since

the code is linear, we can assume that the nanowire corresponds to the zero codeword. Let e be

the characteristic vector of an error pattern, i.e., ei =1 if there is a disconnect in position i, or 0

otherwise. The set of locations where ei =1 is called the support of e. We say that e dominates an

n-vector u if the support of e includes the support of u. An error pattern e on address 0 disables

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 28

address u if and only if e dominates u. Contrary to the previous case, however, events are not

independent, and an error pattern e can disable more than one nonzero address. Let D(C) denote

the set

{ }CCD ∈= uuee somefor dominates |)(.

Then, the probability that e acting on 0 disables some other address is equal to))((Prob CD∈e ,

or, equivalently, the probability that 0 is disabled because it disables some other address is given

by

 .)1()())((Prob
1

)(
in

n

i

i
CDvillain ppiWCDp −

=

−=∈= ∑e 3.

The complement of this expression for pvillain occurs in coding theory also as the probability of

success of a code C in correcting an erasure event in an erasure channel with probability p, when

the events are taken over blocks of length n.

The weight profiles of our four example codes, and those of the corresponding sets of

dominating vectors, can be obtained by explicit enumeration, since the codes are small. The

profiles are shown in Table 2. Therefore, we can compute pvillain and pvictim precisely for these

codes.

Clearly, the normalized expected number of usable wires in a demux is

Eusable(p) = pusable(p)

The expression derived for pusable(p) assumes full knowledge of the profiles WC and WD for the

code. For longer codes for which these profiles might be difficult to characterize completely,

partial profiles could be used, which would yield fairly accurate approximations of pusable(p).

8. Appendix B. The Digital Circuit Simulator

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 29

A simulator was created to synthesize digital circuits for the family of defect-tolerant

demultiplexers described in this paper, to randomly generate simulated defects, to simulate the

operation of the demux circuits, and to evaluate their performance. The simulator also computes

the exact function pusable(p) described in Appendix A, and compares the results for the simulated

sample to the exact expectation. The results agree within expected statistical variations (Fig. 17).

 Some goals of the simulator are to:

• analyze demuxes based on any arbitrary binary linear error-correcting code, defined by a

generator matrix G;

• evaluate error-correcting codes by calculating their distance profile and other code

properties;

• explicitly simulate, at the digital level, the operation of the circuits of the demux in the

presence of randomly generated defects (digital circuit model) and assess the

performance of the simulated demux with appropriate measures;

• simulate circuits for which the errors are correlated or otherwise violate the assumptions

of the model originally posed for the exact calculation of Appendix A.

The simulator is written in the J programming language [19], a dialect of the language APL. J is

an interpreted, mathematically-oriented, vector language that is well-suited for this task.

The simulator accepts as inputs a generator matrix G defining a specific binary linear

code and a defect probability p. The simulator uses the input G to construct the connection

network for the digital encoder, as described in Figure 12. The recognizer array is represented

by the ideal connection matrix Ci, which represents the interconnect pattern of the AND gates

that compute the output address. The Ci matrix is synthesized as a list of all 2k n-bit codewords

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 30

in the code, with the complement of each codeword appended (by the balancer), resulting in a

2k×2n matrix.

 The simulator then calculates a 2k×2n defect matrix E (a binary matrix in which each

entry has a one, meaning defect with probability p, or else a zero, meaning no defect) using a

random number generator and the input defect rate p, The Ci and E matrices are combined

bitwise to define the recognizer with defective connections. All possible 2k addresses are run

through this circuit, and the outputs are tabulated. From this complete set of inputs and outputs,

we can detect the “villains” and “victims” described earlier, and thus calculate, for this particular

defect matrix, how many bad output lines there are. This procedure is applied Q times for each

of a sequence of values of the defect rate p. Figure 17 shows the results obtained for the [7,7,1]

and [12,7,4] codes with Q = 100.

9. Acknowledgements

We gratefully acknowledge R. Roth, G. Snider and J. Straznicky for valuable discussions,

and the Defense Advanced Research Projects Agency of the United States for partial support.

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 31

10. References

[1] Heath J R, Kuekes P J, Snider G S and Williams R S 1998 A Defect-Tolerant

Computer Architecture: Opportunities for Nanotechnology Science 280 1716.

[2] Kuekes P J, Williams R S, and Heath J R 2000 Molecular wire crossbar memory US

Patent #6,128,214

[3] Collier C P, Wong E W, Belohradsky M, Raymo F M, Stoddart J F, Kuekes P J,

Williams R S, and Heath J R 1999 Electronically Configurable Molecular-Based

Logic Gates Science 285 391-4

[4] Heath J R, Kuekes P J, and Williams R S 2002 Chemically Synthesized and

Assembled Electronic Devices US Patent #6,459,095

[5] Luo Y, Collier C P, Jeppesen J O, Nielsen K A, Delonno E, Ho G, Perkins J, Tseng H-

R, Yamamoto T, Stoddart J F, and Heath J R 2002 Two-Dimensional Molecular

Electronic Circuits Chem Phys Chem 3 519-25

[6] Chen Y, Jung G-Y, Ohlberg D A A, Li X, Stewart D R, Jeppesen J O, Nielsen K A,

Stoddart J F and Williams R S 2003 Nanoscale Molecular-Switch Crossbar Circuits

Nanotechnology 14 462-8

[7] Chen Y, Ohlberg D A A, Li X, Stewart D R, Williams R S, Jeppesen J O, Nielsen K A,

Stoddart J F, Olynick D L and Anderson E 2003 Nanoscale molecular switch devices

fabricated by imprint lithography Appl Phys Lett 82 1610-12

[8] Nikolic K, Sadek A, and Forshaw M 2002 Fault-tolerant Techniques for

NanoNanocomputers Nanotechnology 13 357-362 ; Sadek A, Nikolic K, and Forshaw

M 2004 Parallel Information and Computation with Restitution for Noise-Tolerant

Nanoscale Logic Networks Nanotechnology 15 192-210

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 32

[9] Han J and Jonker P 2003 A defect- and fault-tolerant architecture for nanocomputers

Nanotechnology 14 224-30

[10] Zhong Z, Wang D, Cui Y, Bockrath M W and Lieber C M 2003 Nanowire Crossbar

Arrays as Address Decoders for Integrated Nanosystems Science 302 1377-79

[11] DeHon A 2003 Array-Based Architecture for FET-Based, Nanoscale Electronics IEEE

Transactions on Nanotechnology 2 23-32

[12] Stapper C H, Fifield J A, Kalter H L, and Klassen W A 1993 High-Reliability Fault-

Tolerant 16-MBit Memory Chip IEEE Transactions on Reliability 42 596-603

[13] MacWilliams F J and Sloane N J A 1990 The Theory of Error-Correcting Codes

(North- Holland, New York)

[14] Wicker S B 1995 Error Control Systems for Digital Communication and Storage

(Prentice Hall, Upper Saddle River)

[15] Jaffe D 2004 Information about binary linear codes

http://www.math.unl.edu/~djaffe/codes/webcodes/codeform.html

[16] Dugan J B, Bavuso S J, and Boyd M A 1992 Dynamic Fault-Tree Models for Fault-

Tolerant Computer Systems IEEE Transactions on Reliability 41 363-77

[17] DeHon A, Goldstein S C, Kuekes P and Lincoln P 2004 Non-Photolithographic

Nanoscale Memory Density Prospects (in preparation)

[18] International Technology Roadmap for Semiconductors 2003 Edition

http://public.itrs.net.

[19] Iverson K E 2003 J programming language J Software Inc. http://www.jsoftware.com.

11. Competing Financial Interests

The authors declare that they have no competing financial interests.

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 33

Tables

Table 1. Probabilities of various numbers of defects on a single nanowire with eight connections

for defect rate p=10%.

 # defects e

per nano-

wire

Formula for

exactly e

defects

Probability

of exactly e defects

(for p=10%)

Cumulative probability

of e or more defects

(for p=10%)

 8 p8 0.000001% 0.000001%

 7 8(1-p)p7 0.000072% 0.000073%

 6 28(1-p)2p6 0.0022% 0.0023%

 5 56(1-p)3p5 0.041% 0.043%

 4 70(1-p)4p4 0.46% 0.50%

 3 56(1-p)5p3 3.3% 3.8%

 2 28(1-p)6p2 15% 19%

 1 8(1-p)7p 38% 57%

 0 (1-p)8 43% 100%

Note that the formulas in the second column of the table are the terms in the binomial

expansion of ()()81 pp −+ , and thus sum to 1. The probability of a nanowire having e or

more defects, out of n connections, is given by the formula

iin
n

ei

e
n pp

i
n

pF −

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑)1()(.

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 34

Table 2. Weight profiles for codes and dominating sets.

 code [7,7,1] code [8,7,2] code [11,7,3] code [12,7,4]

i WC(i) WD(C)(i) WC(i) WD(C)(i) WC(i) WD(C)(i) WC(i) WD(C)(i)

0 1 1 1 1 1 1 1 1

1 7 7 0 0 0 0 0 0

2 21 21 28 28 0 0 0 0

3 35 35 0 56 13 13 0 0

4 35 35 70 70 26 130 39 39

5 21 21 0 56 24 462 0 312

6 7 7 28 28 24 462 48 924

7 1 1 0 8 26 330 0 792

8 0 0 1 1 13 165 39 495

9 0 0 0 0 0 55 0 220

10 0 0 0 0 0 11 0 66

11 0 0 0 0 1 1 0 12

12 0 0 0 0 0 0 1 1

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 35

Figure Captions

Fig. 1. Circuit topology of a crossbar of switches, each of which connects one horizontal wire to

one vertical wire.

Fig. 2. Schematic layout diagram of a crossbar memory, showing the role of the row selector

and column selector subsystems. (The selectors are demultiplexers.)

Fig. 3. Diode-logic circuit with pull-up resistor that implements an AND gate. Blue symbolizes

a low voltage (“logic 0”) and red symbolizes a high voltage (“logic 1”). Two cases are shown:

(a) input 11 producing output 1, and (b) input 10 producing output 0. A low voltage (Ground) on

any input will force the output low (because of the low-resistance path to Ground through the

forward-biased diode), and only if all inputs are high (VDD) does the output go high. With more

input lines, this same circuit design implements a k-input AND gate.

Fig. 4. (a) Layout of a normal (non-defect-tolerant) demux circuit onto the crossbar. It has a 2-

bit input (A0, A1) and a 4-bit output (S00, S01, S10, S11). The thick vertical lines represent

wires from the CMOS circuit level, while the thin horizontal lines represent nano-wires. (b) The

digital circuit implemented by this layout. (c) Logic equations for the demux digital circuit. (d)

The operation of the demux expressed in mathematical form, showing that exactly one of the 2k

wires in the output array s will turn on, corresponding to the k-bit address a coming into the

demux as input. Note that the output wires are labeled in binary to emphasize how they

correspond with the set of possible addresses that may occur as inputs on a (00, 01, 10, 11).

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 36

Each output line has its own address, and the purpose of the AND gate is to “recognize” the

wire’s address when it appears on the CMOS lines.

Fig. 5. (a) A stuck-open defect (green) causes an AND circuit to give an erroneous output

(purple) – a high voltage (“logic 1”) when it should have been low (“logic 0”). Compare with

Fig. 3, which shows the correct behavior. (b) The erroneous output in the context a demux –

two output lines are activated by the address illustrated (10).

Fig. 6. (a) Defect-tolerant demultiplexer. The 2-bit input address a passes through an encoder

to produce a 3-bit address u. Signal vector u and its complement are appended to give the 6-bit

signal vector v, a redundant representation of the input address, which drives the vertical wires in

the crossbar. Finally, each horizontal nano-wire computes an AND function, which recognizes

the wire’s own (encoded) address when it occurs on the vertical wires. The outputs of these four

AND gates or recognizers form the 4-bit output vector s. This circuit can tolerate one defect on

each nanowire output line, and still perform perfectly. (b) Example of the demux circuit with a

defect. A single stuck-open defect (green) on output line S11 does not cause an erroneous

output. The input address signal is a=10, the encoded address is u=101, the balanced codeword

is v=101010, and the (correct) output word is s=0010. Because of the internal redundancy of the

encoded address, there are two signal lines to pull output line S11 down to zero (blue) for this

particular input signal (a=10). Either signal line can pull the output low by itself, and so even if

one of these two inputs is disconnected (dotted line) by a defect, output line S11 still produces

the correct result . Note that the other two unselected output lines (S00 and S01) for this input

signal each have two low (blue) voltage connections, and therefore one defect could be tolerated

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 37

on each of these nanowires as well. The selected output line (S10) has all of its inputs driven by

ones (red), and disconnecting any of these inputs would not affect its output. Single defects on

every output line can be tolerated simultaneously. (c) Subsystems of the defect-tolerant

demultiplexer. The encoder maps the k-bit input address a to an n-bit codeword u. The balancer

maps every bit of u to a pair of bits (one off, one on), resulting in a 2n-bit balanced codeword v

(balanced means equal numbers of ones and zeroes). The purpose of the balancer is to provide

an active-high signal for both the “1” and “0” states of each address bit, as required by the nano-

wire AND gates. The signal vector v drives the recognizer array, in which the 2k nano-wires

each compute an AND function, which collectively make up the 2k-bit output vector s.

Fig. 7. Two representations for an encoding function for the code {000, 011, 101, 110}. (a)

tabulation of inputs and outputs; (b) linear transformation with the given generator matrix G.

Fig. 8. Equivalent representations of the encoding function for the code {000, 011, 101, 110}:

(a) expanded version of u=a·G using the definition of matrix multiplication; (b) digital circuit

implementing this encoding function. The interconnect pattern in the encoder circuit comes

directly from the pattern of 1’s and 0’s in the generator matrix G of the code.

Fig. 9. Geometrical visualizations of two codes, depicting the addresses in the demuxes of Fig.

4a and Fig. 6b. The set of all connected vertices represents an address space. The Hamming

distance between a pair of addresses is the number of edges that connect them. The green nodes

indicate codewords. It can be seen that in code (a), all the codewords have neighbors at distance

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 38

1; whereas in code (b), the nearest neighbor for each codeword is at distance 2.

Fig. 10. Choosing which parts of the demux circuit to implement in nano-circuitry (the

recognizer array), versus at the CMOS level (the encoder and balancer circuits).

Fig. 11. Generator matrices for three k=7 codes.

Fig. 12. (a) Generator matrix G for the [12,7,4] code; and (b) the corresponding encoder circuit.

The pattern of ones in the generator matrix determines the interconnect pattern in the encoder.

Each output bit is computed as the binary sum (XOR) of a subset of the input signals, as

specified by the ones in the corresponding column of G. If five input signals must be summed, a

5-input XOR is required; however, when there is only one term (as in the first seven columns),

no XOR is required – the single input is wired directly to the output wire.

Fig. 13. The expected percentage of nanowires that can be addressed by different k=7

demultiplexers as a function of the probability p of a defective connection between a nano-wire

and a CMOS signal wire. Shown are the cases for demultiplexers based on the codes with d=1,

2, 3 and 4. The d=1 code is the identity function and corresponds to the uncoded demultiplexer,

which serves as the baseline in the comparison.

Fig. 14. A schematic illustration of a hybrid electronic circuit that involves blocks of crossbars

and demultiplexers (Fig. 2) to enable data from the outside world to be routed into and out of the

nanocircuitry. The balancer circuits are included with the encoders in this diagram. Separating

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 39

the encoder from the recognizer arrays allows each encoder to control many recognizers; a

separate enable signal selects the crossbar to which the data is routed. The black lines denote

CMOS wires; the smaller nano-wires are not shown. The encoders are CMOS; the recognizers

contain both CMOS wires and nanowires; and the crossbar circuits contain only nanowires.

Fig. 15. Normalized number of expected usable memory bits per chip unit area (as a function of

defect rate p) in a crossbar memory system using repeated 128×128 nanowire crossbar blocks.

The total circuit area is calculated as in the text, with the encoders shared by many recognizers

(as in Fig.14). Shown are the functions for demuxes based on the codes with d = 1, 2, 3 and 4.

Note that to achieve a 50% yield, the d=4 coded demux can tolerate up to a p=21% defect rate,

whereas an uncoded (d=1) demux can tolerate only 2% defects. We refer to this improvement as

the net coding gain of the design.

Fig. 16. Similarly to the case of erasure correction in a communication channel, the defect-

tolerant demux (based on a particular code) can tolerate more mistakes than can be corrected

when the same code is used for full error-correction. The small black dots are points in the

address space, separated according to Hamming distance, and the dots shaded blue are

codewords for the d=7 code represented. The circles represent r-spheres, the set of all addresses

within r units of Hamming distance from a given address. (a) For the full error correction case,

a received (noise-corrupted) message can land anywhere in the address space, and we must find

the closest codeword to it. The sphere of radius r=3 around the codewords shows how far a

corrupted codeword can stray from its actual value and still be correctable. (b) For the demux

circuit, the radius r=6 sphere around a codeword shows that nano-wires occur only at codewords,

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 40

and that a pair of nano-wires with neighboring addresses can each have up to 6 defects and still

not interfere with each other.

Fig. 17. Plots of (normalized) expected addressable nanowires vs. defect probability p for two

128-wire demuxes --a [7,7,1] uncoded demux (green) and a demux based on a [12,7,4] code

(red). The solid curves show the expected value calculated using the exact expression derived in

Appendix A. The black dots and error bars show the results of runs with the digital circuit

simulator. The dots and error bars show the mean and variance (one standard deviation) for 100

simulation runs at each value of p, where p was stepped through the values p = 0.00, 0.05, 0.10,

... 1.00.

Fig. 1.

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 41

Fig. 2.

row
selector
(demux)

memory grid

selected
column

column
selector
(demux)

selected
row

k-bit
address

selected
memory
cell

k-bit
address

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 42

Fig. 3.

a

S11
A1 A0 VDD
1

1
1

A1
S11 A0

0
0

1

A1
S11 A0

11

1

S11

A1 A0 VDD 0
0 1 b

S11

VDD

S11

VDD

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 43

Fig. 4

1&011
1&010
1&001
1&000

AAS
AAS
AAS
AAS

=
=
=
=

A1A0

S00

S01

S10

S11

b

S00

S01

S10

S11

A1 A0 VDD
a

c d

⎪⎩

⎪
⎨
⎧

=
= ∑

−

=

−−

otherwise

AiifS

k

j

jk
j

i

0

21
1

0

1

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 44

Fig. 5.

1
S11

A0 A1 VDD
0 1 a

defect error

1

b

0

1
0

1 0
A1 A0

S00

S01

S10

S11

defecterror

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 45

Fig. 6.

A0

A1

S00

S01

S10

S11

000

a
u

vs

encoded
addresses
U0,U1,U2

encoder circuit

011

101

110

a

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 46

Fig. 6. (continued)

b

defectno error

A0

A1

S00

S01

S10

S11

000

011

101

1X0

0
1

0

0
0

1

1 0 1

1 0 0 1 0 1

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 47

Fig. 6 (continued).

c

Encoder

Code Balancer

Recognizer Array

a

s

u

v 2n bits

n bits

2k bits

k bits

Output

Balanced
Codeword

Codeword

Address

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 48

Fig. 7.

a u
00 000
01 011
10 101
11 110

⎥
⎦

⎤
⎢
⎣

⎡
=

=

1
1

1
0

0
1

·

Gwhere

Gau

a b

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 49

Fig. 8.

() ()
() ()
() ()1210202

1110101
1010000

GAGAU
GAGAU
GAGAU

×⊕×=
×⊕×=
×⊕×=

a

b interconnect
pattern

A0

A1

a

u

 1 0 1
 0 1 1

generator
matrix G

U0 U1 U2

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 50

Fig. 9.

a
01

00 10

11

000

011
101

110

b

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 51

Fig. 10.

A0

A1

S00

S01

S10

S11

CMOS
circuits

Nano-circuits

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 52

Fig. 11.

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 1 1 1 0
0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 1 1 0 1

[7,7,1] [8,7,2] [11,7,3]

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 53

Fig. 12.

1 0 0 0 0 0 0 1 1 0 0 1
0 1 0 0 0 0 0 1 0 1 0 1
0 0 1 0 0 0 0 0 1 1 0 1
0 0 0 1 0 0 0 1 1 1 0 0
0 0 0 0 1 0 0 1 0 0 1 1
0 0 0 0 0 1 0 0 1 0 1 1
0 0 0 0 0 0 1 1 1 0 1 0

Generator matrix Ga

A0
A1

Encoder circuit

A5
A6

A2

A4
A3

U0 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11

b

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 54

Fig. 13.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Defect probability p (stuck-open defects)

Ex
pe

ct
ed

 u
sa

bl
e

na
no

w
ire

s
(n

or
m

al
iz

ed
)

d=4d=3
d=1 d=2

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 55

Fig. 14.

recognizer
array

crossbar
memory grid

encoder

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 56

Fig. 15.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 5% 10% 15% 20% 25% 30% 35% 40%

Defect probability p (stuck-open defects)

Ex
pe

ct
ed

 u
sa

bl
e

m
em

or
y

pe
r u

ni
t a

re
a

d=4 d=3
d=1

d=2

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 57

Fig. 16.

d=7

r=3

d=7

r=6r=6

a

b

Error Correcting Codes for Nanoelectronic Circuits Kuekes, Robinett, Seroussi & Williams

 58

Fig. 17.

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50%

Probability of stuck-open defect

E
xp

ec
te

d
ad

dr
es

sa
bl

e
na

no
w

ire
s

[7,7,1] exact calculation

[12,7,4] exact
calculation
[12,7,4] sim (mean)

[12,7,4] sim (+1std dev)

[7,7,1] sim (mean)

