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1 Introduction

Let F be an alphabet and let Fm×m be the alphabet that consists of all m × m arrays
A = (aj,`)

m
j,`=1 over F . Define the following projections from Fm×m onto the alphabet Fm:

ϕ
(`)
1 : Fm×m → Fm , ϕ

(`)
1 (A) = (aj,`)

m
j=1 , 1 ≤ ` ≤ m ,

ϕ
(j)
2 : Fm×m → Fm , ϕ

(j)
2 (A) = (aj,`)

m
`=1 , 1 ≤ j ≤ m .

We regard (column) words Γ ∈ (Fm×m)n also as n×m×m arrays (Γi,j,`)
n
i=1

m
j,`=1 over F , with

the ith entry (over Fm×m) of Γ being identified as the ith cross-section Γ(i) = (Γi,j,`)
m
j,`=1.

The projections ϕ
(j)
b , b = 1, 2, extend in a straightforward manner to Γ by applying them to

each cross-section Γ(i), thereby resulting in n×m slices over F , namely,

ϕ
(`)
1 (Γ) = (Γi,j,`)

n
i=1

m
j=1 and ϕ

(j)
2 (Γ) = (Γi,j,`)

n
i=1

m
`=1 .

We study the subset (code) C ⊆ (Fm×m)n defined by

C =

{
Γ ∈ (Fm×m)n :

ϕ
(`)
1 (Γ) ∈ C(`)

1 for 1 ≤ ` ≤ m and

ϕ
(j)
2 (Γ) ∈ C(j)

2 for 1 ≤ j ≤ m

}
, (1)

where C(`)
1 and C(j)

2 are prescribed codes of length n over Fm. Notice that the symbols of
the codes over Fm resulting from the projections in (1) intersect in particular coordinates
over the alphabet F ; this is in contrast with the known construction of product codes, where
codewords of the constituent codes intersect on whole (particular) entries over the code
alphabet—Fm in our case [2, Ch. 10], [11, pp. 274–277].

We are interested in constructions that make the overall redundancy of the code C in (1)

as small as possible for given length n and error correction capabilities of each code C(`)
1 and

C(j)
2 . In addition to minimizing the overall redundancy, we will also be interested in a finer

analysis of how the redundancy is distributed among the slices, and in characterizing the
region of redundancy profiles attainable by constructions of the codes in (1).

The construction (1) is useful in applications where a certain database (represented by
an n × m × m array Γ), is accessed by different users, each of whom addresses a certain
slice of the database through a noisy channel that is independent of the channels of the
other users. We wish each slice to be properly protected against errors, while minimizing the
overall redundancy. At the same time, we wish to be able to control the distribution of the
redundancy among users, or at least guarantee each user a minimum amount of information
(rate) per slice.

The investigation in this paper will focus on two special cases of particular practical
and mathematical interest, which are also simpler than the most general model and are
therefore more amenable to analysis. In the case of fully-intersecting coding schemes, we
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Figure 1: Fully-intersecting code array.

take C(`)
1 = C1, independent of `, and C(j)

2 = C2, independent of j, 1 ≤ j, ` ≤ m. A typical
code array in this case is shown in Figure 1.

In the case of singly-intersecting coding schemes, we take C(1)
1 = C1, C(1)

2 = C2, and

C(`)
1 = C(j)

2 = (Fm)n for 1 < j, ` ≤ m. We can effectively ignore entries Γ that are indexed
by (i, j, `) where either ` > 1 or j > 1, as they are unconstrained. Thus, Γ in (1) can
effectively be seen as an n × (2m − 1) array consisting of two n ×m arrays that share one
column.

Although we restrict our attention to the case where the cross-section alphabet consists
of square m×m arrays, the analysis of the two cases investigated extends without difficulty,
except for a more cumbersome notation, to rectangular m1×m2 arrays with m1 6= m2, where
each code C(`)

1 (respectively, C(j)
2 ) is now over the alphabet Fm1 (respectively, Fm2).

The rest of the paper is organized as follows: In Section 2, we consider the simpler case of
singly-intersecting coding schemes, and describe a more concrete application of these codes
in a broadcast channel setting. We prove lower bounds on the overall redundancy of (1) and

find trade-offs between the redundancy values along the projections ϕ
(1)
1 (Γ) and ϕ

(1)
2 (Γ) and

the redundancy along their intersection. Then, in Section 3, we present constructions that
approach, and even attain, these bounds. In Section 4, we turn to the fully-intersecting case.
Here, we concentrate mainly on the overall redundancy of (1), and we show constructions
based on cyclic codes. (A finer study of the attainable redundancy-per-slice regions in fully-
intersecting coding schemes is an interesting topic for future work, yet it appears rather
complex due to the number of parameters involved.)
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2 Singly-intersecting coding schemes

2.1 Definition of the model

As mentioned in Section 1, in the case of singly-intersecting codes, we can effectively replace
the alphabet Fm×m by F 2m−1. Accordingly, we regard each column word Γ = (ai)

n
i=1 as an

n× (2m−1) array over F obtained when each entry ai ∈ F 2m−1 is written as a row word

ai = (ai,−m+1 ai,−m+2 . . . ai,−1 ai,0 ai,1 . . . ai,m−1) , at ∈ F .

Also, since the projections ϕ
(j)
b , b = 1, 2, will be applied here only with j = 1, we will omit

the superscript altogether.

For a set M and a function f defined over M, we let f(M) denote the set of images of f .

Given m, q, and a positive integer n, a (singly-)intersecting coding scheme of length n
over F 2m−1 is a triple (E ,D1,D2), where E is an encoding function

E : M→ (F 2m−1)n ,

with the domain M taking the form M0×M1×M2 for nonempty finite sets (of messages)
M0, M1, and M2, and D1 and D2 are decoding functions

Db : ϕb(E(M)) →M0 ×Mb , b = 1, 2 ,

such that for every (u0, u1, u2) ∈M0 ×M1 ×M2,

Db(ϕb(E(u0, u1, u2))) = (u0, ub) , b = 1, 2 . (2)

The redundancy of an intersecting coding scheme (E ,D1,D2) is defined as the triple
ρ = (ρ0, ρ1, ρ2), where ρ0 = n − logq |M0| and ρb = n(m−1) − logq |Mb|, for b = 1, 2. We
will denote the redundancy by red(E ,D1,D2). Observe that when E(M) is regarded as a
code over F , then its (conventional) redundancy—when measured in symbols of F—equals
the sum ρ0 + ρ1 + ρ2.

Remark 2.1 It follows from (2) that the mapping E is one-to-one over M0×M1×{u2},
for every fixed u2 ∈M2. Hence, the sum ρ0+ρ1 must be nonnegative. By similar arguments
we get that both ρ0 + ρ2 and ρ0 + ρ1 + ρ2 are nonnegative. On the other hand, we have the
upper bounds

ρ0 ≤ n and ρb ≤ n(m−1) , b = 1, 2 . (3)

Still, some of the individual components of ρ = (ρ0, ρ1, ρ2) may be negative.
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The minimum (Hamming) distance of a code C over an alphabet A will be denoted by
dA(C), where the subscript emphasizes the alphabet with respect to which the distance is
measured.

Given q and m, let n, τ1, and τ2 be positive integers. We say that the real triple
ρ = (ρ0, ρ1, ρ2) is achievable if there exists an intersecting coding scheme (E : M →
(F 2m−1)n,D1,D2) such that the following conditions hold:

(A1) red(E ,D1,D2) ≤ ρ, where the inequality holds component by component, and

(A2) dF m(ϕb(E(M))) > τb for b = 1, 2.

The set of all achievable triples ρ (for q, m, n, τ1, and τ2) will be called the achievable
redundancy region and will be denoted by Aq(m, n, τ1, τ2).

Letting the code Cb ⊆ (Fm)n be given by the set ϕb(E(M)) for b = 1, 2, the encod-
ing function E induces a one-to-one mapping Ê : M → C1 × C2, which sends each triple
(u0, u1, u2) ∈M to a pair of codewords (c1, c2) ∈ C1 × C2, where

cb = ϕb(E(u0, u1, u2)) , b = 1, 2 .

Condition (A2) sets a lower bound on the minimum distance of the code Cb.

Our study in Sections 2 and 3 aims at determining the achievable redundancy region
Aq(m,n, τ1, τ2). To motivate the setting, we describe first in Section 2.2 a communication
problem where intersecting coding schemes can be applied.

2.2 Application to broadcast channels

A (probabilistic) broadcast channel B is defined by the quadruple (I, Ω1, Ω2, Prob), where I
stands for an input alphabet, Ω1 are Ω2 are output alphabets, and Prob is a conditional
probability distribution

Prob{ (y1, y2) received | x transmitted }

defined for every triple (x, y1, y2) ∈
⋃

`≥0(I
` × Ω`

1 × Ω`
2).

A broadcast coding scheme of length n for B is a triple (E ,D1,D2), where E is an encoding
function

E : M→ In ,

with the domain M taking the form M0×M1×M2 for nonempty finite sets M0, M1, and
M2, and D1 and D2 are decoding functions

Db : Ωn
b →M0 ×Mb , b = 1, 2
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Figure 2: Broadcast channel, with encoding function E and decoding functions D1 and D2.

(see Figure 2).

The rate of a broadcast coding scheme is given by a triple (R0, R1, R2), where

Rb =
log2 |Mb|

n
, b = 0, 1, 2 .

In the common application of broadcast channels, a source wishes to transmit to end user
b ∈ {1, 2} a message out of a finite set Mb and a common message to both users from M0.
The transmission is carried out synchronously to the two end users over n time slots through
the channel, which effectively consists of two sub-channels, each associated with one end
user. Each user can see the output of its sub-channel only. The design goal of the broadcast
coding scheme is to guarantee reliable communication between the source and each end user,
at the highest possible rate.

Given a broadcast channel B = (I, Ω1, Ω2, Prob) and a broadcast coding scheme
(E ,D1,D2) of length n for B, the decoding error probability of the scheme is defined by
the maximum probability that either D1(y1) 6= (u0, u1) or D2(y2) 6= (u0, u2), conditioned
on (u0, u1, u2) being transmitted, where the maximum is taken over all triples (u0, u1, u2)
in the domain M of E . A real triple (R0, R1, R2) is called achievable for B if there exists a
sequence of broadcast coding schemes for B with rates (R0, R1, R2) such that the decoding
error probability vanishes as the code length n goes to infinity. The capacity region of B is
the closure (over the reals) of the set of achievable rates. See [3]–[5] and [6, §14.6].

Let Ω denote the alphabet Fm ∪ {x}, and consider the following broadcast channel
Bq(m, n, τ1, τ2) = (F 2m−1, Ω, Ω, Prob). The channel Bq(m,n, τ1, τ2) consists of 2m−1 lines,
where each line conveys one symbol of F . The input to the channel at each time slot is an
element of F 2m−1, which is transmitted synchronously in parallel through the 2m−1 lines.
The two end users see lines 0, 1, 2, . . . ,m−1 and 0,−1,−2, . . . ,−(m−1), respectively (i.e.,
line 0 belongs to both user sub-channels); thus, at each time slot, each user sees an element
of Fm. Yet, each user may be disconnected (i.e., blacked-out) from the lines at certain time
slots, independently of the other user. The special symbol ‘x’ will stand for an erasure:
it will mark the ‘output’ of the channel during disconnection. The conditional probability
distribution Prob is such that for prescribed nonnegative integers τ1 and τ2, each user b is
disconnected during at most τb slots within a time frame of n slots (in practice, this is typ-
ically guaranteed only within a certain high probability, but we assume for simplicity that
this probability is 1).
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The following result makes the connection between intersecting coding schemes and the
design problem of broadcast coding schemes for the channel Bq(m, n, τ1, τ2).

Proposition 2.1 Suppose that a source transmits through Bq(m,n, τ1, τ2) messages from
sets M1 and M2 to end users 1 and 2, respectively, and a common message to both users
from a set M0. Then both users will be able to recover every transmitted message, if and
only if there exists a broadcast coding scheme (E ,D′

1,D′
2) of length n for Bq(m, n, τ1, τ2) (with

M = M0 ×M1 ×M2 being the domain of E), such that the following two conditions hold:

(B1) Letting Db be the restriction of D′
b to the domain F n, the triple (E ,D1,D2) is an

intersecting coding scheme of length n over F 2m−1.

(B2) dF m(ϕb(E(M))) > τb for b = 1, 2.

(The ‘only if’ part holds if each user b can be disconnected during no less than τb slots.)

Proof. Let cb = ϕb(E(u0, u1, u2)) for b = 1, 2. Condition (B1) is necessary and sufficient
to allow each user b ∈ {1, 2} to recover u0 and ub from the (erasure-free) word cb, and
condition (B2) is necessary and sufficient to correct all patterns of up to τb erasures that cb

may be subject to.

It follows from Proposition 2.1 that a rate triple (R0, R1, R2) is achievable for the channel
Bq(m, n, τ1, τ2) whenever (ρ0, ρ1, ρ2) ∈ Aq(m, n, τ1, τ2), where ρ0 = n(1 − (R0/ log2 q)) and
ρb = n((m−1− (Rb/ log2 q)), b = 1, 2.

2.3 Systematic encoding schemes

Intersecting coding schemes are best visualized in the special case where a copy the encoded
information (u0, u1, u2) is embedded explicitly in the generated array Γ = E(u0, u1, u2). We
then say that the coding scheme is systematic. We formalize this coding model next.

Henceforth, we index the entries of an n × (2m−1) array Γ = (Γi,j) in (F 2m−1)n with
pairs from the set

Im,n = {(i, j) : 1 ≤ i ≤ n , |j| < m} .

Given an ordered subset X ⊆ Im,n, let (Γ)X denote the word of length |X | over F that
consists of the entries of Γ that are indexed by X .

Let C be a subset of (F 2m−1)n of size qk for some integer k. We say that C is systematic
if there exists an ordered subset X of Im,n of size k such that

{(Γ)X}Γ∈C = F k .
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We call X an information locator set of C. In particular, if F = GF(q) and C is a linear
space over F then C is necessarily systematic.

A function f : F k → (F 2m−1)n is called systematic if there is an ordered subset X of Im,n

of size k such that the function F k → F k, which maps every element u ∈ F k to (f(u))X , is
the identity mapping.

An encoding function E : M → (F 2m−1)n in an intersecting coding scheme (E ,D1,D2)
is called systematic if Mb = F kb for integers kb, b = 0, 1, 2, and the mapping F k0+k1+k2 →
(F 2m−1)n, defined by (u0 |u1 |u2) 7→ E(u0, u1, u2), is systematic (hereafter (·|·) denotes
concatenation); note that in this case, the redundancy ρ = (ρ0, ρ1, ρ2) is related to the
values kb by

ρ0 = n− k0 ρb = n(m−1)− kb for b = 1, 2 .

The respective information locator set X indexes the information symbols in an array Γ =
E(u0, u1, u2) in E(M), while Im,n\X indexes the check symbols. The set X can be partitioned
into three subsets X0, X1, and X2, where |Xb| = kb and (Γ)Xb

= ub, b = 0, 1, 2.

Figure 3 displays a typical array Γ ∈ E(M) for the case where E is systematic. The m
leftmost columns in Γ form the sub-array ϕ1(Γ), and the m rightmost columns form the
sub-array ϕ2(Γ) (both sub-arrays share the center column of Γ). The shaded area represent
the locations of check symbols within Γ. From the layout of the index sets X0, X1, and
X2 in Figure 3 we get that for b = 1, 2, both u0 and ub are embedded in the sub-array
ϕb(Γ), thereby guaranteeing (2). (While such embedding is sufficient to obtain (2), it is not
necessary.)

Example 2.1 Suppose there exists a maximum distance separable (MDS) code C0 of
length n and minimum distance τ+1 (and size qn−τ ) over F ; for example, such a code
exists when F = GF(q) and n ≤ q+1 [14, Ch. 11]. A MDS code always has an (ordinary)
systematic encoder, where the n−τ information symbols can be placed in any prescribed
locations within the generated codeword.

We next show an intersecting coding scheme (E ,D1,D2) that satisfies conditions (A1)–
(A2) with respect to the triple

ρ∗ = (ρ∗0, ρ
∗
1, ρ

∗
2) = (τ, (m−1)τ, (m−1)τ) .

Let k0 = n−ρ∗0 = n−τ = logq |C0| and M0 = F k0 , and for b = 1, 2 let kb = n(m−1) − ρ∗b =
(m−1)(n−τ) and Mb = F kb . The encoding function E : M→ (F 2m−1)n will be systematic,
with the information locator set X partitioned into the subsets

X0 = {(i, 0) : 1 ≤ i ≤ k0}

and
Xb = {(i, j) : 1 ≤ i ≤ k0 , 0 < (−1)bj < m} , b = 1, 2 .
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Figure 3: Array Γ ∈ E(M) in a systematic intersecting coding scheme.

For each possible contents (u0 |u1 |u2) of the information symbols, the mapping E computes
check symbols, which are indexed by Im,n \ X , to form an n × (2m−1) array Γ in which
each column is a codeword of C0; such computation can be implemented using an (ordinary)
systematic encoder of C0. The existence of respective decoding functions D1 and D2 that
satisfy (2) is straightforward, and it is also easy to verify that conditions (A1)–(A2) hold;
specifically,

red(E ,D1,D2) = ρ∗ = (τ, (m−1)τ, (m−1)τ)

and
dF m(ϕb(E(M))) = τb + 1 , b = 1, 2 .

For a subset C ⊆ (F 2m−1)n, we denote by red(C) the (ordinary) redundancy of C, when
measured in symbols of F ; namely,

red(C) = n(2m−1)− logq |C| .

Proposition 2.2 Let C be a systematic subset of (F 2m−1)n. There exists a systematic
intersecting coding scheme (E : M → (F 2m−1)n,D1,D2) with redundancy (ρ0, ρ1, ρ2) such
that E(M) = C and ρ0 + ρ1 + ρ2 = red(C).
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The proof of the proposition is straightforward, and is given in Appendix A for com-
pleteness. We also show in that appendix that there are cases of non-systematic sets
C ⊆ (F 2m−1)n such that no (systematic or non-systematic) intersecting coding scheme
(E : M→ (F 2m−1)n,D1,D2) satisfies E(M) = C.

2.4 Bounds

The following is a Singleton-like bound for intersecting coding schemes.

Theorem 2.3 If ρ = (ρ0, ρ1, ρ2) is in Aq(m, n, τ1, τ2) then

ρ0 + ρb ≥ mτb , b = 1, 2 (4)

and
ρ0 + ρ1 + ρ2 ≥ (2m−1)τ , (5)

where τ = (τ1 + τ2)/2.

Proof. Given ρ ∈ Aq(m, n, τ1, τ2), let the intersecting coding scheme (E : M →
(F 2m−1)n,D1,D2) satisfy conditions (A1)–(A2). Our proof will be based on the simple obser-
vation that the (ordinary) redundancy of any given code over F must be at least the largest
possible number of erased symbols of F that the code can handle.

Let C denote the set E(M). It follows from condition (A2) that each code ϕb(C) can
recover correctly mτb erased symbols of F that result from τb erased symbols of Fm. This
yields (4).

Next we turn to the code C ⊆ (F 2m−1)n and consider an n× (2m−1) array Γ (over F ) in
C. Then τ1 erased rows in ϕ1(Γ) and τ2 erased rows in ϕ2(Γ) form a pattern that consists
of at least

(m−1)(τ1 + τ2) + max{τ1, τ2}

erased symbols of F in Γ. Therefore,

ρ0 + ρ1 + ρ2 ≥ (m−1)(τ1 + τ2) + max{τ1, τ2} ≥ (2m−1)τ ,

thus yielding (5).

Let ρ denote the sum ρ1 + ρ2. Inequalities (4)–(5) define a region in the (ρ0, ρ) plane, as
marked by the lower shaded piecewise-linear line in Figure 4. The boundary of the region is
formed by the two straight lines defined by the equations

ρ = 2mτ − 2ρ0 (6)
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Figure 4: Bounds on the achievable redundancy region.

and
ρ = (2m−1)τ − ρ0 . (7)

The triple ρ∗ = (τ, (m−1)τ, (m−1)τ) in Example 2.1 satisfies both (4) and (5) with equality
and, thus, it corresponds to the intersection point P ∗ of these two lines.

In the remaining part of this section, we demonstrate how the boundary defined by
Equations (6) and (7) can in fact be attained for τ = τ1 = τ2, whenever there exists a MDS
code of length n and minimum distance τ over F . The length n of the respective intersecting
coding scheme will then be bounded from above by the maximum length of any MDS code
over F whose minimum distance is at least τ .

We will make use of the following lemma, the proof of which can be found in Appendix B.

Lemma 2.4 Let ρ = (ρ0, ρ1, ρ2) be an integer triple. If ρ belongs to Aq(m, n, τ1, τ2), then
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so do
ρ′ = (ρ0 − θ, ρ1 + θ, ρ2 + θ)

and
ρ′′ = (ρ0 + θ1 + θ2, ρ1 − θ1, ρ2 − θ2) ,

for any integer θ (respectively, θ1 and θ2) such that ρ′ (respectively, ρ′′) satisfies (3).

The next proposition identifies a range of parameters for which the bounds of Theorem 2.3
are tight.

Proposition 2.5 Let m, n, and τ be such that there exists a MDS code of length n and
minimum distance τ over F . An integer triple ρ = (ρ0, ρ1, ρ2) that satisfies (3) belongs to
Aq(m,n, τ, τ) if (and only if) it satisfies both (4) and (5).

Proof. Let ρ = (ρ0, ρ1, ρ2) be an integer triple that satisfies (3), (4), and (5), and
suppose that ρ0 ≤ τ (i.e., the respective point (ρ0, ρ1+ρ2) lies to the left of P ∗ in Figure 4).
Apply Lemma 2.4 to the triple ρ∗ = (τ, (m−1)τ, (m−1)τ) in Example 2.1, taking θ = τ −ρ0,
thereby yielding that the triple ρ′ = (ρ0, mτ−ρ0, mτ−ρ0) is achievable; hence, so is the triple
ρ ≥ ρ′, where the (component by component) inequality follows from (4).

Next, suppose that ρ0 ≥ τ (this corresponds to the region to the right of P ∗ in Figure 4).
Obviously, ρ is achievable if ρ ≥ ρ∗. Hence, we assume now that ρ1 (say) is less than
(m−1)τ . Define

θ1 = (m−1)τ − ρ1 and θ2 = ρ0 + ρ1 −mτ .

We have θ1 > 0 from assuming that ρ1 < (m−1)τ , and θ2 ≥ 0 from (4). We now apply
Lemma 2.4 to ρ∗ with these values of θ1 and θ2 to conclude that

ρ ≥ ρ′′ = (ρ0, ρ1, (2m−1)τ−ρ0−ρ1)

is achievable, where the inequality follows from (5).

Proposition 2.5 applies only to relatively small values of n (most likely, n ≤ q+1 [14,
Ch. 11]), as n therein is the length of some MDS code over F . In the next section, we relax
the requirement on n so that it can be the length of a MDS code over (the larger alphabet)
Fm, at the expense of requiring a stronger inequality in (5).

3 Construction of singly-intersecting coding schemes

Our strategy in obtaining intersecting coding schemes will be as follows. We construct
systematic sets C ⊆ (F 2m−1)n (with the smallest possible redundancy red(C)) such that

12



for b = 1, 2, each set ϕb(C) is a (largest possible) sub-code of a MDS code over Fm with
dF m(ϕb(C)) > τ . We then apply Proposition 2.2 to obtain an intersecting coding scheme
(E : M → (F 2m−1)n,D1,D2) such that E(M) = C. Lemma 2.4 will subsequently expand
this construction into a whole region of achievable triples.

3.1 Construction tools

We assume henceforth that F is the finite field GF(q) and identify Fm with a representation
of the extension field Φ = GF(qm) with respect to some fixed basis ω = (ω0 ω1 . . . ωm−1)

T

of Φ over F . Specifically, each vector v in Fm represents the element v ·ω in Φ. Accordingly,
we will find it convenient to replace the projections ϕb : F 2m−1 → Fm with the mappings
ϕb : F 2m−1 → Φ defined by

ϕb(a) = ϕb(a)ω , b = 1, 2 .

Denote by Tr : Φ → F the trace operator Tr : x 7→
∑m−1

`=0 xq`
[10, p. 54]. We extend the

definition of the operator to vectors y = (yi)
n
i=1 over Φ so that Tr(y) = (Tr(yi))

n
i=1, and to

subsets C ⊆ Φn by
Tr(C) = {Tr(c) : c ∈ C} ⊆ F n .

Without real loss of generality, we will assume that the basis ω is selected so that Tr(ω0) = 1
and Tr(ωj) = 0 for 1 ≤ j < m (such a basis always exists).

Given a linear code C over Φ, we will use the standard notation [n, k, d] to specify the
parameters of C (length n, dimension k over Φ, and minimum distance d = dΦ(C)). The
dual code of C will be denoted by C⊥, and the dimension of an affine space B over F will
be denoted by dim(B).

We will make use of the following two lemmas. The first lemma combines Problem 33
in [14, p. 26] with Corollary 1 in [13, p. 204], and the second lemma is taken from [14, p. 208].

Lemma 3.1 For every two linear codes C1 and C2 of the same length over F ,

red(C⊥1 ∩ C⊥2 ) = dim(C1) + dim(C2)− dim(C1 ∩ C2) . (8)

Lemma 3.2 For every linear code C over Φ,

(Tr(C))⊥ = C⊥ ∩ F n . (9)

The code C⊥ ∩ F n is usually referred to in the literature as the sub-field sub-code of C⊥.
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Proposition 3.3 For b = 1, 2, let Cb be a linear [n, n−rb] code over Φ and let C ⊆
(F 2m−1)n be the linear space over F defined by

C =
{
Γ ∈ (F 2m−1)n : ϕb(Γ) ∈ Cb , b = 1, 2

}
. (10)

Then
red(C) = m(r1 + r2)− r0 ,

where
r0 = dim

(
C⊥

1 ∩ C⊥
2 ∩ F n

)
.

Proof. Let
Γ = (Γ−m+1 Γ−m+2 . . . Γ0 Γ1 . . . Γm−1)

be an array in (F 2m−1)n, where Γj denotes the column of Γ that is indexed by j. Clearly,

ϕ1(Γ) =
m−1∑
j=0

Γ−jωj and ϕ2(Γ) =
m−1∑
j=0

Γjωj .

By the linearity of the trace operator over F and the choice of the basis ω we have,

Tr (ϕ1(Γ)) = Tr (ϕ2(Γ)) = Γ0 . (11)

For b = 1, 2 and an element z ∈ Tr(Cb), define the affine spaces

Cb(z) = {c ∈ Cb : Tr(c) = z} (12)

and
Bb(z) =

{
Γ ∈ (F 2m−1)n : ϕb(Γ) ∈ Cb(z)

}
(13)

over F (note that the center column of every array in Bb(z) equals z). Now, Cb(0) is the
kernel of the mapping Tr : Cb → F n obtained when restricting Tr : Φn → F n to the domain
Cb; therefore, for every z ∈ Tr(Cb), the dimension of Cb(z) is given by

dim(Cb(z)) = dim(Cb(0)) = dim(Cb)− dim (Tr(Cb)) , (14)

and for every z ∈ Tr(C1) ∩ Tr(C2),

dim (B1(z) ∩ B2(z)) = dim(C1(0)) + dim(C2(0)) . (15)

If follows from the definitions of C and Bb(z) in (10) and (13) that when z ranges over
the elements of Tr(C1) ∩ Tr(C2), the respective sets B1(z) ∩ B2(z) form a partition of C.
Therefore,

dim(C)
(15)
= dim(Tr(C1) ∩ Tr(C2)) + dim(C1(0)) + dim(C2(0))

(14)
= dim(Tr(C1) ∩ Tr(C2)) + dim(C1)− dim (Tr(C1)) + dim(C2)− dim (Tr(C2))
(8)
= dim(C1) + dim(C2)− red

(
(Tr(C1))

⊥ ∩ (Tr(C2))
⊥)

,
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and, so,

red(C) = n(2m−1)− dim(C)
(9)
= n(2m−1)− dim(C1)− dim(C2) + red

(
(C⊥

1 ∩ F n) ∩ (C⊥
2 ∩ F n)

)
= red(C1) + red(C2)− dim

(
C⊥

1 ∩ C⊥
2 ∩ F n

)
= m(r1 + r2)− r0 ,

as claimed.

3.2 Construction based on MDS codes over GF(qm)

In applying Proposition 3.3, we will select the codes Cb so that dΦ(Cb) > τb; this, in turn,
will guarantee condition (A2). In addition, to minimize red(C), we should select the codes
Cb so that m(r1 + r2)− r0 is minimized; from the definition of r0 one can see that

0 ≤ r0 ≤ min{r1, r2} .

Hereafter, we restrict ourselves to the symmetric case where τ1 = τ2 = τ . For b = 1, 2, let
Cb be a linear [n, n−rb, >τ ] code over Φ and suppose that r1 ≤ r2. Clearly, we can re-define
C2 to be equal to C1, while still satisfying the required erasure-correction capabilities. Also,
the value r0 = dim

(
C⊥

1 ∩ C⊥
2 ∩ F n

)
will not decrease, and red(C) = m(r1 + r2) − r0 will

not increase with the change. Hence, in the symmetric case, we can assume without loss of
optimality that C1 = C2 = C, where C is a linear [n, n−r, >τ ] code over Φ. In this case,

red(C) = 2mr − r0 ,

where

r0 = dim(C⊥ ∩ F n)
(9)
= red(Tr(C)) .

Suppose that C1 = C2 = C where C is a linear [n, n−r, >τ ] code over Φ, and let C ⊆
(F 2m−1)n be defined accordingly by (10). At this point, we can obtain an intersecting coding
scheme (E ,D1,D2) with an onto encoding function E : M→ C directly from Proposition 2.2,
thereby attaining redundancy (ρ0, ρ1, ρ2) such that

ρ0 + ρ1 + ρ2 = red(C) = 2mr − r0 .

Furthermore, if C can be taken as a MDS code (and this is possible whenever n ≤ qm + 1),
then r = τ and, so,

ρ0 + ρ = red(C) = 2mτ − r0 ,

where ρ = ρ1 + ρ2; i.e., we are on the straight line defined by

ρ = (2mτ−r0)− ρ0 , (16)
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which parallels line (7) with an offset of τ−r0 (see Figure 4). Yet, we would also like to
show that the particular values of ρ0 and ρ can be chosen so that the point (ρ0, ρ) lies on
the line (6). To this end, we will make use of the analysis in the proof of Proposition 3.3.

For b = 1, 2 and z ∈ Tr(C), let Cb(z) and Bb(z) be defined by (12) and (13) taking
C1 = C2 = C. The set Bb(z) can be written in the form

Bb(z) =
{

Γ ∈ (F 2m−1)n : Γ0 = z ,
∑m−1

j=1 BjΓ(−1)bj = −B0z
}

, b = 1, 2 ,

where B0, B1, . . . , Bm−1 are matrices over F , derived from the parity check constraints of C,
and of dimensions σ × n such that

rank(B1 |B2 | . . . |Bm−1) = σ
(13)
= n(m−1)− dim(Cb(z))

(14)
= n(m−1)− dim(C) + dim(Tr(C))
(9)
= red(C)− dim(C⊥ ∩ F n)

= mr − r0 .

Let H0 be an r0 × n parity-check matrix of the code Tr(C) over F (recall that r0 =
dim(C⊥ ∩ F n) = red(Tr(C))), and define the (2mr−r0)× n(2m−1) matrix H over F by

H =


Bm−1 · · · B1 B0 0

0 H0 0

0 B0 B1 · · · Bm−1

 ;

note that rank(H) = 2mr − r0. Associate with every array Γ = (Γ−m+1 Γ−m+2 . . . Γm−1)
in (F 2m−1)n the column vector col(Γ) ∈ F n(2m−1) resulting from the concatenation of the
columns of Γ, namely,

col(Γ) =


Γ−m+1

Γ−m+2
...

Γm−1

 .

From (10), (12), and (13) we get that

C = {Γ ∈ B1(z) ∩ B2(z) : z ∈ Tr(C)}
=

{
Γ ∈ (F 2m−1)n : H col(Γ) = 0

}
.

This characterization of C leads to an encoding function

E : F k0 × F k1 × F k2 → C ,
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1. Map u0 ∈ F k0 one-to-one into a codeword Γ0 ∈ Tr(C).

2. Map u1 ∈ F k1 one-to-one to an element in the set{
(Γ−1 Γ−2 . . . Γ−m+1) : Γ−j ∈ F n ,

∑m−1
j=1 BjΓ−j = −B0Γ0

}
.

3. Map u2 ∈ F k2 one-to-one to an element in the set{
(Γ1 Γ2 . . . Γm−1) : Γj ∈ F n ,

∑m−1
j=1 BjΓj = −B0Γ0

}
.

Figure 5: Computation of encoding function E : (u0, u1, u2) 7→ (Γj)
m−1
j=−m+1.

where k0 = n−r0 and k1 = k2 = n(m−1) − σ = n(m−1) −mr + r0, through the algorithm
in Figure 5.

The respective decoding functions D1 and D2 are readily obtained using a standard
decoder for C, and it is easily seen that

red(E ,D1,D2) = (ρ0, ρ1, ρ2) = (red(Tr(C)), σ, σ) = (r0, mr−r0, mr−r0) .

We have the relation
ρ0 + ρ1 + ρ2 = 2mr − r0 = red(C) ,

which readily implies that E is onto C. Furthermore, since ρ0 +ρb = mr for b = 1, 2, we have
ϕ1(C) = ϕ2(C) = C.

When n ≤ qm + 1, we can take C to be MDS. The next result covers this case.

Proposition 3.4 Let C be a linear [n, n−τ, τ+1] MDS code over Φ. There exists a
systematic intersecting coding scheme (E : M→ (F 2m−1)n,D1,D2) such that

ϕ1(E(M)) = ϕ2(E(M)) = C

and
red(E ,D1,D2) = (r0, mτ−r0, mτ−r0) ,

where
r0 = dim(C⊥ ∩ F n) = red(Tr(C)) .

In particular, (E ,D1,D2) ∈ Aq(m, n, τ, τ).

The point P0 = (ρ0, ρ) = (r0, 2(mτ−r0)) attained by Proposition 3.4 is the intersection
of the straight lines (6) and (16). These lines form the upper shaded boundary in Figure 4.

The next result shows that all integer points to the left of P0 along the line (6) are
achievable, as well as all integer points to the right of P0 along the line (16).
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Theorem 3.5 Let C be a linear [n, n−τ, τ+1] MDS code over Φ. An integer triple
ρ = (ρ0, ρ1, ρ2) that satisfies (3) belongs to Aq(m,n, τ, τ) if

ρ0 + ρb ≥ mτb , b = 1, 2 ,

and
ρ0 + ρ1 + ρ2 ≥ 2mτ − r0 ,

where
r0 = dim(C⊥ ∩ F n) = red(Tr(C)) .

Proof. Follow the steps of the proof of Proposition 2.5, except that now apply Lemma 2.4
to the achievable triple (r0, mτ−r0, mτ−r0).

Looking at the offset, τ−r0, between the lines (7) and (16), we face the problem of
selecting the ‘best’ MDS code C over Φ that maximizes r0 = dim(C⊥ ∩ F n). In Section 3.3,
we compute lower bounds on the values of r0 that are attainable when C is a Reed-Solomon
(RS) code.

3.3 Construction based on RS codes

In this section, we consider the case where C is a cyclic [n, n−r, τ+1] code over Φ, where
n | qm−1. Such a code has r distinct roots in Φ, all of which belong to the subset
{β ∈ Φ : βn = 1}. RS codes are examples of such codes, where r = τ and the set of roots is
given by

S =
{
α∆, α∆+1, . . . , α∆+τ−1

}
, (17)

for some integer ∆ and an element α ∈ Φ of multiplicative order n.

Recall that a conjugacy class in Φ over F is a subset{
γ, γq, . . . , γqs−1

}
⊆ Φ ,

where s is the smallest positive integer j such that γqj
= γ. We denote by J (Φ/F ) the set

of all conjugacy classes in Φ over F .

The next proposition follows from known properties of sub-field sub-codes of cyclic codes;
namely, if C is a cyclic code over Φ, then C⊥ ∩F n is a cyclic code over F , whose set of roots
is the union of the conjugacy classes of the roots of (the cyclic code) C⊥ (see [1, Ch. 12] for
the case where C is a primitive RS code).

Proposition 3.6 Let C be an [n, n−r] cyclic code over Φ where n | qm−1, and let S
denote the set of roots of C (in Φ). Then

r0 = dim(C⊥ ∩ F n) = red(Tr(C)) =
∑

J∈J (Φ/F ) :
J⊆S

|J | . (18)
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Example 3.1 Consider [n, n−τ ] RS codes over Φ = GF(qm) where m = 2, q = 4,
and n = 15. For every τ ∈ {1, 2, . . . , n−1}, we can apply Proposition 3.6 to find the
largest attainable value of r0 by enumerating over the parameter ∆ in (17). The results are
summarized in Table 1.

τ 1 2 3 4 5 6 7 8 9 10 11 12 13 14
r0 1 1 1 2 3 4 4 5 7 8 9 10 12 14
∆ 0 0 0 1 0 0 0 1 1 0 0 1 1 1

Table 1: Largest attainable values of r0 for RS codes of length 15 over GF(42).

Example 3.2 Take n = qm − 1 and τ = λqm−1 + 1 for some nonnegative integer λ < q,
and let C be an [n, n−τ ] RS code over Φ whose set of roots is S = {αi : 0 ≤ i < τ}, where
α has multiplicative order n in Φ. Then the following λ conjugacy classes{

αeqj

: 0 ≤ j < m
}

, 1 ≤ e ≤ λ ,

are wholly contained in S, and so are the λ singleton conjugacy classes{
αen/(q−1)

}
, 0 ≤ e < λ .

By Proposition 3.6 we thus get that

r0 ≥ λ(m + 1) .

4 Fully-intersecting codes

In this section, we study the problem of constructing three-dimensional, n ×m ×m arrays
over F where each n ×m slice in one direction contains a codeword of a code C1 over Fm,
while an n×m slice in the perpendicular direction contains a codeword of C2 over Fm (see
Figure 1).

As in Section 3.1, we assume that F is the finite field GF(q) and identify Fm with a
representation of the extension field Φ = GF(qm) with respect to some fixed basis ω =
(ω0 ω1 . . . ωm−1)

T of Φ over F . Thus, Equation (1) takes the form

C =

{
Γ ∈ (Fm×m)n :

ϕ
(`)
1 (Γ)ω ∈ C1 for 1 ≤ ` ≤ m and

ϕ
(j)
2 (Γ)ω ∈ C2 for 1 ≤ j ≤ m

}
. (19)

We focus on constructions where C1 and C2 are linear codes over Φ and, as in Section 3.2,
the preferred constructions will be based on MDS codes of parameters [n, n−r1, r1+1] and
[n, n−r2, r2+1], respectively.
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4.1 Basic tools

We first recall the notions of direct product and Kronecker sum (or, rather, difference) of
matrices. Let A = (ak,h) and B = (bk′,h′) be matrices over F of orders m × t and m′ × t′,
respectively. The direct product of A and B, denoted A⊗B, is the mm′× tt′ matrix over F
whose entries are given by

(A⊗B)m′k+k′,t′h+h′ = ak,hbk′,h′ , 0 ≤ k < m , 0 ≤ h < t , 0 ≤ k′ < m′ , 0 ≤ h′ < t′ .

When t = m and t′ = m′, we define the Kronecker difference of A and B as the mm′×mm′

matrix over F that is given by

A	B = (A⊗ Im′)− (Im ⊗B) ,

where hereafter Ik stands for the k × k identity matrix.

The next lemma presents a known property of Kronecker difference of matrices (see, for
example, Theorem 43.8 in [12]).

Lemma 4.1 Let A and B be square matrices over F . The eigenvalues of A 	 B are
given by λA − λB, where λA (respectively, λB) ranges over all eigenvalues of A (respectively,
B), each with its respective algebraic multiplicity.

Denote by vγ the unique row vector in Fm such that γ = vγ ·ω. For every element γ ∈ Φ,
we can associate an m×m matrix Lγ over F that represents (the linear transformation of)
multiplication by γ with respect to the basis ω; i.e., for every β ∈ Φ,

vβγ = vβLγ .

If ω is taken as the standard basis α = (1 α α2 . . . αm−1)T for some primitive element α ∈ Φ,
then Lα is the companion matrix, Cα, of the minimal polynomial of α, and Lαt = Ct

α [10,
p. 68]. Consequently, for any arbitrary basis ω, the respective matrix Lαt will be similar to
Ct

α. Hence, we get from [10, p. 102] the following property of the eigenvalues of Lγ.

Lemma 4.2 Let γ be an element of Φ and let J be the conjugacy class in Φ over F that
contains γ. The eigenvalues of Lγ are the elements of J , each having algebraic multiplicity
m/|J |.

A finite-dimensional vector space A over F that is also endowed with a vector multipli-
cation (•) operation that (together with vector addition) makes it a ring, and such that

(au) • v = u • (av) = a(u • v), a ∈ F, u, v ∈ A,
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is called an associative algebra over F (or, in our context, simply an F -algebra) [16, Ch.
13]. In the next lemma, we characterize a commutative sub-algebra of the matrix F -algebra
Fm2×m2

that contains all matrices of the form Lγ ⊗ Im and Im⊗Lγ; this sub-algebra will be
used in our analysis in subsequent sections.

Recall that there is a unique m2 ×m matrix M over F that satisfies

ω ⊗ ω = Mω . (20)

(The matrix M is equal to
(
Lωj

)m−1

j=0
, and it describes the multiplication table of the elements

of ω; namely, for 0 ≤ j, j′ < m, the representation of ωjωj′ with respect to the basis ω is
given by

∑m−1
h=0 (M)mj+j′,hωh; when re-arranged as an m ×m ×m array, M is also referred

to as the tensor of multiplication of Φ.) For a matrix A ∈ Fm×m, let row(A) denote the row
vector in Fm2

obtained by concatenating the m rows of A, i.e.

row(A) =
(
ϕ

(0)
2 (A) | ϕ(1)

2 (A) | . . . | ϕ(m−1)
2 (A)

)
. (21)

Lemma 4.3 Let Φ⊗Φ denote the linear sub-space of Fm2×m2
over F that is spanned by

the set {
Lωj

⊗ Lω`

}m−1

j,`=0
. (22)

Then the following holds.

(i) Φ⊗Φ is a commutative F -algebra under ordinary matrix addition and matrix multi-
plication in Fm2×m2

, with a multiplicative identity element given by L1 ⊗ L1 = Im2.

(ii) Φ⊗ Φ is the smallest sub-ring of Fm2×m2
that contains all elements of the set

{Lβ ⊗ Im : β ∈ Φ} ∪ {Im ⊗ Lγ : γ ∈ Φ} .

(iii) Φ⊗Φ is isomorphic to the F -algebra (Fm×m, +,�), where + is the ordinary matrix
addition in Fm×m and � is a product defined by

A�B = MT (A⊗B)M , A, B ∈ Fm×m ;

the isomorphism (Φ⊗ Φ) ∼= (Fm×m, +,�) is given by

A = (aj,`)
m−1
j,`=0

∼=
∑
j,`

aj,`(Lωj
⊗ Lω`

) , aj,` ∈ F . (23)

(iv) For every A, B ∈ Fm×m,

row(A�B) = row(A)B ,

where B is the element in Φ⊗ Φ that is associated with B by (23).

The proof of Lemma 4.3 is given in Appendix C.

The F -algebra Φ ⊗ Φ (or (Fm×m, +,�)) can be identified with the tensor product (or
product algebra [16, Ch. 13]) of Φ with itself, when Φ is regarded as an F -algebra.
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4.2 Bounds on the redundancy

Recall that the (ordinary) redundancy of a code C ⊆ (Fm×m)n is defined by

red(C) = m2n− logq |C| .

In this section, we obtain upper bounds on the redundancy of the code C in (19), in terms
of the constituent codes C1 and C2. While general bounds can be stated that depend only
on the parameters of C1 and C2, our sharper bounds will also depend on finer structural
properties of these codes.

For b = 1, 2, let Cb be a linear [n, n−rb] code over Φ and let Hb be an rb×n parity-check
matrix of Cb over Φ. For 0 ≤ ` < rb and 0 ≤ i < n, we let (Hb)`,i stand for the entry in Hb

that is indexed by (`, i). Define the m2rb ×m2n matrices Hb over F by

HT
1 =


L(H1)0,0 ⊗ I L(H1)1,0 ⊗ I . . . L(H1)r1−1,0 ⊗ I
L(H1)0,1 ⊗ I L(H1)1,1 ⊗ I . . . L(H1)r1−1,1 ⊗ I

...
...

...
...

L(H1)0,n−1 ⊗ I L(H1)1,n−1 ⊗ I . . . L(H1)r1−1,n−1 ⊗ I

 (24)

and

HT
2 =


I ⊗ L(H2)0,0 I ⊗ L(H2)1,0 . . . I ⊗ L(H2)r2−1,0

I ⊗ L(H2)0,1 I ⊗ L(H2)1,1 . . . I ⊗ L(H2)r2−1,1

...
...

...
...

I ⊗ L(H2)0,n−1 I ⊗ L(H2)1,n−1 . . . I ⊗ L(H2)r2−1,n−1

 , (25)

respectively, where I = Im.

Extend the notation row(·) in (21) to an array Γ ∈ (Fm×m)n by letting row(Γ) denote
the following row vector in Fm2n:

row(Γ) =
(
row(Γ(0)) | row(Γ(1)) | . . . | row(Γ(n−1))

)
.

Proposition 4.4 For b = 1, 2, let Cb be a linear [n, n−rb] code over Φ and let the code
C over Fm×m be given by (19). Define the (m2(r1 + r2))×m2n matrix H over F by

H =

(
H1

H2

)
,

where H1 and H2 are given by (24)–(25). Then, for every Γ ∈ (Fm×m)n,

Γ ∈ C ⇐⇒ row(Γ)HT = 0 .
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Proof. This follows from (19) and the fact that a vector (c0 c1 . . . cn−1) ∈ Φn is a
codeword of Cb if and only if(

vc0 |vc1 | . . . |vcn−1

) (
L(Hb)`,i

)
i,`

= 0 .

For our analysis in the sequel, we find it convenient to view the m2 × m2 blocks of
the matrices H1 and H2 in (24)–(25) as elements of the F -algebra (Fm×m, +,�) defined in
Lemma 4.3.

For an element γ ∈ Φ, let 〈γ] and [γ〉 denote (the representation by (23) in (Fm×m, +,�)
of) the elements Lγ⊗Im and Im⊗Lγ, respectively. It is easy to see that each of the mappings
〈·] : Φ → (Fm×m, +,�) and [·〉 : Φ → (Fm×m, +,�) defines an isomorphism from Φ to the
set of images of the mapping. We extend the definitions of 〈·] and [·〉 (and, respectively, �)
in the natural way to vectors and matrices over Φ (respectively, over Fm×m). When viewing
an array Γ ∈ (Fm×m)n as a column vector of length n over the F -algebra (Fm×m, +,�), the
product H � Γ is well-defined for every matrix H with n columns over that algebra.

Combining Lemma 4.3(iv) with Proposition 4.4 yields the following result.

Proposition 4.5 For b = 1, 2, let Cb be a linear [n, n−rb] code with an rb×n parity-check
matrix Hb over Φ, and define the code C over Fm×m by (19). Then, for every Γ ∈ (Fm×m)n,

Γ ∈ C ⇐⇒
(
〈H1]
[H2〉

)
� Γ = 0 .

The redundancy of the code C in Propositions 4.4–4.5, is obviously bounded by

m2 max{r1, r2} ≤ red(C) ≤ m2 min{r1 + r2, n} . (26)

The upper bound can be sharpened when dim(C⊥
1 ∩ C⊥

2 ) > 0, in which case we can assume
without loss of generality that the parity-check matrices H1 and H2 share r > 0 rows. For
example, if the first row in these two matrices is the all-one row, then the first m2 rows in
H1 and H2 are identical, as both L1 ⊗ Im and Im ⊗ L1 are equal to the m2 × m2 identity
matrix. Thus, in such a case, red(C) = rank(H) ≤ m2(r1 + r2 − 1). This is a special case of
Theorem 4.7 below.

We next focus on the common r × n sub-matrix H of H1 and H2 and on the rank of the
respective sub-matrix in H; the latter sub-matrix, in turn, is given by (24)–(25), with H1

and H2 replaced by H.

Proposition 4.6 Let H be an r × n matrix over Φ and let H1 and H2 be m2r × m2n
matrices over F that are given by (24)–(25), with H1 = H2 = H and r1 = r2 = r. For

23



` = 0, 1, . . . , r−1, let the entries of row ` in H all belong to the sub-field GF(qs`) of Φ. Then,

rank

(
H1

H2

)
≤ m2

(
2r −

r−1∑
`=0

1

s`

)
.

Proof. Clearly,

rank

(
H1

H2

)
= rank

(
H1

H1−H2

)
≤ m2r + rank (H1−H2) . (27)

Associate H1−H2 by (23) with an r × n matrix (ξ`,i)
r−1
`=0

n−1
i=0 over Fm×m, where

ξ`,i = 〈(H)`,i]− [(H)`,i〉 .

Letting α` denote a primitive element in the sub-field, GF(qs`), which contains (H)`,i, it
follows that

ξ`,i =
〈
αt

`

]
−

[
αt

`

〉
= 〈α`]

t − [α`〉t

for some t = t(`, i), where we use the fact that 〈·] and [·〉 preserve multiplication. Hence, in
(Fm×m, +,�),

ξ`,i = (〈α`]− [α`〉)
t−1∑
j=0

(
〈α`]

j � [α`〉t−j−1
)

.

Observing that 〈α`]− [α`〉
(23)∼= Lα`

	 Lα`
, we thus obtain,

rank(H1−H2) ≤
r−1∑
`=0

rank(Lα`
	 Lα`

) = m2r −
r−1∑
`=0

dim ker(Lα`
	 Lα`

) . (28)

On the other hand, by Lemmas 4.1 and 4.2 we get that

dim ker(Lα`
	 Lα`

) =
m2

s`

.

The result follows by combining the last inequality with (27) and (28).

We next turn to the main result of this section.

Theorem 4.7 For b = 1, 2, let Cb be a linear [n, n−rb] code over Φ and let the code C
over Fm×m be given by (19). For every positive integer divisor s of m, let Φs denote the field
GF(qs) and let ks be the dimension of the linear code

Ws = C⊥
1 ∩ C⊥

2 ∩ Φn
s

over Φs. Then,

red(C) ≤ m2(r1 + r2)−m
∑
s |m

ks · φ(m/s) ,

where φ : N → N is Euler’s totient function.
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Proof. For a positive divisor s of m, let Us denote the linear span over Φs of the set⋃
d Wd, where d ranges over all proper divisors of s; clearly, Us is a linear sub-space of Ws

over Φs. We construct a generator matrix H of Wm = C⊥
1 ∩ C⊥

2 , by successively adding the
basis elements of the quotient space Ws/Us over Φs, for increasing values of divisors s of m.
Denote by fs the dimension of Ws/Us as a vector space over Φs. For every divisor s of m we
have

ks =
∑
d | s

fd . (29)

As our next step, we select for b = 1, 2 an rb × n parity-check matrix Hb of Cb such
that H is a sub-matrix of both H1 and H2; indeed, this is always possible, since H generates
C⊥

1 ∩ C⊥
2 . By Propositions 4.4 and 4.6 we obtain,

red(C) ≤ m2
(
r1 + r2 −

∑
s |m

fs

s

)
. (30)

Now, for every positive integer a we have,∑
t | a

φ(t) =
∑
t | a

φ(a/t) = a (31)

(see, for example, [14, p. 114]). Therefore,

m
∑
d |m

fd

d

(31)
=

∑
d |m

fd

∑
t |m/d

φ(m/(dt))
s=dt
=

∑
s |m

φ(m/s)
∑
d | s

fd
(29)
=

∑
s |m

φ(m/s) · ks . (32)

The result follows by combining (30) with (32).

Example 4.1 Let F = GF(2) and Φ = GF(24), and select both C1 and C2 to be a
[15, 8, 8] RS code C over Φ with a set of roots S = {αi : 0 ≤ i < 7}, where α is primitive in
Φ. Clearly, the code W4 = C⊥ has dimension

k4 = 15− 8 = 7

over Φ4 = Φ. The dimension of W1 = C⊥ ∩ Φ15
1 over Φ1 = F can be computed using

Proposition 3.6 to yield

k1 =
∑

J∈J (Φ/F ) :
J⊆S

|J | = |{1}| = 1 .

Replacing F by Φ2 = GF(22) in that proposition, we can also compute the dimension of
W2 = C⊥ ∩ Φ15

2 over Φ2 as follows:

k2 =
∑

J∈J (Φ/Φ2) :
J⊆S

|J | = |{1}|+ |{α, α4}|+ |{α5}| = 4 .
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Finally, by Theorem 4.7 we obtain,

red(C) ≤ 42 · 14− 4 · (1 · φ(4) + 4 · φ(2) + 7 · φ(1)) = 224− 4 · (1·2 + 4·1 + 7·1) = 172 .

In comparison, the lower and upper bounds in (26) equal 112 and 224, respectively.

4.3 Construction based on shortened cyclic codes

The upper bound in Theorem 4.7 is minimized when C1 (say) is a subset of C2. If the
minimum distance requirements are the same for the two directions of the n×m slices of Γ,
then we may as well take C1 = C2.

In this section, we consider the case where C1 and C2 are taken to be the same shortened
cyclic code C over Φ whose roots are all in Φ. We will make use of the following lemma.

Lemma 4.8 Let ξ1, ξ2, . . . be elements in a commutative ring R with unity. Fix a positive
integer N , and for t ≥ 1, denote by Vt the following t× (N+t) matrix over R:

Vt =


1 ξ1 ξ2

1 . . . ξN+t−1
1

1 ξ2 ξ2
2 . . . ξN+t−1

2
...

...
...

...
...

1 ξt ξ2
t . . . ξN+t−1

t

 .

Then, for t ≥ 1,

Vt+1 = E
(1)
t

(
0 DtVt

1 wt

)
E

(2)
t ,

where Dt is the following t× t diagonal matrix over R,

Dt =


ξ1−ξt+1

ξ2−ξt+1

. . .

ξt−ξt+1

 ,

E
(1)
t and E

(2)
t are invertible upper-triangular square matrices over R, and wt is a row vector

in RN+t.
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Proof. Take

E
(1)
t =


1 1

1 1
. . .

...
1 1

1

 , E
(2)
t =



1 0 0 0 · · · 0
1 ξt+1 ξ2

t+1 · · · ξN+t−1
t+1

1 ξt+1 · · · ξN+t−2
t+1

1 · · · ξN+t−3
t+1

. . .
...
1


,

and wt = (ξt+1, 0, . . . , 0).

Proposition 4.9 Let S = {β1, β2, . . . , βr} be a set of r distinct nonzero elements of Φ,
and for n ≥ 2r, let the 2r × n matrix H over Fm×m be defined by

H =



1 〈β1] 〈β1]
2 . . . 〈β1]

n−1

1 〈β2] 〈β2]
2 . . . 〈β2]

n−1

...
...

...
...

...

1 〈βr] 〈βr]
2 . . . 〈βr]

n−1

1 [β1〉 [β1〉2 . . . [β1〉n−1

1 [β2〉 [β2〉2 . . . [β2〉n−1

...
...

...
...

...

1 [βr〉 [βr〉2 . . . [βr〉n−1


. (33)

Regarding H as an 2m2r ×m2n matrix over F , its rank is given by

rank(H) = m2

(
2r −

∑
J∈J (Φ/F )

|J ∩ S|2

|J |

)
. (34)

Proof. For t = 1, 2, . . . , 2r, denote by H(t) the t × (n−2r+t) upper-left sub-matrix of
H (over Fm×m) and by rank(H(t)) the rank of H(t), when H(t) is regarded as an m2t ×
m2(n−2r+t) matrix over F .

For k = 1, 2, . . . , r, let Jk be the conjugacy class over F that contains βk and let Xk

denote the intersection Jk ∩ S. We prove by induction on k = 0, 1, 2, . . . , r that

rank(H(r+k)) = m2

(
r + k −

k∑
`=1

|X`|
|J`|

)
. (35)

Note that for k = r, the right-hand sides of (34) and (35) are equal.

Starting with the induction base k = 0, we observe that for 1 ≤ j < ` ≤ r,

〈βj]− 〈β`] = 〈βj−β`]
(23)∼= Lβj−β`

⊗ Im
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and, so, the element 〈βj]−〈β`] is invertible in (Fm×m, +,�) (and so is [βj〉− [β`〉). Applying
Lemma 4.8 to R = (Fm×m, +,�) and Vt = H(t) for t = 0, 1, 2, . . . , r−1, we thus obtain that

rank(H(r)) = m2r .

Turning to the induction step, we apply Lemma 4.8 to Vr+k = H(r+k), and distinguish
between two types of elements which appear along the main diagonal of Dr+k. The first type
consists of the elements [βj〉− [βk+1〉, for 1 ≤ j ≤ k. Clearly, these elements are all invertible
in (Fm×m, +,�). The second type consists of the elements 〈βj]− [βk+1〉, for 1 ≤ j ≤ r. Here

〈βj]− [βk+1〉 = (Lβj
⊗ Im)− (Im ⊗ Lβk+1

) = Lβj
	 Lβk+1

and, so, from Lemmas 4.1 and 4.2 we get that 〈βj]− [βk+1〉 is a zero divisor in (Fm×m, +,�)
if and only if βj ∈ Xk+1. Furthermore, by these lemmas we get that when βj ∈ Xk+1,

dim ker(Lβj
	 Lβk+1

) =
m2

|Jk+1|
. (36)

Now, these zero divisors are confined to the first r entries along the main diagonal of Dr+k,
while the first r rows in H(r+k), when translated into m2r rows over F , have full rank. Thus,
from Lemma 4.8 we obtain,

rank(H(r+k+1)) = rank(H(r+k)) + m2 −
∑

β∈Xk+1

dim ker(Lβ 	 Lβk+1
)

(36)
= rank(H(r+k)) + m2

(
1− |Xk+1|

|Jk+1|

)
(35)
= m2

(
r + k + 1−

k+1∑
`=1

|X`|
|J`|

)
.

We now reach the main result of this section.

Theorem 4.10 Let S = {β1, β2, . . . , βr} be a set of r distinct nonzero elements of Φ and
let C be an [n, n−r] shortened cyclic code over Φ with an r × n parity-check matrix

H =


1 β1 β2

1 . . . βn−1
1

1 β2 β2
2 . . . βn−1

2
...

...
...

...
...

1 βr β2
r . . . βn−1

r

 .

Construct the code C by (19) with C1 = C2 = C. Then,

red(C) ≤ m2

(
2r −

∑
J∈J (Φ/F )

|J ∩ S|2

|J |

)
,

with equality holding if either n ≥ 2r or C is a cyclic code.
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Proof. By Proposition 4.5, a 2r×n parity-check matrix of C over (Fm×m, +,�) is given
by (33). When n < 2r, we append to H the column vectors(

〈β1]
i 〈β2]

i . . . 〈βr] [β1〉i [β2〉i . . . [βr〉
)T

, n ≤ i < 2r ,

and redefine n to be 2r. This change does not affect the rank of H when C is cyclic, and
may only increase it otherwise. The result now follows from Proposition 4.9.

Example 4.2 Let F , Φ, and C be as in Example 4.1. The intersection of the set of roots
S with the elements of J (Φ/F ) is shown in Table 2. By Theorem 4.10 we get,

red(C) = 42 ·
(
2 · 7−

(
02

1
+ 12

1
+ 32

4
+ 22

4
+ 12

4
+ 02

4

))
= 148 .

J {0} {1} {α, α2, α4, α8}{α3, α6, α12, α9} {α5, α10} {α7, α14, α13, α11}
J ∩ S ∅ {1} {α, α2, α4} {α3, α6} {α5} ∅
|J ∩ S| 0 1 3 2 1 0
|J | 1 1 4 4 2 4

Table 2: Distribution of roots among the conjugacy classes for the code in Example 4.1.

Ranging now over all values r ∈ {1, 2, . . . , 14}, we have summarized in Table 3 the
redundancy values of C obtained when C is taken as a [15, 15−r, r+1] RS code over GF(24)
with a set of roots S = {α∆+i : 0 ≤ i < r}, where we have chosen the value ∆ that minimizes
the redundancy. The table also shows the difference between red(C) and the lower bound,
m2r, in (26). The upper bound of Theorem 4.7 turns out to be the loosest when r = 7 (see
Example 4.1).

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14
red(C) 16 44 64 88 104 128 148 164 176 184 200 208 220 224

red(C)−m2r 0 12 16 24 24 32 36 36 32 24 24 16 12 0
∆ 0 0 0 1 0 0 0 1 1 1 0 1 1 1

Table 3: Smallest possible values of red(C) for RS codes of length 15 over GF(24).
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Remark 4.1 It is interesting to compare the bound in Theorem 4.10 with the redun-
dancy of sub-field sub-codes. Specifically, let C be an [n, n−r] cyclic code over Φ whose set
of roots, S, is contained in Φ. On the one hand,

red(C ∩ F n) =
∑

J∈J (Φ/F ) :
J∩S 6=∅

|J | = r +
∑

J∈J (Φ/F ) :
J∩S 6=∅

(|J | − |J ∩ S|) , (37)

where the last sum in (37) represents the ‘conjugate penalty’ in the redundancy of the
sub-field subcode C ∩ F n, compared to the underlying code C. On the other hand, from
Theorem 4.10 we obtain,

red(C) = m2

(
r +

∑
J∈J (Φ/F ) :

J∩S 6=∅

|J ∩ S|
|J |

· (|J | − |J ∩ S|)
)

, (38)

where the sum now expresses the redundancy penalty with respect to the lower bound in (26).
In both (37) and (38), conjugacy classes that are wholly contained in either S or Φ \S carry
no redundancy penalty. Otherwise, the penalty due to a given conjugacy class J increases
in (37) as the size of the intersection J∩S becomes smaller; in contrast, the penalty increases
in (38) as the size of that intersection becomes closer to 1

2
|J |.

Example 4.3 Suppose that the basis ω has the form (1 α α2 . . . αm−1)T , where α
belongs to a conjugacy class in Φ of size m over F . Let n = m and select C to be the
[m,m−r] code over Φ with a parity-check matrix

H =


1 α α2 . . . αm−1

1 αq α2q . . . α(m−1)q

1 αq2
α2q2

. . . α(m−1)q2

...
...

...
...

...

1 αqr−1
α2qr−1

. . . α(m−1)qr−1

 . (39)

The code C is known to be MDS over Φ, and so is the transpose code

CT =
{
AT ω : A ∈ Fm×m, Aω ∈ C

}
,

whose parity-check matrix is obtained from H by replacing α with αqm−r+1
in (39); see [7],

[8]–[9], and [15]. In this case, we get by Theorem 4.10 that

red(C) ≤ 2m2r −mr2 = mr(2m− r) .
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Appendix A

Proof of Proposition 2.2. Let X be an information locator set of C and define the subsets

X0 = X ∩ {(i, 0) : 1 ≤ i ≤ n}

and
Xb = X ∩ {(i, j) : 1 ≤ i ≤ n , 0 < (−1)bj < m} , b = 1, 2 .

Clearly, X0, X1, and X2 form a partition of X . For b = 0, 1, 2, let kb = |Xb| and Mb = F kb .
Consider the encoding function E : M0 ×M1 ×M2 → (F 2m−1)n that maps (u0, u1, u2) to
the unique array Γ ∈ C such that (Γ)Xb

= ub for b = 0, 1, 2. The existence of the decoding
functions D1 and D2 that satisfy (2) is easily verified, and

red(E ,D1,D2) = (ρ0, ρ1, ρ2) = (n−k0, n(m−1)−k1, n(m−1)−k2) ,

which readily implies that ρ0 + ρ1 + ρ2 = red(C).

Next we provide an example of a non-systematic set C ⊆ (F 2m−1)n for which no inter-
secting coding scheme (E : M→ (F 2m−1)n,D1,D2) satisfies E(M) = C.

Example A.4 For t = 0, 1, 2, 3, let et denote the following column words over F =
{0, 1}:

e0 = (0 0 0)T , e1 = (1 0 0)T , e2 = (0 1 0)T , and e3 = (0 0 1)T .

Select m = 1 and n = 3, and consider the set C ⊆ F 3 that is defined by

C = {(e1 e0 e1) , (e2 e0 e1) , (e3 e0 e2) , (e3 e0 e3)} .

Suppose to the contrary that there exists an intersecting coding scheme (E : M →
(F 3)3,D1,D2) such that E(M) = C. In particular,

|M| = |M0| · |M1| · |M2| = |C| = 4

and
|M0| · |Mb| ≤ |ϕb(C)| = 3 , b = 1, 2 .

These conditions imply that |M0| = 1 and |M1| = |M2| = 2.

Denote M1 = {α, β} and partition M into Mα = M0 × {α} ×M2 and Mβ = M0 ×
{β} ×M2. The existence of D1 implies from (2) that

ϕ1(E(Mα)) ∩ϕ1(E(Mβ)) = ∅
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and, so,
|ϕ1(E(Mα))|+ |ϕ1(E(Mβ))| = |ϕ1(E(M))| = |ϕ1(C)| = 3 .

Without loss of generality we assume that |ϕ1(E(Mα))| = 2 and |ϕ1(E(Mβ))| = 1. On
the other hand, |E(Mβ)| = |Mβ| = 2; hence, the set E(Mβ) is necessarily equal to
{(e3 e0 e2) , (e3 e0 e3)}. Thus,

E(Mα) = C \ E(Mβ) = {(e1 e0 e1) , (e2 e0 e1)} ,

which readily implies that |ϕ2(E(Mα))| = 1. Yet, this contradicts the existence of a function
D2 that satisfies (2).

Appendix B

Proof of Lemma 2.4. Given an integer triple ρ ∈ Aq(m, n, τ1, τ2), let (E : M →
(F 2m−1)n,D1,D2) be an intersecting coding scheme that satisfies conditions (A1)–(A2),
where M = M0 ×M1 ×M2. Since ρ is integer-valued and ρ′ satisfies (3), we can as-
sume without loss of generality that for b = 1, 2, the set Mb takes the form M′

b×F θ, where
logq |M′

b| = n(m−1)− ρb − θ; every element u ∈Mb can thus be written as (u′ |w), where
u′ ∈ M′

b and w ∈ F θ. Denote by M′
0 the set M0 × F θ and let a typical element u′

0 ∈ M′
0

be written as (u0 |w0), where u0 ∈M0 and w0 ∈ F θ. Define the mapping

E ′ : M′
0 ×M′

1 ×M′
2 → (F 2m−1)n

for every (u′
0, u

′
1, u

′
2) ∈M′

0 ×M′
1 ×M′

2 by

E ′ (u′
0, u

′
1, u

′
2) = E ′ ((u0 |w0), u

′
1, u

′
2) = E (u0, (u

′
1 |w0), (u

′
2 |w0)) .

Letting M′ denote the set M′
0 ×M′

1 ×M′
2, it is easily seen that E ′(M′) = E(M).

We also define for b = 1, 2 the mapping D′
b : E ′(M′) →M′

0 ×M′
b by

D′
b(c) = ((u0 |w0), u

′
b) , c ∈ E ′(M′) ,

where the words u0, w0, and u′
b are determined by Db(c) = (u0, (u

′
b |w0)). Clearly, the triple

(E ′,D′
1,D′

2) defines an intersecting coding scheme of length n over F 2m−1 with redundancy
(E ′,D′

1,D′
2) ≤ ρ′. Hence, this coding scheme satisfies condition (A1) with respect to the

triple ρ′. And from E ′(M′) = E(M) we get that condition (A2) holds as well. We therefore
conclude that ρ′ ∈ Aq(m, n, τ1, τ2).

Along similar lines, we can show that ρ′′ is also in Aq(m, n, τ1, τ2). Here, we write
M0 = M′′

0×F θ1×F θ2 , where logq |M′′
0| = n−ρ0−θ1−θ2, and for b = 1, 2 we let M′′

b be the
set Mb × F θb . An element u0 ∈ M0 will be written as (u′′

0 |w1 |w2), where u′′
0 ∈ M′′

0 and
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wb ∈ F θb ; similarly, for b = 1, 2, we break an element u′′ ∈ M′′
b into (u |w), where u ∈ Mb

and w ∈ F θb . Writing M′′ = M′′
0 ×M′′

1 ×M′′
2, the encoding function

E ′′ : M′′ → (F 2m−1)n

is given by

E ′′ (u′′
0, u

′′
1, u

′′
2) = E ′′ (u′′

0, (u1 |w1), (u2 |w2)) = E ((u′′
0 |w1 |w2), u1, u2) ,

and for b = 1, 2 we let the decoding functions D′′
b : E ′′(M′′) → M′′

0 ×M′′
b be defined for

every c in E ′′(M′′) (= E(M)) by

D′′
b (c) = (u′′

0, (ub |wb)) ,

where u′′
0, ub, and wb are determined by Db(c) = ((u′′

0 |w1 |w2), ub). It can be easily verified
that (E ′′,D′′

1 ,D′′
2) is an intersecting coding scheme of length n over F 2m−1 that satisfies

conditions (A1)–(A2) with respect to ρ′′.

Appendix C

In our proof of Lemma 4.3, we make use of the following known property of direct product
of matrices (see Theorem 43.4 in [12]).

Lemma C.11 Let A, B, C, and D be matrices over F for which the (ordinary) products
AC and BD are defined. Then,

(A⊗B)(C ⊗D) = (AC)⊗ (BD) . (40)

Proof of Lemma 4.3. (i) By Lemma C.11 it easily follows that the matrices in (22)
commute.

(ii) The sought smallest sub-ring of Fm2×m2
must contain the elements Laωj

⊗ Im and
Im ⊗ Laω`

for all 0 ≤ j, ` < m and a ∈ F , as well as the sum of products∑
j,`

(Laj,`ωj
⊗ Im)(Im ⊗ Laj,`ω`

) =
∑
j,`

aj,`

(
Lωj

⊗ Lω`

)
, aj,` ∈ F .

We next verify that Lβ ⊗ Im and Im⊗Lγ are spanned by (22); in fact, we show that Lβ ⊗Lγ

is in that span for every β, γ ∈ Φ. For every α, γ ∈ Φ we have,

vαLγω = αγ = α · vγω =
∑

`

(vγ)`(αω`) =
∑

`

(vγ)` (vαLω`
ω) = vα

(∑
`

(vγ)`Lω`

)
ω ,
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i.e.,

Lγ =
∑

`

(vγ)`Lω`
.

Hence,

Lβ ⊗ Lγ =
(∑

j

(vβ)jLωj

)
⊗

(∑
`

(vγ)`Lω`

)
=

∑
j,`

(vβ)j(vγ)`(Lωj
⊗ Lω`

) . (41)

(iii) Clearly, addition is preserved under the mapping (23). Since direct product is dis-
tributive with addition in Fm×m, then so is the product � in Fm×m. Hence, to establish
the isomorphism, it suffices to show that multiplication is preserved when the multiplicands
take the form Lβ ⊗ Lγ for β, γ ∈ Φ (in particular, this includes all elements in (22)).

By (41) we deduce that (23) associates the element Lβ ⊗Lγ (∈ Φ⊗Φ) with the element
vT

β vγ (∈ Fm×m). Taking the �-product of vT
β vγ and vT

β′vγ′ we get

(vT
β vγ)� (vT

β′vγ′) = MT ((vT
β vγ)⊗ (vT

β′vγ′))M

(40)
= MT (vT

β ⊗ vT
β′)(vγ ⊗ vγ′)M

= ((vβ ⊗ vβ′)M)T (vγ ⊗ vγ′)M

= vT
ββ′vγγ′ ,

where in the last step we have used the equality (vγ ⊗ v′γ)M = vγγ′ , which, in turn, follows
from the chain

(vγ ⊗ vγ′)Mω
(20)
= (vγ ⊗ vγ′)(ω ⊗ ω)

(40)
= (vγω)⊗ (vγ′ω) = γγ′ = vγγ′ω .

We thus conclude that the product (vT
β vγ)� (vT

β′vγ′) is associated by (23) with the element

Lββ′ ⊗ Lγγ′ = (LβLβ′)⊗ (LγLγ′)
(40)
= (Lβ ⊗ Lγ)(Lβ′ ⊗ Lγ′)

of Φ⊗ Φ.

(iv) As in part (iii), it suffices to consider the case where A = vT
β vγ and B = vT

β′vγ′ ;
here,

A�B = vT
ββ′vγγ′ ,

while

row(A)B = (vβ ⊗ vγ)(Lβ′ ⊗ Lγ′) = (vβLβ′)⊗ (vγLγ′) = vββ′ ⊗ vγγ′ = row(vT
ββ′vγγ′) .
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