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Abstract

This paper applies statistical model-induction tech-
niques to the problem of forecasting response times
in storage systems. Our work differs from prior re-
search in several ways: we regard storage systems as
black boxes; we automatically induce models rather
than constructing them from detailed expert knowl-
edge; we use lightweight passive observations, rather
than extensive controlled experiments, to collect in-
put data; we forecast individual response times rather
than aggregates or averages; and we focus on large
and complex enterprise storage arrays that comprise
many RAID groups. We evaluate our methods us-
ing a lengthy storage trace collected in a real-world
environment, and measure the predictive value of in-
formation available when requests are issued.

This paper makes several contributions. First, we
quantify the potential of a class of statistical meth-
ods for the challenging problem of automatic perfor-
mance model induction. Second, we quantify im-
provements in accuracy that result when the range
of information available to our models increases.
Finally, we describe a general, low-cost modeling
methodology that can be applied to a wide range of
storage arrays.

1 Introduction

Enterprise storage systems are increasingly hard to
manage. Today’s high-end storage arrays are com-
plex and highly configurable, and therefore inher-
ently difficult to reason about. Furthermore the trend
toward storage consolidation in large data centers
means that a single “black box” storage array can
serve a variety of very different workloads. The map-
ping from fundamental device capabilities, config-
uration, and workload to performance often defies

manual analysis by human experts, and researchers
have therefore begun to automate tasks such as ca-
pacity planning and configuration [1, 3]. This ap-
proach centralizes performance modeling, but the
construction of performance models remains chal-
lenging. State-of-the-art approaches rely heavily on
expert analysis, but it is difficult for human analysts
to keep pace with increasingly elaborate and often
proprietary enterprise storage architectures. Enter-
prise storage trends call for modeling strategies that
are more automated, less reliant on human expertise,
and applicable to opaque devices.

This paper explores statistical approaches to au-
tomated performance model induction for enterprise
storage systems. We classify individual requests to a
large storage device as “fast” or “slow,” using models
induced offline to generate forecasts quickly enough
for online application. Model induction relies on
purely passive external observation of black-box stor-
age arrays. We quantify improvements in predictive
accuracy as we increase the range of data available to
our models.

Our method begins with a raw trace of requests
submitted to a storage array. We apply transforma-
tions to obtain a vector of features representing re-
quest characteristics and history-dependent system
state at the instant each request is issued. In an
offline operation, model-induction algorithms deter-
mine a mapping from feature vectors to response time
forecasts. To generate forecasts online, we transform
observable characteristics of individual requests into
feature vectors and apply the induced models. We
consider two extremes of a spectrum of models: one
yields forecasts in the form of probability distribu-
tions over values of response time, the other yields
distributions over categories of response time. In or-
der to compare the two models on a common accu-
racy scale, we apply them to a binary classification



problem, i.e., we use them to predict whether indi-
vidual read requests will be “fast” or “slow.”

An understanding of disk head position and of seek
and rotational latency can be crucial for determin-
ing response time, but the state of moving parts is
unknown outside a black-box storage array. This
places fundamental and severe limits on the poten-
tial accuracy of any modeling methodology, includ-
ing ours. In the absence of such detailed knowledge,
the question is to what extent other contextual infor-
mation can increase prediction accuracy and increase
our confidence in the predictions. The uncertainty in-
herent in our predictions is captured by probability
distributions, and our goal is to use available infor-
mation to narrow these distributions.

Our overall results can be summarized as follows:
When the number of unfulfilled requests pending at
the time a given request is issued is above 20 (around
5.4% of our data), response time is almost always
slow and our algorithms achieve 95% classification
accuracy. When the number of pending requests is
less than 20, there is significant variability in the ac-
curacy of prediction for different RAID groups within
the storage array. Our algorithms yield an accuracy
ranging from 70% to 85%. In all cases accuracy is
much higher (by up to 24 percentage points) than one
would obtain from naive predictions based on prior
probabilities alone, demonstrating that the informa-
tion in our feature vector substantially improves pre-
dictive accuracy.

2 Applications

Our research on performance model induction is mo-
tivated by applications to scheduling, performance
modeling, and anomaly detection. Before we can im-
plement and evaluate these applications we must first
understand the limits of our modeling approach. This
paper considers modeling independently of applica-
tions. Our main concern is with the models them-
selves, the procedures used to induce them, and their
predictive accuracy as a function of available infor-
mation. To place our work in context, we briefly re-
view in this section the complementary but orthog-
onal issue of applications for our models and their
predictions.

Consider the problem of serving compound Web
pages. Each screenful of material is assembled from
a variety of components, e.g., static images and
dynamically-generated HTML. Some of the corre-

sponding HTTP requests primarily require 1/O at the
server end, while others mainly require CPU. The
requests may arrive at the server simultaneously via
HTTP’s pipelining feature [15], and all of them may
be served in parallel. In such situations, where trans-
actions decompose naturally into CPU and 1/0 com-
ponents that may be served concurrently, we can
use 1/0 response time estimates for improved CPU
scheduling and thereby obtain lower mean transac-
tion times. We have explored the potential perfor-
mance improvements of 1/0-aware CPU scheduling
using both analysis and stochastic simulation; not
surprisingly, we find that its benefits depend sensi-
tively on workload characteristics. More realistic re-
sults require very detailed workload traces that we
have not yet been able to obtain.

Another application of performance models is per-
formance monitoring and anomaly detection. In-
duced models may help us to discover deviations
from expected system behavior. If the predictive
accuracy of an induced model changes quickly and
dramatically, standard statistical tests can determine
whether the change is due to random fluctuations in
workload or to a more fundamental change in behav-
ior, e.g., an internal device failure. In a wide range of
settings, including but not limited to enterprise stor-
age arrays, performance models induced automati-
cally from passive observations may provide an in-
expensive way of alerting operators that “something
about the system is very different today.”

3 Redated Work

This section reviews the large literature on storage
system performance modeling, summarizes method-
ologies and key results, and relates our investigation
to prior work. Performance modeling is often moti-
vated by other research problems, e.g., disk schedul-
ing, and many key results are strongly linked to the
motivating problem or application. Our survey of the
literature is therefore organized both by motive and
by method.

3.1 Disk Scheduling

Researchers have long recognized that estimates of
rotational position and rotational latency can be
exploited for improved disk scheduling. Seltzer
et al. described algorithms that employ such esti-
mates [30]. Jacobson & Wilkes evaluated a taxon-



omy of algorithms that exploit rotational latency es-
timates, reporting that they match or outperform al-
gorithms that consider only seek time [20]. More re-
cently Lumb et al. introduced freeblock scheduling,
which uses rotational latency estimates to fill fore-
ground requests’ rotational latency periods with use-
ful background data transfers, thereby increasing disk
bandwidth utilization without compromising perfor-
mance for foreground requests [22]. A prototype
freeblock scheduler operating outside disk firmware
required extremely accurate predictions of disk ser-
vice time components [21]. Lumb et al. report that
sufficient information about black-box disks could be
obtained from DIXtrac [28] to support acceptably ac-
curate service time predictions for freeblock’s needs.
The modeling problem was made easier because a
modified device driver limited the number of requests
pending in the disk to two [21].

DIXtrac was an important enabling technology for
this and several other scheduling studies [4,29]. It au-
tomatically obtains detailed data-layout, cache man-
agement, and timing data from black-box disks via
“controlled experiment,” i.e., by submitting carefully
selected requests to the disk and measuring response
times. Given this information, accurate performance
forecasts can sometimes be obtained via simple cal-
culations.

The modeling approaches motivated by individual
disk scheduling are not applicable to large storage de-
vices. Throttling the dispatch of requests to a storage
array as in the freeblock-in-driver work, for instance,
would preclude re-ordering optimizations within the
array and thereby degrade performance. Fundamen-
tally different approaches are required for enterprise
storage arrays.

3.2 Simulation & Emulation

Mature, refined, and well-calibrated simulation mod-
els of individual disks have been available for many
years. Ruemmler & Wilkes summarize the art of disk
drive modeling, describing how increasing fidelity
yields improved aggregate accuracy [27]. DiskSim
represents the current state of the art in disk simu-
lation; it models device drivers, buses, controllers,
adapters, and disk drives [8]. Worthington et al.
laid the foundations for DiskSim (as well as DIX-
trac) nearly a decade ago [36]. The Pantheon storage
system simulator can model collections of disks, e.g.,
RAID arrays [35]; RAIDframe supports evaluation of
error-free and recovery behavior [19].

Emulators go one step further than simulators. In
addition to modeling performance, they interoperate
with real systems, transparently replacing storage de-
vices and attempting to mimic their behavior. This al-
lows researchers to explore conveniently how the per-
formance of devices that do not yet exist, e.g., MEMS
devices, might interact with existing systems [16].

3.3 Analytic Models

Management tools that search a large space of storage
device configurations for an optimum have shown
promise for automating storage management [1, 3].
The inner loop of such tools is a solver that maps de-
vice design, configuration, and workload to average
performance characteristics. Simulations driven by
synthetic or trace inputs are too slow for this inner
loop, and researchers have therefore employed faster
analytic models for such applications.

Ruemmler & Wilkes consider a continuum of mod-
els starting with the simplest possible analytic per-
formance “model,” a numeric constant [27]. They
add detail and fidelity to obtain better analytic mod-
els, e.g., in which response time is proportional to
I/O size plus measured seek time, and finally arrive
at simulators that consider data layout and the physi-
cal state of the disk’s moving parts.

Analytic models are often easier to reason about
than simulators, and a further advantage is that they
sometimes support convenient composition. Shriver
et al., for instance, develop algebraic descriptions of
disk drive components and compose them to model
mean disk service times [31]. The analytic compo-
sition approach has also been applied to modeling
disk arrays. Uysal et al. validate a composite analytic
model of mean throughput against measurements of a
mid-range disk array and report agreement to within
15% [33]. More recently Varki et al. developed a
model that predicts mean response time and queue
length in addition to mean throughput [34].

One drawback of analytic models is that human ex-
perts are required to define them. Table-based mod-
els escape this reliance by systematically testing (via
controlled experiment) a large number of points in
the space of inputs, and interpolating between them
to form predictions [2]. Such models require less ex-
pertise than conventional analytic models, but more
calibration, because they must systematically sample
a multi-dimensional space of workloads.



3.4 Evaluation Metrics

In cases where models generate individual response
time forecasts that can be compared against actual
response times, it is conventional to summarize ac-
curacy using the “demerit” measure introduced by
Ruemmler & Wilkes [27]. The demerit measure is
the root mean square of horizontal distances between
the cumulative distributions of actual and predicted
response times; this can be normalized by dividing
by the mean of the actual response times. It is zero
for identical distributions, is dimensionless if nor-
malized, and has convenient units (milliseconds) oth-
erwise. Despite its attractive properties it does not
measure the accuracy of individual forecasts. If an
ordered list of actual response times is compared
against a forecast consisting of a random permuta-
tion of itself, for instance, pairwise predictive accu-
racy may be very poor but the demerit figure will be
zero.

Lumb et al. [21] provide the only published re-
port of individual forecast accuracy of which we
are aware. They report remarkably accurate service
time? forecasts for an individual disk, particularly for
small random reads; up to 99.3% of forecasts were
within 50 ps for a particular disk considered. They
achieved such high accuracy in part because they re-
stricted the flow of requests to the disk, preventing
re-ordering within the disk from foiling their models
of the moving parts. To the best of our knowledge,
accuracy results for individual response time predic-
tions have not been published.

3.5 Summary

The methods reviewed in this section are not well
suited to forecasting response times of individual re-
quests to enterprise storage arrays. Analytic models
predict average performance (e.g., mean throughput,
mean response time) from parametric workload de-
scriptions (e.g., mean request rate, read:write ratio).
Simulation models can generate per-1/0 predictions,
but they require calibration. A good calibration tool is
available for disks, but nothing analogous to DIXtrac
exists for enterprise storage arrays. It is not clear that
controlled experiments could, in a reasonable amount
of time, extract from an enterprise storage array suf-
ficiently detailed information to calibrate simulation
or table-based models. The problem at hand requires
different methods.

1Recall that response time = queueing time + service time.

The approach we pursue in this paper attempts to
achieve some of the desirable properties of existing
methods via different techniques. Like table-based
models we rely on little knowledge of system inter-
nals and substitute extensive measurements for expert
knowledge. Unlike the table-based approach we rely
on purely passive observations; we trust the work-
load to decide what regions of the workload space
are important, so to speak. Like simulators and em-
ulators, we form predictions of individual response
times quickly enough for online use, but we attempt
to model systems whose complexity has thus far de-
fied simulation.

4 Modeling Black-Box Arrays

This section formally defines the problem of model-
ing black-box storage devices using passive observa-
tions. It furthermore describes the special properties
of large enterprise storage arrays and the challenges
they pose to our modeling framework. Finally, it of-
fers straightforward evidence suggesting that our ap-
proach is workable: passive external observations of
unmodified enterprise storage arrays contain a sub-
stantial amount of information about response times.

4.1 Formal Problem

Let X represent a vector of features describing an 1/0
request. The feature vector may include several kinds
of information: characteristics of the request itself,
e.g., the amount of data requested; information about
the state of the storage device, e.g., the number of
unfulfilled requests within it; and features that relate
the current request to earlier ones, e.g., measures of
reference locality.

Let P*(t;|X) denote the conditional distribution of
an individual request’s response time t, given the in-
formation contained in X. The use of a distribution
to characterize response time t; is necessary in prac-
tice because X components available via observation
of black-box devices do not completely describe all
aspects of system state relevant to t,; Section 4.2 dis-
cusses limitations of available information in greater
detail. A probability distribution can capture the un-
certainty inherent in this situation, and also uncer-
tainty arising from sampling and measurement errors.
Each value of X defines a probability distribution over
response time, which can be computed online for a
given X and P* or some approximation thereof. Fi-
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Figure 1: Simplified view of the HP XP 512.

nally, note that it is straightforward to collapse any
distribution over continuous t; values into a binary
forecast (“fast” vs. “slow”) by simply considering
probability mass above and below a threshold on t;;
we do this in our evaluations.

Our task in this investigation is twofold. First, we
investigate algorithms and statistical models to in-
duce an approximation P of P* from a trace of (X,t;)
pairs. Second, we provide a characterization of the
value of incorporating different elements in feature
vector X. The forms of the distributions we consider
and the algorithms we use to induce estimates of them
are described in Section 6. The remainder of this
section explains the special challenges of applying
our formal modeling framework to enterprise stor-
age arrays, and suggests that sufficient information
is nonetheless contained in X to justify the attempt.

4.2 Enterprise Storage Arrays

The complexity of individual hard disks and RAID
groups is sufficient to pose formidable challenges
to performance modeling. We focus on a class of
devices that incorporates these as building blocks,
and is therefore still more complex: enterprise stor-
age arrays. Figure 1 depicts in highly simplified
form the internal architecture of the array on which
our trace data were collected, the Hewlett-Packard
XP 512 [17]. Although they differ in many in-
ternal architectural details, the XP 512 and com-
parable offerings from EMC [14] and IBM [18]
share several characteristics: Each contains a collec-
tion of independent disk groups behind a large non-
volatile/battery-backed cache, and high-speed point-

to-point interconnections and/or crossbar backplanes
connect client host interface processors (CHIPs) with
the cache and with disk-group controllers.

Enterprise storage arrays typically serve many
physically distinct client hosts, to which they are con-
nected via high-speed short-range networks (e.g., Fi-
bre Channel). The mapping of user-visible entities
(e.g., files in a filesystem) onto physical media in-
volves several layers of indirection, all of which are
highly configurable. Under typical conditions four
factors dominate performance:

e Queueing in individual disks, in disk groups, in
the array controller, and in client host device
drivers.

e Caching in both the array cache and individual
disks.

e Seeking to align disk read/write heads.

e Rotation of platters.

Throughout this paper we regard enterprise storage
arrays as “black boxes” in the sense that we do not in-
strument or otherwise directly measure any aspect of
their internal state. Instead, we consider only quan-
tities observable in client hosts served by the array.
This is a severe restriction, because the state of mov-
ing parts within the array is unavailable yet clearly
crucial to performance; seek and rotation can domi-
nate response times under light load and low cache hit
rates. Some performance-related information, how-
ever, is available outside the storage array, including
the following:

e Pending requests that have arrived in the client
host device driver but have not yet been returned
to the caller.

e Locality across accesses.

e Configuration of logical units onto disk groups
within the array.

e Sequentiality of accesses.

e Arrival times of requests.

We present results based on the first three of these;
in principle our methods could be applied to the last
two as well. The remainder of this section shows that
observations of the first two quantities contain a great
deal of information about the response times of indi-
vidual requests.

4.3 Predictive Value of Observables

Our early investigations revealed that the number of
pending requests in a storage array is, by itself, a sur-
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prisingly good predictor of average response time.
Figure 2 shows average response time of over 50 mil-
lion read requests as a function of the number of re-
quests pending at the time the measured request was
issued.? The figure shows, for example, that among
all reads issued when 100 requests were pending,
mean response time was roughly 70 ms. Separate
series are shown for all request sizes, and for those
that access exactly 8 KB (the most common request
size). The horizontal axis is truncated at 250 pending
requests; fewer than 0.5% of reads in our data were
issued when over 250 requests were pending. The 8-
block series shows that mean response time depends
roughly linearly on number of pending requests; the
relationship is surprisingly simple.

Another notoriously opaque aspect of enterprise
storage systems is cache management. Reads and
writes may share a common cache, perhaps with
dynamically-adjusted lower bounds on the fraction
used by each. Interleaved sequential request streams
may be identified, disentangled, and given special
treatment. Readahead/prefetching may occur. Writes
typically complete quickly due to write-back cache
management enabled by battery-backed or otherwise
non-volatile array caches; written data is de-staged
to magnetic media later according to complex rules.
Whereas the traditional measure of access locality,
LRU stack distance, relates directly to the perfor-
mance of an LRU cache [23], this measure does not
correspond closely to the behavior of today’s large
storage arrays.

An inexact correspondence, however, can nonethe-
less be informative. Figure 3 separately plots the dis-

2Data are taken from the 8-day “warm” subset of the trace de-
scribed in Section 5.
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Figure 3: Distribution of response times for high and
low locality read requests in training and test data.

tributions of response times among low- and high-
locality read requests issued during two consecu-
tive four-day periods (the training and test data de-
scribed in Section 5). High-locality requests are those
for which the LRU stack distance of every accessed
block is 1 GB or less; low locality means that LRU
stack distance is greater than 32 GB. We see that re-
sponse times are markedly lower for high-locality re-
quests in both training and test data. The two high-
locality distributions are nearly identical; the low-
locality curves differ from one another, but not as
much as either differs from the high-locality CDFs.
Locality is an inexact but powerful predictor of re-
sponse time.

We see from these simple examples that pas-
sive observations outside a black-box enterprise stor-
age array have considerable predictive potential.
Performance-critical aspects of system state, e.g., the
state of the array cache and of queues within the
array, are concealed from view. Observable quan-
tities can, however, help us to refine response-time
forecasts. The probabilistic modeling framework
sketched in Section 4.1 is well-suited to such situa-
tions.

5 Traces& Features

This section explains the raw traces upon which our
empirical evaluations are based, the feature vector we
derive for each request, and the efficiency with which
features can be computed.



full trace 8-day “warm” trace

train test
Dates 9/27-10/27 10/20-23 10/24-27
Reads 270,828,600 20,028,031 31,521,165
Writes 144,559,326 15,097,108 20,414,054
Rblks 6,809,092,520 302,360,743 873,790,593
Whblks 1,804,978,882 180,477,338 254,339,108

Table 1: Summary of Fall 2002 harp trace.

5.1 Raw Traces

Our empirical work uses a month-long trace of re-
quests to an HP XP 512 storage array collected
by the Storage Systems group at Hewlett-Packard
Laboratories between 27 September and 27 Octo-
ber 2002. Our data is more recent than the three well-
known “cello9x” traces previously made available by
HPL [32] that have been used over the years by many
storage researchers. We refer to it as the “harp” trace,
to distinguish it from its predecessors.

The raw harp trace was collected by HP Measure-
Ware software (midaemon) running on a client host
connected to the storage device. The host in question
(named harp) ran the Storage Systems group file and
compute server, and much of the trace ultimately de-
rives from day-to-day activity by roughly two dozen
computer scientists. These users ran a variety of
applications typical of CS research computing, e.g.,
software development, trace analysis, and simulators;
the request stream that reached the storage device is
not representative of enterprise workloads, e.g., ERP
or CRM packages. The measurement software run-
ning on harp records when individual 1/O requests
arrive in the device driver, depart for the storage ar-
ray, and return from the array. The trace also records
the request type (read or write), the number of 1-KB
blocks requested, logical unit (LU) accessed, and the
block offset within the LU. From the LU and con-
figuration information we can identify the physical
RAID group within the XP 512 that will ultimately
serve each request (see Figure 1). The XP 512 had a
16 GB cache.

Table 1 summarizes the full raw trace and the sub-
sets used in our evaluation. One of the features we de-
rive from the raw trace, a locality measure described
in Section 5.2, depends upon the history of prior re-
quests. We therefore compute a full feature vector
for the entire trace, but use only the last eight days
for our evaluation; we refer to this eight-day suffix as
the “warm” subset of our trace. Because we induce
our performance models from data, we must “train”
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Figure 4: Frequency distributions of read response
times in training and test data subsets.

and “test” on different data in order to assess predic-
tive accuracy. We divide the eight-day warm trace
into training and test sets of equal duration, as shown
in Table 1.

In this paper we model response times for read
requests only, not writes. Reads are far more com-
mon, accounting for roughly two thirds of all re-
quests in the harp trace. Furthermore modeling reads
is a greater challenge because the distribution of re-
quest times is far wider for reads than for writes (the
XP 512’s write-back cache ensures that writes are al-
most always very fast).

Figure 4 shows histograms of response times for
read requests in the training and test sets; the figure
omits the noisy tails of both distributions, which ex-
tend to roughly one second account for a small frac-
tion of all requests. We have drawn boundaries be-
tween the five most prominent modes, chosen as the
low points between adjacent modes in the training
set, and labeled the modes “A” through “E”. Mode A
corresponds to hits in the XP’s array cache, and B
corresponds to hits in individual disk caches. Vary-
ing combinations of seek, rotation, and queueing ex-
plain C, D, and E. The percentages of reads in train-
ing and test sets, respectively, that fall into each mode
are shown in the figure; for example, 4.75% of reads
in the training set fall into mode C, and 19.59% of
reads in the test set fall into mode B.

Harp was not the only host connected to the
XP 512 during trace collection. Several other hosts
shared the storage array with harp, and /O activity
by these other hosts is not reflected in the harp trace.
One host performed backups of data on the device
(i.e., pulled data from the XP) and we have a par-



tial schedule of backup activity, but do not know the
number of requests or volume of data involved. We
furthermore know that other hosts wrote data to the
device. Thisuntraced activity is cause for concern be-
cause it could have contended with the traced work-
load for the array cache.

For several reasons we believe that the harp trace
is useful for our purposes despite untraced activity.
The other hosts are thought to have used the XP 512
relatively lightly during trace collection. Furthermore
the other hosts did not access the same internal RAID
groups on the XP as harp, so we need not worry about
contention within RAID groups. Most importantly,
our methods are robust to noise; as noted in Sec-
tion 4.1, a probabilistic modeling framework seam-
lessly incorporates uncertainty due to sampling and
measurement errors. The main implication of un-
traced activity in the harp trace is that our accuracy
results are pessimistic; we expect that accuracy would
be higher if our trace included all requests handled by
the array.

5.2 Feature Computation

From the raw harp trace and auxiliary information
about the storage array’s configuration, we derive a
feature vector for use in forecasting response times.
We capture the potential for queueing and conges-
tion within the storage device by augmenting each
I/0 record with the numbers of requests of various
types pending in various places at the time that the
I/0O was issued. We distinguish 1) between pending
reads and pending writes, 2) between pending re-
quests destined for the same RAID group as the cur-
rent request and those aimed at other RAID groups,
and 3) between pending requests queued in the client
host device driver and in the array. This yields eight
features measuring the number of requests in each
category. We compute eight analogous features rep-
resenting the numbers of blocks requested across all
pending 1/Os, for a total of sixteen queue-related fea-
tures.

We capture access locality by computing an
aggregated and rounded LRU stack distance
for each request: For a fixed set of cache
sizes {1 GB, 2 GB, 4 GB, ..., 32 GB} U
{12 GB, 20 GB, o}, we record the smallest

3We attempt to mode! response times for reads only; however
our models consider the numbers of pending reads and writes.
Similarly we compute our locality measure using both reads and
writes, but we apply it only to modeling read response times.

size S such that every block accessed by a request
has LRU stack distance < S. Ideally we would
simply compute the maximum LRU stack distance
across all blocks accessed by a request. However,
due to the large number of distinct blocks recorded
in the harp trace, this proved to be infeasible on our
computational platforms.

In summary, our full feature vector describing a
request consists of the number of blocks requested,
eight components related to the numbers of requests
pending in various places, eight more components de-
scribing the total number of blocks requested across
pending requests, and our locality measure. In Sec-
tion 6 we use the locality measure in different ways
than the other features, so we denote the former L
and the latter X. Certain auxiliary information, e.g.,
the RAID group to which the request is directed, is
used to partition data but does not inform the model-
induction process. We shall not regard this extra in-
formation as part of the feature vector.

5.3 Online Feature Computation

We induce models that may be used to forecast re-
sponse times online, i.e., given a feature vector the
model can compute a prediction at very low com-
putational cost. If computing the feature vector it-
self from measured quantities is prohibitively expen-
sive, however, our technique cannot be applied on-
line. Tabulating requests and blocks requested clearly
involves constant-time operations. Our locality mea-
sure may be computed by simply simulating a col-
lection of LRU caches, updating each of which re-
quires constant time per block accessed. A more el-
egant approach might involve efficient approximate
LRU stack distance algorithms [11]. In practice, our
feature computation code requires under 400 ps per
request to process the full harp trace. This code must
perform several chores not required for online fore-
casting, e.g., it maintains a heap of pending requests;
we believe that a streamlined implementation specif-
ically designed for online forecasting could achieve
much better performance.

6 TheProbabilistic Mode

Recall from Section 4.1 that our task is to induce a
model P(t, |X) from observed (t;,X) pairs. Our starting
point, and our baseline for comparison in our evalu-
ations, is the predictive power of the unconditional



(or prior) distribution P(t;). In practical terms, a pre-
diction based on the prior is simply the distribution of
response times observed in training data. This section
describes the form of our models, the algorithms that
induce them, and refinements added as we broaden
the range of information available to them.

6.1 Adding Locality Information

As described in Section 5.2, we compute a local-
ity feature that approximates the size of the smallest
LRU cache in which every block accessed in a re-
quest would hit. We expect a significant difference
in response time between a request that requires a
transfer from magnetic media versus one that is satis-
fied by the storage array’s cache or an individual disk
cache. We furthermore expect that high-locality re-
quests will tend to hit more often than low-locality
requests (Figure 3).

Let L denote our imperfect locality feature. In or-
der to account for the uncertainty surrounding this
feature we introduce a “hidden state” j, which mod-
els the likelihood that a cache hit occurs somewhere
in the array given L (e.g., array cache hit, disk cache
hit). The variable j is “hidden” because we have no
direct observation of its state. Intuitively, its states
correspond to modes in the t; distribution (Figure 4);
a particular state of j suggests a distribution of re-
sponse times (Figure 3). Probabilistically, we have:

P(t|L) = ZP (tr|L, J) x P(j|L) 1

Since we are summing over all the possible states of
j, the equality is valid. We further simplify this equa-
tion by noting that once we know the state of j (i.e.,
whether we have a cache hit, and in what cache) our
knowledge of response time is not affected by the ev-
idence provided by the L variable. In other words, t;
is probabilistically independent of L, given j.

Zptr

This equation has a natural and intuitive interpreta-
tion. The probability of response time depends on
whether the request was a cache hit (i.e., given by j)
weighted by the probability that a hit occurred given
the evidence in L. In other words the response time is
computed as an expectation over the possibility that
the request hit in a cache. This expectation is neces-
sary because we have no direct access to the several
layers of caches in the device.

P(t/|L) = ) x P(jIL) )

Two questions remain: How are we to statistically
“fit” the distributions in the right hand side of Equa-
tion 2 since we lack explicit samples of the behav-
ior of j? How many states should the variable j
have? We begin by fixing the number of states in j.
To address the first question we use a standard algo-
rithm from statistics called expectation maximization
or EM [5, 24], one of the most powerful and com-
monly used tools in the statistician’s toolKkit.

EM is an iterative algorithm reminiscent of gradi-
ent descent; it searches over a given likelihood func-
tion to obtain a maximum. Informally, the algorithm
proceeds as follows: We initialize the algorithm to
a model represented by a (possibly arbitrary) proba-
bility distribution Py. The algorithm then uses Pg to
compute the expected states for j in each sample of
the training data. Then, it uses this updated sample
set to compute an updated model P’, and alternately
updates data and model until it reaches a fixed point.
This fixed point is guaranteed to be a point of locally
maximal likelihood (i.e., the final model presents a
maximum likelihood to have generated the observed
set of samples). The final state depends on the start-
ing point, as well as on the shape of the likelihood
function. We based our starting point Py on a straight-
forward linear regression over the training data, in-
formed by the variable L (an informed starting point
will accelerate convergence). To address the issue of
local optima, we perturb the solutions obtained and
restart EM from neighboring points.

In order to obtain the number of states for j we per-
form a search, starting with two states and increasing
the number of states looking for the result that yields
maximum likelihood. In order to regularize the max-
imum likelihood score and avoid overfitting we plot
these results and select the number of states where
the gain in likelihood (the first derivative) starts to
decrease significantly.* We find that five states of j
yields good results; this value is used in all of the ex-
periments reported in Section 7.

We still must specify the actual distributions used.
For P(j|L) we used multinomials as both j and L
are discrete variables. We use the standard maximum
likelihood method for fitting the parameters which in
this case reduces to the appropriate frequency counts

4Regularization is necessary because at the limit, we will ob-
tain maximum likelihood where the number of states j is equal
to the number of points in the data. The regularization technique
of plotting the likelihood function versus the number of states in
j, and then selecting the point at the knee of the curve, is one of
many regularization methods.



on the states of j divided by the states of L [5, 9].
We model P(t;|j) with a Gaussian distribution. Note
that this is not as naive as it may seem. Given the fact
that we have an additional degree of freedom with the
number of states of j, we are actually using a mixture
of Gaussians. Given enough states for j, a mixture of
Gaussians can model any distribution, just as given
enough linear segments we can model any function.
Of course we run the danger of overfitting the data,
which in our case we avoid by regularizing on the
number of states. It is not surprising that j =5, i.e., a
mixture of five Gaussians, works well, given the five
prominent modes of Figure 4.

In summary, we model P(t;|L) using a mixture of
Gaussian distributions, informed by the variable L.
We obtain a model that maximizes the likelihood of
the observed data, given the model.

6.2 Adding X: Mixtures of Regressions

We can further refine our model by providing it with
the full feature vector X described in Section 5, which
includes the number of blocks read and the number
and total size of requests pending in various places in
the storage array. Formally, we augment Equation 2
as follows:
P(tr|L,X) =

ZPtr|ijP( j|L,%) ®)

Again, assuming that X contains no information per-
tinent to the relation between j and L (i.e., assuming
statistical independence between j and X given L) we
rewrite Equation 3 as

P(t|L,X) =) P(t]],%) x P(j|L)
J

(4)

The main addition to the previous model is that in
our mixture, we actually take into account the infor-
mation in X. We fit a standard least squares regression
for each member of P(t;| j,%) [26].%. The value of in-
creasing the complexity of the model is given by the
increase in accuracy obtained.

6.3 Classification Model

This model directly addresses the fact that we are in-
terested in distinguishing between two modes of op-

Sstrictly speaking, by performing aleast square regression we
areindeed fi tting a Gaussian distribution, one in which the mean is
linearly dependent on the elements of X.
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eration, fast and slow.® This is a standard pattern
classification problem [5, 13] and we can fit prob-
abilistic models that are specialized for these prob-
lems. Now t; is a discrete variable that takes two
values t;* and t;~, which denote fast and slow re-
spectively. Then we are really interested in finding
whether

P(t"[%,L)
P(t|X,L)

where if d = 0 we are basically saying that if
P(t|X,L) > P(t7|X,L) then the response time will
be fast.” The issue is now, how to fit the conditional
distributions in Equation 5. From the many possibili-
ties we borrowed a convention from the recent pattern
recognition literature, which reportedly yields good
results in domains as diverse as natural language pro-
cessing and systems research. Using Bayes rule we
can rewrite the conditional in Equation 5 as:

P(t")
P(X,L)

Now assuming that all of the members x; of X are in-
dependent of each other given the state of t; and mak-
ing the appropriate substitutions in Equation 5, we
obtain

+d>0

®)

P(7I%,L) = P, LIt (6)

P(t+|7 L) B
POIGD) ")
POt P ., P()
R e B T BTy

This equation has a very intuitive interpretation. It
evaluates the decision as a linear combination (in log
space) of the contribution of each feature in X and L.
This is known as the “naive-Bayes classifier.” The as-
sumption of independence is clearly unrealistic, but
this classifier has a number of advantages that ac-
count for its popularity [12,13]. First it is very robust
to noise in the data. As a consequence it works well
in high dimensional spaces. Note that statistically
we are breaking a high dimensional space (fitting a
conditional distribution on X and t;) into a number
of small dimensional spaces, where we fit univariate
P(xi[t;") distributions. The assumption of indepen-
dence may hurt us in finding the exact probability,

6The generalization where we quantify (discretize) the range
of possible response times t; in a set of fi nite regions of interest
follows directly from the exposition in this subsection.

"The threshold d, denoting how much more probable one re-
sponse time has to be in order to be selected can be adjusted ac-
cording to criteria such as minimizing false-positives, etc.



yet, the important task here is finding the right sepa-
rating surface between the two regions of t and t~
(i.e., fast and slow). We tested a more sophisticated
model that removes this assumption of independence
by fitting a full covariance matrix; accuracy did not
improve for our data.

6.4 Online Forecasting

Our model induction procedures are not very compu-
tationally expensive: the process of automated model
induction, refinement, and testing together took a few
hours for 20 million training data points on an inex-
pensive laptop computer. Currently we regard model
induction as an offline procedure, primarily because
EM is an iterative algorithm. Online EM updating
approaches exist [25], so it may be possible to induce
a model offline and update it online.

Forecasting individual response times is feasible
online. Given an induced model and a feature vec-
tor X, computing a response time forecast P(t;|X) in-
volves only constant-time operations and a constant
number of calls to an error function implementa-
tion (er f () on most Unix systems.) We find that
er f () requires roughly 0.235 ps on an inexpensive
Intel/Linux laptop, and we estimate that P(t;|X) can
be computed in well under one microsecond. For
comparison, the fastest response time in our trace was
exactly 200 ps.

6.5 Data Subsets

Exploratory analysis of the harp trace revealed dis-
tinct regions of the feature vector space that called for
different model parameterizations. We therefore sub-
divide our data in several ways before applying our
forecasting algorithms. A handful of particular val-
ues of our feature vector X account for a large frac-
tion of reads in our trace, e.g., many requests read
eight blocks at times when no requests are pending
anywhere in the storage device. The distribution of
response times for each of these “pathologically pop-
ular” X values spans orders of magnitude, because our
X does not capture all relevant system state, e.g., mov-
ing parts, for these cases. (This is to be expected be-
cause we regard the storage array as a black box; our
feature vector derived, from external observations, is
incomplete.) We have taken the obvious approach of
handling the “pathologically popular” X values sep-
arately. We classify an X value as pathological if
it appears with 1% or more of reads in our training
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set. Exactly seven X values satisfy this criterion, and
38.8% of reads in our warm (training + test) data falls
into this category.

We partition the remaining non-pathological data
according to the number of requests pending any-
where (client host device driver or storage array) at
the time the request is issued. If this number is greater
than twenty the request is placed in the “long queue”
category, otherwise it is designated a “short queue”
request. The threshold of 20 lies just above a nonlin-
ear irregularity in the plot of mean response time vs.
number of pending requests (see Figure 2, “all” se-
ries, lower left). The short- and long-queue data ac-
count for 52.1% and 9.1% of the warm trace, respec-
tively. Finally, we induce and evaluate models sep-
arately for requests destined for each of seven RAID
groups and aggregate accuracy results. This is natural
because, by design, RAID groups are intended to be
largely performance-isolated from one another; fur-
thermore it improves accuracy. We do not consider
requests destined for RAID group 4, which account
for less than 0.6% of the warm trace, because too few
requests access it.

In summary, the distribution Pg(t;|X) for each of
seven RAID groups G is composed of nine distribu-
tions: two for the different regions defined by the
number of pending requests, and seven defined by
the “pathologically popular” instances of X. Thus we
have:

Pai(tr|X,L) i€ {1,...,7},if pathological
Po(tr[X, L) = ¢ Pen(tr|X,L) if > 20 requests pending
Pgi (tr|X,L)  if < 20 requests pending

7 Evaluation & Results

We evaluate the accuracy of our methods by applying
them to a binary classification problem: we define a
boundary between “fast” and “slow” response times,
use a forecasting method to select one of these cat-
egories for each read request in our test set, and re-
port how often we predict correctly. This allows us to
evaluate all of the algorithms described in Section 6
in the same framework. Our mixture-of-regressions
models yield forecasts in the form of weighted sums
of Gaussian distributions over response time; we col-
lapse these to a binary forecast by simply computing
the probability mass in both fast and slow categories
and choosing the more probable. Note that gener-
alizing this approach to more than two categories is
straightforward.



The fast/slow threshold will depend on the appli-
cation in which forecasts are used, and must be cho-
sen tastefully; if it is set too high, for instance, a
trivial forecasting method that always guesses “fast”
will achieve high accuracy. We define response times
no greater than 1472 ps to be fast. This is the low-
est point in the response time distribution between
modes representing “clearly electronic” and “clearly
mechanical” speeds (modes B and D in Figure 4).
36.5% of reads in our training set and 40.5% of reads
in our test set have response times at or below this
threshold. As noted in the discussion surrounding Ta-
ble 1 in Section 5.1, our warm data is divided into
two four-day periods, a training set and a test set. We
induce models based only on the training data and
measure their accuracy using the test set.

Table 2 presents our results. The top row shows the
breakdown of our test set into three categories (patho-
logical, short queue, and long queue); absolute and
relative accuracy data appear beneath.

Overall, forecasts based on the training set’s prior
probabilities alone are correct in 18.6 million out
of 31.5 million test cases—Iless than 60% of the
time. The number of correct predictions increases
to 19.5 million when we take locality into account
(see Section 6.1), roughly a 5% increase in the num-
ber of correct classifications. When we incorpo-
rate all available information—Ilocality as well as
other components of our feature vector—using a
mixture-of-regressions model (Section 6.2) we fore-
cast 21.2 million requests correctly. When we apply
naive-Bayes classification to all available information
(Section 6.3), accuracy increases for both long and
short queues: we classify roughly 21.4 million re-
quests correctly, an increase of 14.7% compared with
the prior.

Predictive accuracy varies within each of the three
subsets of our data. Predictions based on the prior are
slightly worse than a coin toss for the pathological
data, but we correctly classify 9% more transactions
when we take into account all available information.
Sophisticated forecasting methods yield little benefit
when many requests are pending; for the long-queue
data, mixed-regression models yield only modest im-
provement over the prior, and naive-Bayes classifica-
tion reduces accuracy. Simply knowing that queues
are long leads us to predict “slow,” which is right over
95% of the time; roughly 5% of the data fall into the
long-queue category.

The short-queue data represents an interesting in-
termediate point between the long-queue and patho-
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logical subsets, and it accounts for nearly two thirds
of the test data. A diverse variety of feature vector
values are available in the short-queue subset (unlike
in the pathological subset), and prior prediction alone
leaves room for improvement (unlike in the long-
queue subset). In this case, naive-Bayes classifica-
tion increases the number of correct predictions by
over 20%, from 12.2 million to 14.7 million.

Table 3 decomposes our accuracy results by RAID
group for the short queue subset of our data (recall
from Section 6.5 that RAID group 4 is omitted be-
cause very few requests access it). The table shows
that accuracy is higher in some RAID groups than in
others; this is due to differences in workload and per-
haps also to the untraced activity described in Sec-
tion 5.1. Furthermore note that the relative accu-
racy of our two modeling techniques varies by RAID
group, and therefore we can obtain better overall ac-
curacy by selecting the best modeling technique for
each RAID group. In the best case accuracy ap-
proaches 85%.

Itis difficult to compare the accuracy of our model
with that of published alternatives for two reasons.
First, to the best of our knowledge, no models that
predict the response times of individual requests in
enterprise storage systems have been published. Sec-
ond, existing results on the accuracy of response time
forecasts for smaller devices, e.g., individual disks,
compare the distributions of predicted vs. actual re-
sponse times using the “demerit” figure. Demerit
scores do not measure the accuracy of individual
forecasts (see Section 3.4).

Our models associate probabilities with forecasts
(e.g., “the probability that this request will be slow
is 31%”). We can therefore evaluate the calibration
as well as the accuracy of our binary forecasts. A
model is said to be well-calibrated if, on average, it
neither overstates nor understates the probability that
a request will be slow. If a model is well-calibrated,
roughly X% of all requests deemed “slow with prob-
ability X%” are in fact slow. Space limitations pre-
vent us from presenting a detailed evaluation of our
models in terms of calibration and related statisti-
cal “scoring rules” for forecasters [7, 10]. Briefly,
we find that the mixture-of-regressions model yields
well-calibrated predictions; the naive-Bayes classi-
fier is less well calibrated, but by applying correc-
tive procedures we can obtain a well-calibrated naive-
Bayes classifier.



Pathological Short Queue Long Queue Total

#in test set 9,674,514 (30.69%) 20,137,832 (63.89%) 1,708,819 (5.42%) 31,521,165 (100.00%)
Accuracy:

Prior only 4,792,487 (49.69%) 12,191,400 (61.28%) 1,634,494 (95.66%6) 18,618,381 (59.07%)
Locdlity only 5,118,133 (53.07%) 12,769,840 (64.19%) 1,635,043 (95.69%) 19,523,016 (61.94%0)

MR NB MR NB MR NB

All 5,230,095 14,314,920 14,692,070 1,635511 1,432,940 21,180,526 21,355,105
Features (54.23%) (71.95%) (73.85%)  (95.72%)  (83.87%) (67.19%) (67.75%)

Table 2: Number and (percentage) of 1/Os classified correctly. “MR” is mixture-of-regressions (Section 6.2);

“NB” is naive-Bayes classifier (Section 6.3).

RAID group
1 2 3 5 6 7 8
#reads 1,710,023 1,894,178 4,116,476 2,031,880 2,012,381 4,096,683 4,033,536
NB 59.33% 68.38% 78.09% 69.26% 69.07% 76.36% 80.38%
MR 70.08% 70.40% 84.65% 74.59% 74.59% 64.85% 65.08%
Table 3: Number of reads and accuracy by RAID group for short queue data, naive-Bayes classifier (NB) and

mixed-regression model (MR).

8 Discussion

At first glance, forecasting the response times of
individual read requests in enterprise storage ar-
rays might appear to be a hopeless undertaking.
Performance-critical moving parts lie at the bottom of
these devices’ architectural hierarchy, obscured be-
hind opaque layers of controllers, queues, and caches
whose behavior is highly complex and often propri-
etary or undocumented. In addition to these fun-
damental challenges, our investigation considers the
further restriction that only passive observations are
available. Finally, the measurements available to our
induction algorithms were incomplete, because they
pertain to only one of several hosts served by the de-
vice we studied.

Despite these formidable challenges, our results
demonstrate that well-understood statistical methods
can induce informative models of enterprise storage
array performance. The models require relatively lit-
tle knowledge of device internals and relatively lit-
tle domain expertise. Model induction, refinement,
and testing require modest computational resources,
suggesting that statistical approaches can be cost ef-
fective when compared to expert- and knowledge-
intensive analytic and simulation approaches. We be-
lieve that the methods we have used can generalize
easily across a wide range of enterprise storage ar-
rays, because we have incorporated none of XP 512’s
particular characteristics in our work. We further-
more believe that the predictive accuracy of our mod-
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els will improve if controlled experiments are em-
ployed; these can be guided by the induced models
themselves using standard techniques [6].
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