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low-power, The use of avoice-user interface for mobile wireless devices has been an area of interest for some

time. However, these devices are generally limited by computation, memory, and battery energy,

distri bljlt_ed Sp%Ch so performing high quality speech recognition on an embedded device is a difficult challenge. In
recognition, this paper, we investigate the energy consumption of distributed speech recognition (DSR) on the
wirdess HP Labs SmartBadge |1V embedded system and propose optimizations at both the application anc

network layers that reduce the overall energy budget for this application while still maintaining
adequate quality of service for the end-user. We consider energy consumption in both
computation and communication. We present software gotimization techniques that reduce the
energy consumption of the speech signal processing algorithm by 83%. In addition, we estimate
the energy consumption of client-side automatic speech recognition without the use of the
network. We present arange of results such that the upper bound may match the results of server-
based DSR and the lower bound offers reduced functionality (i.e. smaller vocabulary and/or lower
accuracy) but with decreased energy usage. In our analysis of DSR, we consider both 802.11b and
Bluetooth wireless networks. Given the relatively high bit rates these standards provide with
respect to DSR traffic, we investigate the use of synchronous bursty transmission of the data to
maximize the amount of time spent in a low-power or off state. The energy savings can be
significant even with small, imperceptible delays. With 802.11b, we can reduce the energy
consumption of the wireless interface by around 80% with modest application delays of just under
half a second. We include the effects of a Rayleigh fading channel in our analysis and investigate
the result of bit errors on both energy consumption and DSR accuracy. We have shown that DSR
can reduce the required systemwide energy consumption for a speech recognition task by over
95% compared to a software based client-side speech recognition system. These savings include
the software optimizations of the DSR front-end as well as the savings from the decreased duty
cycle of the wireless interface. We have identified the lower bounds on cannel SNR for the
various network traffic types and have shown where it becomes advantageous or necessary to

perform speech recognition on the embedded device.
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Energy Aware Distributed Speech Recognition for
Wireless Mobile Devices

Brian Delaney, Tajana Simunic, Nikil Jayant

Abstract— The use of a voice-user interface for mobile . INTRODUCTION
wireless devices has been an area of interest for some
time. However, these devices are generally limited by The demand for tetherless access to data is driving
computation, memory, and battery energy, so performing the industry toward smaller but more capable wireless
high quality speech recognition on an embedded device yayices. The applications include high-quality wireless
is a difficult challenge. In this paper, we investigate web browsing, multimedia e-mail and messaging ser-

the energy consumption of distributed speech recognition . . .
(DSR) on the HP Labs SmartBadge IV embedded system vices, digital music playback, as well as personal data

and propose optimizations at both the application and Management applications, such as calendar and con-
network layers that reduce the overall energy budget for tact databases. These pocket-sized devices have small
this application while still maintaining adequate quality of screens and tiny keypads, so appropriate use of speech
service for the end-user. We consider energy consumption recognition technology can allow users to interact with
in both computation and communication. We present the system in a natural manner. However, these devices
software optimization techniques that reduce the energy are limited in computation, memory, and battery energy.
co(r:sumpnoq of the speech signal processing algorithm by ¢ mplex speech recognition tasks are difficult to perform
83%. In addition, we estimate the energy consumption of , yho jevice due to these resource limitations. A typical
client-side automatic speech recognition without the use i . . .
of the network. We present a range of results such that speech recognition system consists of a signal processing
the upper bound may match the results of server-based front-end or feature extraction step, followed by a search
DSR and the lower bound offers reduced functionality across acoustic and language models for the most likely
(i.e. smaller vocabulary and/or lower accuracy) but with sentence hypothesis. The signal processing front-end is
decreased energy usage. In our analysis of DSR, wea small portion of the overall computation and storage
cqnsider both _802.11b ar_1d Bluetooth wireless netwo_rks. required. The acoustic and language models typically use
G!ven the relatively high b|t. rates these s.tandards provide g the order of tens of megabytes each of storage with
with respect to DSR waffic, we investigate the use of qjonificant computation required for large vocabulary
synchronous bursty transmission of the data to maximize . .
search. Therefore, distributing the speech recognition

the amount of time spent in a low-power or off state. . . .
The energy savings can be significant even with small across the network is an attractive alternative for these

imperceptible delays. With 802.11b, we can reduce the Mobile wireless devices. In the absence of a network
energy consumption of the wireless interface by around connection, some limited speech recognition may be
80% with modest application delays of just under half performed on the device.

a second. We include the effects of a Rayleigh fading |n distributed speech recognition (DSR), the speech
channel in our analysis and investigate the result of bit features, typically mel-frequency cepstral coefficients
errors on both energy consumption and DSR accuracy. We (MFCC), are calculated at the client and sent over the

have shown that DSR can reduce the required systemwide * . | work t Ei 1 sh block
energy consumption for a speech recognition task by over WIreless network 1o a Server. rigure L Shows a bloc

95% compared to a software based client-side speechdidgram of this system. By only sending the speech
recognition system. These savings include the softwaredata required for machine recognition, we can obtain

optimizations of the DSR front-end as well as the savings better accuracy at lower bit rates than traditional human
from the decreased duty cycle of the wireless interface. perception-based speech coders. This technique has been
We have identified the lower bounds on channel SNR for well-studied in the literature and is more of a client-
_the various network traffic types and have shown where ggper approach than a true distributed computation
it becomes advantageous or necessary to perform speectyjication. The back-end speech recognition search in-
recognition on the embedded device. cluding HMM state output evaluation and Viterbi search

is performed at the server. A true distribution of the

workload across many wireless nodes of equal process-

ing capability would likely cause too much wireless
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Fig. 1. A distributed speech recognition system.

traffic overhead as HMM output probabilities and ViterdPCMCIA interface, and various sensor inputs such as
search best path scores would have to be shared acesdio, temperature, and accelerometers. It runs the Linux
nodes for many thousands of HMM states with higbperating system. The SmartBadge has speech/audio
numerical precision every 10 milliseconds. Therefore, wiriven /O, so speech recognition can provide some level
consider only the client-server approach in distributesf user interaction through a voice-user interface. It sup-
speech recognition. In order to minimize the bit ratgorts a variety of different networking hardware options
the MFCCs are first compressed using some quantizationluding Bluetooth and 802.11b wireless interfaces. The
scheme. The result is a three-step process on the moBiteongARM platform is still used in many high-end
client involving computation, quantization, and commuPDAs in the market today, such as the HP iPAQ H3800.
nication. The resulting text from the speech recognitiofable | shows the total average power dissipation of
process can be sent back to the mobile client or handibe iPAQ with both 802.11b and Bluetooth transmitting
at the server depending on the nature of the applicatiatata as well as without the network. The SmartBadge
While many cellular phones currently have voice
dialing capability, more sophisticated speech recogni-
tion tasks require computation capability beyond what
these devices currently provide. Applications of speech

TABLE |
ENGERY CONSUMPTION OF THEHP IPAQ.

recognition for embedded devices may include e-mail %iga(“on — Power Dissipation (g‘z\’g)
. . . . | no wireless

dictation, web bro_w5|_ng, and sche(_jullng and contacf[ iPAQ (802.11b, Tx) 1929
management applications. Small wireless headset mi- iPAQ (Bluetooth, Tx) 1109

crophones such as those commonly used for hands-free

cellular communication can be used to send commands

to a speech recognition server for command and contfY| uses the same memory and CPU as this version of
within the automobile or other applications requirin§’® IPAQ, but it offers a wider range of hardware based
hands-free interaction. power measurements as well as software simulation

One challenge in designing a speech recognition S)}ggls, thgrefore it .is a'better choice to investigate the
tem for a mobile device is minimizing the total energ{PSues discussed in this paper. Newer PDAs based on

consumption used in the task. The use of CPU, mefhe XScale processor have a similar architecture to the

ory, and the wireless network can cause considerabiEON9ARM, and we expect similar results with these
battery drain if used indiscriminately. In this workPrOcessors. _
we examine the energy usage in a distributed speecti? Section Il, we discuss some related work. Sec-
recognition system with respect to the quality-of-servidi®n Il includes a discussion on the energy consumption
metrics pertinent to this application. We consider bofff & Signal processing front-end as well as an estimation
communication- and computation-related energy draigh the energy consumption of client-side ASR. In Sec-
and propose techniques to minimize energy usage in bgfif! IV, we discuss the energy used in communication
areas while maintaining a useful level of service for th@" Poth 802.11b and Bluetooth. Finally, we present a
end-user. Finally, we compare the energy consumptiBHmmary in Section V and conclusions in Section VI.
of both client-side speech recognition and DSR using
two different network interfaces. Il. RELATED WORK

The embedded system used in the experiments isEarlier work on distributed speech recogntion consid-
the SmartBadge IV embedded system developed at #red the effects of communication over cellular networks.
Mobile and Media Systems Lab at HP Labs [1]. ThA& method for increased robustness against both impul-
SmartBadge contains a 206 MHz StrongARM-1110 praive noise and loss over GSM networks was presented
cessor, StrongARM-1111 co-processor, Flash, SRAN, [2]. The effects of using coded speech in ASR was



presented in [3]. Low bit rate speech coders, such taffic shaping to exploit battery lifetime of portable
those used in cellular telelphony, exhibited significamtevices were proposed in [12]. A physical layer aware
reductions in ASR accuracy. In an attempt to allevscheduling algorithm aimed at efficient management
ate the effects of low bit rate speech coders, cepstddlsleep modes in sensor network nodes is illustrated
coefficients were calculated directly from the wireless [13]. Energy efficiency can be improved at the data
bitstream in [4]. While this offered some improvementink layer by performing adaptive packet length and
a fundamental limitation is that traditional speech coarror control [14]. At the protocol level, there have
ing techniques are aimed at human and not machibeen attempts to improve the efficiency of the standard
listeners. The spectral distortion introduced by spee8f2.11b, and proposals for new protocols [15]-[17].
coding is designed to have minimum impact on humdacket scheduling strategies also can be used to reduce
listeners, but speech recognizers rely solely on thise energy consumption of transmit power. In [18],
spectral information. The result is that currently deplbyeauthors propose th&?W F(Q scheduling policies based
low-bit rate speech coding techniques are not suitable fan Dynamic Modulation Scaling. A small price in packet
high-quality ASR applications. latency is traded for the reduced energy consumption. A
More recent work on DSR can be grouped into twserver-driven scheduling methodology aimed at reducing
main areas, those that attempt to design ASR-friendhpwer consumption for streaming MPEG4 video was
speech coders, such as the work done in [5], amdroduced in [19]. Savings of as much as 50% in WLAN
those that assume to communicate only with a spegobwer consumption, relative to just using 802.11b power
recognition system. We consider the latter, where ontyanagement, were reported.
the spectral information needs to be included, which Traditional system-level power management tech-
can result in better performance with lower bit-ratesqiques are divided into those aimed at shutting down
Additionally, this communication can occur over lessomponents and policies that dynamically scale down
expensive or shorter range links such as 802.11b micessing voltage and frequency [20], [21]. Energy-
Bluetooth. Previous work this area has been mainferformance tradeoffs based on application needs have
focused on techniques for the quantization of speebben recently addressed [22]. Several authors exploit the
parameters and robustness to loss or errors from wirelesgrgy-QoS tradeoff [23]-[26]. A different approach is to
transmission. Vector quantization is the dominant corperform transcoding and traffic smoothing at the server
pression technique with bit rates in the low kbps rangside by exploiting estimation of energy budget at the
In [6], a two-stage vector quantizer was used to achieghkents [27]. A new communication system, consisting
a fixed rate of 4.0 kbps with little loss of recognitiorof a server, clients and proxies, that reduces the energy
accuracy. A scalable quantization scheme was developethsumption of 802.11b compliant portable devices by
for bit rates ranging from less than 1 kbps to around ekploiting a secondary low-power channel is presented
kbps in [7]. A wider range of quantization schemes was [28]. Since multimedia applications are often most de-
investigated in [8] with the best performance cominganding of system resources, a few researchers studied
from an intra-frame product code vector quantizer. Biyie cooperation between such applications and the OS
exploiting the correlation between successive framessave energy [29]-[32].
of speech, an inter-frame vector quantizer can achieve
greater recognition accuracy with lower bit rates as
shown in [9]. The ETSI Aurora DSR standard includes
a simple intra-frame vector quantizer with some error
detection, concealment, and framing techniques in [10]. The computation of speech features is a small portion
A low-power DSP solution that uses less than 1mW aff the overall speech recognition task in both computa-
power and conforms to the ETSI standard is presentéah and memory usage. Client-side ASR require more
in [11]. However, given that a wireless interface caoomputation and memory bandwidth due to the back-end
consume more than half the total power on an embeddsasghrch algorithm. Table Il shows the average cycle count
device, efficient use of the radio in DSR is an importamd process one frame of speech in the Sphinx-lll large
consideration. This work considers the application ebcabulary speech recognition system. The results were
DSR traffic to both Bluetooth and 802.11b networks. obtained on a 1.4 GHz Pentium 4 workstation. The total
The wireless network power optimization problem hgsrocessing for the front-end is less than one percent of
been addressed at different abstraction layers, startthg overall computation, with the majority of time being
from the semiconductor device level to the system amsgent in the hidden Markov modeling step. Porting a full
application level. Energy efficient channel coding anspbeech recognition sytem to a mobile device requires

[1l. M ODELING THE ENERGY USED IN
COMPUTATION



more optimization than a simple conversion to fixedspeed, but also power optimization, since the battery life-
point arithmetic. It involves optimization at many levelstime in such devices is very limited. This work discusses
from search space reduction to fast arithmetic kerndisth the source-code and the run-time optimizations.
and techniques to reduce memory bandwidth. For thesel'he source code optimizations can be grouped into
reasons, we concentrate our software optimization on e categories. The first category, architectural opti-
signal processing front-end only, and estimate the futlizations, aims to reduce power consumption while
client-side ASR energy usage by using some publishedreasing speed by using optimization methods targeted
results [33]. to a particular processor or platform (e.g. an embedded
system with no floating-point hardware). Ideally, many
of these optimizations should be done by a compiler.
However, currently available compilers for most em-
bedded systems do not have these optimizations built-

TABLE I
CYCLE COUNTS FOR THE FRONTEND, GAUSSIAN EVALUATION,
AND VITERBI SEARCH PORTIONS OF SPEECH RECOGNITION

Module Avg. Cycles/Frame % of total i |n addition, measurements presented in [35] show
Front-End 7.22 x 10 0.4% that the i ts that b ined . tandard
Hidden Markov Model 1.21 x 107 32.63% a _e |mpr_ov_em_en S that can k € gained using s an ar
Viterbi Search 5.88 x 10° 66.97% compiler optimizations are marginal compared to writing

energy efficient source code. The second category of
source code optimizations is more general and involves
Client-side ASR may be necessary to maintain iRhanges in the algorithmic implementation of the source

teractivity with the mobile device when the network i$.qge with the goal of faster performance with less power
not present. We compare these results with DSR Un@%’nsumption.
various channel conditions, error correction methods, andthe final optimization presented in this work, dynamic
packet sizes to show the benefits of DSR from an enerfg@ytage scaling (DVS), is the most general since it can
consumption perspective. Through the use of algorithmjg applied at run-time without any changes to the source
and architectural optimization in software, we can reduggge. Dynamic voltage scaling algorithms reduce energy
the energy consumption of the signal processing fro"Honsumption by changing processor speed and voltage
end by 83%. These savings can be enhanced by the 4g@n-time depending on the needs of the applications
of runtime dynamic voltage scaling (DVS) techniques.running. The maximum power savings obtained with

DVS are proportional to the savings in frequency and
A. Signal Processing Front-End to the square of voltage.

The acoustic observations generated by the signall_) Architectural Optimization':SignaI processing al-
processing front-end or “feature extraction” step a®Prithms, such as the calculation of the mel-frequency
mel-frequency cepstral coefficients. Mel-frequency Ce%%epstrum, are generally mathematically intensive, there-

stral coefficients are calculated using the real cepstrufff€ @ significant amount of effort was spent in optimiz-
defined as the inverse Fourier transform of the 1dg9 the arithmetic. In addition, simple C code optimiza-
tions were employed to help the compiler generate more

spectrum: o
| efficient code [36].
cs(n) = — log |S(w)| 9 d, (1) Profiling of the source code on a StrongARM simu-
21 lator revealed that over 90% of the time was spent in

where S(w) is the spectrum of the speech signafloating-point emulation. The StrongARM has no on-
The most common set of features consists of 13 mehip floating-point processor, so all floating-point opera-
frequency cepstral coefficients computed every 10nmi&ns must be emulated in software. Simply changing
Secondary features, consisting of first and second tifftem double to single precision floats improved the
derivatives of the cepstrum, also are used, but they gagrformance considerably. However, profiling showed
be calculated easily at the server. A more in depthat 80% of the time was still being spent in floating
discussion of the theory and properties of the cepstrymint emulation. Any further gains require fixed-point
can be found in [34]. arithmetic.

In practice, the calculation of MFCCs requires filtering Fixed-point arithmetic uses scaled integers to perform
and windowing operations, a magnitude FFT calculatiobasic math functions using the existing integer hardware.
a filter-bank operation, a logarithm operation, and Bhe scaling factor (or location of the decimal point) is
discrete cosine transform. Implementing the front-erfiked at design time and is designated @y, wheren
feature extraction for a distributed speech recognitias the number of bits to the right of the decimal. The
system on an embedded platform requires not orasic rules of arithmetic still hold; adding two numbers



requires that the decimal points must line up. Multiplyin@ne final adjustment must be made whers itself a
two numbers inQn format yields a number iQ2n fixed-point number i) format, which is just a scaled
format. integer:

Implementing a pre-emphasis filter and Hamming .
window using fixed-point arithmetic is straight-forward. In (27) = [logy(z) — logy(2")] In(2) (5)
Fixed-point FFTs are well studied and have often been
implemented on digital signal processor chips. After
passing the input frame through the FFT, the mel filter 1“(
bank must be applied. The filter bank amplitudes are
calculated using the squared magnitude. This preseR@iuation (6) is the expression used to calculate the
some challenges since this squared number multiplig@tural log of a fixed-point number. Using precision of
by the filter coefficientsH;[k], can easily overflow the Q3, this estimate of the logarithm has a maximum error
32-bit registers. A 64-bit result can be obtained froraf around 0.152 and an average error of around 0.0866.
the StrongARM multiplier using assembly language, but 2) Algorithmic Optimization:Profiling of the original
overflow can be avoided S|mp|y by rewriting the filtepource code under a StrongARM simulator revealed that

g

o) = logy () - nln(2 (6)

bank equation to use just the magnitude: most of the execution time was spent in the computation
of the DFT (which is implemented as an FFT). Since
N/2 2 speech is a real-valued signal, Anpoint complex FFT
Y=Y <|XW \/Hz'[k]> (2) can be reduced to aw/2-point real FFT [39]. Some
k=0

further processing of the output is required to get the
This avoids overflow since;[k] < 1, therefore the desired result, but this overhead is minimal compared to
result of each multiplication is small. The coefficientdhe reduction in computation. Additional savings can be
VH;[K], are stored in a lookup table. obtained when the trigonometric functions used in the
The one drawback to this method is that computirfg?MPutation of the FFT are pre-computed and stored in
the magnitude spectrum requires a square root operatidri®CKUP table, thus eliminating multiple function calls
Fast integer square root algorithms exist, but they midtthe FFT loop. _ _ _
be used on each output from the FFT, which is costly. 3) Dynamic Voltage ScalingOnce the code is opti-
Fortunately, the magnitude can be estimated as a lin83i¢ed for both power consumption and speed, further

combination of the real and imaginary parts using tH&vings are possible by changing the processing fre-
following equation [37]: quency and voltage at run-time. In this work, we investi-

gate the savings possible with DVS for the front-end of a
2| ~ amax(|R{z}|,|${z}) + fmin(R{z}|,|S{z}|) SPeech recognizer running on Smartbadge IV hardware.
(3) The StrongARM processor on Smartbadge IV can be
wherea and 8 are chosen to minimize a particular kindonfigured at run-time by a simple write to a hardware
of error, andR{z} and 3{z} represent the real andregister to execute at one of eleven different frequencies.
imaginary parts of the complex number This formula Note that the number of frequencies is predefined by the
rotates a complex phasor to betweand /4 radians design of the StrongARM processor. We measured the
and then takes a linear combination of the real ad@nsition time between two different frequency settings
imaginary parts. The values ef and § are chosen to at 150 microseconds. Since typical processing time for
have an easy fixed-point representation that minimiz# front-end is much longer than the transition time, it is
the mean error. possible to change the CPU frequency without perceiv-
Computing the first 13 coefficients of the DCT igble overhead. For each frequency, there is a minimum
relatively easy to do in fixed-point arithmetic, but takingoltage the SA-1110 needs in order to run correctly,
the natural logarithm is a more difficult task. HoweveRuUt with lower energy consumption. The easiest way to
there is an interesting algorithm to estimaites,(z) determine the lowest possible frequency and voltage for
using simple bit manipulation, which is faster than oth&uch stand alone application is to run it at all possible
methods of calculating the logarithm. This algorithnfrequency settings, with voltage set to minimum allowed,
described in [38], is very low in complexity and give@nd observe if the code still runs in real time. In our
an approximate fixed-point result. THe(z) can be Ccase, we obtained real time performance at all possible
determined by multiplying by a constant as follows: frequency and voltage settings.
4) Software Optimization Result$hree main criteria
In(z) = logy(x) In(2) (4) are considered in order to evaluate the effectiveness of a



particular optimization: performance (in terms of procesnale and female speakers. The original floating point
sor cycle count), energy consumption, and accuracy foont-end was used to generate mel-frequency cepstral
word error rate (WER). Simulation results for processingpefficients for the training set. No secondary features
one frame (25ms) of speech on the Smartbadge (first and second time derivatives of the mel-frequency
architecture running at 202.4 MHz are shown in Figure 2epstrum) were used in the training or test phases.
The x-axis shows the source code in various stagEe trained speech models were then used to recognize
of optimization. The “baseline” source code contairgpeech from the TIDIGITS test set of 8,700 utterances.
no software optimizations. The “optimized float” coddhe WER was calculated using the various front-end
contains the set of optimizations described in section lilmplementations and is shown in Table Ill. There is
A.2 as well as some of the C source optimizations daee loss in accuracy among the three floating-point im-
scribed in [36]. Double precision floating-point numberglementations, but the fixed-point implementation uses
were changed to single precision 32-bit floats in th@me approximate algorithms which can create a slight
“32-bit float” version of the code. Finally, the “fixed-mismatch between the training and test data. We were
point” implementation contains all of the source codable to eliminate the slight 0.1% increase in WER by
optimizations described in this paper. For each versionwding the fixed-point front-end during the training phase.
the code, we report the performance (in CPU cycles) ahdaddition, Table 11l shows a minimal increase in lookup
the total battery energy consumed (i¥ihrs). The simu- table size and code size, so the memory requirements
lation results are computed by the cycle-accurate enefgy the fixed-point optimized code are about the same.
simulator, and include processor core and level 1 cachrother performance metric reported in Table Il is how
energy, interconnect and pin energy, energy used by tbhag it took for each code implementation to process 1
memory, losses from the DC/DC converter, and battesgcond of speech at the processor clock speed of 202.4
inefficiency [35]. The reduction in energy consumptioMHz (Time column). The fixed-point version runs 34
is not as dramatic as the performance improvement fimes faster than the baseline system.

the fixed-point version due to an increase in memory

references per unit time. In fixed-point code, basic math TABLE Il

operations are reduced to a few cycles as opposed to TIDIGITS TEST SET RESULTS

long iterations of floating-point emulation which do not

require as many memory references. However, we haye Code size| Lookup table| Time | WER

still achieved a reduction in the total battery energ | (Bytes) (Ejytes) (sec) | %

: Baseline 29704 N/A 1.510 | 4.2%
0/

required to process one frame of speech data by 83.5 Bptimized Float| 31960 88170 0659 T 45%
32-bit Float 31272 88120 0.235| 4.2%
Fixed-Point 33124 88136 0.043| 4.3%

Performance (# CPU Cycles) ——Energy (uWhrs)

3500000 T 0.7

3000000 + + 0.6

Because the fixed-point code runs much faster than

2500000 |- o8 real-time at 202.4MHz, it is possible to get further
g 20000001 Toa, reductions in power usage by using DVS as discussed
& 1500000 | 1.3 in section 11l-A.3. The results from this experiment are

shown in Table IV. These power measurements are per-
formed on the Smartbadge IV system running the eCos
embedded operating system and using the WavelLAN
o ommerren s mesrom " card to transmit the uncompressed cepstral parameters.
Source Gode Version The P,,, measurement is taken from the main power
supply output. At 59 MHz the algorithm still runs in
Fig. 2. Performance and energy consumption per frame ofcspeel€@l-time, and the system uses 34.7% less power than at
206 MHz. Combining the DVS results with the source
To verify that the approximations used in this softwareode optimizations, we calculate the overall reduction in
optimization do not introduce significant noise to thpower consumption to be 89.2%.
output speech parameters, we tested the front-end with &) Vector QuantizationfFinally, we include the fixed-
digit recognition task. The results are shown in Table llpoint vector quantization code in our profiling and con-
A continuous digit speech recognizer was trained usisgler different bit rates and quantization levels. Althibug
the TIDIGITS database of 8,623 utterances from bo#tome differing techniques have been proposed, the most

1000000 + +0.2

500000 + +0.1




TABLE IV TABLE V

MEASUREDPOWER CONSUMPTION WITHDVS. WORD ERROR RATE FOR SEVERAL BIT RATE$8].
Description | Bit rate (kbps)| WER (%)

Frequency \oltaged Py VQ-12 1.2 16.79

(MHz) ) | (mw) VQ-14 1.4 11.71
59 0.78] 1721 VQ-16 1.6 9.3
74 0.94| 1807 VQ-18 1.8 8.1
89 1.09| 1901 VQ-19 1.9 6.99
103 1.21| 2029 VQ-20 2.0 6.63

118 1.33]| 2114 VQ-42 4.2 ~ 6.55
132 1.42| 2234 16kHz 256 6.55

147 1.51| 2320
162 1.57| 2432
176 1.63| 2508

%gé 1-2; gggg only 12% of the total energy budget. This suggests that
: speeding up the quantization process by using smaller
codebooks would produce minimal reductions in energy

consumption and would have a much greater impact on

common technique for compressing MFCCs is sonf@€€ch recognition accuracy.
form of vector quantization. In vector quantization, we
train a set of codebooks against some speech data| so00 900
These codebooks contain a set of centroids representing o0 | T oo
the clusters that occur in the training data. We simply opedl o
transmit the centroid index for each codebook. Smaller 25.00 + 1 800
codebooks will result in a noisy representation of the 15.00 |

20.00 + -+ 780
original signal, and speech recognition accuracy will 10.00

ul

mw

+ 760
+ 740

5.00 +
degrade. 0.00

-+ 720
+ 700
For our system, we used an intra-frame product code
vector quantization scheme presented in [8]. We used the
existing bit allocation in [8] to train a set of codebooks
using a K-means training algorithm with bit rates ranging .
from 1.2 kbps to 2.0 kbps. We have added an additio A9 3. Computational energy usage and measured averager pow
. o R or different quantization bit allocation schemes.
bit allocation that is similar to the ETSI standard that
will operate at 4.2kbps [10]. The actual bit rate needed
for a speech recognition task depends on many fact(?

such as acoustic and speaker conditions as well as
vocabulary size and complexity of the acoustic mod Sime of speech for the quantization step, and the

used. In [8], the range of bit rates was evaluated 1:Orliﬂe represents the measured CPU power dissipation at

small vocabulary task under ideal acoustic conditiongaCh bit rate. The measured values closely match the

We can expect the wp_rd error rate (WER) to NCreA&sults from the energy consumption simulator. Those
under less ideal conditions (i.e. larger vocabulary, MOI& the smaller bit rates (i.e. 1.2 kbps to 1.6 kbps)
acoustic background noise, etc.) Table V shows tl?)?fer the poorest speech recognition performance and

resulting bit rates and word error rates from [8] on th&O not save very much battery energy when compared

rowslgabelled VQ-hX]2<. whefTehfo;SE éh‘;’ m;nrlbsr 0(; b_':%/ith the overall computation. There is approximately a
per ms speech frame. 1he or full bandwidth;o4, jcrease in CPU power consumption but a greater

speech at 16 kHz and 16 bits per sample (256 kbps) A2n 50% reduction in WER between the highest and
0,
6.55%. lowest bit rates. Therefore, we advocate the use of higher

Source code to perform the quantization of the MFCGhy more robust bit rates since the reduction in energy
data was written in fixed point for the StrongARMconsumption is minimal.

processor and profiled using the energy consumption

simulator. The total energy consumption required to cal- _

culate MFFCs for one frame of speech including vect& Client-Side ASR

guantization at 4.2 kbps is approximatedy0 pJoules.  In the absence of a network connection it may be nec-
Even at the highest bit rate, the vector quantization éssary to perform ASR on the mobile device. Speaker-

1.2 1.4 1.6 1.8 1.9 2.0 4.2
Bit rate (kbps)

‘-CPU Energy Consumption (uJ) —e— Awy. Measured CPU Power (mW) ‘

Figure 3 shows a comparison of energy consumption
P various vector guantization bit allocation schemes.
bars represent the total energy consumption per



dependent speech recognition engines have been oatiross a set of equally constrained mobile devices is not
mized for the StrongARM or other mobile processors bgonsidered here.
many industry players, but it has been shown that theyGiven the relatively low bit rates used in DSR, both
use most available resources and may run several tineéshese networks will operate well below their maxium
slower than real-time for many tasks. Power measutifoughput range. In this situation, more energy saving
ments for an embedded dictation ASR system runnimgportunities will develop from exploiting moderate in-
on a StrongARM based processor are given in [33]. Tlegeases in application latency by transmitting more data
ASR system ran just over 2.5 times real-time, and ttess often. This allows the network interface to either
processor was almost never idle during the task. be powered down or placed into a low-power state in
For the purposes of this work, it is sufficient tdetween transmissions. Other wireless networks with
describe the energy requirements for local ASR as thwoughput in the low kbps range, such as many cellular
product of the average power dissipation of the processelephony networks, may require other techniques, such
and memory under load and the time required to perforas better compression, to minimize energy consumption.
the speech recognition task. For the Smartbadge IV, Wewever, we do not consider such wireless networks
have measured the average CPU and memory powere.
dissipation as”.,, = 694 mW andF,,.,, = 1115 mW In order to estimate the power consumption for wire-
when under load. Given the real-time factBrfor the less transmission, we directly measured the average
speech recognition task, we can estimate the enemyrent into the network interface. These measurements
consumption to recognize one frame of speech as: were performed under ideal conditions with no compet-
ing mobile hosts or excessive interference. Using these
Eiocat = (Pepu + Prem) X B X —— (7) measurements as a baseline, we are able to tailor a simple
energy consumption model to investigate the effects of
increased application latency. By buffering compressed

2.5 t'm?S slower than real-time, we can expect to Upeech features, we maximize the amount of time spent
approximately 45 mJ of battery energy to process o the low-power or off state. We introduce a power

;ramﬁ Off speeck(lj. Colmparedthls V\rl]'th Just ;_r]:fder 0.4 r%/oﬁ scheduling algorithm for the 802.11b device that
or the r.ont—en only, and we have a diflerence IBxploits this increased latency. Given the medium access
cqmputgtlon energy of sev_ergl orders of magn'tUde,f%ntrol (MAC) scheme for both 802.11b and Bluetooth,
client side ASR VS the d'.St”bUted sys_tem. By USINGe can incorporate the effects of channel errors into
smalle_r vocabul_anes a_nd simpler acous_nc and Iangqug energy model. We use these results to investigate
modeling techniques, it should be possible to lower ﬂWEich techniques should be used to maintain a minimum

togal ruorll—nm;a and eneEy ((:jonSlémEch){n at kthe CC_)St ality of service for the speech recognition task with
reduced performance. A reduce task running ‘lyspect to channel conditions.

real-time on a SmartBadge IV would use approximate
18 mJ of energy per frame of speech, but the tradeoffis g02 11b Wireless Networks
reduced utility for the end-user.

Therefore, for a speech recognition task that riihs-

The 802.11b interface operates at a maximum bit rate
of 11 Mbps with a maximum range of 100 meters. The
MAC protocol is based on a carrier sense multiple ac-
cess/collision avoidance scheme, which includes a binary

The wireless network can use significant amounts ekponential backoff system to avoid collision. It uses an
energy on a mobile device. Measurements on the Smattomatic repeat request (ARQ) system with CRC error
Badge IV hardware show that an 802.11b interface caddtection to maintain data integrity. We used a PCMCIA
can use up to 45% of the total power budget. Reduci8@2.11b interface card and measured the average current
the energy consumption is an important consideratigoing into the interface to get the power dissipation.
and has been well studied. Section Il outlines some ofOur measurements indicate that there is only a differ-
the technigues. We consider both 802.11b and Bluetoathce of a few mW in power consumption between the
wireless networks in our analysis. We assume singighest and lowest bit rates. This is expected since the bit
hop communication with a speech recognition serveates are low, and the transmit times are very short. Also,
connected to a wired network via a wireless accet®e use of UDP/IP protocol stacks and 802.11b MAC
point. Multi-hop communication has limited utility forlayer protocols both add significant overhead for small
this application as it is a client-server scenario over linpacket sizes. The 11 Mbps WLAN interface is under-
ited range wireless links. Distributing the computationtilized with this type of low bit rate traffic. However,

IV. MODELING THE ENERGY USED IN
COMMUNICATION



we can obtain some improvement in power consumption 2,
by increasing the number of frames per packet.This s
increases the total delay of the system, but less battery J
energy is used since the various networking overhead 2]
is amortized across a larger packet size. However, due W‘
to the relatively high data rates provided by 802.11b, ‘
the WLAN interface spends most of its time waiting 04]ﬂ

for the next packet to transmit. The 802.11b PM mode 02
can provide some savings in energy consumption but 0
this does not hold under heavy broadcast traffic con-
ditions [19], defined as a higher than average amount
of broadcast packets. We present an on/off scheduling (a) light traffic
algorithm to reduce the total energy consumption of the
802.11b device under these conditions. While operating 2
in the 802.11b power management mode, a WLAN
card goes into an idle state. Every 100ms it wakes up 14
and receives a traffic indication map, which is used to 124
indicate when the base station will be transmitting data to
this particular mobile host. With heavy broadcast traffic, 06

the WLAN interface will rarely be in the idle state and 04

it will consume power as if it were in the always-on 021
mode. This is because the time required to analyze the -y
broadcast packets is larger than the sleep interveral. This time (10-4sec)
increase in power consumption will happen even if there
are no applications running on the mobile host. Figure 4 (b) heavy traffic

shows the power consumption of the WLAN card in the

802.11b power management mode in both heavy ang. 4. WLAN power consumption in 802.11b PM mode in light
light traffic conditions. Notice that in the bottom graphand heavy traffic conditions.

under heavy traffic, the card is unable to transition to

3e g

213

85828 R888Y

time (104 sec)

Power(W)

the low-power idle state very often. The average power [+ T | | =

approaches the always-on mode. Pon Tpack on Ttx |
Since the energy consumption of PM mode on 802.11b 2 ‘ —

networks breaks down in heavy traffic conditions, we

consider an alternate algorithm. If we are only interested§ Psave

in transmitting speech recognition related traffic and not s~

any other broadcast traffic, we can simply power off

the WLAN card until we have buffered enough data to Time

transmit. However, powering the card on and off has an
energy related cost that needs to be accounted for. Fig. 5. The timing of the 802.11b scheduling algorithm.

Figure 5 shows the timing of this scheduling algo-
rithm. The period,T, is determined by the number of
speech frames sent in one packet. The transmissiorisigaken by the mobile device. A server that is able
synchronous such that eveffy seconds we will sendto process speech faster than real-time will be able to
that amount of compressed speech features and stayeiduce this delay but not eliminate it completely. The
the off state for the remainder of the time. With largestmount of tolerable delay depends on the application.
values ofT" we can hope to amortize the cost of turningor user interface applications, such as web browsing, a
the WLAN card on and off at the expense of longaralendar application, or a voice-driven MP3 player, it is
delay. Assuming that a speech recognizer server is alfgortant to reduce the delay to maintain interactivity.
to process speech at or near real-time, the user vilelays of around one second may hardly be noticed by
experience delay near the value’®df For an interactive the user, whereas delays of around three seconds or more
application the total delay seen by the user begins wheray hinder interactivity. For a dictation application, buc
the user stops speaking and ends when some act@ne-mail, this delay is less important. In this case, the
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use simply dictates a response, and corrections or editgorithm except for very small values &« _on- (Typ-
can occur after the speech-to-text process is complet&al values may range from 100ms to 300ms.) However,
Assuming the average power for the always on WLAR heavy traffic conditions, the PM mode approaches
mode is P,,, the total energy required to transnit the always on power consumption (shown by the top
seconds of speech frames can be estimated as: line in the plot), so the scheduling algorithm can give
E P xT (8) better performance under these conditigns. Wihi on .
on on at 100ms, the total energy consumption per packet is
Similarly, the total amount of energy required to transmipproximately 75 mJ for the scheduling algorithm and
in power management mode is: approximately 390 mJ for PM mode in heavy traffic
conditions (from figure 6). This is a reduction in energy
consumption by about 80%. However, this only holds
where bothP,,,. and P,, are the measured averag&ue for heavy broadcast traffic conditions, so the mobile
power values at the particu]ar bit rates and numb@?Vice will have to monitor the broadcast traffic and
of Speech frames per packet_ These data values V\,@ﬁ@lde between the standard 802.11b PM mode or the
measured directly off the WLAN hardware. scheduling algorithm.
Using the proposed scheduling algorithm, the WLAN
card will be on only during the shaded region in figure 5.

Esave = Fsave X T (9)

The value, Tyuck on, iS the amount of time required to T T
turn the WLAN card back on, during which time it uses -
power as if it were transmitting. The valdg, is the =
total amount of time required to transmit the data, which E N

is typically much smaller thafl},,.;_,, for the low bit
rates required for speech traffic. The energy required to
transmit under the proposed scheduling algorithm is:

o P N W DO O N 0 ©
T

\Aﬁ

t t t t t t t t t t
10 20 40 60 80 100 200 300 400 600 800 1000 2000

Esched = Pon X (Tback_on + Tta:) (10) Latency (ms)

‘+ Eon (mJ) —=— Esave (mJ) —— Esched (mJ) ‘

N
o
S

..... fmemememccmecmcecmea e Fig. 7. Average energy consumption per 10ms speech franizSR.

3500 - = Power management (w/heavy traffic) | latency for various 802.11b power save schemes. (WLAN pawer
== Power management (ideal) delay is fixed at 100ms.)
= Power down scheduling

300
Finally, we consider increased delay or lateriEy,in
Figure 7. withT},..x_on fixed at 200ms. In this plot, the
energy cost was determined using measured values of
power consumption. The energy cost has been normal-
ized to show the average energy required to transmit one
frame of speech data. As the total number of frames
- approaches 807( = 800ms), we can see that the
scheduling algorithmH;,.q) Will be able to outperform
%0 100 150 200 250 300 350 400 the PM mode configurationf,,.) regardless of traffic
WLAN Power on Delay (ms) conditions. This will result in less than one second
Fig. 6. WaveLAN power on delay vs. energy consumption pé?f delay for a user interface application with speech
packet. recognition. Shorter power offy,.x_.,) times can help
move this crossover point to shorter delays. Longer
The two interesting parameters to consider are tdelays of two seconds or more can further reduce energy
power on time Tyuct_on) and the number of speechconsumption and are good candidates for applications
frames transmitted at once, which dictates the totadquiring lower interactivity such as dictation.
period T. Figure 6 shows the power on delay on the Since the 802.11b MAC protocol uses an automatic-
x-axis and estimated energy consumption on the y-axispeat-request (ARQ) protocol with CRC error detection
We fixed the value ofl" to 0.48 seconds, or 48 framego maintain data integrity, the energy consumption will
of speech data. The PM mode configuration in light trabe a function of channel SNR. After the reception of
fic almost always outperforms the proposed scheduliaggood packet, an ACK is sent across a robust control
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1001
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channel. For a given bit error rate and packet length, tBe Bluetooth Personal Area Network

probability of a packet error in the absence of any error The Bjuetooth personal area network provides a max-
correction coding techniques is: imum bit rate of 1 Mbps, and a variety of different
P.=1-(1 - BER)" (11) pack_et types are available to support differgnt traff_ic
requirements [43]. It supports a range that is consid-
where L is the packet length, anB FR is the bit error erably less than 802.11b, on the order of 10 meters.
probability for the current channel conditions. For ouBluetooth supports both data and voice traffic packets
analysis, we used the BER probability for 256-QAMis well as a hybrid packet containing both voice and
modulation in a Rayleigh fading channel to approximattata. Media access is handled via a time-division duplex
the 802.11b CCK modulation. A Rayleigh fading chan-TDD) scheme where each time slot lasts g&gconds.
nel models the effect of time-varying multipath fading/oice packets are given priority over data packets in
of the received signal by accounting for constructive arstheduling. In this work, we consider only pure voice or
destructive interference of the scattered carrier signplre data packets. Data packets are available in both high
The Rayleigh fading channel asssumption is widehlate and medium rate packets. These are DHn or DMn
used in wireless communications literature as a maopackets for both high and medium data rate respectively,
realistic alternative to an additive white Gaussian noisenere n depicts the number of TDD slots the packet
channel [40]. The BER expression for the 256-QAMccupies: 1, 3, or 5. High rate packets use a stop-and-

modulation is: wait automatic-repeat-request (ARQ) protocol with CRC
gh—1 M-I (_1)m+1(M,1) error detection within the packet. Medium r_ate packet.s
BER = m (12) use a 2/3 rate (15,10) shortened Hamming code in

26 =1 = 1T+ m+2my addition to the ARQ protocol. Voice packets, due to their

where+, is the SNR per bitM = 8, andk = 4. time-sensitive nature, _do not use an ARQ protocol. Voice

Given the probability of retransmissior?,(), the ex- Packets are available in HV1, HVZ2, or HV3 types, where
pected number of retransmissioris ) is given by [41]; the number denotes the amount of error correction rather

than slot length. All voice packets occupy one TDD slot

= (13) with varying data payloads. HV3 packets use no error
1-F correction. HV2 packets use the (15,10) Hamming code,
Using these equations, an energy model can be camd HV1 packets use a 1/3 rate repetition code. Given
structed that incorporates the energy used in the MABe soft time deadlines with speech data intended for a
overhead as well as the energy required for repeatedchine listener, we can easily use either data packets

retransmissions, assuming the average SNR remains @h&oice packets without consideration of packet jitter or

same. Such an energy model is presented in [42] anddisday characteristics.

summarized here: First we develop a simple model for the energy con-
sumption of a single Bluetooth voice or data packet. We

By (BER, L) = Eoq + Tock X Prat then consider the use of Bluetooth power saving modes

(FBag + Tye X Pyg) X W (14) to reduce the energy consumption during the idle time,

. . .similar to the 802.11b scheduling algorithm. Finally, we
where E,, is the average energy required to acquirg tigate the implications of bit errors on both voice
the channel T, is the time required to receive themveS g P
ACK packet, andP,, is the receive power for theand data packets. . .

’ S . Based on the packet types and various error correction
robust control channel. Given this energy model, we can,

. te it int heduli laorith del erhead, we can construct a simple energy model for
Incorporate 1t Into our scheduling algonthm model 1) o00th packet transmissions. For voice packets, the
(10) as follows:

total energy used is the power used in transmission
Eyehea = Eig(BER, L) + Pon X Thack _on (15) multiplied by the time required to transmit.
Envn = Py X Ty = Py X 625pus (16)

1

T,

We use this expression in Section V to quantify the
energy consumption of 802.11b vs. channel SNR. imhere P, is the measured power consumption in the
particular, we show how larger packet sizes and lack whnsmit state, and}, is the total time required to
error correction techniques force 802.11b to operate tiansmit (625us for HVn packets). Because of the error
higher channel SNR. However, techniques such as packetrection overhead, we need to transmit three times as
fragmentation and error correction can be used to extemany HV1 packets as HV3 packets for the same amount
the lower SNR range of 802.11b. of user data.
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For data packets, the energy consumption is dependeatked mode is to periodically listen for synchronization
on the size of the data packet being transmitted. Datad broadcast packets.
packets occupy either 1, 3, or 5 TDD slots. An estimate A Bluetooth node in park mode will wake up upon
of the total energy required to transmit a data packattivity to transmit some data and then enter the park
(Dxn) is: mode when finished. The energy consumption of this
Epgn = (Pg X 625us X n) (17) scenario is as follows:

wheren is the slot length of the packet, either 1, 3, or E = Py, x Tiz + Eiransition + Ppark X Tpark  (18)

> Using power measurements of a USB Bluetooth gyhere Etransition is the to_tal energy used to transition
vice attached to the SmartBadge IV, we are able {8/from the various opergtlng stat(?s, am’"’“ andTar
estimate the energy usage for our system. Figure 8 shdWig the_ power dlss_,apatlon an_d times in the park mod_e
the energy required to transmit one frame of speech a5t pectllvely. The time spent in the deep sleep state is
at various DSR compression rates over a Bluetooth linfk function of the (_)verall Iate_ncy of the system and the
We consider the use of both high speed and meditﬁwount of da’Fa being transmitted. We measure 0.18 watts
speed data packets. We assume an error-free charll'?\érlle_t_rans_m't mode, and 0.077 walts in the park mode.
with no retransmissions. We can see in figure 8 that thefansition times t(_J _and from the park state are on the
is a higher energy cost for medium rate packets due to ﬁ)‘r‘ger a several milliseconds each.

FEC overhead. However, these packets will be a better o | | | | | | | | |
choice for lower SNR conditions. Energy consumption | — Bluctooth
approximately doubles between the 1.2 kbps and 4.2 v
kbps bit rates. However, these estimates do not conside \
idle time between packets which will consume energy K
as well. *
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2 Fig. 9. Energy per frame of speech vs. DSR latency for a Bathto
and 802.11b.

1.2 14 16 18 19 2 4.2
kbps By varying the amount of data transmitted at once, we
can increase the amount of time spent in the park state.
Fig. 8. Energy used to transmit one frame of speech with mgryi Figure 9 shows the tradeoff between speech recognition
compression rates for Bluetooth radio. latency and energy consumption per frame of speech for
both 802.11b and Bluetooth. Once again, we assume a
We can incorporate the Bluetooth power saving modpsrfect channel with no bit errors. For smaller values of
into our model to account for the idle time in betweeff’, Bluetooth can offer better performance than 802.11b,
packets. A node within a Bluetooth piconet can operalbeit asT approaches 1.3 seconds, 802.11b will use less
in a variety of different power management modes [43nergy. This is because the 100 ms startup cost of
In the defauliactivemode, the slave node listens to ever02.11b is amortized across a larger number of frames,
master-slave slot to see if the packet is addressedwhile the Bluetooth node remains in the park state and
it. In the sniff mode, the node only listens to slots astill consumes power. Powering off a Bluetooth node
specified intervals. Irhold mode, the node goes into abetween packet transmissions is not an option since the
low-power state until some specified interval, after whigbaging/inquiry actions required to join a piconet can
it powers up to transmit. Ipark mode the Bluetooth easily take in excess of 10 seconds. However, since
node temporarily gives up its membership to the picontte transition time from park to active and back is
to join a list of parked nodes. The node’s only activity ismall, we see an initial drop in energy consumption with
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respect to increased latency in Bluetooth. However, witf packet synchronization failure, header failure, pagtloa
increased delay the energy spent in park mode becoree®r, and both synchronization and header failure in the
the dominant factor. ACK packet. Each of these items is a function of the
Next, we investigate how the presence of bit errotst error rate (BER), which is, in turn, a function of the
on the wireless channel will affect both the energghannel signal to noise ratio (SNR). An expression for
consumption and, in the case of voice packets, speebls probability (°,) is derived in [44], but for length
recognition accuracy. We use this data to identify whiafeasons the expression will not be shown here. If we
types of packets can be used effectively in variougnore the overhead for receiving an ACK packet, an
channel conditions. The main difference between the twatimate of the energy consumption for Bluetooth data
types of packets is that voice packets rely only on FEéackets in the presence of bit errors is:
and no ARQ, while data packets can um#th FEC and

ARQ. Epyn = Py x 625us X n X - (20)
) ‘ ‘ ‘ ‘ ‘ ‘ By dividing the energy by the number of frames in
_______ T vz (15.10) Hamming a packet, which varies with packet length and coding
T Taganen technique, we can get the energy required to send one

frame of speech.

C. The Effect of Bit Errors on DSR

The presence of bit errors in the speech feature
stream can cause an significant decrease in accuracy.
It is essential that bit errors be detected and concealed
- N when possible [9]. However, it becomes more difficult to
conceal errors when lost packets consist of many frames

of speech. The correlation between neighboring speech

0 5 10 15 20 2 3 3 frames decreases with increasing lag. Therefore, for long
SHRE) packets containing half a second or more of speech data,

Fig. 10. The error correction performance of Bluetooth eqiacket W€ cannot tolerate much, if any, packet loss. However,
types. with Bluetooth voice packets, the data is delivered even

if in error. Using the various error protection schemes

The energy consumption of Bluetooth voice packefg Figure 10, we should be able to indentify a minimum
is independent of channel conditions. Therefore, we CRER after coding that is sufficient for DSR.

estimate the energy consumption using (17) and (18).

BER

The main difference in energy consumption per frame Accuracy vs. Bit error rate
of speech will come from the reduced user payload 0 P P08 D Rgod g, o
due to FEC bits. Figure 10 shows the error correc- 8o Lo ® 9
tion performance for various types of Bluetooth voice 4| ° o
packets. We define a maximum bit error rate that is : °
necessary to maintain a usable level of accuracy for DSR o
in Section IV-C. .50 !
In the presence of bit errors, data packets will continue g 40 : °
to be retransmitted until they are received correctly or a < » °
timeout occurs. For the purposes of this analysis, we :
assume BFSK modulation with coherent detection under 20| ]
a Rayleigh fading channel. We also assume that the aver- 1o} :
age SNR remains constant throughout the transmission ‘ ‘ °
The BER expression used is as follows: 10° 10° 10° 107 10° 10"
Bit error rate
BER= (1 /-2 (19) Fig. 11. B it
9 2+ % g. 11. it error rate vs. speech recognition accur_a_cnga;he
ETSI DSR standard and a 5,000 word speech recognition task.

where, is the average SNR per bit. The total energy
used is also a function of the probability of a packet re- The ETSI standard uses CRC error detection on
transmission. The expression is based on the probabilitynsecutive frame pairs to determine if there is a bit
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error [10]. Errors in the quantized speech vectors aa@d/or ARQ retransmissions. Table VII shows the per-
concealed simply by repeating previous or subsequeentages of computation and communication energy for
speech vectors to fill in the gap. Using this error cora few different configurations as well as the expected
cealment scheme, we simulated bursty error chanmelttery lifetime with a 1400mAh/3.6V lithium-ion cell.
via a two-state Gilbert-Elliot [45] channel model forThe 802.11b interface with long delays gives the lowest
a variety of different channel conditions. In Figure 1lgveral energy consumption and an almost even division
we calculated the average bit error probability for eadietween energy spent in computation and communi-
Gilbert-Elliot channel and plotted the BER vs. accuraayation. DSR with Bluetooth uses a higher percentage
on a 5,000-word vocabulary Wall Street Journal speeoch communication energy, and this amount does not
recognition task. The accuracy of the system withodecrease significantly with increased delay due to the
bit errors was 88.8%. We can see that the system start®rhead of the park mode. Expected battery lifetimes
to lose accuracy significantly after an average bit errexceed that of typical cellular telephones as we do not
probability of 10-3. Therefore, we us&0—* as our target require real-time communication. Even modest delays of
bit error rate. less than 0.5s can yield significant battery lifetime with
constant streaming of DSR data.

V. SUMMARY OF DSR TRADEOFFS TABLE VI

By USing the client-side ASR energy model and theTOTAL ENERGY CONSUMPTION FOR BOTH COMPUTATION AND
DSR energy model for both Bluetooth and 802_1160MMUNICATION VS. BIT RATE FORBLUETOOTH AND 802.11B.

wireless networks, we can examine the energy tradeoffs (T = 0.485).

with respect to channel quality, delay, and speech recog- Computation + Communicatiof
nition accuracy. Higher bit rates have small increas s?';fate (kbps) \1’\25'57% (%) ?';‘g;ogmh (mJ) gazéelsib (mJ)
in system level energy_consumpnon due to the_ over-1, 1171 11315 5 4688

head of the power saving algorithms on the wireless g 9.3 1.1323 2 4698
device. This tradeoff is shown in Table VI. For the| 1.8 8.1 1.1338 2.4717
remainder of this analysis, we consider transmission-2 6.99 1.1358 2.4719

t the highest available bit rate, which offers the begt> 0.63 1.1380 2.4749

a g , 42 6.55 1.1701 2.5044

WER. In Figure 12, we plot the energy consumptio
per frame of speech for client-side ASR and DSR

under both 802.11b and Bluetooth wireless networksIn a good channel with high SNR, Bluetooth allows
with respect to channel quality. For DSR, we includsystemwide energy savings of over 95% compared with
the both the communication and computation (featufell client-side ASR. DH5 packets offer the lowest
extraction/quantization) energy costs. For 802.11b, weerhead and best energy savings, while DM1 packets
consider the energy consumption of the power on/afffer the most robust operation down to around 10 dB
scheduling algorithm with a latency of 240ms, 480msyith some minimal energy cost. The ARQ retransmission
and 2 seconds and unlimited ARQ retransmissions. Hmotocol causes rapid increases in energy consumption
the Bluetooth interface we show the energy consumptiafter some SNR threshold is reached. It is possible to op-
for both medium and high rate data packets as well as th&te in lower SNR through packet fragmentation, which
three types of voice packets with latency of 480ms. Mill lower the probability of a packet being received
the right of the Y-axis we have the approximate enerdy error. This is evident in Figure 12 by comparing
savings over client-side ASR operating 2.5 times slowBiH1 and DH5 data packets. The longer packet length
than real-time. We can expect a scaled down spednhDH5 packets causes a sharp increase in retransmits
recognition task (i.e. simpler acoustic and language maahd energy consumption at around 25 dB, whereas DH1
els or smaller vocabulary) running at real-time to givpackets can operate down 15 dB before the number of
60% energy savings. However, this will come at a cost otransmits becomes excessive. In addition, FEC bits can
reduced functionality for the user, perhaps going fromkze used to lower the probability of a packet retransmit.
dictation system to a command and control system wilthe Hamming code in DM1 and DM5 packets allows
smaller vocabulary. We have not quantified the cost operation down to around 10 and 16 dB respectively. Fi-
reduced utility for the user in this work. However, for thenally, Bluetooth voice packets have energy consumption
various DSR scenarios in Figure 12 we assume little that is independent of SNR since no ARQ protocol is
no reduction in quality for the end-user by maintainingsed. Uncoded HV3 packets have the lowest overhead,
sufficient data integrity through source coding techniquasd therefore the lowest energy consumption per frame



15

TABLE VI
SUMMARY OF ENERGY CONSUMPTION FORASR AND DSRWITH HIGH CHANNEL SNR.

Type Computation (%)| Communication (%)| Total per Speechl Battery Lifetime (h)
Frame (mJ)
DSR w/Bluetooth (T=0.48s 32% 68% 1.17 43.1
DSR w/802.11b (T=0.48s) 15% 85% 2.5 20.2
DSR w/802.11b (T=2s) 42% 58% 0.92 54.8
Local ASR (R=2.5) 100% 0% 45 1.12

— BTDaa | % Reduction
¢ BT Voice in Energy
-— 802.11b
— Local ASR

~

| Local ASR (R=2.5)

Local ASR (R=1)

60%

10 -

802.11b (T50.24s) |

/

Energy (mJ)

89%

""""""""" 94%

/ >97%

10 ! ,_Hv1 L Hv2 ! L Hv3 ! RS

SNR (dB)

Fig. 12. The energy consumption of client-side ASR and DS&euBluetooth and 802.11b vs. SNR.

of speech, but they only operate down to around 27 dB. VI. CONCLUSION

Beyond that, the probability of a bit error excedds?, _ , _

which we have determined to have a noticable impact!n this paper, we investigated the energy consump-
on speech recognition accuracy. HV1 and HV2 packéi@n of a distributed speech recognition front-end. We

can operate down to around 12 and 17 dB respectivefPnsidered energy usage from both computation and
communication. The advantages of DSR from an energy

Finally, 802.11b networks allow systemwide energ§onsumption perspective are clear. Client-side speech
savings of approximately 89-94% with relatively smallecognition in software can consume several orders of
values of T. With larger values ofT’, such as one magnitude more energy than a DSR system. However,
second or more, we can use less energy than Bliige use of low-power ASIC chips for speech recognition
tooth. However, due to the larger packet overhead, larggy help reduce the energy consumption of client-side
maximum packet sizes, different modulation, technique®SR in the future.
and lack of error-correcting codes, the 802.11b networkThe computation of a speech recognition front-end
does not operate as well in lower SNR ranges. Packetn be optimized for a particular processor to reduce
fragmentation or a switch to a more robust modulatidhe energy consumption. Savings of more than 80%
technique with lower maximum bit rate can extendan be obtained through algorithmic and architectural
the lower SNR range at the cost of increased energptimizations. Dynamic voltage scaling can be applied
consumption, but we have not considered these effeatsrun-time to minimize the energy consumption even
here. However, 802.11b does offer increased range dudher.
may be more appropriate in certain scenarios. In our analysis of DSR, we have considered both



802.11b and Bluetooth wireless networks. Given the rels]
atively high bit rates these standards provide with respect
to DSR traffic, we investigated the use of synchronous
bursty transmission of the data to maximize the amount
of time spent in a low-power or off state. While this[7]
adds a small delay to the end-user, the energy savings
can be significant. With 802.11b, we can reduce the
energy consumption of the wireless interface by aroung
80% with modest application delays of just under half a
second. Bluetooth offers lower energy consumption for
smaller values of delayl", but as delay increases, the
Bluetooth energy consumption is dominated by the time
spent in park mode. The 802.11b interface with on/off
scheduling can operate with a lower energy consumptiara]
than Bluetooth whef” exceeds 1.3 seconds.

In the presence of bit errors, we can estimate the
energy consumption with respect to SNR and identi%lt
the appropriate operating ranges for the various pac
types. For voice packets, we recommend a minimum bit
error rate after FEC of 0.1%. Given that one packet many
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