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Energy Aware Distributed Speech Recognition for
Wireless Mobile Devices

Brian Delaney, Tajana Simunic, Nikil Jayant

Abstract— The use of a voice-user interface for mobile
wireless devices has been an area of interest for some
time. However, these devices are generally limited by
computation, memory, and battery energy, so performing
high quality speech recognition on an embedded device
is a difficult challenge. In this paper, we investigate
the energy consumption of distributed speech recognition
(DSR) on the HP Labs SmartBadge IV embedded system
and propose optimizations at both the application and
network layers that reduce the overall energy budget for
this application while still maintaining adequate quality of
service for the end-user. We consider energy consumption
in both computation and communication. We present
software optimization techniques that reduce the energy
consumption of the speech signal processing algorithm by
83%. In addition, we estimate the energy consumption of
client-side automatic speech recognition without the use
of the network. We present a range of results such that
the upper bound may match the results of server-based
DSR and the lower bound offers reduced functionality
(i.e. smaller vocabulary and/or lower accuracy) but with
decreased energy usage. In our analysis of DSR, we
consider both 802.11b and Bluetooth wireless networks.
Given the relatively high bit rates these standards provide
with respect to DSR traffic, we investigate the use of
synchronous bursty transmission of the data to maximize
the amount of time spent in a low-power or off state.
The energy savings can be significant even with small,
imperceptible delays. With 802.11b, we can reduce the
energy consumption of the wireless interface by around
80% with modest application delays of just under half
a second. We include the effects of a Rayleigh fading
channel in our analysis and investigate the result of bit
errors on both energy consumption and DSR accuracy. We
have shown that DSR can reduce the required systemwide
energy consumption for a speech recognition task by over
95% compared to a software based client-side speech
recognition system. These savings include the software
optimizations of the DSR front-end as well as the savings
from the decreased duty cycle of the wireless interface.
We have identified the lower bounds on channel SNR for
the various network traffic types and have shown where
it becomes advantageous or necessary to perform speech
recognition on the embedded device.

I. INTRODUCTION

The demand for tetherless access to data is driving
the industry toward smaller but more capable wireless
devices. The applications include high-quality wireless
web browsing, multimedia e-mail and messaging ser-
vices, digital music playback, as well as personal data
management applications, such as calendar and con-
tact databases. These pocket-sized devices have small
screens and tiny keypads, so appropriate use of speech
recognition technology can allow users to interact with
the system in a natural manner. However, these devices
are limited in computation, memory, and battery energy.
Complex speech recognition tasks are difficult to perform
on the device due to these resource limitations. A typical
speech recognition system consists of a signal processing
front-end or feature extraction step, followed by a search
across acoustic and language models for the most likely
sentence hypothesis. The signal processing front-end is
a small portion of the overall computation and storage
required. The acoustic and language models typically use
on the order of tens of megabytes each of storage with
significant computation required for large vocabulary
search. Therefore, distributing the speech recognition
across the network is an attractive alternative for these
mobile wireless devices. In the absence of a network
connection, some limited speech recognition may be
performed on the device.

In distributed speech recognition (DSR), the speech
features, typically mel-frequency cepstral coefficients
(MFCC), are calculated at the client and sent over the
wireless network to a server. Figure 1 shows a block
diagram of this system. By only sending the speech
data required for machine recognition, we can obtain
better accuracy at lower bit rates than traditional human
perception-based speech coders. This technique has been
well-studied in the literature and is more of a client-
server approach than a true distributed computation
application. The back-end speech recognition search in-
cluding HMM state output evaluation and Viterbi search
is performed at the server. A true distribution of the
workload across many wireless nodes of equal process-
ing capability would likely cause too much wireless
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Fig. 1. A distributed speech recognition system.

traffic overhead as HMM output probabilities and Viterbi
search best path scores would have to be shared across
nodes for many thousands of HMM states with high
numerical precision every 10 milliseconds. Therefore, we
consider only the client-server approach in distributed
speech recognition. In order to minimize the bit rate,
the MFCCs are first compressed using some quantization
scheme. The result is a three-step process on the mobile
client involving computation, quantization, and commu-
nication. The resulting text from the speech recognition
process can be sent back to the mobile client or handled
at the server depending on the nature of the application.

While many cellular phones currently have voice
dialing capability, more sophisticated speech recogni-
tion tasks require computation capability beyond what
these devices currently provide. Applications of speech
recognition for embedded devices may include e-mail
dictation, web browsing, and scheduling and contact
management applications. Small wireless headset mi-
crophones such as those commonly used for hands-free
cellular communication can be used to send commands
to a speech recognition server for command and control
within the automobile or other applications requiring
hands-free interaction.

One challenge in designing a speech recognition sys-
tem for a mobile device is minimizing the total energy
consumption used in the task. The use of CPU, mem-
ory, and the wireless network can cause considerable
battery drain if used indiscriminately. In this work,
we examine the energy usage in a distributed speech
recognition system with respect to the quality-of-service
metrics pertinent to this application. We consider both
communication- and computation-related energy drain
and propose techniques to minimize energy usage in both
areas while maintaining a useful level of service for the
end-user. Finally, we compare the energy consumption
of both client-side speech recognition and DSR using
two different network interfaces.

The embedded system used in the experiments is
the SmartBadge IV embedded system developed at the
Mobile and Media Systems Lab at HP Labs [1]. The
SmartBadge contains a 206 MHz StrongARM-1110 pro-
cessor, StrongARM-1111 co-processor, Flash, SRAM,

PCMCIA interface, and various sensor inputs such as
audio, temperature, and accelerometers. It runs the Linux
operating system. The SmartBadge has speech/audio
driven I/O, so speech recognition can provide some level
of user interaction through a voice-user interface. It sup-
ports a variety of different networking hardware options
including Bluetooth and 802.11b wireless interfaces. The
StrongARM platform is still used in many high-end
PDAs in the market today, such as the HP iPAQ H3800.
Table I shows the total average power dissipation of
the iPAQ with both 802.11b and Bluetooth transmitting
data as well as without the network. The SmartBadge

TABLE I

ENGERY CONSUMPTION OF THEHP IPAQ.

Operation Power Dissipation (mW)
iPAQ (no wireless) 929
iPAQ (802.11b, Tx) 1929
iPAQ (Bluetooth, Tx) 1109

IV uses the same memory and CPU as this version of
the iPAQ, but it offers a wider range of hardware based
power measurements as well as software simulation
tools, therefore it is a better choice to investigate the
issues discussed in this paper. Newer PDAs based on
the XScale processor have a similar architecture to the
StrongARM, and we expect similar results with these
processors.

In Section II, we discuss some related work. Sec-
tion III includes a discussion on the energy consumption
of a signal processing front-end as well as an estimation
of the energy consumption of client-side ASR. In Sec-
tion IV, we discuss the energy used in communication
for both 802.11b and Bluetooth. Finally, we present a
summary in Section V and conclusions in Section VI.

II. RELATED WORK

Earlier work on distributed speech recogntion consid-
ered the effects of communication over cellular networks.
A method for increased robustness against both impul-
sive noise and loss over GSM networks was presented
in [2]. The effects of using coded speech in ASR was
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presented in [3]. Low bit rate speech coders, such as
those used in cellular telelphony, exhibited significant
reductions in ASR accuracy. In an attempt to allevi-
ate the effects of low bit rate speech coders, cepstral
coefficients were calculated directly from the wireless
bitstream in [4]. While this offered some improvement,
a fundamental limitation is that traditional speech cod-
ing techniques are aimed at human and not machine
listeners. The spectral distortion introduced by speech
coding is designed to have minimum impact on human
listeners, but speech recognizers rely solely on this
spectral information. The result is that currently deployed
low-bit rate speech coding techniques are not suitable for
high-quality ASR applications.

More recent work on DSR can be grouped into two
main areas, those that attempt to design ASR-friendly
speech coders, such as the work done in [5], and
those that assume to communicate only with a speech
recognition system. We consider the latter, where only
the spectral information needs to be included, which
can result in better performance with lower bit-rates.
Additionally, this communication can occur over less
expensive or shorter range links such as 802.11b or
Bluetooth. Previous work this area has been mainly
focused on techniques for the quantization of speech
parameters and robustness to loss or errors from wireless
transmission. Vector quantization is the dominant com-
pression technique with bit rates in the low kbps range.
In [6], a two-stage vector quantizer was used to achieve
a fixed rate of 4.0 kbps with little loss of recognition
accuracy. A scalable quantization scheme was developed
for bit rates ranging from less than 1 kbps to around 3
kbps in [7]. A wider range of quantization schemes was
investigated in [8] with the best performance coming
from an intra-frame product code vector quantizer. By
exploiting the correlation between successive frames
of speech, an inter-frame vector quantizer can achieve
greater recognition accuracy with lower bit rates as
shown in [9]. The ETSI Aurora DSR standard includes
a simple intra-frame vector quantizer with some error
detection, concealment, and framing techniques in [10].
A low-power DSP solution that uses less than 1mW of
power and conforms to the ETSI standard is presented
in [11]. However, given that a wireless interface can
consume more than half the total power on an embedded
device, efficient use of the radio in DSR is an important
consideration. This work considers the application of
DSR traffic to both Bluetooth and 802.11b networks.

The wireless network power optimization problem has
been addressed at different abstraction layers, starting
from the semiconductor device level to the system and
application level. Energy efficient channel coding and

traffic shaping to exploit battery lifetime of portable
devices were proposed in [12]. A physical layer aware
scheduling algorithm aimed at efficient management
of sleep modes in sensor network nodes is illustrated
in [13]. Energy efficiency can be improved at the data
link layer by performing adaptive packet length and
error control [14]. At the protocol level, there have
been attempts to improve the efficiency of the standard
802.11b, and proposals for new protocols [15]–[17].
Packet scheduling strategies also can be used to reduce
the energy consumption of transmit power. In [18],
authors propose theE2WFQ scheduling policies based
on Dynamic Modulation Scaling. A small price in packet
latency is traded for the reduced energy consumption. A
server-driven scheduling methodology aimed at reducing
power consumption for streaming MPEG4 video was
introduced in [19]. Savings of as much as 50% in WLAN
power consumption, relative to just using 802.11b power
management, were reported.

Traditional system-level power management tech-
niques are divided into those aimed at shutting down
components and policies that dynamically scale down
processing voltage and frequency [20], [21]. Energy-
performance tradeoffs based on application needs have
been recently addressed [22]. Several authors exploit the
energy-QoS tradeoff [23]–[26]. A different approach is to
perform transcoding and traffic smoothing at the server
side by exploiting estimation of energy budget at the
clients [27]. A new communication system, consisting
of a server, clients and proxies, that reduces the energy
consumption of 802.11b compliant portable devices by
exploiting a secondary low-power channel is presented
in [28]. Since multimedia applications are often most de-
manding of system resources, a few researchers studied
the cooperation between such applications and the OS
to save energy [29]–[32].

III. M ODELING THE ENERGY USED IN

COMPUTATION

The computation of speech features is a small portion
of the overall speech recognition task in both computa-
tion and memory usage. Client-side ASR require more
computation and memory bandwidth due to the back-end
search algorithm. Table II shows the average cycle count
to process one frame of speech in the Sphinx-III large
vocabulary speech recognition system. The results were
obtained on a 1.4 GHz Pentium 4 workstation. The total
processing for the front-end is less than one percent of
the overall computation, with the majority of time being
spent in the hidden Markov modeling step. Porting a full
speech recognition sytem to a mobile device requires
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more optimization than a simple conversion to fixed-
point arithmetic. It involves optimization at many levels,
from search space reduction to fast arithmetic kernels
and techniques to reduce memory bandwidth. For these
reasons, we concentrate our software optimization on the
signal processing front-end only, and estimate the full
client-side ASR energy usage by using some published
results [33].

TABLE II

CYCLE COUNTS FOR THE FRONT-END, GAUSSIAN EVALUATION ,

AND V ITERBI SEARCH PORTIONS OF SPEECH RECOGNITION.

Module Avg. Cycles/Frame % of total
Front-End 7:22 � 104 0.4%
Hidden Markov Model 1:21 � 107 32.63%
Viterbi Search 5:88 � 106 66.97%

Client-side ASR may be necessary to maintain in-
teractivity with the mobile device when the network is
not present. We compare these results with DSR under
various channel conditions, error correction methods, and
packet sizes to show the benefits of DSR from an energy
consumption perspective. Through the use of algorithmic
and architectural optimization in software, we can reduce
the energy consumption of the signal processing front-
end by 83%. These savings can be enhanced by the use
of runtime dynamic voltage scaling (DVS) techniques.

A. Signal Processing Front-End

The acoustic observations generated by the signal
processing front-end or “feature extraction” step are
mel-frequency cepstral coefficients. Mel-frequency cep-
stral coefficients are calculated using the real cepstrum,
defined as the inverse Fourier transform of the log
spectrum:s(n) = 12� Z ��� log jS(!)j ej!nd! (1)

where S(!) is the spectrum of the speech signal.
The most common set of features consists of 13 mel-
frequency cepstral coefficients computed every 10ms.
Secondary features, consisting of first and second time
derivatives of the cepstrum, also are used, but they can
be calculated easily at the server. A more in depth
discussion of the theory and properties of the cepstrum
can be found in [34].

In practice, the calculation of MFCCs requires filtering
and windowing operations, a magnitude FFT calculation,
a filter-bank operation, a logarithm operation, and a
discrete cosine transform. Implementing the front-end
feature extraction for a distributed speech recognition
system on an embedded platform requires not only

speed, but also power optimization, since the battery life-
time in such devices is very limited. This work discusses
both the source-code and the run-time optimizations.

The source code optimizations can be grouped into
two categories. The first category, architectural opti-
mizations, aims to reduce power consumption while
increasing speed by using optimization methods targeted
to a particular processor or platform (e.g. an embedded
system with no floating-point hardware). Ideally, many
of these optimizations should be done by a compiler.
However, currently available compilers for most em-
bedded systems do not have these optimizations built-
in. In addition, measurements presented in [35] show
that the improvements that can be gained using standard
compiler optimizations are marginal compared to writing
energy efficient source code. The second category of
source code optimizations is more general and involves
changes in the algorithmic implementation of the source
code with the goal of faster performance with less power
consumption.

The final optimization presented in this work, dynamic
voltage scaling (DVS), is the most general since it can
be applied at run-time without any changes to the source
code. Dynamic voltage scaling algorithms reduce energy
consumption by changing processor speed and voltage
at run-time depending on the needs of the applications
running. The maximum power savings obtained with
DVS are proportional to the savings in frequency and
to the square of voltage.

1) Architectural Optimization:Signal processing al-
gorithms, such as the calculation of the mel-frequency
cepstrum, are generally mathematically intensive, there-
fore a significant amount of effort was spent in optimiz-
ing the arithmetic. In addition, simple C code optimiza-
tions were employed to help the compiler generate more
efficient code [36].

Profiling of the source code on a StrongARM simu-
lator revealed that over 90% of the time was spent in
floating-point emulation. The StrongARM has no on-
chip floating-point processor, so all floating-point opera-
tions must be emulated in software. Simply changing
from double to single precision floats improved the
performance considerably. However, profiling showed
that 80% of the time was still being spent in floating
point emulation. Any further gains require fixed-point
arithmetic.

Fixed-point arithmetic uses scaled integers to perform
basic math functions using the existing integer hardware.
The scaling factor (or location of the decimal point) is
fixed at design time and is designated byQn, wheren
is the number of bits to the right of the decimal. The
basic rules of arithmetic still hold; adding two numbers
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requires that the decimal points must line up. Multiplying
two numbers inQn format yields a number inQ2n
format.

Implementing a pre-emphasis filter and Hamming
window using fixed-point arithmetic is straight-forward.
Fixed-point FFTs are well studied and have often been
implemented on digital signal processor chips. After
passing the input frame through the FFT, the mel filter
bank must be applied. The filter bank amplitudes are
calculated using the squared magnitude. This presents
some challenges since this squared number multiplied
by the filter coefficients,Hi[k℄, can easily overflow the
32-bit registers. A 64-bit result can be obtained from
the StrongARM multiplier using assembly language, but
overflow can be avoided simply by rewriting the filter
bank equation to use just the magnitude:Y [i℄ = N=2Xk=0�jX[k℄jqHi[k℄�2 (2)

This avoids overflow sinceHi[k℄ � 1, therefore the
result of each multiplication is small. The coefficients,pHi[k℄, are stored in a lookup table.

The one drawback to this method is that computing
the magnitude spectrum requires a square root operation.
Fast integer square root algorithms exist, but they must
be used on each output from the FFT, which is costly.
Fortunately, the magnitude can be estimated as a linear
combination of the real and imaginary parts using the
following equation [37]:jxj � �max(j<fxgj; j=fxgj) + �min(j<fxgj; j=fxgj)

(3)
where� and� are chosen to minimize a particular kind
of error, and<fxg and =fxg represent the real and
imaginary parts of the complex numberx. This formula
rotates a complex phasor to between0 and�=4 radians
and then takes a linear combination of the real and
imaginary parts. The values of� and � are chosen to
have an easy fixed-point representation that minimizes
the mean error.

Computing the first 13 coefficients of the DCT is
relatively easy to do in fixed-point arithmetic, but taking
the natural logarithm is a more difficult task. However,
there is an interesting algorithm to estimatelog2(x)
using simple bit manipulation, which is faster than other
methods of calculating the logarithm. This algorithm,
described in [38], is very low in complexity and gives
an approximate fixed-point result. Theln(x) can be
determined by multiplying by a constant as follows:ln(x) = log2(x) ln(2) (4)

One final adjustment must be made whenx is itself a
fixed-point number inQn format, which is just a scaled
integer: ln� x2n� = [log2(x)� log2(2n)℄ ln(2) (5)ln� x2n� = [log2(x)� n℄ ln(2) (6)

Equation (6) is the expression used to calculate the
natural log of a fixed-point number. Using precision of
Q3, this estimate of the logarithm has a maximum error
of around 0.152 and an average error of around 0.0866.

2) Algorithmic Optimization:Profiling of the original
source code under a StrongARM simulator revealed that
most of the execution time was spent in the computation
of the DFT (which is implemented as an FFT). Since
speech is a real-valued signal, anN -point complex FFT
can be reduced to anN=2-point real FFT [39]. Some
further processing of the output is required to get the
desired result, but this overhead is minimal compared to
the reduction in computation. Additional savings can be
obtained when the trigonometric functions used in the
computation of the FFT are pre-computed and stored in
a lookup table, thus eliminating multiple function calls
in the FFT loop.

3) Dynamic Voltage Scaling:Once the code is opti-
mized for both power consumption and speed, further
savings are possible by changing the processing fre-
quency and voltage at run-time. In this work, we investi-
gate the savings possible with DVS for the front-end of a
speech recognizer running on Smartbadge IV hardware.
The StrongARM processor on Smartbadge IV can be
configured at run-time by a simple write to a hardware
register to execute at one of eleven different frequencies.
Note that the number of frequencies is predefined by the
design of the StrongARM processor. We measured the
transition time between two different frequency settings
at 150 microseconds. Since typical processing time for
the front-end is much longer than the transition time, it is
possible to change the CPU frequency without perceiv-
able overhead. For each frequency, there is a minimum
voltage the SA-1110 needs in order to run correctly,
but with lower energy consumption. The easiest way to
determine the lowest possible frequency and voltage for
such stand alone application is to run it at all possible
frequency settings, with voltage set to minimum allowed,
and observe if the code still runs in real time. In our
case, we obtained real time performance at all possible
frequency and voltage settings.

4) Software Optimization Results:Three main criteria
are considered in order to evaluate the effectiveness of a
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particular optimization: performance (in terms of proces-
sor cycle count), energy consumption, and accuracy or
word error rate (WER). Simulation results for processing
one frame (25ms) of speech on the Smartbadge IV
architecture running at 202.4 MHz are shown in Figure 2.
The x-axis shows the source code in various stages
of optimization. The “baseline” source code contains
no software optimizations. The “optimized float” code
contains the set of optimizations described in section III-
A.2 as well as some of the C source optimizations de-
scribed in [36]. Double precision floating-point numbers
were changed to single precision 32-bit floats in the
“32-bit float” version of the code. Finally, the “fixed-
point” implementation contains all of the source code
optimizations described in this paper. For each version of
the code, we report the performance (in CPU cycles) and
the total battery energy consumed (in�Whrs). The simu-
lation results are computed by the cycle-accurate energy
simulator, and include processor core and level 1 cache
energy, interconnect and pin energy, energy used by the
memory, losses from the DC/DC converter, and battery
inefficiency [35]. The reduction in energy consumption
is not as dramatic as the performance improvement for
the fixed-point version due to an increase in memory
references per unit time. In fixed-point code, basic math
operations are reduced to a few cycles as opposed to
long iterations of floating-point emulation which do not
require as many memory references. However, we have
still achieved a reduction in the total battery energy
required to process one frame of speech data by 83.5%.
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Fig. 2. Performance and energy consumption per frame of speech.

To verify that the approximations used in this software
optimization do not introduce significant noise to the
output speech parameters, we tested the front-end with a
digit recognition task. The results are shown in Table III.
A continuous digit speech recognizer was trained using
the TIDIGITS database of 8,623 utterances from both

male and female speakers. The original floating point
front-end was used to generate mel-frequency cepstral
coefficients for the training set. No secondary features
(first and second time derivatives of the mel-frequency
cepstrum) were used in the training or test phases.
The trained speech models were then used to recognize
speech from the TIDIGITS test set of 8,700 utterances.
The WER was calculated using the various front-end
implementations and is shown in Table III. There is
no loss in accuracy among the three floating-point im-
plementations, but the fixed-point implementation uses
some approximate algorithms which can create a slight
mismatch between the training and test data. We were
able to eliminate the slight 0.1% increase in WER by
using the fixed-point front-end during the training phase.
In addition, Table III shows a minimal increase in lookup
table size and code size, so the memory requirements
for the fixed-point optimized code are about the same.
Another performance metric reported in Table III is how
long it took for each code implementation to process 1
second of speech at the processor clock speed of 202.4
MHz (Time column). The fixed-point version runs 34
times faster than the baseline system.

TABLE III

TIDIGITS TEST SET RESULTS.

Code size Lookup table Time WER
(Bytes) (Bytes) (sec) %

Baseline 29704 N/A 1.510 4.2%
Optimized Float 31960 88120 0.699 4.2%
32-bit Float 31272 88120 0.235 4.2%
Fixed-Point 33124 88136 0.043 4.3%

Because the fixed-point code runs much faster than
real-time at 202.4MHz, it is possible to get further
reductions in power usage by using DVS as discussed
in section III-A.3. The results from this experiment are
shown in Table IV. These power measurements are per-
formed on the Smartbadge IV system running the eCos
embedded operating system and using the WaveLAN
card to transmit the uncompressed cepstral parameters.
The Psys measurement is taken from the main power
supply output. At 59 MHz the algorithm still runs in
real-time, and the system uses 34.7% less power than at
206 MHz. Combining the DVS results with the source
code optimizations, we calculate the overall reduction in
power consumption to be 89.2%.

5) Vector Quantization:Finally, we include the fixed-
point vector quantization code in our profiling and con-
sider different bit rates and quantization levels. Although
some differing techniques have been proposed, the most
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TABLE IV

MEASUREDPOWER CONSUMPTION WITH DVS.

Frequency Voltage Psys
(MHz) (V) (mW)

59 0.78 1721
74 0.94 1807
89 1.09 1901

103 1.21 2029
118 1.33 2114
132 1.42 2234
147 1.51 2320
162 1.57 2432
176 1.63 2508
191 1.67 2568
206 1.69 2636

common technique for compressing MFCCs is some
form of vector quantization. In vector quantization, we
train a set of codebooks against some speech data.
These codebooks contain a set of centroids representing
the clusters that occur in the training data. We simply
transmit the centroid index for each codebook. Smaller
codebooks will result in a noisy representation of the
original signal, and speech recognition accuracy will
degrade.

For our system, we used an intra-frame product code
vector quantization scheme presented in [8]. We used the
existing bit allocation in [8] to train a set of codebooks
using a K-means training algorithm with bit rates ranging
from 1.2 kbps to 2.0 kbps. We have added an additional
bit allocation that is similar to the ETSI standard that
will operate at 4.2kbps [10]. The actual bit rate needed
for a speech recognition task depends on many factors
such as acoustic and speaker conditions as well as the
vocabulary size and complexity of the acoustic models
used. In [8], the range of bit rates was evaluated for a
small vocabulary task under ideal acoustic conditions.
We can expect the word error rate (WER) to increase
under less ideal conditions (i.e. larger vocabulary, more
acoustic background noise, etc.) Table V shows the
resulting bit rates and word error rates from [8] on the
rows labelled VQ-XX, where XX is the number of bits
per 10 ms speech frame. The WER for full bandwidth
speech at 16 kHz and 16 bits per sample (256 kbps) was
6.55%.

Source code to perform the quantization of the MFCC
data was written in fixed point for the StrongARM
processor and profiled using the energy consumption
simulator. The total energy consumption required to cal-
culate MFFCs for one frame of speech including vector
quantization at 4.2 kbps is approximately380 �Joules.
Even at the highest bit rate, the vector quantization is

TABLE V

WORD ERROR RATE FOR SEVERAL BIT RATES[8].

Description Bit rate (kbps) WER (%)
VQ-12 1.2 16.79
VQ-14 1.4 11.71
VQ-16 1.6 9.3
VQ-18 1.8 8.1
VQ-19 1.9 6.99
VQ-20 2.0 6.63
VQ-42 4.2 � 6.55
16kHz 256 6.55

only 12% of the total energy budget. This suggests that
speeding up the quantization process by using smaller
codebooks would produce minimal reductions in energy
consumption and would have a much greater impact on
speech recognition accuracy.
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Fig. 3. Computational energy usage and measured average power
for different quantization bit allocation schemes.

Figure 3 shows a comparison of energy consumption
for various vector quantization bit allocation schemes.
The bars represent the total energy consumption per
frame of speech for the quantization step, and the
line represents the measured CPU power dissipation at
each bit rate. The measured values closely match the
results from the energy consumption simulator. Those
with the smaller bit rates (i.e. 1.2 kbps to 1.6 kbps)
offer the poorest speech recognition performance and
do not save very much battery energy when compared
with the overall computation. There is approximately a
14% increase in CPU power consumption but a greater
than 50% reduction in WER between the highest and
lowest bit rates. Therefore, we advocate the use of higher
and more robust bit rates since the reduction in energy
consumption is minimal.

B. Client-Side ASR

In the absence of a network connection it may be nec-
essary to perform ASR on the mobile device. Speaker-
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dependent speech recognition engines have been opti-
mized for the StrongARM or other mobile processors by
many industry players, but it has been shown that they
use most available resources and may run several times
slower than real-time for many tasks. Power measure-
ments for an embedded dictation ASR system running
on a StrongARM based processor are given in [33]. The
ASR system ran just over 2.5 times real-time, and the
processor was almost never idle during the task.

For the purposes of this work, it is sufficient to
describe the energy requirements for local ASR as the
product of the average power dissipation of the processor
and memory under load and the time required to perform
the speech recognition task. For the Smartbadge IV, we
have measured the average CPU and memory power
dissipation asPpu = 694 mW andPmem = 1115 mW
when under load. Given the real-time factorR for the
speech recognition task, we can estimate the energy
consumption to recognize one frame of speech as:Eloal = (Ppu + Pmem)�R� 1100 (7)

Therefore, for a speech recognition task that runsR =2:5 times slower than real-time, we can expect to use
approximately 45 mJ of battery energy to process one
frame of speech. Compare this with just under 0.4 mJ
for the front-end only, and we have a difference in
computation energy of several orders of magnitude for
client side ASR vs. the distributed system. By using
smaller vocabularies and simpler acoustic and language
modeling techniques, it should be possible to lower the
total run-time and energy consumption at the cost of
reduced performance. A reduced ASR task running in
real-time on a SmartBadge IV would use approximately
18 mJ of energy per frame of speech, but the tradeoff is
reduced utility for the end-user.

IV. M ODELING THE ENERGY USED IN

COMMUNICATION

The wireless network can use significant amounts of
energy on a mobile device. Measurements on the Smart-
Badge IV hardware show that an 802.11b interface card
can use up to 45% of the total power budget. Reducing
the energy consumption is an important consideration
and has been well studied. Section II outlines some of
the techniques. We consider both 802.11b and Bluetooth
wireless networks in our analysis. We assume single
hop communication with a speech recognition server
connected to a wired network via a wireless access
point. Multi-hop communication has limited utility for
this application as it is a client-server scenario over lim-
ited range wireless links. Distributing the computation

across a set of equally constrained mobile devices is not
considered here.

Given the relatively low bit rates used in DSR, both
of these networks will operate well below their maxium
throughput range. In this situation, more energy saving
opportunities will develop from exploiting moderate in-
creases in application latency by transmitting more data
less often. This allows the network interface to either
be powered down or placed into a low-power state in
between transmissions. Other wireless networks with
throughput in the low kbps range, such as many cellular
telephony networks, may require other techniques, such
as better compression, to minimize energy consumption.
However, we do not consider such wireless networks
here.

In order to estimate the power consumption for wire-
less transmission, we directly measured the average
current into the network interface. These measurements
were performed under ideal conditions with no compet-
ing mobile hosts or excessive interference. Using these
measurements as a baseline, we are able to tailor a simple
energy consumption model to investigate the effects of
increased application latency. By buffering compressed
speech features, we maximize the amount of time spent
in the low-power or off state. We introduce a power
on/off scheduling algorithm for the 802.11b device that
exploits this increased latency. Given the medium access
control (MAC) scheme for both 802.11b and Bluetooth,
we can incorporate the effects of channel errors into
the energy model. We use these results to investigate
which techniques should be used to maintain a minimum
quality of service for the speech recognition task with
respect to channel conditions.

A. 802.11b Wireless Networks

The 802.11b interface operates at a maximum bit rate
of 11 Mbps with a maximum range of 100 meters. The
MAC protocol is based on a carrier sense multiple ac-
cess/collision avoidance scheme, which includes a binary
exponential backoff system to avoid collision. It uses an
automatic repeat request (ARQ) system with CRC error
detection to maintain data integrity. We used a PCMCIA
802.11b interface card and measured the average current
going into the interface to get the power dissipation.

Our measurements indicate that there is only a differ-
ence of a few mW in power consumption between the
highest and lowest bit rates. This is expected since the bit
rates are low, and the transmit times are very short. Also,
the use of UDP/IP protocol stacks and 802.11b MAC
layer protocols both add significant overhead for small
packet sizes. The 11 Mbps WLAN interface is under-
utilized with this type of low bit rate traffic. However,
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we can obtain some improvement in power consumption
by increasing the number of frames per packet.This
increases the total delay of the system, but less battery
energy is used since the various networking overhead
is amortized across a larger packet size. However, due
to the relatively high data rates provided by 802.11b,
the WLAN interface spends most of its time waiting
for the next packet to transmit. The 802.11b PM mode
can provide some savings in energy consumption but
this does not hold under heavy broadcast traffic con-
ditions [19], defined as a higher than average amount
of broadcast packets. We present an on/off scheduling
algorithm to reduce the total energy consumption of the
802.11b device under these conditions. While operating
in the 802.11b power management mode, a WLAN
card goes into an idle state. Every 100ms it wakes up
and receives a traffic indication map, which is used to
indicate when the base station will be transmitting data to
this particular mobile host. With heavy broadcast traffic,
the WLAN interface will rarely be in the idle state and
it will consume power as if it were in the always-on
mode. This is because the time required to analyze the
broadcast packets is larger than the sleep interveral. This
increase in power consumption will happen even if there
are no applications running on the mobile host. Figure 4
shows the power consumption of the WLAN card in the
802.11b power management mode in both heavy and
light traffic conditions. Notice that in the bottom graph,
under heavy traffic, the card is unable to transition to
the low-power idle state very often. The average power
approaches the always-on mode.

Since the energy consumption of PM mode on 802.11b
networks breaks down in heavy traffic conditions, we
consider an alternate algorithm. If we are only interested
in transmitting speech recognition related traffic and not
any other broadcast traffic, we can simply power off
the WLAN card until we have buffered enough data to
transmit. However, powering the card on and off has an
energy related cost that needs to be accounted for.

Figure 5 shows the timing of this scheduling algo-
rithm. The period,T , is determined by the number of
speech frames sent in one packet. The transmission is
synchronous such that everyT seconds we will send
that amount of compressed speech features and stay in
the off state for the remainder of the time. With larger
values ofT we can hope to amortize the cost of turning
the WLAN card on and off at the expense of longer
delay. Assuming that a speech recognizer server is able
to process speech at or near real-time, the user will
experience delay near the value ofT . For an interactive
application the total delay seen by the user begins when
the user stops speaking and ends when some action

(a) light traffic

(b) heavy traffic

Fig. 4. WLAN power consumption in 802.11b PM mode in light
and heavy traffic conditions.

P
o

w
er

Time

T

TtxPon

Psave

Tback_on

Fig. 5. The timing of the 802.11b scheduling algorithm.

is taken by the mobile device. A server that is able
to process speech faster than real-time will be able to
reduce this delay but not eliminate it completely. The
amount of tolerable delay depends on the application.
For user interface applications, such as web browsing, a
calendar application, or a voice-driven MP3 player, it is
important to reduce the delay to maintain interactivity.
Delays of around one second may hardly be noticed by
the user, whereas delays of around three seconds or more
may hinder interactivity. For a dictation application, such
as e-mail, this delay is less important. In this case, the
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use simply dictates a response, and corrections or edits
can occur after the speech-to-text process is complete.

Assuming the average power for the always on WLAN
mode isPon, the total energy required to transmitT
seconds of speech frames can be estimated as:Eon = Pon � T (8)

Similarly, the total amount of energy required to transmit
in power management mode is:Esave = Psave � T (9)

where bothPsave and Pon are the measured average
power values at the particular bit rates and number
of speech frames per packet. These data values were
measured directly off the WLAN hardware.

Using the proposed scheduling algorithm, the WLAN
card will be on only during the shaded region in figure 5.
The value,Tbak on, is the amount of time required to
turn the WLAN card back on, during which time it uses
power as if it were transmitting. The valueTtx is the
total amount of time required to transmit the data, which
is typically much smaller thanTbak on for the low bit
rates required for speech traffic. The energy required to
transmit under the proposed scheduling algorithm is:Eshed = Pon � (Tbak on + Ttx) (10)
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Fig. 6. WaveLAN power on delay vs. energy consumption per
packet.

The two interesting parameters to consider are the
power on time (Tbak on) and the number of speech
frames transmitted at once, which dictates the total
period T . Figure 6 shows the power on delay on the
x-axis and estimated energy consumption on the y-axis.
We fixed the value ofT to 0.48 seconds, or 48 frames
of speech data. The PM mode configuration in light traf-
fic almost always outperforms the proposed scheduling

algorithm except for very small values ofTbak on. (Typ-
ical values may range from 100ms to 300ms.) However,
in heavy traffic conditions, the PM mode approaches
the always on power consumption (shown by the top
line in the plot), so the scheduling algorithm can give
better performance under these conditions. WithTbak on
at 100ms, the total energy consumption per packet is
approximately 75 mJ for the scheduling algorithm and
approximately 390 mJ for PM mode in heavy traffic
conditions (from figure 6). This is a reduction in energy
consumption by about 80%. However, this only holds
true for heavy broadcast traffic conditions, so the mobile
device will have to monitor the broadcast traffic and
decide between the standard 802.11b PM mode or the
scheduling algorithm.
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Fig. 7. Average energy consumption per 10ms speech frame vs.DSR
latency for various 802.11b power save schemes. (WLAN poweron
delay is fixed at 100ms.)

Finally, we consider increased delay or latency,T , in
Figure 7. withTbak on fixed at 100ms. In this plot, the
energy cost was determined using measured values of
power consumption. The energy cost has been normal-
ized to show the average energy required to transmit one
frame of speech data. As the total number of frames
approaches 80 (T = 800ms), we can see that the
scheduling algorithm (Eshed) will be able to outperform
the PM mode configuration (Esave) regardless of traffic
conditions. This will result in less than one second
of delay for a user interface application with speech
recognition. Shorter power on (Tbak on) times can help
move this crossover point to shorter delays. Longer
delays of two seconds or more can further reduce energy
consumption and are good candidates for applications
requiring lower interactivity such as dictation.

Since the 802.11b MAC protocol uses an automatic-
repeat-request (ARQ) protocol with CRC error detection
to maintain data integrity, the energy consumption will
be a function of channel SNR. After the reception of
a good packet, an ACK is sent across a robust control
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channel. For a given bit error rate and packet length, the
probability of a packet error in the absence of any error
correction coding techniques is:Pr = 1� (1�BER)L (11)

whereL is the packet length, andBER is the bit error
probability for the current channel conditions. For our
analysis, we used the BER probability for 256-QAM
modulation in a Rayleigh fading channel to approximate
the 802.11b CCK modulation. A Rayleigh fading chan-
nel models the effect of time-varying multipath fading
of the received signal by accounting for constructive and
destructive interference of the scattered carrier signal.
The Rayleigh fading channel asssumption is widely
used in wireless communications literature as a more
realistic alternative to an additive white Gaussian noise
channel [40]. The BER expression for the 256-QAM
modulation is:BER = 2k�12k � 1 M�1Xm=1 (�1)m+1�M�1m �1 +m+ 2m �b (12)

where �b is the SNR per bit,M = 8, andk = 4.
Given the probability of retransmission (Pr), the ex-

pected number of retransmissions (Tr) is given by [41]:Tr = 11� Pr (13)

Using these equations, an energy model can be con-
structed that incorporates the energy used in the MAC
overhead as well as the energy required for repeated
retransmissions, assuming the average SNR remains the
same. Such an energy model is presented in [42] and is
summarized here:Etx(BER;L) = Eaq + Tak � Prx+(Eaq + Ttx � Ptx)� 1(1�BER)L (14)

where Eaq is the average energy required to acquire
the channel,Tak is the time required to receive the
ACK packet, andPrx is the receive power for the
robust control channel. Given this energy model, we can
incorporate it into our scheduling algorithm model in
(10) as follows:Eshed = Etx(BER;L) + Pon � Tbak on (15)

We use this expression in Section V to quantify the
energy consumption of 802.11b vs. channel SNR. In
particular, we show how larger packet sizes and lack of
error correction techniques force 802.11b to operate in
higher channel SNR. However, techniques such as packet
fragmentation and error correction can be used to extend
the lower SNR range of 802.11b.

B. Bluetooth Personal Area Network

The Bluetooth personal area network provides a max-
imum bit rate of 1 Mbps, and a variety of different
packet types are available to support different traffic
requirements [43]. It supports a range that is consid-
erably less than 802.11b, on the order of 10 meters.
Bluetooth supports both data and voice traffic packets
as well as a hybrid packet containing both voice and
data. Media access is handled via a time-division duplex
(TDD) scheme where each time slot lasts 625�seconds.
Voice packets are given priority over data packets in
scheduling. In this work, we consider only pure voice or
pure data packets. Data packets are available in both high
rate and medium rate packets. These are DHn or DMn
packets for both high and medium data rate respectively,
where n depicts the number of TDD slots the packet
occupies: 1, 3, or 5. High rate packets use a stop-and-
wait automatic-repeat-request (ARQ) protocol with CRC
error detection within the packet. Medium rate packets
use a 2/3 rate (15,10) shortened Hamming code in
addition to the ARQ protocol. Voice packets, due to their
time-sensitive nature, do not use an ARQ protocol. Voice
packets are available in HV1, HV2, or HV3 types, where
the number denotes the amount of error correction rather
than slot length. All voice packets occupy one TDD slot
with varying data payloads. HV3 packets use no error
correction. HV2 packets use the (15,10) Hamming code,
and HV1 packets use a 1/3 rate repetition code. Given
the soft time deadlines with speech data intended for a
machine listener, we can easily use either data packets
or voice packets without consideration of packet jitter or
delay characteristics.

First we develop a simple model for the energy con-
sumption of a single Bluetooth voice or data packet. We
then consider the use of Bluetooth power saving modes
to reduce the energy consumption during the idle time,
similar to the 802.11b scheduling algorithm. Finally, we
investigate the implications of bit errors on both voice
and data packets.

Based on the packet types and various error correction
overhead, we can construct a simple energy model for
Bluetooth packet transmissions. For voice packets, the
total energy used is the power used in transmission
multiplied by the time required to transmit.EHV n = Ptx � Ttx = Ptx � 625�s (16)

wherePtx is the measured power consumption in the
transmit state, andTtx is the total time required to
transmit (625�s for HVn packets). Because of the error
correction overhead, we need to transmit three times as
many HV1 packets as HV3 packets for the same amount
of user data.
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For data packets, the energy consumption is dependent
on the size of the data packet being transmitted. Data
packets occupy either 1, 3, or 5 TDD slots. An estimate
of the total energy required to transmit a data packet
(Dxn) is: EDxn = (Ptx � 625�s� n) (17)

wheren is the slot length of the packet, either 1, 3, or
5.

Using power measurements of a USB Bluetooth de-
vice attached to the SmartBadge IV, we are able to
estimate the energy usage for our system. Figure 8 shows
the energy required to transmit one frame of speech data
at various DSR compression rates over a Bluetooth link.
We consider the use of both high speed and medium
speed data packets. We assume an error-free channel
with no retransmissions. We can see in figure 8 that there
is a higher energy cost for medium rate packets due to the
FEC overhead. However, these packets will be a better
choice for lower SNR conditions. Energy consumption
approximately doubles between the 1.2 kbps and 4.2
kbps bit rates. However, these estimates do not consider
idle time between packets which will consume energy
as well.
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Fig. 8. Energy used to transmit one frame of speech with varying
compression rates for Bluetooth radio.

We can incorporate the Bluetooth power saving modes
into our model to account for the idle time in between
packets. A node within a Bluetooth piconet can operate
in a variety of different power management modes [43].
In the defaultactivemode, the slave node listens to every
master-slave slot to see if the packet is addressed to
it. In the sniff mode, the node only listens to slots at
specified intervals. Inhold mode, the node goes into a
low-power state until some specified interval, after which
it powers up to transmit. Inpark mode the Bluetooth
node temporarily gives up its membership to the piconet
to join a list of parked nodes. The node’s only activity in

parked mode is to periodically listen for synchronization
and broadcast packets.

A Bluetooth node in park mode will wake up upon
activity to transmit some data and then enter the park
mode when finished. The energy consumption of this
scenario is as follows:E = Ptx � Ttx +Etransition + Ppark � Tpark (18)

whereEtransition is the total energy used to transition
to/from the various operating states, andPpark andTpark
are the power dissapation and times in the park mode
respectively. The time spent in the deep sleep state is
a function of the overall latency of the system and the
amount of data being transmitted. We measure 0.18 watts
in the transmit mode, and 0.077 watts in the park mode.
Transition times to and from the park state are on the
order a several milliseconds each.
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Fig. 9. Energy per frame of speech vs. DSR latency for a Bluetooth
and 802.11b.

By varying the amount of data transmitted at once, we
can increase the amount of time spent in the park state.
Figure 9 shows the tradeoff between speech recognition
latency and energy consumption per frame of speech for
both 802.11b and Bluetooth. Once again, we assume a
perfect channel with no bit errors. For smaller values ofT , Bluetooth can offer better performance than 802.11b,
but asT approaches 1.3 seconds, 802.11b will use less
energy. This is because the 100 ms startup cost of
802.11b is amortized across a larger number of frames,
while the Bluetooth node remains in the park state and
still consumes power. Powering off a Bluetooth node
between packet transmissions is not an option since the
paging/inquiry actions required to join a piconet can
easily take in excess of 10 seconds. However, since
the transition time from park to active and back is
small, we see an initial drop in energy consumption with
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respect to increased latency in Bluetooth. However, with
increased delay the energy spent in park mode becomes
the dominant factor.

Next, we investigate how the presence of bit errors
on the wireless channel will affect both the energy
consumption and, in the case of voice packets, speech
recognition accuracy. We use this data to identify which
types of packets can be used effectively in various
channel conditions. The main difference between the two
types of packets is that voice packets rely only on FEC
and no ARQ, while data packets can useboth FEC and
ARQ.

0 5 10 15 20 25 30 35
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

B
E

R

HV1 (1/3 repetition)
HV2 (15,10) Hamming
HV3 (no coding)
Target BER

Fig. 10. The error correction performance of Bluetooth voice packet
types.

The energy consumption of Bluetooth voice packets
is independent of channel conditions. Therefore, we can
estimate the energy consumption using (17) and (18).
The main difference in energy consumption per frame
of speech will come from the reduced user payload
due to FEC bits. Figure 10 shows the error correc-
tion performance for various types of Bluetooth voice
packets. We define a maximum bit error rate that is
necessary to maintain a usable level of accuracy for DSR
in Section IV-C.

In the presence of bit errors, data packets will continue
to be retransmitted until they are received correctly or a
timeout occurs. For the purposes of this analysis, we
assume BFSK modulation with coherent detection under
a Rayleigh fading channel. We also assume that the aver-
age SNR remains constant throughout the transmission.
The BER expression used is as follows:BER = 12  1�s �b�2 + b! (19)

where �b is the average SNR per bit. The total energy
used is also a function of the probability of a packet re-
transmission. The expression is based on the probability

of packet synchronization failure, header failure, payload
error, and both synchronization and header failure in the
ACK packet. Each of these items is a function of the
bit error rate (BER), which is, in turn, a function of the
channel signal to noise ratio (SNR). An expression for
this probability (Pr) is derived in [44], but for length
reasons the expression will not be shown here. If we
ignore the overhead for receiving an ACK packet, an
estimate of the energy consumption for Bluetooth data
packets in the presence of bit errors is:EDxn = Ptx � 625�s� n� 11� Pr (20)

By dividing the energy by the number of frames in
a packet, which varies with packet length and coding
technique, we can get the energy required to send one
frame of speech.

C. The Effect of Bit Errors on DSR

The presence of bit errors in the speech feature
stream can cause an significant decrease in accuracy.
It is essential that bit errors be detected and concealed
when possible [9]. However, it becomes more difficult to
conceal errors when lost packets consist of many frames
of speech. The correlation between neighboring speech
frames decreases with increasing lag. Therefore, for long
packets containing half a second or more of speech data,
we cannot tolerate much, if any, packet loss. However,
with Bluetooth voice packets, the data is delivered even
if in error. Using the various error protection schemes
in Figure 10, we should be able to indentify a minimum
BER after coding that is sufficient for DSR.
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Fig. 11. Bit error rate vs. speech recognition accuracy using the
ETSI DSR standard and a 5,000 word speech recognition task.

The ETSI standard uses CRC error detection on
consecutive frame pairs to determine if there is a bit
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error [10]. Errors in the quantized speech vectors are
concealed simply by repeating previous or subsequent
speech vectors to fill in the gap. Using this error con-
cealment scheme, we simulated bursty error channel
via a two-state Gilbert-Elliot [45] channel model for
a variety of different channel conditions. In Figure 11,
we calculated the average bit error probability for each
Gilbert-Elliot channel and plotted the BER vs. accuracy
on a 5,000-word vocabulary Wall Street Journal speech
recognition task. The accuracy of the system without
bit errors was 88.8%. We can see that the system starts
to lose accuracy significantly after an average bit error
probability of10�3. Therefore, we use10�3 as our target
bit error rate.

V. SUMMARY OF DSR TRADEOFFS

By using the client-side ASR energy model and the
DSR energy model for both Bluetooth and 802.11b
wireless networks, we can examine the energy tradeoffs
with respect to channel quality, delay, and speech recog-
nition accuracy. Higher bit rates have small increases
in system level energy consumption due to the over-
head of the power saving algorithms on the wireless
device. This tradeoff is shown in Table VI. For the
remainder of this analysis, we consider transmission
at the highest available bit rate, which offers the best
WER. In Figure 12, we plot the energy consumption
per frame of speech for client-side ASR and DSR
under both 802.11b and Bluetooth wireless networks
with respect to channel quality. For DSR, we include
the both the communication and computation (feature
extraction/quantization) energy costs. For 802.11b, we
consider the energy consumption of the power on/off
scheduling algorithm with a latency of 240ms, 480ms,
and 2 seconds and unlimited ARQ retransmissions. For
the Bluetooth interface we show the energy consumption
for both medium and high rate data packets as well as the
three types of voice packets with latency of 480ms. To
the right of the Y-axis we have the approximate energy
savings over client-side ASR operating 2.5 times slower
than real-time. We can expect a scaled down speech
recognition task (i.e. simpler acoustic and language mod-
els or smaller vocabulary) running at real-time to give
60% energy savings. However, this will come at a cost of
reduced functionality for the user, perhaps going from a
dictation system to a command and control system with
smaller vocabulary. We have not quantified the cost of
reduced utility for the user in this work. However, for the
various DSR scenarios in Figure 12 we assume little to
no reduction in quality for the end-user by maintaining
sufficient data integrity through source coding techniques

and/or ARQ retransmissions. Table VII shows the per-
centages of computation and communication energy for
a few different configurations as well as the expected
battery lifetime with a 1400mAh/3.6V lithium-ion cell.
The 802.11b interface with long delays gives the lowest
overal energy consumption and an almost even division
between energy spent in computation and communi-
cation. DSR with Bluetooth uses a higher percentage
of communication energy, and this amount does not
decrease significantly with increased delay due to the
overhead of the park mode. Expected battery lifetimes
exceed that of typical cellular telephones as we do not
require real-time communication. Even modest delays of
less than 0.5s can yield significant battery lifetime with
constant streaming of DSR data.

TABLE VI

TOTAL ENERGY CONSUMPTION FOR BOTH COMPUTATION AND

COMMUNICATION VS. BIT RATE FOR BLUETOOTH AND 802.11B.(T = 0:48s).
Computation + Communication

Bit rate (kbps) WER (%) Bluetooth (mJ) 802.11b (mJ)
1.2 16.79 1.1279 2.4661
1.4 11.71 1.1315 2.4688
1.6 9.3 1.1323 2.4698
1.8 8.1 1.1338 2.4717
1.9 6.99 1.1358 2.4719
2.0 6.63 1.1380 2.4749
4.2 6.55 1.1701 2.5044

In a good channel with high SNR, Bluetooth allows
systemwide energy savings of over 95% compared with
full client-side ASR. DH5 packets offer the lowest
overhead and best energy savings, while DM1 packets
offer the most robust operation down to around 10 dB
with some minimal energy cost. The ARQ retransmission
protocol causes rapid increases in energy consumption
after some SNR threshold is reached. It is possible to op-
erate in lower SNR through packet fragmentation, which
will lower the probability of a packet being received
in error. This is evident in Figure 12 by comparing
DH1 and DH5 data packets. The longer packet length
in DH5 packets causes a sharp increase in retransmits
and energy consumption at around 25 dB, whereas DH1
packets can operate down 15 dB before the number of
retransmits becomes excessive. In addition, FEC bits can
be used to lower the probability of a packet retransmit.
The Hamming code in DM1 and DM5 packets allows
operation down to around 10 and 16 dB respectively. Fi-
nally, Bluetooth voice packets have energy consumption
that is independent of SNR since no ARQ protocol is
used. Uncoded HV3 packets have the lowest overhead,
and therefore the lowest energy consumption per frame
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TABLE VII

SUMMARY OF ENERGY CONSUMPTION FORASR AND DSRWITH HIGH CHANNEL SNR.

Type Computation (%) Communication (%) Total per Speech
Frame (mJ)

Battery Lifetime (h)

DSR w/Bluetooth (T=0.48s) 32% 68% 1.17 43.1
DSR w/802.11b (T=0.48s) 15% 85% 2.5 20.2

DSR w/802.11b (T=2s) 42% 58% 0.92 54.8
Local ASR (R=2.5) 100% 0% 45 1.12
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Fig. 12. The energy consumption of client-side ASR and DSR under Bluetooth and 802.11b vs. SNR.

of speech, but they only operate down to around 27 dB.
Beyond that, the probability of a bit error exceeds10�3,
which we have determined to have a noticable impact
on speech recognition accuracy. HV1 and HV2 packets
can operate down to around 12 and 17 dB respectively.

Finally, 802.11b networks allow systemwide energy
savings of approximately 89-94% with relatively small
values of T . With larger values ofT , such as one
second or more, we can use less energy than Blue-
tooth. However, due to the larger packet overhead, larger
maximum packet sizes, different modulation, techniques,
and lack of error-correcting codes, the 802.11b network
does not operate as well in lower SNR ranges. Packet
fragmentation or a switch to a more robust modulation
technique with lower maximum bit rate can extend
the lower SNR range at the cost of increased energy
consumption, but we have not considered these effects
here. However, 802.11b does offer increased range and
may be more appropriate in certain scenarios.

VI. CONCLUSION

In this paper, we investigated the energy consump-
tion of a distributed speech recognition front-end. We
considered energy usage from both computation and
communication. The advantages of DSR from an energy
consumption perspective are clear. Client-side speech
recognition in software can consume several orders of
magnitude more energy than a DSR system. However,
the use of low-power ASIC chips for speech recognition
may help reduce the energy consumption of client-side
ASR in the future.

The computation of a speech recognition front-end
can be optimized for a particular processor to reduce
the energy consumption. Savings of more than 80%
can be obtained through algorithmic and architectural
optimizations. Dynamic voltage scaling can be applied
at run-time to minimize the energy consumption even
further.

In our analysis of DSR, we have considered both
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802.11b and Bluetooth wireless networks. Given the rel-
atively high bit rates these standards provide with respect
to DSR traffic, we investigated the use of synchronous
bursty transmission of the data to maximize the amount
of time spent in a low-power or off state. While this
adds a small delay to the end-user, the energy savings
can be significant. With 802.11b, we can reduce the
energy consumption of the wireless interface by around
80% with modest application delays of just under half a
second. Bluetooth offers lower energy consumption for
smaller values of delay,T , but as delay increases, the
Bluetooth energy consumption is dominated by the time
spent in park mode. The 802.11b interface with on/off
scheduling can operate with a lower energy consumption
than Bluetooth whenT exceeds 1.3 seconds.

In the presence of bit errors, we can estimate the
energy consumption with respect to SNR and identify
the appropriate operating ranges for the various packet
types. For voice packets, we recommend a minimum bit
error rate after FEC of 0.1%. Given that one packet many
contain many frames of speech, packet losses can have
significant impact on accuracy. Bluetooth voice packets
can operate down to 12 dB SNR without any perceptible
reduction in accuracy. The use of FEC codes can allow
Bluetooth data packets to operate down to slightly less
than 10 dB and still use less energy than client-side ASR.

ACKNOWLEDGEMENT

The authors would like to thank John Anckorn and
Wajahat Qadeer for their contribution of Bluetooth power
consumption measurements. In addition, we would like
to thank Mat Hans and Mark Smith of HP Labs for their
continued support of this work.

REFERENCES

[1] G. Q. Maguire, M. Smith, and H. W. P. Beadle, “Smartbadges:
A wearable computer and communication system,” 6th Interna-
tional Workshop on Hardware/Software Codesign, 1998, invited
Talk.

[2] L. Karray, A. B. Jelloun, and C. Mokbel, “Solutions for robust
recognition over the gsm cellular network,” inProceedings of
the 1998 IEEE International Conference on Acoustics, Speech,
and Signal Processing, vol. 1, 1998, pp. 261–264.

[3] B. Lilly and K. Paliwal, “Effect of speech coders on speech
recognition performance,” inICLSP 96, vol. 4, 1996, pp. 2344–
2347.

[4] H. K. Kim and R. V. Cox, “Bitstream–based feature extraction
for wireless speech recognition,” inProceedings of the Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), vol. 3, 2000, pp. 1607–1610.

[5] X. Zhong, J. Arrowood, and M. Clements, “Speech coding and
transmission for improved automatic recognition,” inInt. Conf.
Spoken Language Processing, 2002.

[6] G. N. Ramaswamy and P. S. Gopalakrishnan, “Compression
of acoustic features for speech recognition in network envi-
ronments,” inProceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP), vol. 2,
1998, pp. 977–980.

[7] N. Srinivasamurthy, A. Ortega, Q. Zhu, and A. Alwan, “Towards
efficient and scalable speech compression schemes for robust
speech recognition applications,”IEEE International Confernce
on Multimedia and Expo, vol. 1, pp. 249–252, 2000.

[8] V. Digilakis, L. Neumeyer, and M. Perakakis, “Quantization of
cepstral parameters for speech recognition over the world wide
web,” IEEE Journal on Selected Areas in Communications,
vol. 17, pp. 82–90, 1999.

[9] C. Boulis, M. Ostendorf, E. A. Riskin, and S. Otterson,
“Graceful degradation of speech recognition over packet erasure
networks,”IEEE Transactions on Speech and Audio Processing,
vol. 10, pp. 580–590, 2002.

[10] “Speech processing, transmission and quality aspects(stq);
distributed speech recognition; front-end feature extraction al-
gorithm; compression algorithms,” ETSI Standard: ETSI ES
201 108 v1.1.2, 2000, http://www.etsi.org.

[11] E. Cornu and H. Sheikhzadeh, “A low-resource, miniature
implementation of the etsi distributed speech recognitionfront-
end,” inProceedings of the International Conference on Spoken
Language Processing (ICSLP), 2002.

[12] C. Chiasserini, P. Nuggehalli, and V. Srinivasan, “Energy-
efficient communication protocols,” inDAC, 2002.

[13] E. Shih, P. Bahl, and M. Sinclair, “Dynamic power management
for non-stationary service requests,” inMOBICOM, 2002.

[14] P. Lettieri, C. Schurgers, and M. Srivastava, “Adaptive link layer
strategies for energy efficient wireless networking,”Wireless
Networks, vol. 5, pp. 339–355, 1999.

[15] C. Jones, K. Sivalingam, P. Agrawal, and J. Chen, “A survey
of energy efficient network protocols for wireless networks,” in
DATE, 1999, pp. 77–81.

[16] R. Krashinsky and H. Balakrishnan, “Minimizing energyfor
wireless web access with bounded slowdown,” inMOBICOM,
2002.

[17] K. Sivalingam, J. Chen, P. Agrawal, and M. Srivastava, “Design
and analysis of low-power access protocols for wireless and
mobile atm networks,”Wireless Networks, vol. 6, pp. 73–87,
2000.

[18] V. Raghunathan, S. Ganeriwal, C.Schurgers, and M. Srivastava,
“e2wfq: An energy effiecient fair scheduling policy for wireless
systems,” inISLPED, 2002.

[19] A. Acquaviva, T. Simunic, V. Deolalikar, and S. Roy, “Remote
power control of wireless network interfaces,”Lecture Notes in
Computer Science, October 2003.

[20] T. Simunic, L. Benini, P. Glynn, and G. D. Micheli, “Event-
driven power management,”IEEE Transactions on CAD, July
2001.

[21] A. Acquaviva, L. Benini, and B. Riccó, “Software controlled
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