
                                                                

       
An Almost Non-Blocking Stack 
 
Hans-J. Boehm 
Internet Systems and Storage Laboratory  
HP Laboratories Palo Alto 
HPL-2004-105 
June 17, 2004* 
 
E-mail: Hans.Boehm@hp.com 
 
 
stack, non-
blocking, lock-free, 
linked list, mostly 
non-blocking 

Non-blocking data structure implementations can be useful for 
performance and fault-tolerance reasons. And they are far easier to use 
correctly in a signal- or interrupt-handler context. 

We describe a weaker class of "almost non-blocking" data structures, 
which block only if more than some number N of threads attempt to 
simultaneously access the same data structure. We argue that this gives 
much of the benefit of fully non-blocking data structures, particularly for 
signal or interrupt handlers. 

We present an almost non-blocking linked stack implementation which is 
efficiently implementable even on hardware providing a single word 
compare-and-swap operation, while potentially providing the same 
interface as a well-known fully non-blocking solution, which relies on a 
double-width compare-and-swap instruction. By making a platform-
dependent choice between these, we can implement a signal-handler-safe 
stack or free- list abstraction that is both portable and exhibits uniformly 
high performance with any flavor of compare-and-swap instruction. 

 

* Internal Accession Date Only                              Approved for External Publication 
 Copyright ACM 2004. To be published in the Symposium on the  Principles of Distributed Computing  (PODC 
'04), 25-28 July 2004, St. Johns, Newfoundland, Canada 



An Almost Non-Blocking Stack

Hans-J. Boehm
HP Laboratories

1501 Page Mill Rd.
Palo Alto, CA 94304

Hans.Boehm@hp.com

ABSTRACT
Non-blocking data structure implementations can be useful
for performance and fault-tolerance reasons. And they are
far easier to use correctly in a signal- or interrupt-handler
context.

We describe a weaker class of “almost non-blocking” data
structures, which block only if more than some number N
of threads attempt to simultaneously access the same data
structure. We argue that this gives much of the benefit of
fully non-blocking data structures, particularly for signal or
interrupt handlers.

We present an almost non-blocking linked stack imple-
mentation which is efficiently implementable even on hard-
ware providing a single word compare-and-swap opera-
tion, while potentially providing the same interface as a
well-known fully non-blocking solution, which relies on a
double-width compare-and-swap instruction. By making a
platform-dependent choice between these, we can implement
a signal-handler-safe stack or free-list abstraction that is
both portable and exhibits uniformly high performance with
any flavor of compare-and-swap instruction.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management — Con-
currency; D.3.3 [Programming Languages]: Language
Constructs and Features — Concurrent programming struc-
tures

General Terms
Algorithms, Measurement, Performance.

Keywords
Stack, non-blocking, lock-free, linked list, signal handler, in-
terrupt handler, compare-and-swap, memory allocation
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1. INTRODUCTION
Non-blocking data structures have received a large amount

of attention (cf. [22, 7, 8, 20, 6]), primarily as a mechanism
for avoiding unnecessary waits for stalled or faulty threads.
Their use in the context of operating system kernels has
been repeatedly explored (cf. [21, 5, 12]). Primitives to
support them are being added to the Java Programming
Language[17].

We encountered the need for non-blocking data structures
in a slightly different context. We are interested in building
sample-based profilers and similar tools[3] for Linux and re-
discovered that it can be useful to update shared data struc-
tures from asynchronously invoked signal handlers.1 This is
usually impossible to do efficiently if lock-based approaches
are used for concurrency control, since a signal handler may
run as, and hence block, a thread owning a lock needed by
the handler.2 Non-blocking data structures can be a solu-
tion to this problem. We argue in the next section that a
slightly weaker variant of “almost non-blocking” data struc-
tures are also sufficient, and for some architectures, more
practical.

In this paper we focus on a particularly simple data struc-
ture, namely a linked LIFO stack. It is of interest both be-
cause it serves as a simple illustrative case of a technique
that we expect to be generalizable, but also because it is
almost immediately needed and, for our purposes, is often
sufficient. In particular, it gives us a way to represent a set
of memory objects. For example, it can be used to imple-
ment a free list of available memory, and thus allows memory
allocation from a signal handler.

The problem is nontrivial on standard hardware since the
underlying synchronization primitives are often too weak to
support a direct non-blocking implementation. Most mod-
ern hardware provides the following, which we will assume
for the rest of this paper:

• Byte addressability.

• Atomic read and write operations on address-sized,
properly aligned data.

• An atomic, non-blocking compare-and-swap (CAS) op-
eration on a single address-sized word.3

1This is closely related to the use of non-blocking primitives
in kernel interrupt handlers, as in [21].
2The Posix standard[13] imposes severe restrictions on the
actions that may be performed in a signal handler, largely
motivated by this issue.
3Many architectures provide LL/SC operations which disal-



• Objects containing pointers may be aligned on word
boundaries. (Usually this is in fact a requirement.)
Thus pointers to list nodes will always have a few low
order zero bits.

These facilities are provided, for example, by all recent
X86, Itanium, Alpha, SPARC, MIPS, and PowerPC vari-
ants.

Some, but not all, of these processors also provide a double
width compare-and-swap CASW operation that operates on
two adjacent address-sized values simultaneously. 4

In the presence of a CASW instruction, there are rela-
tively old and well-known techniques for implementing effi-
cient non-blocking linked stacks[22]. Our goal is to approx-
imate this on an architecture with only single-width CAS,
such that we can provide the same abstraction in either case,
and encounter only moderate slowdown where CASW is not
supported. This appears to be a minimal requirement for
use of these techniques in portable user-level code.

With only a single address CAS operation, using C no-
tation, we may write the push operation as follows, where
list points to a list header pointing to the top of the stack,
and element is the new node to be inserted:

void push(node **list, node *element)

{

node *first;

do {

first = *list;

element -> next = first;

} while (!CAS(list, first, element));

}

Analogously, we might attempt to write a pop operation,
which returns the former top of the stack, as follows:

/* WRONG !! */

node *pop(node **list)

{

node *result, *second;

do {

result = *list;

node *second = result -> next;

} while (!CAS(list, result, second));

return result;

}

Unfortunately, this may produce incorrect results if list
nodes can be removed and then reinserted into a stack.
Another process may concurrently pop result and another
node, and then reinsert result. In this case the compare-
and-swap operation succeeds even though second is no longer
the second element in the stack.

low other intervening memory accesses[20]. These can effi-
ciently emulate such a CAS operation, but do not support
a more direct solution of our problem. Hence we view them
as equivalent.
4CASW is available on Pentium or later X86 processors,
and on most 64-bit processors when running 32-bit applica-
tions. But 128-bit CAS instructions are currently rare on
64-bit processors. It is part of the Intel 64-bit extension
and Itanium architectures, but not implemented on current
Itanium or 64-bit AMD processors. Some M68K processors
have a DCAS instruction which can simultaneously operate
on two discontiguous words in memory.

The underlying problem is that the initial value A of *list
changed to B and then back to A before the compare-and-
swap was executed. This is commonly referred to as the
“ABA” problem, which is unfortunately difficult to avoid
without significant costs.

Here we present a practical solution to this problem, which
relaxes the “non-blocking” requirement in a way that sacri-
fices some nice theoretical properties, but preserves most of
the practical advantages of fully non-blocking algorithms.

2. RELATED WORK
The literature contains many examples of fully non-block-

ing, and even wait-free implementations of linked stacks.
They fall into three categories:

• They rely on the presence of at least CASW. A non-
blocking linked stack implementation using this ap-
proach was given in [22]. In the presence of CASW,
our measurements confirm that this is at least com-
petitive with any form of locking, and is clearly the
preferred approach if locking is not viable.

• They rely on fairly complex algorithms with at least
moderate time and/or space overhead to provide a
fully non-blocking or wait-free implementation. Some
recent work has done this directly usually for more
general linked list structures (cf. [6, 23]).

A simple linked stack can also be built directly from an
implementation of a fully general LL/SC primitive[20,
15], which is not subject to this kind of ABA problem.5

Probably the most practical such construction is the
algorithm presented in section 2 of [15]. But it still
requires order NL additional memory, where N is the
number of processes and L is the number of lists in the
system. And this must be in process-indexed arrays,
which is difficult to arrange in most user-level envi-
ronments, which support dynamic process creation. It
also makes it nontrivial to make an approach based
on [15] interface-compatible with a CASW-based solu-
tion, which is highly desirable for portable code.

• They disallow immediate reinsertion of previously re-
moved list elements (cf. [19]). This is a very reason-
able solution if every node pushed onto the stack is
newly allocated. In a garbage-collected environment,
it is even automatic. However, in many contexts, we
would like to be able to move preallocated nodes be-
tween stacks, and have to tolerate immediate reinser-
tion of a given mode. For example, this is true if we
want to use the algorithm in a memory allocator, which
was much of our original motivation.

The hazard pointers introduced by Michael in [19] are
probably closest to the technique we present below.
But the solution as a whole still does not allow arbi-
trary movement of list nodes between lists, and again
requires a thread-indexed array, which is nontrivial to
generalize to environments without a priori bounds on
thread creation.

5The LL/SC primitives provided directly by many hard-
ware architectures are more restricted, and do not avoid the
problem, since it is not safe to load another memory location
between the LL and SC[20].



A similar idea is explored in detail in [9], but they
again resort to a double width (pointer plus version
number) CAS instruction in their memory allocator.

3. ALMOST NON-BLOCKING DATA
STRUCTURES

We propose a data structure that is N-non-blocking in the
following sense:

• The data structure supports concurrent access by any
number of processes.

• If at most N processes are both trying to update the
data structure and are inactive6, and at least one ac-
tive process is trying to access or update the data
structure, then some process will succeed in accessing
or updating the data structure in a bounded amount
of time.

We say that a data structure is almost non-blocking or
almost lock-free if it is N-non-blocking for some N > 0.7

This condition is strictly weaker than the standard defi-
nition of a non-blocking data structure, which imposes no
limit on the number of inactive threads that are in the mid-
dle of a data structure update.

The weaker definition is usually sufficient for our moti-
vating problem of avoiding deadlocks in signal- or interrupt-
handlers.

In the single-threaded case, it is clearly sufficient if we
prevent nested invocation of handlers; the only “inactive”
thread accessing the data structure is the one thread in-
terrupted by the handler. This is the normal behavior of
Posix[13] signal handlers. The current signal is blocked in
the handler by default, preventing reentry of the handler.

If N distinct signal handlers, as well as the main pro-
gram, access the data structure, then an N -non-blocking
data structure will normally avoid deadlock. Assuming each
handler blocks its own type of signal (the default), then only
N nested invocations of relevant handlers are possible. Only
the main program and the “bottom” N − 1 signal handlers
can block as a result of handler invocation; thus we can
have at most N simultaneous blocked accesses to the data
structure.

For a multithreaded main program, we insist that signal
handlers accessing our data structure not be recursively in-
voked. This can be ensured by accessing the data only from
the handler for a single signal, or by blocking other signals
that might cause data structure access in each such handler.

For a multithreaded program, we further require that all
accesses to a data structure outside a handler be confined
to a single thread. If this is not naturally the case, a con-
ventional locking scheme can be safely used to ensure this,
provided only accesses to the data structure from the main
program, but not from signal handlers, acquire the lock.

6Such a process is inactive if it fails to execute instructions
at a minimum rate while trying to update the data structure.
This may happen, for example, if it blocks while waiting for
the completion of a signal handler, or if it was running on
a processor that has stopped as the result of a hardware
failure.
7Note that this notion is unrelated to the use of the term
almost wait-free in [4], since their data structure is in fact
entirely lock-free. It is almost complementary to the notion
of obstruction-freedom in [10].

In this setting, at most a single updater to the data struc-
ture, namely the single thread currently holding the data
structure lock, can become inactive due to interruption by a
handler. Hence a 1-non-blocking data structure is sufficient
to prevent deadlock.

If our goal is not to accommodate signal handlers, but to
tolerate thread pauses, such as during a page fault, an N -
non-blocking solution guarantees behavior similar to a non-
blocking solution in the presence of up to N simultaneously
paused threads.

Our primary goal is deadlock-avoidance, not performance
or scalability. Nonetheless we expect a mostly non-blocking
data structure to perform almost as a non-blocking data
structure at low or modest levels of contention. At very high
levels of contention, a mostly non-blocking data structure
performs more like a lock-based algorithm, and many of the
same considerations apply. It is similarly easy to insert a
back-off algorithm in the contention path without affecting
the fast path.

4. AN ALMOST NON-BLOCKING STACK
Our N -non-blocking stack combines two old ideas in a

novel way:

• We can solve the ABA problem by including a version
number with each pointer. The problem is that since
we need to atomically update pointers, and we assume
only a single-word CAS instruction, we have very few
bits available for a version number, and hence cannot
avoid wrap-around issues. However, on all modern ar-
chitectures, list nodes will be naturally word-aligned,
but addresses are capable of referring to bytes. Hence
it is possible to include at least a two bit “version num-
ber”.8 We present a way to use these two bits to good
advantage, such that version wrap-around does not in-
troduce correctness issues. Unlike earlier work, we al-
low ourselves to block before we run out of distinct
version numbers.

• We use a technique reminiscent of Michael’s “hazard
pointers” to limit the need for version numbers to cases
of potential conflict. Unlike a per-thread collection of
“hazard pointers” we use a global “black-list” associ-
ated with the list header.

At any point, our global black-list contains pointers to
nodes that are currently being popped from the stack by
some thread; hence they could give rise to the ABA problem
if they were reinserted with the same version number. If we
encounter a black-listed element as an argument to a push

operation, we increment the version number.
In presenting the algorithm we treat pointers with their

short version numbers as a single entity. We assume that
there is a function perturb such that perturb(p) yields a
pointer identical to p but with a different version number,
and such that repeated application of perturb cycles through
all version numbers. In practice, perturb is usually imple-
mented as an add instruction followed by a zero (overflow)
test on the least significant bits.

8On a 32-bit machine, we assume that list nodes are at least
32-bit, or 4-byte, aligned. This ensures that the least signif-
icant two bits of every pointer are zero. On 64-bit machines,
pointers will generally be at least 8-byte aligned, giving us
at least three unused low order bits in each pointer.



void push(node *perturbed * list,

node * element,

node *perturbed bl[])

{

node *perturbed my_element = element;

retry:

for (int i = 0; i <= N; ++i) {

if (bl[i] == my_element) {

my_element = perturb(my_element);

goto retry;

}

}

do {

node *perturbed first = *list;

element -> next = first;

} while (!CAS(list, first, my_element));

}

Figure 1: push implementation

node * pop(node *perturbed * list,

node *perturbed bl[])

{

unsigned bl_index;

retry:

node *perturbed result = *list;

for (bl_index = 0; ; ) {

if (CAS(&(bl[bl_index]), 0, result))

break;

if (++bl_index > N) bl_index = 0;

}

if (result != *list) {

bl[bl_index] = 0;

goto retry;

}

node *perturbed second =

strip(result) -> next;

if (!CAS(list, result, second)) {

bl[bl_index] = 0;

goto retry;

}

bl[bl_index] = 0;

return strip(result);

}

Figure 2: pop implementation

We also need a function strip which removes the version
number from a pointer and yields a pointer that can be
dereferenced directly.

We present the push and pop functions with an extra ex-
plicit black-list argument. The black-list is an N +1-element
array in order to tolerate N inactive threads. We require
that N + 1 be strictly smaller than the number of distinct
version numbers we can represent.9

We use C notation throughout (with C++-style embed-
ded declarations), except that we use a new type qualifier
“perturbed” to indicate that a pointer may include a version
number and may not be directly dereferenced. We assume
that list nodes include a field “list *perturbed next;”
which we use as a link field.

A list itself is represented as a pointer to a header field,
which is itself a perturbed pointer to a node.

Unlike our actual implementation, we assume a sequen-
tially consistent[16] machine.

The push function implementation is given in figure 1.
As others have observed, the push routine is not subject

to the ABA problem. It does not matter whether the head
of the list changed between the initial read and the CAS
instruction, so long as its final value matches the one we
read. Thus this is essentially the same as the naive version
above, except that

• If we find the node being inserted on the black-list,
because another thread is still attempting to remove
it, we perturb the pointer.

• We verify that each slot in the black-list contained a
value other than the final perturbed node pointer we
use for insertion sometime during the execution of the
initial loop.

The pop routine (see figure 2) is also a variation on the
naive one, but we need to be a bit cleverer to ensure that the
element being removed correctly appears on the black-list at
the right time:

Essentially we look for an unused black-list slot, and atom-
ically replace it with the list entry we are planning to remove.
After adding the black-list entry but before looking up the
second list entry, we verify that the list head is unchanged.
We then proceed as in the naive algorithm.

The algorithm may block, i.e. loop for a reason other than
a successful list update by another thread, only if there is
no available slot in the black-list.

In practice it is beneficial to insert back-off code at the
point at which bl index is reset to zero to reduce contention
on the black-list.10

Note that there is no problem if the list node being re-
moved is moved to another list or deallocated in the mean-
time, so long as it remains addressable. We may access
9On a 32-bit machine, pointers and hence list nodes are
usually 32-bit-aligned, and therefore we have two unused
bits for the version number. We can thus represent four
distinct version numbers, yielding N ≤ 2. On a 64-bit
machine we usually get eight distinct version numbers and
N ≤ 6. Some platforms allow stricter alignment restric-
tions and hence larger N . Often N = 1 is actually the most
interesting case, since it usually suffices for data structure
accesses from signal handlers.

10Our back-off code first spins, and then sleeps for short peri-
ods of time. Thus we do not require any form of notification
when a black-list entry is cleared, though that may be a
better approach in high contention cases.



the next field of a node that was concurrently removed and
deallocated by another thread. But the value read cannot
matter in that case, since the following CAS operation will
fail.

The list header and black-list on the other hand, must
remain valid as long as any push or pop operation is in
progress, since the CAS operations might otherwise mod-
ify memory that has since been reallocated for a different
use.

4.1 Correctness
We assume that stacks are used correctly by client code.

In particular:

• A push operation is only performed on a new element

i.e. one that was never previously passed to push, or
on one that was returned by pop after the last time it
was pushed onto the stack.

• No client code modifies a list header, a black-list, or the
next field in any stack node except by calling push and
pop. (The next field in a list node may be arbitrarily
modified before it is passed to push for the first time
or after it was returned from pop and before it is again
passed to push.)

• List headers and black-lists are permanent (or garbage
collected, or managed in some other safe way). List
nodes always remain accessible for reading, but they
may otherwise be reused arbitrarily after they are re-
turned from pop for the last time.

We focus first on safety by arguing that our implementa-
tion is linearizable in the sense of [11].

4.1.1 Atomicity of push
It is easy to show that the push operation behaves as

though the update to the list header and next field occurred
atomically at the successful CAS instruction. By our as-
sumptions about client behavior, the next field cannot be
concurrently modified or read by client code. Neither is
a concurrent push operation on the same element allowed.
Hence there is no way to observe that the next field was
updated before the CAS instruction.

4.1.2 Atomicity of pop
Clearly the pop operation is far more interesting. We ar-

gue that it behaves as though it occurred at the point of
the final CAS. This is true if we can guarantee that the
CAS succeeds only if there were no intervening changes to
strip(result)->next between the result != *list test
and the success of the CAS operation.

Assume that the next field in fact did change in the in-
terim during a pop operation, but the CAS succeeds. Let
pop main be the first such operation. The next field could
only have legitimately changed after a successful pop oper-
ation pop intervening which also returned the same node,
i.e. strip(result). For the CAS operation to succeed, this
node must have later been reinserted by another push oper-
ation push intervening which resulted in the same perturbed
element pointer, and hence the next value we see must have
been written by push intervening. (If there were multiple
intervening pop and push operations removing and reinsert-
ing the node, we let pop intervening and push intervening
refer to the last ones.)

Consider two cases:

1. The push intervening operation started after (the read
operation in) the last result != *list test. This
is impossible, since pop main’s result pointer would
have been in the black-list for the entire execution of
push intervening, thus it would have refused to reinsert
it into the list.

2. The push intervening operation started before the last
result != *list test. In this case pop intervening
must have finished before the test. Since we assumed
earlier that push intervening interfered with pop main,
i.e. the CAS did not complete until after the last test,
this is also impossible, since the node referenced by
result could not possibly have been at the top of the
stack. Hence the result != *list would have been
true, we would have retried the pop operation, and this
could not have been the last execution of the test.

This argument explains the need for the seemingly redun-
dant test after the black-list insertion in pop.

4.1.3 Liveness
Both push and pop operations may loop if another thread

succeeds in updating *list while they are executing. Here
we address other possible reasons they may loop and thus
fail to make progress.

As we mentioned earlier, the pop operation may loop look-
ing for a black-list entry in which to insert the current top-of-
stack pointer result. It may make more than one pass over
the entire black-list only if either black-list entries were con-
currently removed, or if the array remained full for the entire
duration. The former case does not violate lock-freedom,
since other threads clearly progressed.

The second case can result in blocking only if all N + 1
entries in the black-list remain unchanged, which can oc-
cur only if N + 1 threads are performing pop operations on
the list and have associated black-list entries. Since the pop

operation always clears its black-list entry after a fixed num-
ber of instructions, this can occur only with N + 1 inactive
threads. Hence the pop operation is N -non-blocking.

The body of the initial loop in the push operation may
execute at most V (N + 1)(P + 1) times, where P is the
number of processes executing pop when the push operation
is entered, and V is the number of distinct version numbers
we can represent. Hence the push operation is completely
non-blocking.11

To see this, observe that the node currently being pushed
cannot be in the stack until push completes. Hence its per-
turbations can appear in the black-list at any time during
the current push only if they were added to the black-list
by pop operations that had already been previously started
and had already read the list header before push was called.
There are at most P such in progress pop operations.

Since there are more possible perturbations than black-
list entries, we can cycle through all possible perturbations
without finding an unused one only if a new perturbation of
the current node appeared in the black-list while the loop
was executing. A complete cycle through all perturbations
and black-list entries requires V (N + 1) loop iterations. A

11This bound could be easily tightened, especially for larger
values of V . In practice, we expect that the loop almost
always executes exactly N + 1 times.



new perturbation of the current node can only be added
once by each of the P in-progress pop operations. We can
be forced to redo this process at most P times, for a total
of no more than V (N + 1)(P + 1) total loop iterations.

4.2 Enhancements
In practice it is beneficial to insert back-off code at the

point at which bl index is reset to zero in the pop imple-
mentation to reduce contention on the black-list. We do so
in our implementation.

As with Michael’s “hazard pointers”, it is possible to share
a black-list between multiple stack data structures. This
increases the probability of black-list overflow and hence
blocking. But it affects the correctness argument only in
that the liveness argument must now include threads per-
forming the pop operation on any of the lists sharing the
black-list. If any of these threads are not progressing, they
must be included among the inactive threads. The result
remains suitable for use in signal handlers, if we are careful
to ensure that signal handlers cannot be reentered, and no
more than N threads can be simultaneously interrupted by
handlers accessing any of the N -non-blocking stacks with a
shared black-list.12

Sharing black-lists can reduce the space overhead for list
headers to near zero, but it makes it impossible to simply
include the black-list as part of the list header. Hence it
makes it harder to present a common interface for both our
algorithm and the CASW algorithm.

The following “optimization” attempts were found to be
less than completely successful:

• Modifying the pop procedure to first read the black-list
and check that it is zero, before attempting the CAS.
On an Itanium machine, this resulted in a slowdown
of up to 50%. We conjecture that at high contention
levels, a black-list entry is frequently updated between
the initial read and the compare-and-swap, resulting
in more cache coherence traffic and less back-off. In-
terestingly, on X86 machines, it apparently results in
a less dramatic performance win, not loss. As a result,
we currently perform this optimization only for X86.

• Increasing the number of black-list slots above the de-
fault of two. Any increase resulted in an appreciable
slowdown, presumably due to the need of the push

operation to scan more slots, and again the increased
coherence traffic due to the increased probability of a
processor losing a cache line with a black-list as it is
being scanned. It may be of benefit to store only ver-
sion numbers and selected pointer bits in the black-list,
to compress it to a single word, or to use multi-word
load instructions.

• “Randomizing” the starting position of the black-list
search in the pop procedure. This has minimal effect,
and slows down the important case of a single thread.

• Separating the black-list and list header into separate
cache lines seemed to have minor and inconsistent ef-
fect. Since this eliminates the option of including the
black-list as part of the list header, something which

12This is guaranteed if either the application is single-
threaded, or of all lists are protected by a single lock when
accessed outside a signal handler.

can significantly simplify the interface, this option was
not pursued.

5. PERFORMANCE
We measured the performance of our mostly non-blocking

stack on a few different small multiprocessors. In each case,
we timed a total of approximately one million push plus one
million pop operations executed by between one and 20 con-
currently executing threads. We report the total execution
time in milliseconds for these 2 million operations.

Our test consists of a simple microbenchmark designed
such that

• Not all threads execute exactly the same pattern of
stack operations. We felt this would have been un-
necessarily prone to anomalies introduced only by the
regular behavior, though we did not observe such be-
havior.

• It would be likely to fail in an easily detectable way in
the event of an implementation error.13

More precisely, for n threads, we start with a stack con-

taining n(n+1)
2

elements. The ith thread then alternately
pops i elements, and then pushes all i elements back onto
the stack. It terminates at the end of the first such cycle
which results in more than a million push and pop opera-
tions having been performed.14 Once we finish timing these
operations, we check that the final result is a permutation
of the original stack.

For this experiment, all threads are performing push and
pop operations as rapidly as possible. Any number of threads
greater than one results in significant contention. The per-
formance with exactly one thread is important, since it is
likely to reflect the performance on a uniprocessor, and to
be indicative of contention-free performance.

Early on we observed some systematic variation in exe-
cution times; runs could proceed in faster or slower modes
for extended periods of time. The addition of exponential
back-off appears to have remedied that. But we nonetheless
average three time-separated runs for each data point.

We compare the following linked stack implementations:

Mutex Each push and pop operation acquires and releases
a Pthreads[13] mutex.

Spin-backoff Each operation acquires and releases a
“spin”-lock. After each attempt to acquire a test-and-
set lock, we back off roughly exponentially, first by
spinning in a tight loop, then by attempting to yield
the processor, and finally by sleeping for short periods.
The details are very similar to what has long been used
in [2].

MostlyNB The algorithm we presented here. Every time
the pop operation fails to find an empty black-list slot
in the entire array, we back off using a slightly differ-
ent, but signal-safe algorithm. We either spin or sleep,

13We did exercise this feature with a subtle error in an early
version of our CASW-based implementation.

14A counter is atomically updated and tested once per cy-
cle. All versions of the program perform identical counter
updates.



we do not yield. (This is our best signal-safe approx-
imation to the above.) The measured implementation
has a black-list of size 2, and hence is 1-non-blocking.
As we pointed out above, this is usually sufficient if
signal-safety is the goal.

Our implementation uses a moderately portable
atomic operations package [1] to implement compare-
and-swap and the necessary memory ordering con-
straints.15

CASW This is an implementation of the fully non-blocking
algorithm using a double-pointer-sized compare-and-
swap operation, and a pointer-sized (in this case 32-
bit) version number. For us, this was only possible on
32-bit X86 hardware. It may fail in the extremely un-
likely case that a pop operation stalls sufficiently long
for the version number to be incremented exactly a
multiple of 232 times. We implemented the optimiza-
tion suggested in [22]. In this variant a single-width
CAS operation is used in the push routine, and the
version number is not updated.

We present results for four different machines, two of which
are obsolete. We present all results since the variation was
interesting to us, and is probably representative of more
widespread differences across architectures.

Each of these machines shares a single bus between all
processors.

Note that both the RedHat 9 and Itanium machines used
the NPTL threads package, while the other machines used
linuxthreads. We believe the linuxthreads mutex implemen-
tation enforces a strict FIFO discipline, and immediately
yields the processor when it has to wait, while NPTL spins
to avoid some of the resulting context switches.

Larger machines appear to encounter larger overhead as
a result of contention, presumably because more movement
of cache lines is necessary.

6. CONCLUSIONS
Although the precise performance relationship among the

four implementations is surprisingly variable, at least on
NPTL, all seem comparable.

It is apparent from the preceding section that we can con-
struct a very performance competitive implementation of
a mostly non-blocking stack by selecting either the CASW
implementation (when possible) or our mostly non-blocking
implementation (when necessary). The result can be used
portably across all architectures supporting a CAS-like prim-
itive, and thus significantly extends the kinds of operation
that can be safely performed in contexts such as user-level
signal handlers, where a lock-based solution is not safe.

15In particular, the CAS operation in the push function must
have release semantics, forcing all prior memory operations
to become visible before it. The initial CAS operation in
pop has acquire semantics, enforcing ordering with respect to
the later reread of *list. The final CAS and the clearing of
the black-list entry have release semantics. As appears to be
standard for X86 processors, this package assumes that loads
are ordered, in spite of the official documentation[14] for
that processor. On X86 processors the ordering constrains
only the compiler. See [18] for some details. On Itanium, we
assume only the documented rules. The ordering is specified
explicitly as part of the store and CAS instructions.
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Figure 3: 2× Pentium II, 266MHz, RedHat 8
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Figure 5: 2× Pentium 4 Xeon, 2.0GHz, “hyperthreaded”, RedHat 7.2, kernel 2.4.18
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