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ABSTRACT 
In this paper, a novel method for analyzing time-series data and 
extracting time-correlations among multiple time-series data 
streams is described. The time-correlations tell us the 
relationships and dependencies among time-series data streams. 
Reusable time-correlation rules can be fed into various analysis 
tools, such as forecasting or simulation tools, for further analysis. 
Statistical techniques and aggregation functions are applied in 
order to reduce the search space. The method proposed in this 
paper can be used for detecting time-correlations both between a 
pair of time-series data streams, and among multiple time-series 
data streams. The generated rules tell us how the changes in the 
values of one set of time-series data streams influence the values 
in another set of time-series data streams. Those rules can be 
stored digitally and fed into various data analysis tools, such as 
simulation, forecasting, impact analysis, etc., for further analysis 
of the data. 

Keywords 
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1. INTRODUCTION 
In this paper, a novel method for analyzing time-series data and 
extracting time-correlations (time delayed cause-effect 
relationships) among multiple time-series data streams is 
described.  

A time-series [8] is formally defined as a sequence of values that 
are recorded in one of the following manners: 

o at equal time intervals 

o at random points in time by also recording the time of 
measurement or recording 

The proposed method uses the second definition of time-series 
data above in order to provide more generic algorithms that can be 
applied to both periodically recorded time-series data and time-
series data that is recorded with random time intervals. 

Time-correlations are defined as the relationships among multiple 
time-series data streams such that a change in the values of one set 
of time-series data streams triggers a change in the values of 
another set of time-series data streams. For simplicity, we first 

describe our method for detecting time-correlations for a pair of 
time-series data streams. Then, we describe how a set of time-
series data streams can be merged into one compact time-series 
data stream. As a result of the merging operation, we reduce the 
problem of finding time-correlations between two sets of time-
series data streams into a simpler problem of finding time-
correlations between two individual time-series data streams. We 
also apply data aggregation and change point detection techniques 
in order to reduce the search space and convert continuous data 
streams into discrete sequences of change points. Comparison of 
discrete sequences is much easier and faster than comparing 
continuous numeric data streams. 

When looking for time-correlations, it is necessary to consider a 
few factors that may determine the way in which one time-series 
may affect another one. Figure 1 below shows a few time-series 
examples among which certain relationships exist. Please note 
that this is just an example and the example relationships 
discussed here may or may not apply to all business cases. As the 
first example, server performance has a time-delayed impact on 
database performance that can be easily observed in the figure. 
This relationship is easy to observe on the figure because the 
amount of impact on database performance is the same as the 
amount of change in server performance. As another example, the 
number of orders received has an immediate impact (i.e., no time 
delay) on average time per activity (average processing time for 
each activity in the organization that is related to handling of 
received orders). It can also be observed in the figure that a large 
change in number of orders causes a smaller impact in magnitude 
on average time per activity. That means, although average time 
per activity is affected by number of orders, its sensitivity to 
changes in number of orders is low. As a final example, let us 
consider the relationship between the average time per activity 
and percentage of on-time order delivery. The average time per 
activity has an immediate affect on percentage of on-time order 
delivery in the opposite direction. That means, when there is an 
increase in average time per activity, a decrease occurs in 
percentage of on-time order delivery, and vice versa. In summary, 
the main factors that we consider while analyzing the 
relationships among time-series data streams are time-delay, 
sensitivity, and direction.  
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Figure 1. Time-series examples among which certain relationships exist

In addition to those factors, we consider confidence as one of the 
important factors that need to be considered when detecting the 
relationships among time-series data streams. Confidence is an 
indicator of how certain we are about the detected relationship 
among the time-series data streams. 

A prototype has been developed that uses the proposed method in 
this paper for time-correlation detection among multiple time-
series data streams. The prototype is called Correlation Engine. It 
has been developed in Java language with a web-enabled user 
interface. 

The rest of this paper is organized as follows. Section 2 describes 
the proposed method, explains its main steps, and shows the 
overall architecture of the Correlation Engine prototype that uses 
the proposed method for detecting time-correlations among time-
series data streams. An example scenario for using the introduced 
time-correlation detection method in Business Impact Analysis 
(BIA) is given in section 3. Section 4 summarizes related work in 
time-series analysis. Section 5 contains the conclusion. Finally, 
section 6 lists the references. 

 

2. PROPOSED METHOD 
2.1 Summary of the Method 
The proposed method for detecting time-correlations from time-
series data streams consists of the following steps, as shown in 
Figure 2: 

o Summarizing the data at different time granularities 
(e.g., seconds, minutes, hours, days, weeks, months, 
years) 

o Detecting change points using CUSUM (Cumulative 
Sum) statistical method [11, 12] in order to both reduce 

the search space and convert continuous data stream 
into discrete data stream which is much easier to 
manipulate 

o Generating correlation rules 

o Merging multiple time-series data to generate 
Merged Time-Series Data (note that because 
merged time-series data has the same data 
structure as regular time-series data, the term 
“Time-Series Data”  will be used to refer to 
both regular and merged time-series data in 
the rest of this document) 

o Comparing time-series data to generate time 
correlation rules 

These steps are described in more detail later in this paper. 
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 Figure 2. Main steps of the proposed method for extracting 
time-correlations from time-series data streams 

 

The input of the method is any kind of numeric data stream that is 
time-stamped, which is called “ time-series”  data in this paper. The 
input data can be read from one or more database tables, an XML 
document, or a flat text file with character delimited data fields. 
The output is a set of time correlation rules that describe what 
data object fields are correlated to each other. Each time 
correlation rule includes information about: 

o Direction: “Positive”  if the change in the value of one 
time-series data is correlated to a change in the same 
direction for another time-series data. “Negative”  if the 
change direction is opposite in the two correlated time-
series. 

o Sensitivity: The magnitude of change in data values in 
two correlated time-series are recorded in order to 
indicate how sensitive one time-series is to the changes 
in another time-series. 

o Time Delay: The time delay for correlated time-series 
data are recorded in order to explain how much time it 
takes to see the effect of a change in the value of one 
time-series as a result in the value of another time-
series. 

o Confidence: Confidence provides an indication of how 
certain we are about the detected time-correlation 
among time-series data streams. Confidence is measured 
as a value between zero and one. A confidence value 
that is close to one indicates high certainty. Similarly, a 
confidence value that is close to zero indicates low 
certainty. 

The proposed method can be used for detecting the following 
types of correlations between time-series data streams: 

– Simple correlation:  

       city=”Los Angeles”  à  population=”high”    

       (conf: 100%) 

– Quantified correlation:  

       A=5 or A=6 à  B > 50  (conf: 75%) 

– Time correlation:  

              A increases more than 5% à  B will increase  

                      more than 10% within 2 days  (conf: 80%) 

 

The first two types of correlations above can also be detected by 
the existing solutions. The proposed method can be used for 
detecting not only those two types, but also time correlations, 
which are more difficult to detect. Detection of time correlations 
provides significant advantages over existing solutions, because in 
most systems the effect of a change is observed after a certain time 
delay (not simultaneously), which is very difficult to detect using 
the existing solutions. 

Table-1 below shows an example database table that contains 3 
time-series data for the grades of a high school student: Math, 
Physics, and English. 

 

Table 1. Example database table containing time-series data 

Name Value Time-stamp 

Math 85 January 12, 2002 

Physics 93 January 26, 2002 

English 74 February 20, 2002 

Math 96 March 23, 2002 

Physics 81 April 2, 2002 

English 65 April 5, 2002 

… … … 

Math  97 January 10, 2003 

… … … 

 

Figure 3 below shows the overall architecture of Correlation 
Engine, which is the prototype implementation of the time-
correlation detection method introduced in this paper. 
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Figure 3. Overall Architecture of Correlation Engine 

 

Correlation Engine receives time-series data streams as its input, 
and generates correlation rules, textual rule explanations, and 
stores the generated rules digitally so that they can be reused by 



other data analysis tools. Correlation rules fall into one of the 
three categories explained above: simple, quantified, or time-
correlations. Simple and quantified correlation rules may also be 
detected using conventional data mining techniques, such as 
classification. The time-correlations are detected by the 
Correlation Engine using the method introduced in this paper. The 
simple and quantified correlations can be easily detected by using 
the method introduced in this paper, but the main focus in this 
paper is the detection of time-correlation rules, which is much 
harder than detection of other types of correlation rules. 

Correlation Engine applies automatic data aggregation and change 
detection algorithms in order to reduce the search space. Those 
two algorithms are described in the following two subsections. 
Data mining and statistics is used by Correlation Engine for 
various purposes, such as statistical correlation calculation for a 
pair of data streams, and change detection (i.e. CUSUM). 
Sensitivity analysis is embedded inside change detection and 
correlation rule generation steps in the proposed method. 
Sensitivity analysis is achieved through recording the change 
amounts while detecting change points, and comparing those 
change amounts from different time-series data streams while 
generating the correlation rules. 

Rule explanations that are generated by Correlation Engine are 
textual explanations of the detected rules. For example, assume 
that the following database table contains a simplified digital view 
of a time-correlation rule: 

 

Table 2. Example database table that shows how the generated 
time-correlation rules can be digitally stored 

COL1_NAME COL2_NAME TIME_DIFFERENCE TIME_UNIT CONFIDENCE TYPE
Health of Resource X Response Time of Activity Y 1 hour 0.6 Negative
Response Time of Activity Y Violations of SLA S1 0 hour 0.7 Positive

 
 

then a textual explanation of this rule can be easily generated in 
the following form: 

If Health of Resource R decreases more than 5%, 
then Duration of Activity A increases more than 10% on 
the next day. 

The database table above skips the details about sensitivity 
information (change magnitude) for simplicity of this example, 
but in the actual implementation Correlation Engine stores such 
sensitivity information in order to provide detailed information to 
users about the detected time-correlation rule. The sensitivity 
information contains the magnitude changes compared to each 
other for the correlated time-series data streams. Sensitivity 
analysis is very important because it tells us the amount of 
expected impact when a variable (i.e., the value of time-series data 
stream) changes. 

The digital storage of the generated time-correlation rules in this 
manner (i.e. in relational database tables) makes it possible to feed 
those rules easily into various data analysis tools, such as 
simulation, forecasting, etc. As an example, Figure 4 below shows 
how the generated time-correlation rules can be reused for 
simulation. 
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Figure 4. Example of reusing generated time-correlation rules 
for simulation 

Figure shows that variables X and Z affect the variables Y and W 
respectively. The reuse of those rules in the simulation takes place 
as a result of the following activities: 

1. Time-correlation rules are detected by the Correlation 
Engine 

2. The rules are written into a rule database in a digital 
format similar to the one shown in Table 2 

3. User of the simulation tool makes changes to the 
variables X and Z 

4. The simulation tool retrieves the rules from the rule 
database in order to assess the expected impact in 
response to the changes in variables X and Z 

5. Simulation tool finds out from the rules that are 
retrieved from the rule database that variables Y and W 
are going to be impacted because of the changes in the 
values of variables X and Z. The time-correlation rules 
include information about direction, sensitivity, and 
time-delay of the impact so that the simulation tool can 
figure exactly when, in which direction, and how much 
the impact is going to be observed. 

2.2 Summarizing the data at different time 
granularities: 
 

Time-stamped numeric data values (time-series data) have to be 
summarized for two main reasons: 

o Volume of time-series data is usually very large. 
Therefore, it is more time efficient to summarize 
the data before analyzing it. For example, if there 
are thousands of data records for each minute, it 
may be more time efficient to summarize the data 
at minute level (e.g. by taking mean, count, and 
standard deviation of recorded values), so that the 
data can be analyzed in a more time efficient 
manner. 

o Time-stamps may not match each other, which 
makes it difficult to compare time-stamped data 
with each other. For example, all exams in Table-1 
were recorded on different dates, i.e. different 
time-stamps. It is not possible to compare the exam 
scores that have the identical time-stamps, because 
there is not enough recorded data at each time-
stamp value to compare different time-series 
values. Summarizing the numeric data (e.g. taking 
the average value for each course) by day wouldn’ t 



be useful either, because all exam scores were 
recorded on different days. Even summarizing the 
scores by month is not enough because each month 
of the year doesn’ t contain a recorded value for 
every time-series (i.e., for every course). 
Consequently, sometimes it may be necessary to 
summarize data using higher time granularity so 
that the recorded numeric data can be compared 
with each other. 

 

If additional time-stamp information is provided, such as the 
notion of academic calendar year, or business calendar units (such 
as financial quarter or financial year), then those can be also used 
as data aggregation attributes. 

Figure 5 below shows an example of how data aggregation is 
done at any particular time granularity level. The aggregation is 
performed by calculating the sum, count, mean, min, max, and 
standard deviation of individual data values within each time unit. 
The figure below shows the mean value calculation, which is 
equal to sum of values divided by the count of values in within 
each time unit. 

t t

mean
(sum,
count)

 

Figure 5. Example for data aggregation that can be done at 
any time granularity (minutes, hours, days, etc.) 

It is necessary to consider the cases in which the effect of a 
change in one time-series data stream may not be observed exactly 
at the same time delay all the time. In fact, in most cases the effect 
is likely to be shifted slightly in the time domain. The experiments 
showed that the time shift is not very large and 99% of the time, 
the effect is observed within one time unit difference. In order to 
capture those cases, the introduced method uses moving window 
of three time units at any granularity level. For example, 
aggregation of data values in the “hour”  granularity involves the 
current hour as well as the previous and next hours. As a result, 
slight shifts in the time domain can be incorporated in the 
proposed method. Some of the existing methods use complex 
algorithms for time shifting or time warping in order handle such 
time shifts [4]. 

2.3 Detecting change points: 
CUSUM (Cumulative Sum) [11, 12] is a well-known statistical 
method for detecting change points in time-stamped numeric data. 
CUSUM at each data point is calculated as follows: 

1. Subtract the mean (or median) of the data off of each 
data point's value.  

2. For each point, add all the mean/median-subtracted 
points before it.  

3. The resulting values are the Cumulative Summary 
(CUSUM) for each point. 

The CUSUM test is useful in picking out general trends from 
random noise as noise will tend to cancel out in the long-run 
(there are just as many positive and negative values of true noise) 
but a trend will show up as a gradual departure from zero in the 
CUSUM. Therefore, CUSUM can be used for detecting not only 
sharp changes, but also gradual but consistent changes in numeric 
data values over the course of time. It is important to keep in mind 
that the CUSUM is not the cumulative sum of the data values; 
instead it is the cumulative sum of differences between the values 
and the average. CUSUM is a simple, but effective method for 
detecting change points in time-series data. 

Once CUSUM value for every data point is calculated, the 
calculated CUSUM values are compared with upper and lower 
thresholds to determine which data points can be marked as 
change points. The data points for which the CUSUM value is 
above the upper threshold or below the lower threshold are 
marked as change points. The thresholds can be determined using 
standard deviation (i.e. a fraction or factor of standard deviation) 
or set to two constant values. In most cases thresholds are set 
using the standard deviation. It is easy to calculate a moving mean 
or standard deviation using a moving window. Therefore, we can 
safely assume that standard deviation can easily be calculated on 
any time-series data. 

In order to establish control limits in CUSUM plots, Barnhard [3] 
proposed the so-called V- mask, which is plotted after the last data 
sample (on the right). The V-mask can be thought of as the upper 
and lower control limits for the cumulative sums. However, rather 
than being parallel to the center line; these V-shaped lines 
converge at a particular angle to the right, producing the 
appearance of a V-shape rotated on its side. If the line 
representing the cumulative sum crosses either one of the two 
lines, the change point is detected. 

Detected change points are marked with one of the labels, 
indicating the direction of change that is detected: 

o Down: trend of data values change from up or 
straight to down 

o Up: trend of data values change from down or 
straight to up 

 

In addition, amount of the change is recorded for each change 
point. This amount of change is used for sensitivity analysis. 

2.4 Generating Time-Correlation Rules: 
When trying to find out time correlations among multiple time-
series data streams, the proposed method first reduces many-to-
one and many-to-many time-series comparisons into that of pair-
wise (one-to-one) time-series comparison. Then, the problem of 
comparing multiple time-series data streams can be tackled 
efficiently and easily. In order to explain the proposed reduction 
and comparison steps of the proposed method, it is first necessary 
to explain what is meant by one-to-one, many-to-one, and many-
to-many time-series comparisons: 

o One-to-one: comparison of two time-series data streams 
with each other. This is the simplest form of time-series 
comparison. The purpose is to find out if there exists a 



time correlation between two time-series. For example, 
if A and B identify two time-series data streams, one-to-
one comparison tries to find out if changes in data 
values of A have any time delayed impact on changes in 
data values of B. The comparison is denoted A à  B. 

o Many-to-one: comparison of multiple time-series data 
streams with a single time-series data stream. For 
example, if A, B and C identify three time-series data 
streams, many-to-one comparison tries to find out if 
changes in data values of A and B collectively have a 
time delayed impact on changes in data values of C. 
This comparison is denoted A*Bà  C. 

o Many-to-many: comparison of multiple time-series 
data streams with multiple time-series data streams. For 
example, if A, B, C and D identify four time-series data 
streams, many-to-many comparison tries to find out if 
changes in data values of A and B collectively have a 
time delayed impact on changes in data values of C and 
D. This comparison is denoted A*Bà  C*D. 

Usually, many-to-many comparisons do not have any practical use 
because their results can be easily derived from results of many-
to-one comparisons. However, the proposed method is also 
capable of reduce many-to-many comparisons into one-to-one 
comparisons, if necessary. 

The proposed method first describes how to reduce many-to-one 
and many-to-many time-series comparisons into one-to-one time-
series comparison. Then, it explains how to perform one-to-one 
time-series comparison in order to extract time correlation rules, 
which is applicable to any combination of time-series 
comparisons as a result of the reduction step. 

2.4.1 Reducing Multiple Time-series Data Streams 
into One: 
The purpose of reducing multiple time-series data streams into 
one by merging them is to be able to compare multiple time-series 
data streams with each other in one shot. This yields performance 
improvement because the merged time-series data streams can be 
reused, similar to the way query results can be reused in database 
management systems in order to provide performance 
improvement. For example, after merging two time-series data 
streams A and B, the merged time-series data stream can be stored 
in order to generate higher order merged time-series data streams, 
such as A*B*C, where the symbol “*”  is used for indicating the 
merger operation. 

The proposed method uses two different methods for merging 
time-series data streams: convolution and sum. 

Convolution is a well-known technique that can be used for 
merging multiple time-series data streams into a single time-series 
data stream. Convolution is a computational method in which an 
integral expresses the amount of overlap of one function g(x) as it 
is shifted over another function f(x).  Convolution may therefore 
blend one function with another. Convolution of two functions 
f(x) and g(x) over a finite range is given by the equation: 

∫ −≡
t

dtgfgf
0

)()(* τττ  

where  f * g denotes the convolution of f and g. 

The other method used for merging multiple time-series data 
streams into a single time-series data stream is simple sum of the 
numeric values in time-series data streams. When calculating the 
sum, both the positive and negative sums are considered because 
of the following reason: 

Let us assume that two time-series data streams are going to be 
merged using the sum operation. Assume that there exists an 
increase in both time-series data streams at the same point in time. 
Summing up the numeric values from the time-series data streams 
A and B will strengthen the numeric change at that point of time, 
as it should be the case. However, consider the case in which 
there exists an increase in numeric values of time-series A at a 
point in time, where there exists a decrease in numeric values of 
B. In that case, sum of the two time-series may decrease the 
magnitude of each or even neutralize each other completely, 
which should not be the case. In summary, it is necessary to sum 
up absolute values, instead of actual numeric values, when 
merging time-series data streams. The proposed method uses 
absolute values but keeps the direction information about each 
change point, which is needed during the comparison of time-
series data streams. In general, when merging two or more time-
series data streams with any particular method, it is necessary to 
use the absolute data values and keep the direction information for 
each change point. Since the merge operation is applied on 
discrete time-series data streams (after using CUSUM to detect 
change points), the operation can be performed much faster than 
merging the actual time-series data streams in their original 
numeric values. 

2.4.2 Comparing Two Time-series: 
The proposed method uses statistical correlation to calculate the 
time correlation between two time-series data streams. The time-
series data streams that are compared at this step may correspond 
to either merged time-series or regular time-series. The statistical 
correlation between two time-series is calculated as: 

 

 
where x and y identify two time-series, and covariance is 
calculated as  

cov(X, Y) = E{ [X - E(X)][Y - E(Y)]}  
 
and � (x) corresponds to the standard deviation of values 
in time-series x, � (y) corresponds to the standard deviation of values in 
time-series y, 
E(X) and E(Y) correspond to the mean values of time-
series data values from x and y. 

 
Time correlation is calculated as follows: 

max { cor(xi,yj)}  ∀i,j ∈ t; i 
�����

 
where t corresponds to aggregated time span of the time-series 
data (e.g. minutes, hours, days, etc.). 
 
Sensitivity is calculated using the following formula: 

compare change(xi,yj) where i,j ∈ t; i 
������� �

-j| = d 

by setting the distance (d) between i and j to that of the maximum 
statistical correlation found, and comparing the magnitudes of 
change in the correlated time-series data streams. 

cor(x,y) = 
cov(x,y) 

� (x) � (y) 



In other words, the statistical correlation between aggregated data 
points with varying time distances are calculated, and the 
maximum calculated correlation and the corresponding time 
distance (d) give us the time correlation information between the 
compared time-series data streams. The time distance for the 
maximum statistical correlation found between two time-series 
data streams will be denoted d. The sensitivity is calculated by 
comparing the change amounts in the correlated time-series data 
streams using time distance (d) of the calculated maximum 
statistical correlation. The direction of correlation is also obtained 
from the calculated statistical correlation. 

The most challenging task at this comparison step is to determine 
the time distance (d) for which the calculated correlation is the 
highest. An exhaustive search in which all possible time distances 
are tried and maximum correlation is determined is prohibitive 
due to performance reasons unless there exists an upper limit for 
the distance (d) that is set by the user. Otherwise it is necessary to 
find the distance (d) in a faster way. The proposed method uses 
sampling in order to first determine which time distances are 
likely to return a high correlation between the time-series data 
streams that are being compared. Then, the actual correlation is 
calculated for a few of those candidate distances, and the one with 
the highest correlation is selected. The experiments with various 
kinds of time-series data streams yielded promising results. 
Although the number of candidate distances considered has a 
significant effect on the accuracy of the result, the experiments 
showed that after sampling the data, it is enough to consider at 
most three or four candidate distances to find the highest 
correlation distance for 95% of the time. 

Once the time correlation is calculated, the confidence can also be 
calculated easily by comparing the percentage of times the 
calculated statistical correlation with the time delay (d) of the 
maximum correlation is higher than a particular threshold. For 
example, if the proposed method finds out that the time 
correlation is the highest for a time delay of 3 units, say 3 days (d 
= 3 days), then the confidence is calculated by measuring what 
percentage of the time xi and yj values have a statistical 
correlation larger than a particular threshold. The threshold can be 
chosen by the user of this method. 

3. EXAMPLE USE SCENARIO 
The time-correlation rules generated by the method that is 
introduced in this paper can be used in various fields. For 
example, Business Impact Analysis (BIA) tries to find the impact 
of certain events on the operation of the business. Businesses 
make use of Workflow Management Systems (WfMS) [10] in 
order to automate the execution and monitoring of their business 
processes. A business process is a step by step description of 
activities that are carried out by humans or automated resources 
(e.g., databases, procurement systems, resource planning software, 
etc.) in order to achieve a business goal. A workflow is the formal 
definition of a business process that can be executed and 
monitored using a WfMS. Figure 6 below shows an example 
workflow definition which is used for handling purchase order 
(PO) requests that are received from customers. 
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Figure 6. Example workflow definition 

The individual activities in this workflow definition are carried 
out by resources such as humans or automated systems (i.e., IT 
resources). For example, “ Initiate Delivery”  activity may be 
carried out by a human who makes a phone call to internal 
delivery department of the business in order to initiate the 
delivery of the ordered products. Similarly, “Notify Acceptance”  
or “Notify Rejection”  activities may be carried out by an e-mail 
messaging system that is capable of sending e-mail notifications 
to the customer. 

The time-correlation rules are very suitable for use in BIA 
because the time-correlation rules can tell us the impact of a 
change in the value of one numeric variable on the value of 
another numeric variable. Figure 7 below shows an example BIA 
scenario in which the time-correlation rules that are generated by 
the introduced method can be used. 

Workflow

Activities

Inventory

Web server

EDI gateway

Applications

E-mail server

svr1

svr2

svr3

svr4

Servers
1

2

3

4

5

6

7
 

Figure 7. Example Business Impact Analysis (BIA) scenario 

Figure 7 shows the overall workflow definition of Figure 6 at the 
highest level (left-most). The activities that are number between 1 
and 7 in Figure 6 are symbolized with their corresponding 
numbers in Figure 7. Figure 7 indicates that each one of the 
activities in the workflow by one or more automated resource 
(human resources are ignored only for simplicity). It can also be 
observed from the figure that a resource (application) may be in 
charge of handling one or more activities in the workflow. Each 
application runs on top of a hardware resource, which is shown as 
the servers in the figure. Each application may run on one or more 
servers, and similarly each server may run one or more 
applications. 

Business Impact Analysis on such an architecture requires that we 
know or find out the impact of change at a lower level entity on 
the execution of a higher level entity. For example, if server 2 



crashes or experiences a performance degradation, then the 
Inventory application will be affected negatively. That will in turn 
affect the execution of activities 2 and 3. Eventually, that will 
affect the overall execution of the workflow and its execution will 
most probably be delayed or even become impossible. 

Time-correlation rules can be used for identifying the 
dependencies among the performance of any entities in this 
scenario. For example, the proposed method in this paper can 
come up with time-correlation rules for any of the following: 

o server performance and application performance, 

o server performance and activity execution time, 

o server performance and workflow execution time, 

o application performance and activity execution time, 

o application performance and workflow execution time, 

o activity execution time and workflow execution time 

The generated time-correlation rules tell us impact of any change 
at a lower level entity on the higher level entities. For example, 
the following rule, which was used as an example for textual 
explanation of the generated rules, tells us the impact of a change 
in the performance of a server on the execution time of an activity 
in the workflow: 

If Health of Resource R decreases more than 5%, 
then Duration of Activity A increases more than 10% on 
the next day. 

The main advantage of the use of time-correlation rules in BIA is 
that the rules can be generated for any time-series data streams 
from different levels in the example scenario architecture shown 
in Figure 7. That means, we can directly find the impact of a 
server crash on the overall execution time of the whole workflow 
without having to know about the actual dependencies or 
hierarchy of the existing architecture. This is one example that 
shows the time-correlation detection method introduced in this 
paper is generic enough to be applied in many different problem 
domains without requiring domain knowledge. 

Similarly, the introduced method can be used in analyzing supply 
chain transactions, business-to-business (B2B) interactions, 
procurement systems, web services, etc.  As long as transactional 
or operational log data is available, the introduced method can be 
applied for detecting time-correlations on such data in order to 
gain knowledge about how the underlying system works. 

4. RELATED WORK 
Most of the related work concentrated on similarity based pattern 
querying. The similarity-based approaches use three main data 
models: similarity model, data representation, and indexing 
structure. The similarity model defines the semantics of pattern 
queries. Data representation defines how to store the data for 
analysis. Indexing structure is used for speeding up the search 
after the similarity patterns are clustered into groups. For 
example, Agrawal et al [1] and Faloutsos et al [7] use Euclidean 
distance as the similarity model, the coefficients of the moving-
window DiscreteFourier Transform (DFT) as the data 
representation, and an R*-trees as the index structure for speeding 
up the search. Many of the existing research that applied features 
that are extracted from the data have used DFT in order to 
transform the time-series from time domain into frequency 

domain [1, 4, 7, 9, 16]. The main problem those approaches was 
the fact that similarity model was different from the data 
representation [13]. It is necessary to find a proper transformation 
between the two models. 
In order to consider the fact that sometimes the time-series data 
streams may have different time domain scales or data value 
magnitude ranges, etc., the similarity models have been extended 
to consider various transformations on the data. For example, 
warping [4, 14, 15, 16], amplitude shifting [5, 9, 15], and 
allowing time-series segments of different amplitude scales to be 
considered similar [2, 5, 6, 9]. 
Based on the observation that humans can ignore small 
fluctuations and apply smoothing when comparing time-series 
data visually, Rafiel et al proposed a method based on smoothing 
and noise reduction using moving averages [14]. Unfortunately, 
smoothing and noise reduction also result in loss of accuracy due 
to the modification in the nature of the actual time-series data. 
Perng et al [13] suggested a new method that first tries to identify 
landmarks, i.e., important points in time when certain events 
happen, and then using six different transformations to confirm 
similarity of time-series data streams.  
The main similarity of the introduced method in this paper to 
some of the previous work is that we also considered summarizing 
the continuous time-series data streams in a discrete form. 
However, we apply a well-known statistical approach for change 
detection, instead of trying to determine what kind of events 
should be considered important events that determine the general 
characteristics of the underlying data. The introduced method also 
differs in most of the previous research that the similarity model 
and data representation match each other. Instead of building 
complex indexing structures to speed up search, the introduce 
method applies sampling techniques in constant running time to 
determine few candidates and then analyzes the candidates during 
the comparison step in linear running time. Instead of smoothing 
and noise reduction, we apply data aggregation based on actual 
time units that preserve most of the mid-scale fluctuations in the 
actual data. The experiments performed during the development 
of the proposed method and previous research suggest that 
detecting the change points in the time-series data rather than 
trying to map the data into various feature sets yields the best 
results, and that is why change detection is used as the only 
transformation method in this paper. 

5. CONCLUSION 
A novel method for detecting time-correlations in time-series data 
streams is introduced. The method consists of a few main steps in 
which the original time-series data is summarized using data 
aggregation; transformed into discrete data using a well-known 
change detection technique for faster analysis; sampled for fast 
detection of candidates, and scanned in linear time for confirming 
the correlation rules. The proposed method takes advantage of 
certain observations in previous research and during experiments 
performed for this method.  The use of the time-correlation rules 
in Business Impact Analysis is explained on an example. The 
generated time-correlation rules can easily be reused for analysis 
of transactional or operational data in many different domains. 
Moreover, the generated rules can be converted into textual 
representations, which is very important for human users to 
understand the findings. 
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