

Detecting Time Correlations in Time-Series Data Streams

Mehmet Sayal
Intelligent Enterprise Technologies Laboratory
HP Laboratories Palo Alto
HPL-2004-103
June 9, 2004*

E-mail: mehmet.sayal@hp.com

time-series, data
mining,
correlation, change
detection,
aggregation

In this paper, a novel method for analyzing time-series data and
extracting time-correlations among multiple time-series data streams is
described. The time-correlations tell us the relationships and
dependencies among time-series data streams. Reusable time-correlation
rules can be fed into various analysis tools, such as forecasting or
simulation tools, for further analysis. Statistical techniques and
aggregation functions are applied in order to reduce the search space. The
method proposed in this paper can be used for detecting time-correlations
both between a pair of time-series data streams, and among multiple
time-series data streams. The generated rules tell us how the changes in
the values of one set of time-series data streams influence the values in
another set of time-series data streams. Those rules can be stored digitally
and fed into various data analysis tools, such as simulation, forecasting,
impact analysis, etc., for further analysis of the data.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2004

Detecting Time Correlations in Time-Series Data Streams

Mehmet Sayal
Hewlett-Packard Labs
1501 Page Mill Road

Palo Alto, CA 94043, USA
+1-650-857-4497

mehmet.sayal@hp.com

ABSTRACT
In this paper, a novel method for analyzing time-series data and
extracting time-correlations among multiple time-series data
streams is described. The time-correlations tell us the
relationships and dependencies among time-series data streams.
Reusable time-correlation rules can be fed into various analysis
tools, such as forecasting or simulation tools, for further analysis.
Statistical techniques and aggregation functions are applied in
order to reduce the search space. The method proposed in this
paper can be used for detecting time-correlations both between a
pair of time-series data streams, and among multiple time-series
data streams. The generated rules tell us how the changes in the
values of one set of time-series data streams influence the values
in another set of time-series data streams. Those rules can be
stored digitally and fed into various data analysis tools, such as
simulation, forecasting, impact analysis, etc., for further analysis
of the data.

Keywords
Time-series, data mining, correlation, change detection,
aggregation

1. INTRODUCTION
In this paper, a novel method for analyzing time-series data and
extracting time-correlations (time delayed cause-effect
relationships) among multiple time-series data streams is
described.

A time-series [8] is formally defined as a sequence of values that
are recorded in one of the following manners:

o at equal time intervals

o at random points in time by also recording the time of
measurement or recording

The proposed method uses the second definition of time-series
data above in order to provide more generic algorithms that can be
applied to both periodically recorded time-series data and time-
series data that is recorded with random time intervals.

Time-correlations are defined as the relationships among multiple
time-series data streams such that a change in the values of one set
of time-series data streams triggers a change in the values of
another set of time-series data streams. For simplicity, we first

describe our method for detecting time-correlations for a pair of
time-series data streams. Then, we describe how a set of time-
series data streams can be merged into one compact time-series
data stream. As a result of the merging operation, we reduce the
problem of finding time-correlations between two sets of time-
series data streams into a simpler problem of finding time-
correlations between two individual time-series data streams. We
also apply data aggregation and change point detection techniques
in order to reduce the search space and convert continuous data
streams into discrete sequences of change points. Comparison of
discrete sequences is much easier and faster than comparing
continuous numeric data streams.

When looking for time-correlations, it is necessary to consider a
few factors that may determine the way in which one time-series
may affect another one. Figure 1 below shows a few time-series
examples among which certain relationships exist. Please note
that this is just an example and the example relationships
discussed here may or may not apply to all business cases. As the
first example, server performance has a time-delayed impact on
database performance that can be easily observed in the figure.
This relationship is easy to observe on the figure because the
amount of impact on database performance is the same as the
amount of change in server performance. As another example, the
number of orders received has an immediate impact (i.e., no time
delay) on average time per activity (average processing time for
each activity in the organization that is related to handling of
received orders). It can also be observed in the figure that a large
change in number of orders causes a smaller impact in magnitude
on average time per activity. That means, although average time
per activity is affected by number of orders, its sensitivity to
changes in number of orders is low. As a final example, let us
consider the relationship between the average time per activity
and percentage of on-time order delivery. The average time per
activity has an immediate affect on percentage of on-time order
delivery in the opposite direction. That means, when there is an
increase in average time per activity, a decrease occurs in
percentage of on-time order delivery, and vice versa. In summary,
the main factors that we consider while analyzing the
relationships among time-series data streams are time-delay,
sensitivity, and direction.

Sales
revenue

Sales
revenue

Database
performance

Server
performance

Server performance à Database performance à Avg. time per activity
of orders à Avg. time per activity à % of on-time order delivery }

Avg. time per
activity

% of on-time
order delivery

of
orders

t

Figure 1. Time-series examples among which certain relationships exist

In addition to those factors, we consider confidence as one of the
important factors that need to be considered when detecting the
relationships among time-series data streams. Confidence is an
indicator of how certain we are about the detected relationship
among the time-series data streams.

A prototype has been developed that uses the proposed method in
this paper for time-correlation detection among multiple time-
series data streams. The prototype is called Correlation Engine. It
has been developed in Java language with a web-enabled user
interface.

The rest of this paper is organized as follows. Section 2 describes
the proposed method, explains its main steps, and shows the
overall architecture of the Correlation Engine prototype that uses
the proposed method for detecting time-correlations among time-
series data streams. An example scenario for using the introduced
time-correlation detection method in Business Impact Analysis
(BIA) is given in section 3. Section 4 summarizes related work in
time-series analysis. Section 5 contains the conclusion. Finally,
section 6 lists the references.

2. PROPOSED METHOD
2.1 Summary of the Method
The proposed method for detecting time-correlations from time-
series data streams consists of the following steps, as shown in
Figure 2:

o Summarizing the data at different time granularities
(e.g., seconds, minutes, hours, days, weeks, months,
years)

o Detecting change points using CUSUM (Cumulative
Sum) statistical method [11, 12] in order to both reduce

the search space and convert continuous data stream
into discrete data stream which is much easier to
manipulate

o Generating correlation rules

o Merging multiple time-series data to generate
Merged Time-Series Data (note that because
merged time-series data has the same data
structure as regular time-series data, the term
“Time-Series Data” will be used to refer to
both regular and merged time-series data in
the rest of this document)

o Comparing time-series data to generate time
correlation rules

These steps are described in more detail later in this paper.

Summarize data

Detect change points

Merge time-series
streams

Compare time-series
streams

 Figure 2. Main steps of the proposed method for extracting
time-correlations from time-series data streams

The input of the method is any kind of numeric data stream that is
time-stamped, which is called “ time-series” data in this paper. The
input data can be read from one or more database tables, an XML
document, or a flat text file with character delimited data fields.
The output is a set of time correlation rules that describe what
data object fields are correlated to each other. Each time
correlation rule includes information about:

o Direction: “Positive” if the change in the value of one
time-series data is correlated to a change in the same
direction for another time-series data. “Negative” if the
change direction is opposite in the two correlated time-
series.

o Sensitivity: The magnitude of change in data values in
two correlated time-series are recorded in order to
indicate how sensitive one time-series is to the changes
in another time-series.

o Time Delay: The time delay for correlated time-series
data are recorded in order to explain how much time it
takes to see the effect of a change in the value of one
time-series as a result in the value of another time-
series.

o Confidence: Confidence provides an indication of how
certain we are about the detected time-correlation
among time-series data streams. Confidence is measured
as a value between zero and one. A confidence value
that is close to one indicates high certainty. Similarly, a
confidence value that is close to zero indicates low
certainty.

The proposed method can be used for detecting the following
types of correlations between time-series data streams:

– Simple correlation:

 city=”Los Angeles” à population=”high”

 (conf: 100%)

– Quantified correlation:

 A=5 or A=6 à B > 50 (conf: 75%)

– Time correlation:

 A increases more than 5% à B will increase

 more than 10% within 2 days (conf: 80%)

The first two types of correlations above can also be detected by
the existing solutions. The proposed method can be used for
detecting not only those two types, but also time correlations,
which are more difficult to detect. Detection of time correlations
provides significant advantages over existing solutions, because in
most systems the effect of a change is observed after a certain time
delay (not simultaneously), which is very difficult to detect using
the existing solutions.

Table-1 below shows an example database table that contains 3
time-series data for the grades of a high school student: Math,
Physics, and English.

Table 1. Example database table containing time-series data

Name Value Time-stamp

Math 85 January 12, 2002

Physics 93 January 26, 2002

English 74 February 20, 2002

Math 96 March 23, 2002

Physics 81 April 2, 2002

English 65 April 5, 2002

… … …

Math 97 January 10, 2003

… … …

Figure 3 below shows the overall architecture of Correlation
Engine, which is the prototype implementation of the time-
correlation detection method introduced in this paper.

Correlation
Rules

Rule
Explanations

Rule Re-use
Model

Correlation Engine

Change
Detection

Data Mining
& Statistics

Automatic
Aggregation

Sensitivity
Analysis

Time-series data streams

Data
Storage

Figure 3. Overall Architecture of Correlation Engine

Correlation Engine receives time-series data streams as its input,
and generates correlation rules, textual rule explanations, and
stores the generated rules digitally so that they can be reused by

other data analysis tools. Correlation rules fall into one of the
three categories explained above: simple, quantified, or time-
correlations. Simple and quantified correlation rules may also be
detected using conventional data mining techniques, such as
classification. The time-correlations are detected by the
Correlation Engine using the method introduced in this paper. The
simple and quantified correlations can be easily detected by using
the method introduced in this paper, but the main focus in this
paper is the detection of time-correlation rules, which is much
harder than detection of other types of correlation rules.

Correlation Engine applies automatic data aggregation and change
detection algorithms in order to reduce the search space. Those
two algorithms are described in the following two subsections.
Data mining and statistics is used by Correlation Engine for
various purposes, such as statistical correlation calculation for a
pair of data streams, and change detection (i.e. CUSUM).
Sensitivity analysis is embedded inside change detection and
correlation rule generation steps in the proposed method.
Sensitivity analysis is achieved through recording the change
amounts while detecting change points, and comparing those
change amounts from different time-series data streams while
generating the correlation rules.

Rule explanations that are generated by Correlation Engine are
textual explanations of the detected rules. For example, assume
that the following database table contains a simplified digital view
of a time-correlation rule:

Table 2. Example database table that shows how the generated
time-correlation rules can be digitally stored

COL1_NAME COL2_NAME TIME_DIFFERENCE TIME_UNIT CONFIDENCE TYPE
Health of Resource X Response Time of Activity Y 1 hour 0.6 Negative
Response Time of Activity Y Violations of SLA S1 0 hour 0.7 Positive

then a textual explanation of this rule can be easily generated in
the following form:

If Health of Resource R decreases more than 5%,
then Duration of Activity A increases more than 10% on
the next day.

The database table above skips the details about sensitivity
information (change magnitude) for simplicity of this example,
but in the actual implementation Correlation Engine stores such
sensitivity information in order to provide detailed information to
users about the detected time-correlation rule. The sensitivity
information contains the magnitude changes compared to each
other for the correlated time-series data streams. Sensitivity
analysis is very important because it tells us the amount of
expected impact when a variable (i.e., the value of time-series data
stream) changes.

The digital storage of the generated time-correlation rules in this
manner (i.e. in relational database tables) makes it possible to feed
those rules easily into various data analysis tools, such as
simulation, forecasting, etc. As an example, Figure 4 below shows
how the generated time-correlation rules can be reused for
simulation.

X à Y
Z à W
A & B à C

Correlation
Engine

Simulation
Engine

Rule DB

change X
change Z

Y changed
W changed

1 2

3
4

5

Figure 4. Example of reusing generated time-correlation rules
for simulation

Figure shows that variables X and Z affect the variables Y and W
respectively. The reuse of those rules in the simulation takes place
as a result of the following activities:

1. Time-correlation rules are detected by the Correlation
Engine

2. The rules are written into a rule database in a digital
format similar to the one shown in Table 2

3. User of the simulation tool makes changes to the
variables X and Z

4. The simulation tool retrieves the rules from the rule
database in order to assess the expected impact in
response to the changes in variables X and Z

5. Simulation tool finds out from the rules that are
retrieved from the rule database that variables Y and W
are going to be impacted because of the changes in the
values of variables X and Z. The time-correlation rules
include information about direction, sensitivity, and
time-delay of the impact so that the simulation tool can
figure exactly when, in which direction, and how much
the impact is going to be observed.

2.2 Summarizing the data at different time
granularities:

Time-stamped numeric data values (time-series data) have to be
summarized for two main reasons:

o Volume of time-series data is usually very large.
Therefore, it is more time efficient to summarize
the data before analyzing it. For example, if there
are thousands of data records for each minute, it
may be more time efficient to summarize the data
at minute level (e.g. by taking mean, count, and
standard deviation of recorded values), so that the
data can be analyzed in a more time efficient
manner.

o Time-stamps may not match each other, which
makes it difficult to compare time-stamped data
with each other. For example, all exams in Table-1
were recorded on different dates, i.e. different
time-stamps. It is not possible to compare the exam
scores that have the identical time-stamps, because
there is not enough recorded data at each time-
stamp value to compare different time-series
values. Summarizing the numeric data (e.g. taking
the average value for each course) by day wouldn’ t

be useful either, because all exam scores were
recorded on different days. Even summarizing the
scores by month is not enough because each month
of the year doesn’ t contain a recorded value for
every time-series (i.e., for every course).
Consequently, sometimes it may be necessary to
summarize data using higher time granularity so
that the recorded numeric data can be compared
with each other.

If additional time-stamp information is provided, such as the
notion of academic calendar year, or business calendar units (such
as financial quarter or financial year), then those can be also used
as data aggregation attributes.

Figure 5 below shows an example of how data aggregation is
done at any particular time granularity level. The aggregation is
performed by calculating the sum, count, mean, min, max, and
standard deviation of individual data values within each time unit.
The figure below shows the mean value calculation, which is
equal to sum of values divided by the count of values in within
each time unit.

t t

mean
(sum,
count)

Figure 5. Example for data aggregation that can be done at
any time granularity (minutes, hours, days, etc.)

It is necessary to consider the cases in which the effect of a
change in one time-series data stream may not be observed exactly
at the same time delay all the time. In fact, in most cases the effect
is likely to be shifted slightly in the time domain. The experiments
showed that the time shift is not very large and 99% of the time,
the effect is observed within one time unit difference. In order to
capture those cases, the introduced method uses moving window
of three time units at any granularity level. For example,
aggregation of data values in the “hour” granularity involves the
current hour as well as the previous and next hours. As a result,
slight shifts in the time domain can be incorporated in the
proposed method. Some of the existing methods use complex
algorithms for time shifting or time warping in order handle such
time shifts [4].

2.3 Detecting change points:
CUSUM (Cumulative Sum) [11, 12] is a well-known statistical
method for detecting change points in time-stamped numeric data.
CUSUM at each data point is calculated as follows:

1. Subtract the mean (or median) of the data off of each
data point's value.

2. For each point, add all the mean/median-subtracted
points before it.

3. The resulting values are the Cumulative Summary
(CUSUM) for each point.

The CUSUM test is useful in picking out general trends from
random noise as noise will tend to cancel out in the long-run
(there are just as many positive and negative values of true noise)
but a trend will show up as a gradual departure from zero in the
CUSUM. Therefore, CUSUM can be used for detecting not only
sharp changes, but also gradual but consistent changes in numeric
data values over the course of time. It is important to keep in mind
that the CUSUM is not the cumulative sum of the data values;
instead it is the cumulative sum of differences between the values
and the average. CUSUM is a simple, but effective method for
detecting change points in time-series data.

Once CUSUM value for every data point is calculated, the
calculated CUSUM values are compared with upper and lower
thresholds to determine which data points can be marked as
change points. The data points for which the CUSUM value is
above the upper threshold or below the lower threshold are
marked as change points. The thresholds can be determined using
standard deviation (i.e. a fraction or factor of standard deviation)
or set to two constant values. In most cases thresholds are set
using the standard deviation. It is easy to calculate a moving mean
or standard deviation using a moving window. Therefore, we can
safely assume that standard deviation can easily be calculated on
any time-series data.

In order to establish control limits in CUSUM plots, Barnhard [3]
proposed the so-called V- mask, which is plotted after the last data
sample (on the right). The V-mask can be thought of as the upper
and lower control limits for the cumulative sums. However, rather
than being parallel to the center line; these V-shaped lines
converge at a particular angle to the right, producing the
appearance of a V-shape rotated on its side. If the line
representing the cumulative sum crosses either one of the two
lines, the change point is detected.

Detected change points are marked with one of the labels,
indicating the direction of change that is detected:

o Down: trend of data values change from up or
straight to down

o Up: trend of data values change from down or
straight to up

In addition, amount of the change is recorded for each change
point. This amount of change is used for sensitivity analysis.

2.4 Generating Time-Correlation Rules:
When trying to find out time correlations among multiple time-
series data streams, the proposed method first reduces many-to-
one and many-to-many time-series comparisons into that of pair-
wise (one-to-one) time-series comparison. Then, the problem of
comparing multiple time-series data streams can be tackled
efficiently and easily. In order to explain the proposed reduction
and comparison steps of the proposed method, it is first necessary
to explain what is meant by one-to-one, many-to-one, and many-
to-many time-series comparisons:

o One-to-one: comparison of two time-series data streams
with each other. This is the simplest form of time-series
comparison. The purpose is to find out if there exists a

time correlation between two time-series. For example,
if A and B identify two time-series data streams, one-to-
one comparison tries to find out if changes in data
values of A have any time delayed impact on changes in
data values of B. The comparison is denoted A à B.

o Many-to-one: comparison of multiple time-series data
streams with a single time-series data stream. For
example, if A, B and C identify three time-series data
streams, many-to-one comparison tries to find out if
changes in data values of A and B collectively have a
time delayed impact on changes in data values of C.
This comparison is denoted A*Bà C.

o Many-to-many: comparison of multiple time-series
data streams with multiple time-series data streams. For
example, if A, B, C and D identify four time-series data
streams, many-to-many comparison tries to find out if
changes in data values of A and B collectively have a
time delayed impact on changes in data values of C and
D. This comparison is denoted A*Bà C*D.

Usually, many-to-many comparisons do not have any practical use
because their results can be easily derived from results of many-
to-one comparisons. However, the proposed method is also
capable of reduce many-to-many comparisons into one-to-one
comparisons, if necessary.

The proposed method first describes how to reduce many-to-one
and many-to-many time-series comparisons into one-to-one time-
series comparison. Then, it explains how to perform one-to-one
time-series comparison in order to extract time correlation rules,
which is applicable to any combination of time-series
comparisons as a result of the reduction step.

2.4.1 Reducing Multiple Time-series Data Streams
into One:
The purpose of reducing multiple time-series data streams into
one by merging them is to be able to compare multiple time-series
data streams with each other in one shot. This yields performance
improvement because the merged time-series data streams can be
reused, similar to the way query results can be reused in database
management systems in order to provide performance
improvement. For example, after merging two time-series data
streams A and B, the merged time-series data stream can be stored
in order to generate higher order merged time-series data streams,
such as A*B*C, where the symbol “*” is used for indicating the
merger operation.

The proposed method uses two different methods for merging
time-series data streams: convolution and sum.

Convolution is a well-known technique that can be used for
merging multiple time-series data streams into a single time-series
data stream. Convolution is a computational method in which an
integral expresses the amount of overlap of one function g(x) as it
is shifted over another function f(x). Convolution may therefore
blend one function with another. Convolution of two functions
f(x) and g(x) over a finite range is given by the equation:

∫ −≡
t

dtgfgf
0

)()(* τττ

where f * g denotes the convolution of f and g.

The other method used for merging multiple time-series data
streams into a single time-series data stream is simple sum of the
numeric values in time-series data streams. When calculating the
sum, both the positive and negative sums are considered because
of the following reason:

Let us assume that two time-series data streams are going to be
merged using the sum operation. Assume that there exists an
increase in both time-series data streams at the same point in time.
Summing up the numeric values from the time-series data streams
A and B will strengthen the numeric change at that point of time,
as it should be the case. However, consider the case in which
there exists an increase in numeric values of time-series A at a
point in time, where there exists a decrease in numeric values of
B. In that case, sum of the two time-series may decrease the
magnitude of each or even neutralize each other completely,
which should not be the case. In summary, it is necessary to sum
up absolute values, instead of actual numeric values, when
merging time-series data streams. The proposed method uses
absolute values but keeps the direction information about each
change point, which is needed during the comparison of time-
series data streams. In general, when merging two or more time-
series data streams with any particular method, it is necessary to
use the absolute data values and keep the direction information for
each change point. Since the merge operation is applied on
discrete time-series data streams (after using CUSUM to detect
change points), the operation can be performed much faster than
merging the actual time-series data streams in their original
numeric values.

2.4.2 Comparing Two Time-series:
The proposed method uses statistical correlation to calculate the
time correlation between two time-series data streams. The time-
series data streams that are compared at this step may correspond
to either merged time-series or regular time-series. The statistical
correlation between two time-series is calculated as:

where x and y identify two time-series, and covariance is
calculated as

cov(X, Y) = E{ [X - E(X)][Y - E(Y)]}

and � (x) corresponds to the standard deviation of values
in time-series x, � (y) corresponds to the standard deviation of values in
time-series y,
E(X) and E(Y) correspond to the mean values of time-
series data values from x and y.

Time correlation is calculated as follows:

max { cor(xi,yj)} ∀i,j ∈ t; i
�����

where t corresponds to aggregated time span of the time-series
data (e.g. minutes, hours, days, etc.).

Sensitivity is calculated using the following formula:

compare change(xi,yj) where i,j ∈ t; i
������� �

-j| = d

by setting the distance (d) between i and j to that of the maximum
statistical correlation found, and comparing the magnitudes of
change in the correlated time-series data streams.

cor(x,y) =
cov(x,y)

� (x) � (y)

In other words, the statistical correlation between aggregated data
points with varying time distances are calculated, and the
maximum calculated correlation and the corresponding time
distance (d) give us the time correlation information between the
compared time-series data streams. The time distance for the
maximum statistical correlation found between two time-series
data streams will be denoted d. The sensitivity is calculated by
comparing the change amounts in the correlated time-series data
streams using time distance (d) of the calculated maximum
statistical correlation. The direction of correlation is also obtained
from the calculated statistical correlation.

The most challenging task at this comparison step is to determine
the time distance (d) for which the calculated correlation is the
highest. An exhaustive search in which all possible time distances
are tried and maximum correlation is determined is prohibitive
due to performance reasons unless there exists an upper limit for
the distance (d) that is set by the user. Otherwise it is necessary to
find the distance (d) in a faster way. The proposed method uses
sampling in order to first determine which time distances are
likely to return a high correlation between the time-series data
streams that are being compared. Then, the actual correlation is
calculated for a few of those candidate distances, and the one with
the highest correlation is selected. The experiments with various
kinds of time-series data streams yielded promising results.
Although the number of candidate distances considered has a
significant effect on the accuracy of the result, the experiments
showed that after sampling the data, it is enough to consider at
most three or four candidate distances to find the highest
correlation distance for 95% of the time.

Once the time correlation is calculated, the confidence can also be
calculated easily by comparing the percentage of times the
calculated statistical correlation with the time delay (d) of the
maximum correlation is higher than a particular threshold. For
example, if the proposed method finds out that the time
correlation is the highest for a time delay of 3 units, say 3 days (d
= 3 days), then the confidence is calculated by measuring what
percentage of the time xi and yj values have a statistical
correlation larger than a particular threshold. The threshold can be
chosen by the user of this method.

3. EXAMPLE USE SCENARIO
The time-correlation rules generated by the method that is
introduced in this paper can be used in various fields. For
example, Business Impact Analysis (BIA) tries to find the impact
of certain events on the operation of the business. Businesses
make use of Workflow Management Systems (WfMS) [10] in
order to automate the execution and monitoring of their business
processes. A business process is a step by step description of
activities that are carried out by humans or automated resources
(e.g., databases, procurement systems, resource planning software,
etc.) in order to achieve a business goal. A workflow is the formal
definition of a business process that can be executed and
monitored using a WfMS. Figure 6 below shows an example
workflow definition which is used for handling purchase order
(PO) requests that are received from customers.

Check goods
availability
via vendor

Notify
rejection

Receive
and check

P.O. request

Verify
supplies
in stock Notify

acceptance

Initiate
delivery

Replenish
stock levels

1 2
3

4

5

6

7

Figure 6. Example workflow definition

The individual activities in this workflow definition are carried
out by resources such as humans or automated systems (i.e., IT
resources). For example, “ Initiate Delivery” activity may be
carried out by a human who makes a phone call to internal
delivery department of the business in order to initiate the
delivery of the ordered products. Similarly, “Notify Acceptance”
or “Notify Rejection” activities may be carried out by an e-mail
messaging system that is capable of sending e-mail notifications
to the customer.

The time-correlation rules are very suitable for use in BIA
because the time-correlation rules can tell us the impact of a
change in the value of one numeric variable on the value of
another numeric variable. Figure 7 below shows an example BIA
scenario in which the time-correlation rules that are generated by
the introduced method can be used.

Workflow

Activities

Inventory

Web server

EDI gateway

Applications

E-mail server

svr1

svr2

svr3

svr4

Servers
1

2

3

4

5

6

7

Figure 7. Example Business Impact Analysis (BIA) scenario

Figure 7 shows the overall workflow definition of Figure 6 at the
highest level (left-most). The activities that are number between 1
and 7 in Figure 6 are symbolized with their corresponding
numbers in Figure 7. Figure 7 indicates that each one of the
activities in the workflow by one or more automated resource
(human resources are ignored only for simplicity). It can also be
observed from the figure that a resource (application) may be in
charge of handling one or more activities in the workflow. Each
application runs on top of a hardware resource, which is shown as
the servers in the figure. Each application may run on one or more
servers, and similarly each server may run one or more
applications.

Business Impact Analysis on such an architecture requires that we
know or find out the impact of change at a lower level entity on
the execution of a higher level entity. For example, if server 2

crashes or experiences a performance degradation, then the
Inventory application will be affected negatively. That will in turn
affect the execution of activities 2 and 3. Eventually, that will
affect the overall execution of the workflow and its execution will
most probably be delayed or even become impossible.

Time-correlation rules can be used for identifying the
dependencies among the performance of any entities in this
scenario. For example, the proposed method in this paper can
come up with time-correlation rules for any of the following:

o server performance and application performance,

o server performance and activity execution time,

o server performance and workflow execution time,

o application performance and activity execution time,

o application performance and workflow execution time,

o activity execution time and workflow execution time

The generated time-correlation rules tell us impact of any change
at a lower level entity on the higher level entities. For example,
the following rule, which was used as an example for textual
explanation of the generated rules, tells us the impact of a change
in the performance of a server on the execution time of an activity
in the workflow:

If Health of Resource R decreases more than 5%,
then Duration of Activity A increases more than 10% on
the next day.

The main advantage of the use of time-correlation rules in BIA is
that the rules can be generated for any time-series data streams
from different levels in the example scenario architecture shown
in Figure 7. That means, we can directly find the impact of a
server crash on the overall execution time of the whole workflow
without having to know about the actual dependencies or
hierarchy of the existing architecture. This is one example that
shows the time-correlation detection method introduced in this
paper is generic enough to be applied in many different problem
domains without requiring domain knowledge.

Similarly, the introduced method can be used in analyzing supply
chain transactions, business-to-business (B2B) interactions,
procurement systems, web services, etc. As long as transactional
or operational log data is available, the introduced method can be
applied for detecting time-correlations on such data in order to
gain knowledge about how the underlying system works.

4. RELATED WORK
Most of the related work concentrated on similarity based pattern
querying. The similarity-based approaches use three main data
models: similarity model, data representation, and indexing
structure. The similarity model defines the semantics of pattern
queries. Data representation defines how to store the data for
analysis. Indexing structure is used for speeding up the search
after the similarity patterns are clustered into groups. For
example, Agrawal et al [1] and Faloutsos et al [7] use Euclidean
distance as the similarity model, the coefficients of the moving-
window DiscreteFourier Transform (DFT) as the data
representation, and an R*-trees as the index structure for speeding
up the search. Many of the existing research that applied features
that are extracted from the data have used DFT in order to
transform the time-series from time domain into frequency

domain [1, 4, 7, 9, 16]. The main problem those approaches was
the fact that similarity model was different from the data
representation [13]. It is necessary to find a proper transformation
between the two models.
In order to consider the fact that sometimes the time-series data
streams may have different time domain scales or data value
magnitude ranges, etc., the similarity models have been extended
to consider various transformations on the data. For example,
warping [4, 14, 15, 16], amplitude shifting [5, 9, 15], and
allowing time-series segments of different amplitude scales to be
considered similar [2, 5, 6, 9].
Based on the observation that humans can ignore small
fluctuations and apply smoothing when comparing time-series
data visually, Rafiel et al proposed a method based on smoothing
and noise reduction using moving averages [14]. Unfortunately,
smoothing and noise reduction also result in loss of accuracy due
to the modification in the nature of the actual time-series data.
Perng et al [13] suggested a new method that first tries to identify
landmarks, i.e., important points in time when certain events
happen, and then using six different transformations to confirm
similarity of time-series data streams.
The main similarity of the introduced method in this paper to
some of the previous work is that we also considered summarizing
the continuous time-series data streams in a discrete form.
However, we apply a well-known statistical approach for change
detection, instead of trying to determine what kind of events
should be considered important events that determine the general
characteristics of the underlying data. The introduced method also
differs in most of the previous research that the similarity model
and data representation match each other. Instead of building
complex indexing structures to speed up search, the introduce
method applies sampling techniques in constant running time to
determine few candidates and then analyzes the candidates during
the comparison step in linear running time. Instead of smoothing
and noise reduction, we apply data aggregation based on actual
time units that preserve most of the mid-scale fluctuations in the
actual data. The experiments performed during the development
of the proposed method and previous research suggest that
detecting the change points in the time-series data rather than
trying to map the data into various feature sets yields the best
results, and that is why change detection is used as the only
transformation method in this paper.

5. CONCLUSION
A novel method for detecting time-correlations in time-series data
streams is introduced. The method consists of a few main steps in
which the original time-series data is summarized using data
aggregation; transformed into discrete data using a well-known
change detection technique for faster analysis; sampled for fast
detection of candidates, and scanned in linear time for confirming
the correlation rules. The proposed method takes advantage of
certain observations in previous research and during experiments
performed for this method. The use of the time-correlation rules
in Business Impact Analysis is explained on an example. The
generated time-correlation rules can easily be reused for analysis
of transactional or operational data in many different domains.
Moreover, the generated rules can be converted into textual
representations, which is very important for human users to
understand the findings.

6. REFERENCES

[1] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient

similarity search in sequence databases. In FODO,
Evanstons, IL, October 1993.

[2] R. Agrawal, K.-I. Lin, H. S. Sawhney, and K. Shim. Fast
similarity search in the presence of noise, scaling, and
translation in time-series databases. In Proceedings of the
21st International Conference on Very Large Databases
(VLDB), Zurich, Switzerland, September 1995.

[3] G. A. Barnhard, `Control charts and stochastic processes,'
Journal of Royal Statistical Society, (B) vol. 21, pp. 239-
257, 1959.

[4] D. J. Berndt and J. Clifford. Finding patterns in time series:
A dynamic programming approach. In Advances in
Knowledge Discovery and Data Mining, pages 229–248.
MIT Press, 1996.

[5] K. K. W. Chu and M. H. Wong. Fast time-series searching
with scaling and shifting. In PODS, 1999.

[6] G. Das, D. Gunopulos, and H. Mannila. Finding similar time
series. In Proceedings of Principles of Data Mining and
Knowledge Discovery (PKDD), Trondheim, Norway, June
1997.

_ _
[7] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast

subsequence matching in time-series databases. In SIGMOD,
1994.

[8] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R.
Uthurusamy, Advances in Knowledge Discovery and Data
Mining. MIT Press, 1996.

[9] D.Q.Goldin and P. Kanellakis. On similarity queries for
time-series data: Constraint specification and
implementation. In International Conference on the
Principles and Practice of Constraint Programming, 1995.

[10] F. Leymann, D. Roller, Production Workflows. Prentice-
Hall, Englewood Cliffs, 2000.

[11] E.S. Page, Continuous Inspection Schemes, Biometrika, 41,
pp.100-114, 1954.

[12] E.S. Page, An improvement to Wald's approximation for
some properties of sequential tests, Journal of Royal
Statistics Society B, 16, pp.136-139, 1954.

[13] C-S. Perng, H. Wang, S. Zhang, D. S. Parker, Landmarks: A
New Model for Similarity-Based Pattern Querying in Time
Series Databases. In Proceedings of the 16th International
Conference of Data Engineering (ICDE), San Diego, CA,
February 2000.

[14] D. Rafiel and A. O. Mendelzon. Similarity-based queries for
time series data. In SIGMOD, 1997.

_ _ _ ___ _ %&_ %__ ___ _
[15] H. Shatkay and S. B. Zdonik. Approximate queries and

representations for large data sequences. In Proceddings of
the 12th International Conference of Data Engineering
(ICDE), 1996.

[16] B.-K. Yi, H. Jagadish, and C. Faloutsos. Efficient retrieval of
similar time sequences under time warping. In ICDE, 1998.

