

Resilient Parameterized Tree Codes for Fast Adaptive Coding

Amir Said
Imaging Systems Laboratory
HP Laboratories Palo Alto
HPL-2004-102
June 7, 2004*

entropy coding,
tree codes,
adaptive coding

This report presents an introduction to efficient adaptive compression
using parameterized prefix codes. Advanced adaptive coding techniques
can be quite complex because of the need to reliably estimate the
probability of a large number of data symbols, each in a number of
coding contexts, and then create the codes for each context, and finally
code the data. We present practical alternatives with much smaller
complexity, which use a pre-defined group of codes with special
structure. The adaptive coding process is simplified to estimating which
is the best code for a given symbol. This approach is commonly used
with Golomb-Rice codes. However, we demonstrate how these codes are
quite sensitive to errors in the code-selection process, which are
practically unavoidable, due to statistical uncertainty, and the non-
stationary nature of real sources. We propose a new family of codes that
would have inferior performance if applied to stationary sources, but that
are much more "resilient" to errors in the code selection parameters. C++
source code that exemplifies the implementation of the new codes is
provided. In addition we propose a combination of those codes with
arithmetic coding, in order to exploit the best characteristics of each, and
obtain nearly optimal compression, but with complexity (both memory
and computation time) much lower than required for arithmetic-only
coding.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2004

1

Resilient Parameterized Tree Codes
for Fast Adaptive Coding

Amir Said
HP Laboratories, Palo Alto, CA

1 Introduction

A fundamental process for all data compression applications is called entropy coding.

Generally, we model the compression process by first defining a data source that puts out,

for integer indexes i = 0, 1, 2, …, data symbols Si belonging to the set {0, 1, 2, …, Mi –1}

(source alphabet). In the encoding stage the data symbols are converted to a set of bits1.

The objective of entropy coding is to minimize of the number of bits required to represent

the original data uniquely, without any loss of information [2]. Figure 1 shows a system for

entropy encoding and decoding.

Figure 1 – Entropy coding system.

1 Other types of output symbols, like decimal digits are possible, but the binary alphabet is by far the most
common.

Data
source

Entropy
encoding Data

symbols

Compressed

data bits

Si

Entropy
decoding Decode

d

Si

2

Information theory [2,3] provides the methods to compress the information in an

optimal manner. Whatever the coding method, to determine the optimal code for a given

data source, we need to have knowledge of the conditional probability of each data symbol,

i.e., we need to know the distributions

{ } KK ,2,1,0,,,|Prob)(11,0 === − iSSSsSsP iii (1)

The optimal number of bits assigned to each data symbol is given by real numbers

K,2,1,0
0)(),(log
0)(,0

)(
2

=




>
=

= i
sPsP
sP

sB
ii

i
i (2)

The most commonly used entropy coding methods belong to three categories,

explained below.

(a) Arithmetic coding. This family of coding methods uses arithmetic operations to

assign to each data symbol the optimal fractional number of bits defined by

equation (2). Although these methods are quite fast in modern CPUs, the use of

arithmetic operations and the management necessary to deal with fractional number

of bits makes them in general slower than coding methods that use integer number

of bits and table look-up (TLU) [5,7,8].

(b) Prefix or tree coding. These coding methods assign an integer number of bits for

each coded data symbol. The compression achieved with this strategy is in general

sub-optimal, but prefix coding can be computationally quite efficient with TLU for

both encoding and decoding. The loss in compression can also be alleviated by

combining symbols together [2,3,5].

(c) String coding. This group of coding methods includes the Lempel-Ziv methods [2].

They aggregate symbols before coding (forming a “string”), and assigns a fixed or

variable integer number of bits for each string. In data sources like English text

they can achieve the highest encoding and decoding speeds by working with

repeated occurrences of relatively long strings. However, these methods are much

less efficient for more random sources, like waveforms (audio, images, video, etc.).

3

Prefix codes have the property that no ambiguity about the codewords is created by

their concatenation. As bits are read sequentially, the decoder always knows when it

reaches the end of a codeword and can put out a decoded symbol. These codes are best

represented by a tree structure, which guarantees the prefix property, and also permits

visual interpretation of the code’s properties. Every uniquely-decodable code can be

translated into a prefix code with same compression properties [2,3].

Figure 2 shows an example of a binary tree describing a prefix code. In this example,

the data alphabet has 8 symbols. In this tree each leaf node corresponds to a data symbol

and is represented by a square, while circles represent the other nodes. For each data

symbol the encoding process starts in the root node, and moves to the leaf assigned to the

current data symbol. The encoder puts out the bits in all the visited branches. For instance,

to code symbol “2”, the encoder puts out the sequence of bits (0, 1, 0). Table I contains the

binary codeword for each data symbol in Figure 2. Decoding also starts from the root node.

The decoder moves to the right or left branch depending on the bit read, and puts out a

decoded symbol when it reaches a leaf. There are several protocols to guarantee that the

encoder and the decoder use the same code (tree).

Figure 2 – Tree representing a prefix code.

0 1

0 1

0 1

0 1

0 1

2
0 1

3 4

0 1

5
0 1

6 7

4

Table I – Set of codewords defined by the tree of Figure 2 (left-to-right bit order).

Symbol
s

Codeword Bits
B(s)

0 000 3
1 001 3
2 010 3
3 0110 4
4 0111 4
5 10 2
6 110 3
7 111 3

2 Adaptive Coding

In practical applications we usually do not know a priori the conditional probabilities of

the data symbols, as indicated in equation (1), i.e., it is necessary to estimate these

probabilities during the encoding and decoding processes. While the notation of

equation (1) allows for different probability distributions for each source data index i, in

practice we cannot estimate and manage an unbounded number of distributions. In practice

we can achieve very good results with a reasonable number of distributions by assuming

that symbols in some sets have the same probability distribution. This is equivalent to

assume that each source symbol Sn belongs to one class of symbols },1,,2,1,0{ −∈ Cc K

depending on alphabet size used for that symbol, and the probability of the symbols in a

given class is defined by the set of previously coded symbols2 {S0, S1, …, Sn–1}. Thus, for

each class c we assign different probability distributions)()(sP c . A classification function

),,,(110 −Ψ ii SSS K is used to identify the classes, assuming that

{ }),(,,,|Prob),,,()(
110110 sPSSSsScSSS c

iiii ≈=⇒=Ψ −− KK (3)

2 This set is frequently called the context of source symbol Sn.

5

The classification functions and the number of classes are frequently defined using

empirical methods, based on the properties of the data source. The methodology to

categorize the source samples that should have the same probability distribution, and to

estimate these probabilities, is called adaptive coding.

Note that, to follow the commonly accepted definition of adaptive coding, we are not

considering two-pass coding, in which the encoder first analyzes the complete data

sequence { }K,,, 210 SSS , estimates the probabilities using relative frequencies, computes

the optimal codes, and adds the optimal code information to the beginning of the

compressed data, and finally, in a second pass, encodes that data. There are several

problems with two-pass coding:

(a) It cannot be used for stream coding, i.e., when we want to compress the data as

soon as it is available.

(b) The overhead incurred by adding the code information to the compressed data can

be quite significant, especially with many classes to better model complex sources

(large C) and with large data alphabets (large M).

The notation of equation (3) defines the general case. In practice, the classification

functions),,,(110 −Ψ ii SSS K are computed using only a fixed number r of samples. For

example, for one-dimensional sources we commonly have

),,,(),,,(11110 −+−−− Ψ=Ψ iririiii SSSSSS KK (4)

i.e., only the last r previously encoded/decoded symbols are used for the classification.

The generalization of equation (4) for 2-dimensional sources (e.g., images) or 3-

dimensional sources (e.g., video) requires more complicated notation, so we prefer to use

the notation of the most general case in equation (3).

6

It is possible to improve compression significantly by increasing the number classes C.

However, increasing these numbers can degrade compression efficiency for the following

reasons:

(a) For best results, the classification of the data samples needs to be based on a large

number of data samples (value of r in equation (4)). Keeping track of these

samples, and mapping the samples values to a class can be quite demanding.

(b) For each class, it is necessary to continuously estimate the probabilities of all

symbols. This task must be repeated many times because estimates improve as

more symbols are coded, and because in practical applications the distributions

may change in time [7].

(c) For each class and estimated probabilities, it is necessary to compute or update the

respective optimal codes.

The problems above, especially (b) and (c), become quite serious when the source

alphabet size M is large. For instance, compression can start in a very inefficient manner,

because the encoder and decoder need time (many symbols coded) to estimate symbol

probabilities reasonably well. When M is large and probabilities are small, the number of

symbols coded before good estimates are available can be quite large, and compression

efficiency is degraded significantly.

Optimal tree codes are constructed using the algorithm invented by Huffman [2]. The

computational complexity to determine an optimal code is proportional to M log(M) in the

worst case, and proportional to M in the best case. This means that when M is large, it is

not practical to compute new optimal codes frequently, leading to loss in compression.

Some ingenious algorithms were proposed to update the trees automatically, but they were

found to be not efficient enough.

Finally, we need to consider that table look-up is very fast only when the tables are not

too large (preferably, when they can fit in the CPU’s fast cache, or are accessed

sequentially). If M and C are large, then the amount of memory to store the estimates,

codes, and tables, also becomes prohibitively large.

7

There are two approaches that can be used to solve these problems:

(a) Assume, for each class, one type of probability distribution (e.g., geometric), and

only estimate its parameters. It still may be necessary to compute the optimal codes

whenever the parameters change.

(b) Assume some structure for the code trees, defined by a small number of

parameters, and only try to estimate the best coding parameters, given the source

data context [6].

The advantage of approach (b) is that it completely eliminates the need to estimate

probabilities, since their values are implicit in the chosen code. It exploits the fact that

source codes normally have little sensitivity to small changes in symbol probabilities. In

the next section we present one set of parameterized tree structures (prefix codes).

3 Golomb Codes

Golomb [1] proposed a family of prefix codes that are optimal for a certain common

class of data symbol distributions. Each Golomb code is defined uniquely by a positive

integer number m . The process of coding a data symbol s is divided in two steps. First,

we compute

,



=
m
sq (5a)

where  x represents the integer part of .x A unary code is used to represent q , i.e., the

number q is coded using q 1-bits, followed by a 0-bit.3

Next, we compute

,mqsr −= (5b)

and code mr <≤0 using a number of bits between  m2log=κ(and  m2log=κ) .

3 An equivalently convention, q 0-bits, followed by a 1-bit, is not used in this work.

8

We use)(sGm to represent the binary codeword generated by the Golomb code with

parameter m for representing data symbol s, and we define the operator []⋅l to represent the

number of bits in a codeword (codeword length). Table II shows examples of codewords

generated by some Golomb codes. For different values of parameter m the columns in

Table II contain the codeword)(sGm and the number of bits [])(sGml . Figure 3 shows the

trees corresponding to the Golomb codes of Table II.

In the special cases when ,,2,1,0,2 K== km k we can code all possible values of r

using exactly k bits, which is quite advantageous in practical applications. These

particular codes are also called Rice-Golomb codes, and we represent their codewords by

)(sRk , such that,

)()(2 sRsG kk = . (6)

In the general case, the number of bits in a codeword is

[]      

 

 −<−

+



+=

otherwise.,log
,2/if,log

1)(
2

log
2

2

m
mmsmsm

m
ssG

m

ml (7)

In the special case ,2km = we have

[] 



++=++= kk

skqksR
2

11)(l . (8)

We can see in Equations (7) and (8) that the length of the codewords can only increase

with symbol number s, meaning that Golomb codes should be used with symbols sorted by

decreasing probabilities. In addition, note that Golomb codes are not defined for an

alphabet of M symbols; instead, they are defined for an infinite number of symbols. This is

an advantage when working with large alphabets, and the exact alphabet size is unknown.

The codes for the most frequent symbols can be stored in tables, while the codes for the

improbable symbols can be generated automatically.

Golomb codes are optimal for sources with geometric distributions in the form

)1()(ρρ −= ssP . (9)

9

The average value of data symbols S for this distribution is

)1(
}{

ρ
ρ
−

== SSE . (10)

while the entropy is (in bits)

ρ
ρ

ρ
ρρ 22

0
2 log

1
)1(log)(log)()(

−
−−−=−= ∑

∞

=

sPsPH
s

. (11)

The optimal value of parameter m for this distribution is

 )log(/)1log()(* ρρρ +−=m . (12a)

Figure 4 shows the coding performance of Rice-Golomb codes with k = 0, 1, …, 6, when

used on geometric distribution sources (equations (9) and (10)). Note that the transition

between the curves that define the minimum rate occur near the integer values of)(log 2 S ,

and thus the optimal value of parameter k can be approximated by

()  () () ρρρ −−=≈ 1logloglog)(222
* Sk . (12b)

Table II – Set of codewords)(sGm defined by Golomb codes, and their length in
bits [])(sGml ,.

m = 1 m = 2 m = 3 m = 4 Symbol
s Codeword Bits Codeword Bits Codeword Bits Codeword Bits
0 0 1 00 2 00 2 000 3
1 10 2 01 2 010 3 001 3
2 110 3 100 3 011 3 010 3
3 1110 4 101 3 100 3 011 3
4 11110 5 1100 4 1010 4 1000 4
5 111110 6 1101 4 1011 4 1001 4
6 1111110 7 11100 5 1100 4 1010 4
7 11111110 8 11101 5 11010 5 1011 4
8 111111110 9 111100 6 11011 5 11000 5
9 1111111110 10 111101 6 11100 5 11001 5

10

Figure 3 – Trees defining Golomb codes with parameters .4,3,2,1=m

…

0

1

0 1

0

1

2

0

1

3

0

1

4

0

1

5

0

1 …

0

1

1

0 1

0

0

1

3

0 1

2

0

1

5

0 1

4

0

1

7

0 1

6

…

0

1

0 1

3

0 1

2 1

0 1

0

0

1

0 1

7

0 1

6 5

0 1

4

0

1

0 1

11

0 1

10 9

0 1

8

m = 4
(k = 2)

0

1

2

0 1

1

0 1

0

0

1

5

0 1

4

0 1

3

0

1

8

0 1

7

0 1

6

m = 1
(k = 0)

m = 2
(k = 1)

m = 3
…

11

0

2

4

6

8

10

12

14

16

18

20

-2 -1 0 1 2 3 4 5 6 7 8

A
ve

ra
ge

 R
at

e
(b

its
) k=0

k=1
k=2
k=3
k=4
k=5
k=6

Figure 4 – Coding performance of Golomb-Rice codes for sources with geometric

distribution.

In the Appendix A.1 we have a C++ implementation of encoding and decoding

functions, which use the parameter m to specify the corresponding Golomb code mG to be

used. In the Appendix A.2 we have the same type of functions implementing the

corresponding Golomb-Rice codes kR .

()S2log

12

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9

Souce Entropy (bits)

R
el

at
iv

e
R

ed
un

da
nc

y k=0
k=1
k=2
k=3
k=4
k=5
k=6

Figure 5 – Relative redundancy of Golomb-Rice codes for sources with geometric
distribution.

13

Defining the relative redundancy of a code as the difference between the average rate

and the source entropy, normalized by the source entropy, for the Golomb-Rice codes we

have

() []{ } ()
()ρ

ρ
ρζ

H
HsRE

k k
R

−
=

)(
,

l
. (13)

Figure 5 shows the relative redundancy of Golomb-Rice codes. The fact that the curves

nearly touch the x-axis shows that for some particular values of ρ shows that these codes

can indeed achieve nearly optimal performance in those special cases [9] (the difference is

too small to be seen in the graphs).

4 Adaptive Coding with Parameterized Codes

The adaptation strategy to be used with Golomb codes is very simple: we should use a

classification function),,,(110 −Ψ ii SSS K to estimate only what should be the best value

of parameter mi, and then code the symbol with the corresponding Golomb code.

Figure 6 shows a diagram for such form of coding. The encoder is composed of three

parts. The first part has a rule for estimating the optimal coding parameter mi from all

previous symbols. The estimated mi is then used to select the set of codewords to be used

to code the current symbol, normally stored in a table. Using the selected table, the encoder

copies the bits)(im SG
i

 corresponding to Si to the compressed bit stream.

We can also consider that in Figure 6 the encoder has codewords organized in a two-

dimensional table, and uses as codeword)(im SG
i

 the entry in column mi and row Si.

Figure 6 also shows the corresponding decoder structure, which must use an optimal

parameter estimation that is identical to the one used by the encoder.

In practical applications it is more common to use m = 2k, and instead estimate the best

k. This adaptation technique is not indicated for all types of data sources, but for many

applications of waveform coding (audio, video, images, etc.), it works quite well,

eliminating all the problems associated with estimation of whole probability distributions.

14

Figure 6 – Adaptive coding with code selected by a single parameter.

5 Resilient Parameterized Tree Codes

A problem with the use of Golomb codes in an adaptive coding strategy is that they are

not resilient to errors in the estimation of the code-selection parameter. This fact can be

seen in the performance curves in Figure 5: the rates grow too fast around the optimal

Delay

Data
source Data

symbols

Si

mi
Optimal parameter

estimation

Compressed

bit stream

Select
codeword

Select code
(table)

)(im SG
i

Encoder

Delay

Decoded
data

Si

mi
Optimal parameter

estimation

Decoder

Decode
codeword

Select code
(table)

)(im SG
i

15

point, so there is a large penalty (in bits) whenever the parameter m is not correctly

estimated. For example, suppose the classification function estimates that the best Golomb

code parameter is m = 1, and ;300=iS then this symbol will be coded using 300 bits equal

to 1, followed by a bit equal to 0. This is obviously very inefficient, and also not very

smart. From equation (2) we can see that such a codeword was supposed to be used for a

symbol with probability .1022)(91301 −− ⋅≈=iSP During the encoding process, after

encoding a certain number of bit with the unary code, it is possible to infer that it is much

more plausible that the parameter m had been chosen with a value too small, than assume

the occurrence of a data symbol with such astronomically small probability.

The solution we propose to this problem is to change the trees that define the codes.4 In

the Golomb codes the number of symbols (leaf nodes) in the sub-trees that “grow” from

the unary5 code is always equal to its parameter m. Our strategy is to keep increasing the

number of symbols in those sub-trees, which is in a way similar to changing the parameter

m of the Golomb code in the middle of a codeword. This way, the number of symbols in

the sub-trees is not always m, but can be equal to, for example, m, m +1, m +2,…, or equal

to m, m, m +1, m +1,…, etc. Since we are defining the new codes from their tree structure,

it should be clear that they are all tree codes.

What is left to decide is the rule to be used in the creation of these new codes, i.e., how

we want to increase the number of symbols in the sub-trees. We call these codes resilient,

since they have low sensitivity to errors in the code selection. For our resilient adaptive

coding application we consider the two following choices.

(a) Linear growth codes (wdmL ,, codes): after w consecutive unary-code bits equal to

1, increase the number of symbols in the sub-trees by an amount d. We use the

symbol m to represent the initial number of symbols in the trees growing from

nodes forming the unary code. The codeword for such code is represented by

)(,, sL wdm .

4 A companion report presents a more theoretical justification and analysis.
5 The unary code is composed of the bits indicated by the horizontal arrows in Figure 3, followed by the first
vertical arrow. In fact, we used this special tree layout to stress the importance of those bits.

16

(b) Exponential growth codes (wkE , codes): after w consecutive unary-code bits

equal to 1, double the number of symbols in the sub-trees. We assume that the

original number of symbols in the trees growing from nodes forming the unary

code is m = 2k, so the exponential-growth codes are uniquely defined as)(, sE wk .

Figure 7 shows some examples of new tree codes generated using the linear growth

strategy. The first example is 3,1,1,, LL wdm = . Since m = 1, the first sub-trees have only one

symbol each (0, 1, and 2). After w = 3 branches of the unary code the number of symbols

is increased by d = 1 to two symbols per tree forming pairs (3,4), (5,6), and (7,8). The

following three trees (not shown in the figure) would have 3 symbols each, as (9,10,11),

(12,13,14), and (15,16,17).

The next example is code 1,1,1,, LL wdm = , which has the number of symbols per tree

growing at each node of the unary code. Thus, the number of symbols grow as 1, 2, 3, …,

and the symbols in each tree are (0), (1,2), (3,4,5), (6,7,8,9), (10,11,12,13,15), etc.

 Figure 8 shows examples of codes generated using the exponential growth technique.

The first example is code 2,0, EE wk = , which has trees with number of symbols growing

exponentially in groups of w = 2. Thus, the number of symbols grows as 1, 1, 2, 2, 4, 4, 8,

8, 16, 16, and so on. In the second example the growth is faster because w = 1, and the

number of symbols grows as 2, 4, 8, 16, 32, 64, …

Note that the Golomb-Rice codes can be considered particular cases of this new types

of code, since

mdmwm GLL == ∞,,,0, , (14)

and

kk RE =∞, . (15)

Figure 9 show diagrams with the encoder and decoder for this type of code. Note that

the only difference to those in Figure 6 is in the number of parameters to be estimated.

17

Tables III, IV, V, and VI contain more examples of wdmL ,, and wkE , codes. All the

examples show that even though the codes are defined by a small set of parameters, there

is good deal of diversity left for adaptive coding. Even though the construction of the

linear-growth codes is quite simple, the total number of bits for each codeword (bits in the

unary code plus bits in the tree following it) cannot be easily described as in Equations (7)

or (8). The number of bits in the exponential-growth codes can be computed using the

following equations















 +=

w
ssu kwk 2

1log)(2, (16)

[] 






 +
+++−+= +)(,, ,2

2)()1(1)(suk

k

wkwk wk

wssuwwksEl . (17)

The equation for special case w = 1,

[] 













 +++= kk

sksE
2

1log21)(21,l , (18)

is particularly interesting because it shows the most significant difference between the new

codes and Golomb-Rice codes: comparing Equations (8) and (18), we can see that in the

new codes the codeword lengths a proportional to the logarithm of the data values.

Figure 10 shows the relative redundancy of the new exponential-growth codes when

applied to geometric distribution sources, using parameter w = 1. Note that the curves do

not touch the x-axis, meaning that these codes cannot reach optimality for these sources,

but on the other hand, when we compare Figure 10 with Figure 5 we can easily see that

they are much more resilient to errors in the estimation of parameter k. Figures 11a, 11b,

and 12 show the performance of these codes with parameters w = 2 and w = 3, and how we

can trade-off performance for resiliency by changing parameter w.

Appendix sections A.3 and A.4 provide the C++ implementation of the new codes. The

first implementation (A.3) uses the parameters (m, d, w) to define the code, and uses the

linear growth strategy. The second implementation (A.4) uses the parameters (k, w), and

exponential growth.

18

Figure 7 – Examples of resilient tree codes with linear growth.

…
0

1

1

0 1

0

0

1

3

0 1

2

0

1

0 1

7

0 1

6 5

0 1

4

0

1

0 1

11

0 1

10 9

0 1

8

0

1

0

0

1

2

0 1

1

0

1 …

0 1

9

0 1

8 7

0 1

6

0

1

5

0 1

4

0 1

3

m = 1
d = 1
w = 1

m = 2
d = 2
w = 2

0

1

0 1

0

1

2

0

1

0

1

4

0 1

3

0

1

6

0 1

5

0

1

8

0 1

7

…

m = 1
d = 1
w = 3

19

Figure 8 – Examples of resilient tree codes with exponential growth.

k = 1
w = 1

k = 0
w = 2

1

0

1

0

1

0

0

1

5

0 1

4

0

1

3

0 1

2

…
0

1

0 1

9

0 1

8 7

0 1

6

0 1

5

0 1

4 3

0 1

2

0

1

1

0 1

0

0

1

0 1

…
0

1

0 1

9

0 1

8 7

0 1

6

0 1

13

0 1

12 11

0 1

10

20

Figure 9 – Adaptive coding with code defined by multiple parameters.

Delay

Data
source Data

symbols

Si

mi, di, wi,

Optimal parameter
estimation

Select
codeword

Select code
(table)

Compressed

bit stream

)(,, iwdm SL
iii

Encoder

Delay

Decoded
data

Si

mi, di, wi,
 Optimal parameter

estimation

Decoder

Decode
codeword

Select code
(table)

)(,, iwdm SL
iii

21

Table III – Set of codewords defined by the linear-growth resilient tree codes with
parameters m = 1, d = 1.

m=1, d =1, w =1
(1,1,1L)

m=1, d =1, w=2
(2,1,1L)

m=1, d =1, w=3
(3,1,1L)

m=1, d =1, w=4
(4,1,1L)

Symbol
s

Codewords Bits Codewords Bits Codewords Bits Codewords Bits
0 0 1 0 1 0 1 0 1
1 100 3 10 2 10 2 10 2
2 101 3 1100 4 110 3 110 3
3 1100 4 1101 4 11100 5 1110 4
4 11010 5 11100 5 11101 5 111100 6
5 11011 5 11101 5 111100 6 111101 6
6 111000 6 111100 6 111101 6 1111100 7
7 111001 6 1111010 7 1111100 7 1111101 7
8 111010 6 1111011 7 1111101 7 11111100 8
9 111011 6 1111100 7 11111100 8 11111101 8
10 1111000 7 11111010 8 111111010 9 111111100 9
11 1111001 7 11111011 8 111111011 9 111111101 9
12 1111010 7 111111000 9 111111100 9 1111111000 10

Table IV – Set of codewords defined by the linear-growth resilient tree codes with
parameters m = 2, w = 2.

m=2, d =1, w=2
(2,1,2L)

m=2, d =2, w=2
(2,2,2L)

m=2, d =3, w=2
(2,3,2L)

m=2, d =4, w=2
(2,4,2L)

Symbol
s

Codewords Bits Codewords Bits Codewords Bits Codewords Bits
0 00 2 00 2 00 2 00 2
1 01 2 01 2 01 2 01 2
2 100 3 100 3 100 3 100 3
3 101 3 101 3 101 3 101 3
4 1100 4 11000 5 11000 5 11000 5
5 11010 5 11001 5 11001 5 11001 5
6 11011 5 11010 5 11010 5 110100 6
7 11100 5 11011 5 110110 6 110101 6
8 111010 6 111000 6 110111 6 110110 6
9 111011 6 111001 6 111000 6 110111 6
10 1111000 7 111010 6 111001 6 111000 6
11 1111001 7 111011 6 111010 6 111001 6
12 1111010 7 1111000 7 1110110 7 1110100 7

22

 Table V – Set of codewords defined by the exponential-growth resilient tree
codes (wkE ,) with parameter k = 0.

k = 0, w = 1
(1,0E)

k = 0, w = 2
(2,0E)

k = 0, w = 3
(3,0E)

k = 0, w = 2
(4,0E)

Symbol

s Codewords Bits Codewords Bits Codewords Bits Codewords Bits
0 0 1 0 1 0 1 0 1
1 100 3 10 2 10 2 10 2
2 101 3 1100 4 110 3 110 3
3 11000 5 1101 4 11100 5 1110 4
4 11001 5 11100 5 11101 5 111100 6
5 11010 5 11101 5 111100 6 111101 6
6 11011 5 1111000 7 111101 6 1111100 7
7 1110000 7 1111001 7 1111100 7 1111101 7
8 1110001 7 1111010 7 1111101 7 11111100 8
9 1110010 7 1111011 7 1111110000 9 11111101 8
10 1110011 7 11111000 8 1111110001 9 111111100 9
11 1110100 7 11111001 8 1111110010 9 111111101 9
12 1110101 7 11111010 8 1111110011 9 11111111000 11

Table VI – Set of codewords defined by the exponential-growth resilient tree

codes (wkE ,) with parameter k = 1.

k = 1, w = 1
(1,1E)

k = 1, w = 2
(2,1E)

k = 1, w = 3
(3,1E)

k = 1, w = 4
(4,1E)

Symbol

s Codewords Bits Codewords Bits Codewords Bits Codewords Bits
0 00 2 00 2 00 2 00 2
1 01 2 01 2 01 2 01 2
2 1000 4 100 3 100 3 100 3
3 1001 4 101 3 101 3 101 3
4 1010 4 11000 5 1100 4 1100 4
5 1011 4 11001 5 1101 4 1101 4
6 110000 6 11010 5 111000 6 11100 5
7 110001 6 11011 5 111001 6 11101 5
8 110010 6 111000 6 111010 6 1111000 7
9 110011 6 111001 6 111011 6 1111001 7
10 110100 6 111010 6 1111000 7 1111010 7
11 110101 6 111011 6 1111001 7 1111011 7
12 110111 6 11110000 8 1111010 7 11111000 8

23

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9

Source Entropy (bits)

R
el

at
iv

e
R

ed
un

da
nc

y k=0
k=1
k=2
k=3
k=4
k=5
k=6

Figure 10 – Relative redundancy of resilient tree codes for sources with geometric
distribution (exponential-growth, parameter w = 1).

24

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9

Source Entropy (bits)

R
el

at
iv

e
R

ed
un

da
nc

y k=0
k=1
k=2
k=3
k=4
k=5
k=6

Figure 11a – Relative redundancy of resilient tree codes for sources with
geometric distribution (exponential-growth, parameter w = 2).

25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2 -1 0 1 2 3 4 5 6 7 8

R
el

at
iv

e
R

ed
un

da
nc

y k=0

k=1

k=2

k=3

k=4

k=5

k=6

()S2log

Figure 11b – Relative redundancy of resilient tree codes for sources with

geometric distribution (exponential-growth, parameter w = 2).

26

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9

Source Entropy (bits)

R
el

at
iv

e
re

du
nd

an
cy

k=0
k=1
k=2
k=3
k=4
k=5
k=6

Figure 12 – Relative redundancy of resilient tree codes for sources with geometric
distribution (exponential-growth, parameter w = 3).

27

6 Combination with Adaptive Binary Arithmetic Coding

The changes that we propose for prefix codes greatly reduce the inefficient compression

that occurs when the Golomb code parameters m or k had been underestimated. There still

may be some loss in compression when these parameters are overestimated. Thus, the

classification should be chosen in such a way that is slightly biased towards small values of

parameters m or k.

In this section we propose another solution, which is a hybrid between the approaches

of estimating full probability distributions, and estimating only a code parameter,

combining benefits from both. Before presenting it, we need to explain some fundamental

facts about arithmetic coding.

Binary arithmetic coding is a particular form of arithmetic coding in which the source

alphabet is binary, i.e., composed of only the symbols 0 and 1. Just like any set of numbers

can be represented using only binary symbols (bits), several binary arithmetic encoders can

be used together to code data from any data source [4,5,7].

The advantage of using binary arithmetic coders is that they can be computationally

very efficient, because the binary alphabet lets us eliminate some arithmetic operations and

simplify the coding process. In addition, the estimation of probabilities is simpler when we

have only two symbols.

On the other hand, to code symbols from an M-symbol alphabet we need M – 1 binary

coders, organized in a tree structure. When adaptive coding is used, each adaptive encoder

and decoder estimates the conditional probabilities for each of the tree branches. For

example, in all the code trees shown in Figures 3, 4, 7, and 8, we can have an adaptive

coder assigned for each non-leaf node, and instead of outputting one bit for each transition,

we can use the corresponding arithmetic code to compress the information about the

transition (i.e., which branch chosen) [7].

All the problems previously mentioned about adaptive coding would apply here. For

instance, if the alphabet size M is large, then we need large amounts of memory to store the

28

data of all the adaptive encoders. There is also a coding speed limitation [8]. What we

propose is to use the new tree structures, and use adaptive arithmetic only for the unary

code. For example, Figure 13 shows a tree structure with exponential growth and the

darkened nodes are those in which arithmetic coding is used. Note that in this example

only four of these nodes are implemented with arithmetic coding. We did this to show that

there is an infinite number of nodes in the sequence defining the unary code (top of the tree

diagrams), but can choose to have only a few replaced by arithmetic coding.

The advantage is that in the new coding system the number of adaptive arithmetic

coders is that we can have very complex modeling of the data, but with fast adaptation, and

achieve nearly optimal compression using only a small number of adaptive arithmetic

coders. Note that in Figure 13 the number of binary arithmetic coders now can be

proportional to the logarithm of the alphabet size.

In Figure 14 we show the performance of this coding method for geometric

distributions, which can be compared to Figure 4 (the axes are different, but the range is

roughly the same). Note that the increase in rate caused by the inefficiency of the unary

code is here completely eliminated, since the adaptive arithmetic coders can always

achieve optimal compression.

Figure 13 – Examples of resilient tree codes with exponential growth, where the
darkened nodes represent adaptive binary arithmetic codes.

k = 0
w = 2

0

1

6

0 1

5

0

1

4

0 1

3

…
0

1

0 1

11

0 1

10 9

0 1

8

0

1

0

0

1

1

29

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

Source Entropy (Bits)

A
ve

ra
ge

 R
at

e
(B

its
)

k=0

k=1

k=2

k=3

k=4

k=5

k=6

Figure 14 – Rates achieved by resilient tree codes with adaptive binary arithmetic

coding for the unary part, for sources with geometric distribution (exponential-
growth, parameter w = 1).

Figure 15 shows the relative redundancy, which can be compared with Figure 10. Note

that for this coding scheme there is very little loss in compression when the parameter k is

underestimated. On the other hand, the computational complexity increases if k is

underestimated, since arithmetic coding will be used more frequently. The conclusion is

that we still need good estimators for k to achieve both optimal compression and efficient

coding, but now we can reduce the complexity of the estimator because the consequences

of errors in estimation are much less severe.

30

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9

Source Entropy (bits)

R
el

at
iv

e
R

ed
un

da
nc

y k=0

k=1

k=2

k=3

k=4

k=5

k=6

Figure 15 – Relative redundancy of resilient tree codes with arithmetic coding for
the unary part, for sources with geometric distribution (exponential-growth,

parameter w = 1).

An important question is how much loss in compression is due to the fact that some of

the information is always coded with an integer number of bits (sub-trees on the lower part

of Figure 13). In Figure 15 we observe this loss as the time that takes for the curves to

reach the x-axis. In this case we can reduce this loss by increasing the value of

parameter w. For instance, comparing Figures 15 and 16 we can see how this loss is

significantly reduced when w is increased from 1 to 2.

31

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9

Source Entropy (bits)

R
el

at
iv

e
R

ed
un

da
nc

y k=0

k=1

k=2

k=3

k=4

k=5

k=6

Figure 16 – Relative redundancy of resilient tree codes with arithmetic coding for
the unary part, for sources with geometric distribution (exponential-growth,

parameter w = 2).

32

7 Conclusion

In this report we start presenting an introduction to techniques for efficient adaptive

coding. We explain that an ideal adaptive coding can be quite complex because it must

reliably estimate the probability of a number of data symbols, each in number of contexts,

and then create the codes for each context, and finally code the data. It is quite difficult to

precisely estimate all the required data—symbols times contexts—which in can be millions

of estimates. A practical alternative with much smaller complexity uses a pre-defined

group of codes with special structure, and the adaptive coding process is simplified to

estimating which would be the best code—among the pre-defined set—for a given symbol.

This approach became quite popular with the use of Golomb-Rice codes, since these

codes are generated according to simple rules, instead of stored in tables. However, we

demonstrate with simple experiments that these codes are quite sensitive to errors in the

code-selection process, which are in practical applications unavoidable, due to statistical

uncertainty and use for coding non-stationary sources. We propose a new family of codes

that would have inferior performance if applied to stationary sources, but that are much

more “resilient” to estimation error in the code selection parameters. C++ source code that

exemplifies the implementation of the new codes is provided.

We propose a combination of those codes with arithmetic coding, in order to obtain

nearly optimal compression, but with complexity (both memory and computation time)

much lower than required for arithmetic-only coding. It is based on the fact that for these

types of code, if we add a bias to the code selection to avoid overestimation, we obtain

nearly optimal compression using arithmetic codes for replacing only the unary part of the

prefix codes.

33

References

 [1] S.W. Golomb, “Run-length encodings,” IEEE Trans. Information Theory, vol. 12,
pp. 388–401, July 1966.

 [2] K. Sayood, Introduction to Data Compression, 2nd ed., Morgan Kaufmann Pubs.,
2000.

 [3] T.M. Cover, and J.A. Thomas, Elements of Information Theory, John-Wiley &
Sons, 1991.

 [4] G.G. Langdon, “An introduction to arithmetic coding,” IBM J. Res. Develop.,
vol. 28, no. 2, pp. 135–149, March 1984.

 [5] K. Sayood, ed., Lossless Compression Handbook, Academic Press, 2003.
 [6] G. Seroussi and M.J. Weinberger, “Efficient sequential parameter estimation for

Golomb-Rice codes, with application to image compression,” Hewlett Packard
Laboratories Report HPL-96-15, Feb. 1996.

 [7] A. Said, “Introduction to arithmetic coding theory and practice,” Hewlett Packard
Laboratories Report HPL-2004-76, April 2004.

 [8] A. Said, “Comparative analysis of arithmetic coding computational complexity,”
Hewlett Packard Laboratories Report HPL-2004-75, April 2004.

 [9] R.G. Gallager and D.C. Van Voorhis, “Optimal source codes for geometrically
distributed integer alphabets,” IEEE Trans. Inform. Theory, vol. 21, pp. 228–230,
March 1975.

34

Appendix: C++ Implementations

Below we have a set of C++ implementations of the Golomb codes, and the new resilient

tree codes. In all codes we assume that four functions to input and output individual bits to

files are defined and implemented elsewhere. Their prototypes are:

unsigned Write_Bit(unsigned data_bit);
unsigned Write_Bits(unsigned number_of_bits, unsigned data_bits);
unsigned Read_Bit(void);
unsigned Read_Bits(unsigned number_of_bits);

The first function Write_Bit, returns the value of the bit it is saving. This helps

simplifying the implementations below. We assume that the function Write_Bits saves

the bits starting with the most-significant bits first. This enables increasing the efficiency

of the decoders when parameter m is not a power of two, because the decoder can read

 m2log bits, and based on their value decide if one more bit has to be read.

A.1 Golomb Encoder and Decoder using Parameter m

void Golomb_Encoder(unsigned S, unsigned m)
{
 unsigned k = 1;
 while (m >> k) ++k;

 while (Write_Bit(S > m)) S -= m;

 if (S < (1 << k) - m)
 Write_Bits(k - 1, S);
 else
 Write_Bits(k, S);
}

unsigned Golomb_Decoder(unsigned m)
{
 unsigned S = 0;
 while (Read_Bit() == 1) S += m;

 unsigned k = 1;
 while (m >> k) ++k;

 unsigned temp = Read_Bits(k - 1);
 if (temp < (1 << k) - m)
 S += temp;
 else
 S += temp + (Read_Bit() << k);
}

35

A.2 Golomb-Rice Encoder and Decoder using Parameter k

void Golomb_Rice_Encoder(unsigned S, unsigned k)
{
 unsigned m = 1 << k;
 while (Write_Bit(S > m)) S -= m;
 Write_Bits(k, S);
}

unsigned Golomb_Rice_Decoder(unsigned k)
{
 unsigned S = 0;
 unsigned m = 1 << k;
 while (Read_Bit() == 1) S += m;
 S += Read_Bits(k);
}

A.3 Resilient Linear-Growth Tree Encoder and Decoder

void Resilient_LG_Tree_Encoder(unsigned S, unsigned m, unsigned w, unsigned d)
{
 unsigned c = 0;

 while (Write_Bit(S >= m) == 1) {
 S -= m;
 if (++c >= w) {
 c = 0;
 m += d;
 }
 }

 unsigned k = 1;
 while (m >> k) ++k;
 unsigned v = (1 << k) - m;

 if (S < v)
 Write_Bits(k - 1, S);
 else
 Write_Bits(k, v + S);
}

unsigned Resilient_LG_Tree_Decoder(unsigned m, unsigned w, unsigned d)
{
 unsigned S = 0;
 unsigned c = 0;
 while (Read_Bit() == 1) {
 S += m;
 if (++c >= w) {
 c = 0;
 m += d;
 }
 }

 unsigned k = 1;
 while (m >> k) ++k;
 unsigned v = (1 << k) - m;

 unsigned temp = Read_Bits(k - 1);
 S += temp;
 if (temp >= v)
 S += temp - v + Read_Bit();

 return S;
}

36

A.4 Resilient Exponential-Growth Tree Encoder and Decoder

void Resilient_EG_Tree_Encoder(unsigned S, unsigned k, unsigned w)
{
 unsigned c = 0;
 unsigned m = 1 << k;

 while (Write_Bit(S >= m) == 1) {
 S -= m;
 if (++c >= w) {
 c = 0;
 m = 1 << ++k;
 }
 }

 Write_Bits(k, S);
}

unsigned Resilient_EG_Tree_Decoder(unsigned k, unsigned w)
{
 unsigned S = 0;
 unsigned c = 0;
 unsigned m = 1 << k;

 while (Read_Bit() == 1) {
 S += m;
 if (++c >= w) {
 c = 0;
 m = 1 << ++k;
 }
 }
 S += Read_Bits(k);

 return S;
}

