

Towards Practical Reasoning Agents
for the Semantic Web1

Ian Dickinson, Michael Wooldridge2

Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2003-99
May 19th , 2003*

E-mail: Ian.Dickinson@hp.com, M.J.Wooldridge@csc.liv.ac.uk

agent
architectures,
BDI,
semantic
web, agent
programming

We describe Nuin: a flexible agent architecture designed for
practical development of agents in Semantic Web applications,
based around belief-desire- intention (BDI) principles. We outline
the central design features of the platform, and show how the
implementation is designed to give maximum flexibility to agent
designers, while retaining the overall coherence of the design.

* Internal Accession Date Only Approved for External Publication
1 AAMAS ’03, July 14-18, 2003, Melbourne, Australia
2 Department of Computer Science, University of Liverpool, Liverpool, L69 7ZF, U.K.
 Copyright Hewlett-Packard Company 2003

Towards Practical Reasoning Agents for the Semantic Web
Ian Dickinson

Hewlett-Packard Laboratories
Filton Road, Stoke Gifford

Bristol BS34 8QZ, U.K.

Ian.Dickinson@hp.com

Michael Wooldridge
Department of Computer Science

University of Liverpool
Liverpool L69 7ZF, U.K.

M.J.Wooldridge@csc.liv.ac.uk

ABSTRACT
We describe Nuin: a flexible agent architecture designed for
practical development of agents in Semantic Web applications,
based around belief-desire-intention (BDI) principles. We outline
the central design features of the platform, and show how the
implementation is designed to give maximum flexibility to agent
designers, while retaining the overall coherence of the design.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence] Distributed Artificial Intelligence
– Intelligent Agents.

General Terms
Design, Languages.

Keywords
Agent architectures, BDI, Semantic Web, agent programming.

1 INTRODUCTION
For some years, software agents have been proposed as a new
metaphor for the design and construction of computational
systems. Agent-based software promises many innovative
capabilities, including those that many researchers regard as
defining characteristics for agency: proactivity, reactivity, social
ability and autonomy [29]. The more recent promotion of the
Semantic Web [3] as a vision of the evolution of the World Wide
Web from a publishing medium to a general services fabric,
shares many ideals with the vision of agent researchers. Indeed,
many descriptions of the semantic web include the use of agents
as an enabling technology for delivering services to the users [15].
To date, agent systems research has delivered many results in the
theories and architectures of agent software. Practical agent-based
toolkits and applications have been developed, but there is an
observable separation between theory and practice. While
conducting research into user experiences of autonomous agents
in a Semantic Web context, we discovered a lack of agent
platforms that are both robustly engineered and that strongly
embody the results of research into agent theories. We have
therefore developed our own agent tool, named Nuin,

to address this need. This paper describes the architecture and
design principles of Nuin.
The rest of the paper is structured as follows. §2 describes our
overall motivation and goals in more detail, while §3 and §4
presents the design solutions to these goals. §5 evaluates Nuin’s
contributions compared to other platform projects. §6 presents
some conclusions.

2 MOTIVATIONS
One goal of our research is to evaluate user reactions when using
autonomous agents to assist with information-centric tasks on the
Semantic Web. Whether these evaluations are done in a usability
lab or by deploying applications “in the field”, we need to be able
to construct reliable and capable agent systems – otherwise we are
only examining user reactions to unreliable software. As an
enabling step towards these research goals, we have developed a
platform for agent programming designed to allow us to
concentrate on the key capabilities of the agents that support the
applications we want to test (in contrast to, for example,
distributed agent infrastructure issues). This paper reports
progress towards a practical architecture for deliberative agents
for the Semantic Web. There are several components to this
overall objective. We have attempted to design a practical tool
that is both flexible and robustly engineered, so that it can support
a variety of interesting applications. Our software will be freely
available to other research groups to use, so flexibility is an
essential feature if the platform is to be generally useful. We want
to embed agent characteristics as part of the overall user
experience, rather than force application designers to use the agent
platform as an application container.
A key interest in exploring the user experience of autonomous
agents is the ability to delegate goals and preferences from the
user to the agent. While recognising the utility of reactive and
hybrid agent architectures, we chose to make as a first priority the
development of deliberative agents [28]: agents who deliberate
over symbolic knowledge representations. This will allow us to
explore the central issues in communicating declarative goals
from a human to an agent, and using goals as a basis for
collaboration.
The most commonly studied architecture for deliberative agents is
the belief-desire-intention (BDI) model [19]. Since this is, at its
core, a model founded on a view of practical reasoning, it is well
suited to be the basis of a robust implementation. There are known
problems in providing a complete implementation of a logical
BDI model; we mention the some of the consequences of these
problems below. Nevertheless, we took as an objective that the
implementation should strongly embody a BDI theoretical
foundation.
We specifically want to build agents for the Semantic Web. There
are several reasons for this. Firstly, a number of key tools and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AAMAS ’03, July 14–18, 2003, Melbourne, Australia
Copyright 2003 ACM 1-58113-683-8/03/0007…$5.00.

techniques likely to be of use to a deliberative agent are being
developed under the aegis of Semantic Web research. In
particular, we note the increasing prevalence of ontology design
tools, ontology reasoners and persistent RDF [30] stores among
others. Secondly, if it delivers on its promise, the Semantic Web
will make available a variety of sources of knowledge for use by
agents. The use of abstract or toy domains as a vehicle for
demonstrating agent capabilities reduces the impact of the
demonstration, but more importantly does not provide a suitable
context for conducting realistic experiments with users. Finally, it
can be hoped that the drive for the Semantic Web will provide a
‘gravity well’ which will pull a variety of agent tools and
applications into closer collaboration.
We distil these top-level goals into the following design
principles:

1. Base the agent design on accepted BDI theory
2. Use good software engineering practices to engineer a

solid platform enabling robust agent applications;
3. Embed the agent capabilities in the end-user application,

not vice-versa;
4. Re-use existing tools and standards where applicable;
5. Design the architecture to interoperate with the emerging

standards and tools of the Semantic Web.
In order to make use of existing tools, and to minimise
dependencies on the underlying operating system, our software is
written in Java™.

3 OUTLINE OF APPROACH
3.1 BDI Foundations
We wish to design agents that can perform practical reasoning in a
dynamic, unpredictable world. The use of explicit mental
attitudes, it has been argued, allows the agent to manage its
internal structures and external environment, and so achieve a
balance between optimal behaviour and resource limitations. A
common choice of foundational mental attitudes is the set belief,
desire, and intention [19]. BDI agents have been extensively
studied in the agent literature, and have attracted both formal
logical characterisations [28] and (rather fewer) practical
implementations and re-usable tools (e.g. [14]).
Our objective with the Nuin architecture is to create practical
agents: that is, agents that not only perform practical reasoning,
but realistically deployable embodiments in software. We must,
therefore, balance the desire to build upon a formal, but non-
computable logical model, against ad hoc implementation
approaches that do not have well-characterised properties. We
have based our design on Rao’s AgentSpeak(L) [18]. Below, we
briefly summarise AgentSpeak(L), and motivate our extensions to
Rao’s framework. AgentSpeak(L) was selected as it distils
experiences with the design of PRS [19] into a simple formalism
that has both a tractable implementation and a formal
characterisation.

3.1.1 Overview of AgentSpeak(L)
Rao proposed AgentSpeak(L) as an abstraction of the reactive
planning model that underpins the Procedural Reasoning System
(PRS) [19]. An AgentSpeak(L) agent consists of a set of beliefs,
constructed from an alphabet of first-order terms, and a set of
plans.

Plans are constructed from a set of action symbols, together with
connectives for serial action sequences, tests, achieving a goal and
raising an event. A plan has the structure:

e : b1 ∧ … ∧ bm ← h1 ; … ; hn
where the hi are actions forming the plan body, bj are belief
literals denoting the plan context, and e is a triggering expression.
The triggering expression matches events, and thus may be used
to respond reactively to the environment, or to chain between
plans. AgentSpeak(L) distinguishes external (from the
environment) and internal (raised from a plan body) events.
Handling a new external event creates a new intention frame;
internal events are handled in the context of the intention frame of
the parent plan. For further details of AgentSpeak(L), including
the proof theory, the reader is referred to [18].

3.1.2 Limitations of AgentSpeak(L)
As a preliminary design exercise, we coded an implementation of
AgentSpeak(L) in Prolog. This helped us identify the following
issues that need to be addressed to make a practical programming
tool based on AgentSpeak(L):

• Intentions in AgentSpeak(L) are defined as a
commitment to a particular plan to handle an initiating
exogenous event. There is no sense of committing to
achieve a goal held by, or shared with, another agent,
nor of committing to maintain a state of the world.

• All choices in the AgentSpeak(L) interpreter are non-
reversible and have no contingencies. If a plan body
fails, the whole plan (and in a naïve implementation the
whole interpreter) simply fails.

• The subtlety in programming an agent comes down to
which event to focus on, and which plan to intend to
handle that event. These choices are encapsulated in
choice functions (for example functions SO and SI, in
[18]) but these are otherwise not discussed in Rao’s
paper.

These limitations notwithstanding, AgentSpeak(L) provides an
elegant foundation for an extended architecture. In particular, we
note the use of events and triggers to provide both goal-directed
(back chaining) and data-directed (forward chaining) reasoning,
and to allow the agent to multi-task multiple simultaneous plans.

3.2 Architectural Foundations
We now briefly outline the software engineering principles that
provide the architectural foundations for our implementation.
Firstly, we aim to re-use existing components wherever possible,
without sacrificing the coherency of the design. For example, a
key component of agent systems as a whole is the inter-agent
communications framework. Many solutions exist for this
capability, whether custom [22] or standards-based [2;6]. Rather
than select and bind strongly to any one such platform, our
approach is to abstract the key capabilities these platforms provide
into interfaces. Using a particular agent middleware platform then
becomes a matter of defining bindings from the platform’s
services to the abstract communications interfaces with Nuin.
The design pattern of using interfaces for all key abstractions,
sometimes termed interface-driven design, provides a more
extensible and adaptable starting point than other design
approaches, such as the use of class hierarchies [5]. We therefore
use interfaces, rather than classes, to define all of the key

abstractions in the Nuin toolkit. The factory design pattern [11] is
then used to insulate programmers from the detailed
implementations of these interfaces. To create a new object
conforming to a given interface, the programmer invokes a
method on the appropriate factory object rather than directly
invoke the class constructor. To extend the capabilities of one of
these abstractions, for example adding probabilistic weights to a
logical term, the programmer defines a new set of
implementations of the logical value interfaces and registers a new
factory object for creating them. This addresses one of our central
goals of making the platform flexible and extensible for
programmers.

3.3 Semantic Web Foundations
There is as yet no crisp definition of the Semantic Web, so it is
difficult to be precise about what it means for an agent to be
designed to operate on the Semantic Web. There are some
principles, however, that are emerging:

• symbols are uniform resource identifiers (URI’s);

• XML namespaces [23] are used to keep vocabularies of
symbols from clashing accidentally;

• RDF [30] triples1 are the basic foundation of knowledge
representation;

• ontological information is encoded in DAML+OIL [1]
or OWL [25], which extends the representational
capability of the underlying RDF;

• knowledge sources are openly available and
decentralised, typically using HTTP as an access
mechanism.

Doubtless additional principles will continue to evolve as more
Semantic Web applications are investigated and deployed.
Beyond these technology foundations, a further theme in Semantic
Web processing is the “web-ness” of information resources. This
is primarily a social point, though it has technical implications.
Roughly, it says that information, and authority, is decentralised,
sometimes put as “anyone can say anything about anything”. It
implies that any set of definitions or statements can be extended,
and none can be considered authoritative except by consensus. In
this worldview, provenance of information becomes paramount,
and agents necessarily will have to deal with incomplete and
contradictory information, tangled ontologies and potentially
deliberate falsehoods. We do not claim that Nuin solves these
problems; rather it is our intent to create a platform for exploring
these issues in further research.

4 NUIN AGENT ARCHITECTURE
Figure 1 shows the principal components of the Nuin architecture.
The configuration of the agent itself is defined by an RDF model.
Thus the only start-up parameter that an agent requires is a URL
from which it can retrieve its configuration. The components from
figure 1 are described in further detail in the following sections.

1 A triple is a ground tuple from a binary relation, and is the only

knowledge structure that basic RDF contains.

Figure 1 Nuin architecture overview

4.1 Knowledge-representation model
Nuin agents are deliberative reasoners in the tradition of first-
order logic-based inference. In this section we describe our
knowledge representation formalism.

4.1.1 Knowledge representation vocabulary
Knowledge structures in Nuin are composed from a vocabulary of
literals: integers, reals, Booleans, strings, and symbols, together
with named single-assignment variables. Ordered lists may be
composed of any value, and functional terms may be composed
from a symbol as functor, and zero or more arbitrary values as
arguments. Two values may be unified (or fail to unify) in the
standard way. Logical sentences are formed from the usual first
order connectives.
An abstract syntax, using Java interfaces, provides a flexible
representation, into which many surface syntaxes may be parsed.
Currently implemented parsers include s-expressions (i.e. KIF-
like, though not currently supporting all of KIF’s definition
machinery), and a Prolog-like syntax with infix operators. In
addition, binary predicates are translated directly from RDF
sources into the abstract syntax.

4.1.2 Knowledge-sources and reasoners
Logical sentences are stored within the agent in knowledge-
sources (KS’s). There is no commitment to any particular storage
strategy: a KS may be stored entirely in-memory within the Java
virtual machine, or may be stored in a persistent database.
However, every KS is associated with at least one reasoner,
which provides a set of abstract services for manipulating the
contents of the KS. In particular, a reasoner may support the
following services:

• core services – serialisation, matching, identification,
query dispatching, get meta-data;

• backward chaining – query, query all, retry;

• forward chaining – add listener;

• updateable – assert, deny, retract.
Every KS must support the core services, noting that ‘matching’
denotes a simple unification pattern-match against the facts in the
KS. Other services are optional. Each of these sets of capabilities

agent core

reasoner reasoner reasoner

knowledge
source

interpreter

knowledge
source’

beliefs
desires

plan library

abstract service adapter layer

message
service

directory
service

Java object
invocation

JADE agent
platform

evaluation
functions

action library

RSS
translator

event and
message

queue intentions

example
concrete services

is encapsulated in a Java interface, allowing a KS to be tested at
run time for the services it supports. It is also convenient to have
an explicit description of the capabilities of the KS. The meta-data
on a KS is an RDF model, containing statements from a pre-
defined Nuin configuration ontology. Such explicit access to its
own capabilities provides a convenient means for an agent to be
able to make assertions about its own capabilities, perhaps during
negotiations or in yellow-pages advertising. This self-modelling
via RDF is a recurring theme in the Nuin design.
We want agents be able to compose multiple KS’s when
responding to queries or performing forward-chaining inferences.
A similar requirement is addressed by Frank [10]. In Frank’s
approach, queries are routed to different reasoners by a special-
purpose reasoner named the dispatcher. This implies that all
complex queries must be directed to the dispatcher, which then
delegates the query to a specialist reasoner, perhaps based on the
predicate name of the query. Our scheme is slightly different from
Frank’s, since we want to partition the knowledge bases (perhaps
to distinguish the agent’s own knowledge, from that of its
acquaintances). Thus, the two KS’s may contain instances of the
same predicate, which are modelling entirely different things.
Rather than rely on a dispatcher to direct queries to KS’s, we add
a context parameter to the standard query interface, which
encapsulates a strategy for delegating queries to other KS’s .

4.1.3 Resource bounded reasoning
Predicate logic is a powerful knowledge representation language,
capable of a wide range of representation tasks [21]. However,
first-order reasoning is computationally undecidable. Some
queries will never terminate, or consume a great deal of
computing resources before terminating. This has lead many
researchers to define representation systems that are weaker than
full first-order logic, but which are computationally more
tractable. An example is description logics [12], which are widely
used in the ontology research community.
Our view is that practical agents will need rich representations to
cope with the noisy and contradictory information available on the
semantic web. We will not be able to rely on computational
tractability alone to provide predictable response times and
reasonable performance from our agents. We have therefore
decided not to restrict our agents to reasoning over description
logics, but to support resource bounds on reasoning tasks. All
reasoners must be able to terminate cleanly if time or other bounds
are exceeded. The agent’s plans must allow for contingencies
arising from exceeding resource bounds.

4.2 Agent mental states
Using the representations described above, we now elaborate the
representation of agents’ mental states. Each agent has three key
state variables: beliefs, desires, and intentions.
Beliefs are modelled as sets of first-order sentences. In the current
architecture, sentences do not include modal operators, so the
belief modality is not represented directly. Instead, we partition
the agent’s knowledge sources, and label each with an implicit
modality. Thus,

Bi p(x) is modelled as: KSBi p(x) =
A similar scheme is used in the user-modelling system BGP-MS
[16] for representing the user’s beliefs about the system, the
system’s beliefs about the user, etc. If sentences containing
complex compositions of modal operators are commonplace in a

given domain, then this representation scheme will not be
sufficient. We may, in future, extend the knowledge
representation to include modal operators. For the time being,
however, our hypothesis is that this folding of modalities into the
KS label will be sufficient for many practical applications.
Desires are modelled as collections of first-order sentences that
represent characteristics of the world that an agent wishes to bring
about, or the agent’s general preferences. The agent’s desires are
available to the choice functions in the interpreter (below). Thus
an agent’s desire to be helpful, or loyal to a particular user, might
influence choices that it makes. In this way, we hope in future to
be able to model social attitudes of agents [4], particularly with
respect to human-agent interaction.
Intentions model the agent’s current commitment to a course of
action. In AgentSpeak(L), intentions are formed when a plan is
adopted in response to an exogenous event. The intention then
provides a scope in which variables may be bound as plans and
sub-plans are executed. We adopt a similar view. Our intentions
are explicitly triggered by various conditions, and provide a
computational environment for the execution of actions and sub-
plans .
Events In addition to the above mental states, each agent
maintains two ordered lists of events. The first models the agent’s
sensing of the world: all perceptions are delivered as events. The
second models the agent’s memory of recent percepts. This is a
fixed-length chronological queue of the N most recent events (N is
a positive integer from the agent’s configuration). Maintaining a
recent-event history allows agents to trigger behaviours on
patterns of chronologically correlated events.

4.3 Interpreter and processing model
We now outline the processing model for the agent. Recall that all
components of our architecture are pluggable using the interface-
based programming pattern described above. Therefore, the
behaviours described here may be considered the default or built-
in behaviours, any of which may be extended by the programmer.

4.3.1 Events
All of the agent’s perceptions of the environment are delivered as
events. These may be genuinely exogenous occurrences, such as a
user instruction, a message from another agent, or a sensor value.
Following AgentSpeak(L), endogenous events are also used as a
uniform abstraction for managing control flow within the agent.
An event is represented as a logical term, denoting the event type,
and optional arguments. An event pattern is a Boolean expression
formed from event terms and the predicates on and after:

• on E
is true if E is a term that unifies with the term
representing the most recently observed event;

• after E
is true if E is a term that unifies with any event term in
the agent’s event history, or the most recent event.

Thus, moderately complex but computationally tractable
triggering conditions may be straightforwardly defined.

4.3.2 Plans and actions
Plans are the key abstraction defining the agent’s behaviour. A
plan minimally is an action expression, together with either a
predicate representing its post-condition, or a triggering pattern
representing the conditions under which the agent will perform the

while true do
 f = select-focus(B, D, I, Ei)

 if f is new-percept
 add percept to history
 let p* = plans-triggered(f)
 if not empty p*
 for each p ∈ p* do
 add new intention-to p
 endif
 elseif f is active-intention
 let α = next action of f
 record choice point if backtrackable(α)
 if side-effecting(α)
 commit
 endif
 perform α
 case
 failed(α) → backtrack
 completed(α) → remove α from f
 endcase
 endif
endwhile

action expression. A plan may have both a trigger and a post-
condition, but it may not have neither. In addition, a plan may be
named (with a URI), take arguments, have a comment or have a
priority.
Action expressions are composed from atomic actions and tests,
together with operators for sequencing actions (α | α’ means
perform action α followed by action α’), and non-deterministic
choice (α ; α’ means perform either action α or action α’). Non-
deterministic choice records a choice point in the evaluation of the
action expression. Choice points may be backtracked through,
providing no side-effecting action has been performed. Once a
side-effecting action is performed, all of the open choice points in
the plan are collapsed. This is because we assume that such
actions are not, in general, reversible, and therefore it is not valid
for evaluation to continue down a different branch from the choice
point once the external environment has changed. Each action
definition determines whether that action is side-effecting or not.
By default, atomic actions are assumed to be side-effecting, tests
are not.
A number of standard actions are built-in to the standard script
parser and interpreter. However, since each action is represented
as an instance of a Java class implementing the Action interface,
it is easy for the programmer to define new types of action and
invoke them from the agent’s script.

Figure 2: Interpreter cycle
If there is no current event in the queue, or the agent chooses not
to process an available event, there is then the choice as to which
intention to pursue on this iteration. There are several methods
here also. The agent could choose to process the intention that it
regards as most advantageous (i.e. has the highest utility), given
its current beliefs. Alternatively, it could choose to employ a
scheduling algorithm, such as round robin or priority ordering, to
ensure that intentions are processed in a suitable order. Again,
there is no general solution, so we make the intention selection
function configurable.

Due to lack of space, we can only list, but not define, some of the
built-in actions. They include achieve, add intention, add
desire, drop intention, assert, retract, suspend,
resume and send. Tests include holds, on and after.

4.3.3 Interpreter
Each agent has one interpreter that will process the events from
the agent’s environment, and, in conjunction with the agent’s
plans and other mental states, determine the agent’s behaviour.
Once again, the interpreter is a configurable object, defined as a
fixed interface and a default implementation providing the
standard behaviours described here.

In general, an agent is permitted to have a number of simultaneous
intentions that it is pursuing. Any domain constraints on such
commitments, such as being unable simultaneously to move in
different directions, must be imposed by the agent designer. In
effect, this changes the control structure of [28], fig 2.7, so that
instead of having to decide when to reconsider, the agent must
decide how to schedule multiple intentions.

In essence, the interpreter acts similarly to the AgentSpeak(L)
interpreter ([18], figure 1), and to Wooldridge’s abstract agent
interpreter ([28], figure 2.7). The key steps for the Nuin interpreter
are shown in Figure 21 below. Our percept selection function corresponds to the function Sε in

AgentSpeak(L). We do not need Rao’s function SO since the
interpreter can backtrack. One choice that must be accounted for
is the agent’s decision about which course of action to take to
achieve a given postcondition when backward chaining. The PRS
interpreter can recurse to meta-level planning (i.e. using the
agent’s current mental state to reason about plans to invoke).
While this has a certain mathematical elegance, we feel that it
may make for overly complex agent programs. Currently, where
alternative plans are applicable in Nuin, plan selection effectively
occurs in a Prolog-like backtracking search. We intend to add a
scriptable evaluation function for selecting between alternative,
valid, courses of action in a future version.

At each interpreter cycle, the agent must select its focus for that
time step. The first choice is whether to respond to an incoming
(queued) event, or whether to continue pursuing a current
intention. There is no general solution to the right choice to make
at this point. Some agents will benefit from being highly
responsive, and choosing as their focus any percept as soon as it is
detected. Other agents will be better to be less distractible and
ignore events for the sake of completing the current plan. Clearly
some events will be more ignorable than others. We could fix this
choice in the architecture, as some agent interpreters do. Our
preference is to make this strategic decision one that agent
designer should control. Therefore, the interpreter contains a
scriptable choice function for selecting the current focus at each
step. The default choice is to be responsive, and always process
events in preference to current intentions.

Note that in Wooldridge’s abstract interpreter, there is a function
brf() that updates the agent’s beliefs given a percept. In Nuin, we
delegate all revisions of the agent’s mental states to actions
executed by the interpreter. Thus there is no requirement to have a
separate belief revision function in the interpreter loop. Plan
actions include making assertions into any of the agent’s KS’s,
adding and dropping intentions explicitly or implicitly (by

attempting to achieve a given post-condition), and adding and
dropping desires.

4.4 Operational details
In the preceding section, we outlined the operation of the abstract
interpreter. In this section, we briefly discuss some of the
operational details of our platform.

4.4.1 Agent configuration
Given that we have an objective to make Nuin agents highly
flexible and adaptable, we must provide some means of
configuring a given agent prior to its operation. Consistent with
the use of semantic web technology, Nuin agent configuration is
specified using an RDF model. This is typically expressed as an
RDF document with a resolvable URL. The RDF document is
fetched when the agent starts, and used to configure the agent’s
services, scripts and initial knowledge.
We have defined an ontology to represent the various
configuration options an agent may take. Options from the
configuration model are passed through to any objects created,
allowing fine-grain control over objects’ behaviour. Java
reflection may also be used to directly instantiate custom elements
of the agent implementation corresponding to the public interfaces
(see §3.2).
Since the agent needs only the URL of the configuration model to
start up, it is easy to programmatically create agents in the context
of other applications. This, we believe, is more consistent with
application designers’ needs, rather than being forced to fit their
application logic into an agent framework.

4.4.2 Services
While a single agent can be a useful abstraction in an application
design, perhaps as locus for advanced user-facing affordances, the
agent metaphor is perhaps most closely associated with multi-
agent systems (MAS) [26]. To participate in an ecosystem of
autonomous, distributed agents, agents require access to a variety
of key services. These include name resolution, messaging,
migration, etc.
There are many tools available to assist with fulfilling these
requirements. This is, in part, due to an increasing emphasis on
distributed systems in general, encouraged by the success of the
WWW. To allow the Nuin agent platform to operate in a MAS
context, we want to provide our agents with access to these multi-
agent services. However, the plethora of competing solutions
presents the problem of which to choose.
One solution would be to commit to the standards defined by
FIPA [8]. While the FIPA abstract architecture (FAA) [9] does
capture some of our requirements, it is not a priori clear that all
application designers will take the FAA as the starting point for
their system designs. It is clear, however, that there is extensive
innovation in distributed-systems in general, some of which our
agents may wish to take advantage of. For example, peer-to-peer
message passing is an increasingly well-studied technology, for
which a number of high-quality implementations exist.
Our solution is to identify the key underlying services that our
agents rely on, and package these as abstractions that may be
instantiated in different ways. We build upon the research
embodied in the FAA by re-using the names and abstractions from
that standard where appropriate (though we map the names to
URI’s per RDF).

We define an abstract service that an agent has access to. The
agent also has access, via the KS, to first-order assertions about
the available platform services. A general service-invocation
procedure is available as one of the built-in actions in the
interpreter. Furthermore, some well-known services are more
closely integrated, and supported with special-purpose actions. An
example is message sending (see below).

4.4.3 Interoperation with agent middleware
The existence of the FIPA standards has encouraged the
development of a number of freely available implementations of
FIPA platform services (e.g. Jade [2]). Since such platforms exist
precisely to provide the agent middleware services we discuss
above, and given that we do not want to re-implement
functionality that is already available, we aim to rely on FIPA
platforms to provide the necessary platform services. Specifically,
we provide service adapters that map between the abstract
services in our architecture, and the capabilities of the host FIPA
platform. In principle, this should be possible for a variety of
Java-based FIPA platforms. To date, we have only investigated
hosting our agents on the Jade platform.
Alternatively, it may be that some application designers will want
to base their system-level architecture on interoperation standards
other than the FIPA agent middleware. In a web-services
deployment, interactions are typically based on HTTP message
transport, with XML payloads (e.g. SOAP [24] or XML-RPC
[27]). Assuming that an appropriate binding to the abstract
services can be defined, there is no reason why a web-services
architecture should not provide a suitable basis for multi-agent
operations with Nuin. This is not something we have yet
investigated, however.

4.5 Message passing
The dominant metaphor for inter-agent communications is
message passing (in contrast to, say, remote procedure call).
Message passing is well suited to the view that agents have
autonomous control over their own behaviour. Agent
communications languages such as KQML [17] and FIPA-ACL
[7] provide standard encodings for messages.
Architecturally, message passing (and its ancillary services) are
just another of the abstract services that an agent designer may
wish to use. However, due to the ubiquity of message-passing in
agent systems, we include built-in actions that directly invoke the
messaging and directory services.

4.5.1 Abstract messaging model
Message is a sub-class of Event. A message has zero or more
named attributes, corresponding to the fields of the encoded
message structure. These include the to and from agent ID’s,
ontology, content, reply-with, etc. Note that addresses are
only ever agent identifiers. Resolution of names to transport
bindings (including the transport mechanism and message
encoding) are handled transparently by the messaging service.
The messaging service provides the operations to create a new or
reply message, encode and send a message, suspend until an
expected message arrives and extract content sentences from
incoming messages. The directory service provides both yellow-
pages and white-pages registration and name resolution
operations. We currently make no assumption about the ability of
directory services to federate, or perform distributed queries.

The implementation of these services is largely delegated to the
underlying platform (e.g. Jade), with a thin layer of adapter code
to map between the two conceptual models.
Parenthetically, we note that we had to define our own ontology in
DAML+OIL of the various terms in the FIPA ACL standard. We
hope that FIPA will provide its own, definitive versions of these
ontologies in due course.

4.6 Examples
To illustrate the syntax of the default scripting language, we show
in Figure 2 a translation of the example program from Rao’s
AgentSpeak(L) paper. Note that plans may be named or
anonymous, and that all names are URI’s in the default
namespace, unless given explicit prefixes.
As a second, again very simple, example, Figure 3 shows a basic
plan for automatically booking a restaurant table near to the
theatre if the user requests the agent to book theatre tickets. This
plan depends on an ontology of dining concepts, referenced by the
URI prefix dining. Because these queries have a distinguished
namespace, they can easily be routed to the appropriate
knowledge source. As background to the plan fragment shown, a
suitable DAML+OIL ontology might define an instance
SpiralGateCafe to be an instance of VegetarianBistro – a
sub-class of both dining:Restaurant (a class of eating
establishments) and dining:Vegetarian. (a class of meat-free
food providers). Thus, taxonomic reasoning is used to entail
additional beliefs.

5 EVALUATION
The central objective of this phase of our work is to design and
build a practical toolkit for developing deliberative agents for
Semantic Web applications. Our emphasis is on the higher-level
behaviour of the agents, rather than infrastructure issues, and on
the engineering aspects of constructing a stable, flexible and
extensible platform. While this is an ongoing project, we can
make a preliminary assessment of these factors by comparing the
Nuin platform to related projects in this field. There are other
tools that address processing information on the Semantic Web.
The Jena toolkit [13] provides programmatic access to RDF
sources, ontology documents, ontology reasoning and RDF
query. However, Jena provides only low-level access to RDF data.
The BDI metaphor and associated tools provides much higher
level abstractions for defining useful end-user services that
make use of RDF data. To build upon the useful tools provided by
Jena, Nuin can use a Jena RDF or ontology model as a knowledge
source. This provides Nuin agents access to a wide range of
Semantic Web data, including RDF stored in persistent databases
or remotely accessed via HTTP.
Huber’s JAM [14] is a Java re-implementation of the U.Michigan
C++ implementation of PRS. JAM is therefore BDI-based. It does
not, however, address Semantic Web reasoning, nor does it
integrate with agent middleware platforms (JAM’s design pre-
dates both FIPA and the emergence of the Semantic Web). We
claim that we also have a coherent BDI implementation, grounded
in BDI theory, but that our implementation significantly more
flexible and extensible than JAM. To illustrate this, consider
adding defining an agent that handles RSS [20] data streams. RSS
is an asynchronously updated series of meta-data descriptions,
each of which describes a publication event. RSS descriptions are

use default <http://hpl.hpl.com/nuin-demo#>.

plan
 trigger
 on location(waste, ?x)
 do
 holds location(robot, ?x) &&
 location(bin, ?y);
 perform pick(waste);
 achieve location(robot, ?y);
 perform drop(waste)
end.

plan move1
 postcondition
 location(robot, ?x)
 do
 holds location(robot, ?x)
 end.

plan move2
 postcondition
 location(robot, ?x)
 do
 holds location(robot, ?y) &&
 not ?x == ?y &&
 adjacent(?y, ?z) &&
 not location(car, ?z);
 perform move(?y, ?z);
 achieve location(robot, ?x)
end.

Figure 3: simple robot navigation example (from [18])

plan bookRestaurant
 trigger on bookTheatre(?t, ?d, ?n)
 do
 holds for some business(?r)
 holds
 rdf:type(?r, dining:Restaurant) &&
 rdf:type(?r, dining:Vegetarian) &&
 nearTo(?t, ?r) in mapDistances;
 invoke bookTable(?r, ?d, ?n)
 end;
 println “Booked ?r on ?d for ?n people”
end.

Figure 4: Plan for booking a restaurant
encoded in RDF. It is not clear how to integrate RSS handling into
JAM’s architecture without significant programming. In Nuin, we
would define an RSS service, that would place an event into the
interpreter’s input queue when an RSS item is updated. The event
could either contain the RSS item data, or just a URI for retrieving
the data from an RDF KS. Forward-chaining plans would trigger
on these events allowing the agent to respond appropriately.
Currently available FIPA platforms generally do not provide
sophisticated reasoning capabilities. JADE, for example, allows
agent designers to code agent behaviours using forward
production rules, finite state machines, or as custom Java classes.
While useful, these tools do not correspond to a developed agent
theory such as BDI. If the agent designer wishes to define an
agent that can be delegated goals by a user, there is no built-in
knowledge representation in Jade that would assist directly to do
so. The FIPA platforms do have significant strengths in providing
and managing infrastructure services. Nuin makes use of these
services by supporting service adapters modelled on the FIPA
Abstract Architecture.

6 CONCLUSIONS AND OPEN ISSUES
We have outlined the Nuin agent platform: an open, extensible
platform for developing intelligent agents for Semantic Web
applications. The essence of our approach is to take the principles
of multi-agent and autonomous agent theory, combined with
strong adherence to the principles of good software engineering
practice, to create a practical tool for agent designers. Our primary
motivation in creating this platform has been to provide a basis for
our own research into user interaction with Semantic Web agents.
However, the software will also be available under an open
license for other research groups to use.
There are many difficult issues that require further research to
meet our ambitions of a practical toolkit. Two central themes for
our ongoing work on this platform are: how to extend the
reasoning capabilities of the agents, and how to facilitate effective
co-operation between agents with strong mental states and human
users. A particular interest with respect to Semantic Web agents is
to explore the relationships between the strong, but theoretically
intractable, reasoning of BDI agents and the weaker,
computationally tractable, reasoning embodied in OWL
DAML+OIL – particularly in a open, changeable environment
such as the Semantic Web.

7 Acknowledgements
The authors would like to thank the anonymous AAMAS’03
reviewers for their constructive and detailed comments. Thanks
also to Dave Reynolds and Steve Cayzer of HP Labs for their
comments on earlier drafts.

8 REFERENCES
 1. The DARPA Agent Markup Language (DAML+OIL). 2001.

http://www.daml.org

 2. Bellifemine F., Poggi A. & Rimassa G. Developing Multi Agent
Systems With a FIPA-Compliant Agent Framework. Software
Practice and Experience. Vol. 31:2. 2001. pp. 103–128.

 3. Berners-Lee, Tim, Hendler, James, and Lassila, Ora The Semantic
Web. Scientific American. 2001.

 4. Castelfranchi, C. Modeling Social Action for AI Agents. In: Proc.
15th International Joint Conference on AI (IJCAI 97). 1997. pp.
1567 – 1576.

 5. Coad P, Mayfield M. Java Design : Building Better Apps &
Applets Prentice-Hall, 1998.

 6. emorphia. FIPA-OS agent platform. 2002.
http://fipa-os.sourceforge.net/

 7. FIPA. FIPA ACL Message Structure Specification. (XC00061)
2000. http://www.fipa.org/specs/fipa00061/

 8. Foundation for Intelligent Physical Agents (FIPA). 2001.
http://www.fipa.org

 9. FIPA. Abstract Architecture Specifiation. 2002.
http://www.fipa.org/specs/fipa00001/

 10. Frank, G. A General Interface for Interaction of Special-Purpose
Reasoners Within a Modular Reasoning System. In: Proc.
Question Answering Systems. AAAI Press, 1999. pp. 57–62.

 11. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns
Addison Wesley Longman, 1994.

 12. Horrocks I. Reasoning With Expressive Description Logics:
Theory and Practice. In: Andrei Voronkov, (ed) Proc. 18th Int.
Conf. on Automated Deduction (CADE-18). Springer Verlag, pp.
1–15, 2002.

 13. HP Labs. The Jena Semantic Web Toolkit. 2002.
http://www.hpl.hp.com/semweb/jena-top.html

 14. Huber, M. JAM: a BDI-Theoretic Mobile Agent Architecture . In:
Proc. 3rd Int. Conf. on Autonomous Agents. ACM, 1999. pp. 236–
243.

 15. Kagal, L., Perich, F., Chen, H., Tolia, S., Zou, Y., Finin, T., Joshi,
A., Peng, Y., Cost, R. S., & Nicholas, C. Agents Making Sense of
the Semantic Web. In: Proc. First GSFC/JPL Workshop on
Radical Agent Concepts (WRAC).

 16. Kobsa A. & Pohl W. The User Modeling Shell System BGP-MS .
User Modeling and User Adapted Interaction. Vol. 4:2. 1995. pp.
59–106.

 17. Labrou, Yannis and Finin, Tim. A Proposal for a new KQML
specification. Computer Science and Electrical Engineering Dept,
University of Maryland. 1997.
http://www.cs.umbc.edu/~jklabrou/publications
/tr9703.ps

 18. Rao, A. AgentSpeak(L): BDI Agents Speak Out in a Logical
Computable Language. In: Proc. 7th European Workshop on
Modelling Autonomous Agents in a Multi-Agent World
(MAAMAW '96). Springer-Verlag, 1996. pp. 42–55.

 19. Rao, A. & Georgeff, M. BDI Agents: From Theory to Practice. In:
Proc. First Int. Conf on Multi-Agent Systems (ICMAS-95). 1995.

 20. RSS-Dev Working Group. Rich Site Summary (RSS) 1.0
Specification. 2001. http://purl.org/rss/1.0/spec

 21. Sowa J. Knowledge Representation: Logical, Philosophical, and
Computational Foundations Brooks Cole, 1999.

 22. SRI. The Open Agent Architecture. 2002.
http://www.ai.sri.com/~oaa/main.html

 23. W3C. Namespaces in XML. 1999.
http://www.w3.org/TR/REC-xml-names/

 24. W3C. Simple Object Access Protocol (SOAP) 1.1. 2000.
http://www.w3.org/TR/SOAP/

 25. W3C. Web Ontology Working Group. 2002.
http://www.w3c.org/2001/sw/WebOnt/

 26. Weiß G. (ed.). Multiagent Systems. A Modern Approach to
Distributed Artificial Intelligence MIT Press, 1999.

 27. Winer, D. XML RPC. 1999. http://www.xmlrpc.com/
 28. Wooldridge M . Reasoning about rational agents MIT Press, 2000.
 29. Wooldridge M. & Jennings N. Intelligent Agents: Theory and

Practice. Knowledge Engineering Review. Vol. 10:2. 1995. pp.
115-152.

 30. World Wide Web Consortium (W3C). The Resource Description
Framework (RDF). 1999.
http://www.w3.org/TR/REC-rdf-syntax/

	INTRODUCTION
	OUTLINE OF APPROACH
	BDI Foundations
	Overview of AgentSpeak(L)
	Limitations of AgentSpeak(L)

	Architectural Foundations
	Semantic Web Foundations

	NUIN AGENT ARCHITECTURE
	Knowledge-representation model
	Knowledge representation vocabulary
	Knowledge-sources and reasoners
	Resource bounded reasoning

	Agent mental states
	Interpreter and processing model
	Events
	Plans and actions
	Interpreter

	Operational details
	Agent configuration
	Services
	Interoperation with agent middleware

	Message passing
	Abstract messaging model

	Examples

	EVALUATION
	Acknowledgements
	REFERENCES

