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ABSTRACT 
We describe Nuin: a flexible  agent architecture designed for 
practical development of agents in Semantic Web applications, 
based around belief-desire-intention (BDI) principles. We outline 
the central design features of the platform, and show how the 
implementation is designed to give maximum flexibility to agent 
designers, while retaining the overall coherence of the design. 

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence] Distributed Artificial Intelligence 
– Intelligent Agents.  

General Terms 
Design, Languages. 
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1 INTRODUCTION 
For some years, software agents have been proposed as a new 
metaphor for the design and construction of computational 
systems. Agent-based software promises many innovative 
capabilities, including those that many researchers regard as 
defining characteristics for agency: proactivity, reactivity, social 
ability and autonomy [29]. The more recent promotion of the 
Semantic Web [3] as a vision of the evolution of the World Wide 
Web from a publishing medium to a general services fabric, 
shares many ideals with the vision of agent researchers. Indeed, 
many descriptions of the semantic web include the use of agents 
as an enabling technology for delivering services to the users [15]. 
To date, agent systems research has delivered many results in the 
theories and architectures of agent software. Practical agent-based 
toolkits and applications have been developed, but there is an 
observable separation between theory and practice. While 
conducting research into user experiences of autonomous agents 
in a Semantic Web context, we discovered a lack of agent 
platforms that are both robustly engineered and that strongly 
embody the results of research into agent theories. We have 
therefore developed our own agent tool, named Nuin, 

to address this need. This paper describes the architecture and 
design principles of Nuin. 
The rest of the paper is structured as follows. §2 describes our 
overall motivation and goals in more detail, while §3 and §4 
presents the design solutions to these goals. §5 evaluates Nuin’s 
contributions compared to other platform projects. §6 presents 
some conclusions.  

2 MOTIVATIONS 
One goal of our research is to evaluate user reactions when using 
autonomous agents to assist with information-centric tasks on the 
Semantic Web. Whether these evaluations are done in a usability 
lab or by deploying applications “in the field”, we need to be able 
to construct reliable and capable agent systems – otherwise we are 
only examining user reactions to unreliable software. As an 
enabling step towards these research goals, we have developed a 
platform for agent programming designed to allow us to 
concentrate on the key capabilities of the agents that support the 
applications we want to test (in contrast to, for example, 
distributed agent infrastructure issues). This paper reports 
progress towards a practical architecture for deliberative agents 
for the Semantic Web. There are several components to this 
overall objective. We have attempted to design a practical tool 
that is both flexible and robustly engineered, so that it can support 
a variety of interesting applications. Our software will be freely 
available to other research groups to use, so flexibility is an 
essential feature if the platform is to be generally useful. We want 
to embed agent characteristics as part of the overall user 
experience, rather than force application designers to use the agent 
platform as an application container. 
A key interest in exploring the user experience of autonomous 
agents is the ability to delegate goals and preferences from the 
user to the agent. While recognising the utility of reactive and 
hybrid agent architectures, we chose to make as a first priority the 
development of deliberative agents [28]: agents who deliberate 
over symbolic knowledge representations. This will allow us to 
explore the central issues in communicating declarative goals 
from a human to an agent, and using goals as a basis for 
collaboration. 
The most commonly studied architecture for deliberative agents is 
the belief-desire-intention (BDI) model [19]. Since this is, at its 
core, a model founded on a view of practical reasoning, it is well 
suited to be the basis of a robust implementation. There are known 
problems in providing a complete implementation of a logical 
BDI model; we mention the some of the consequences of these 
problems below. Nevertheless, we took as an objective that the 
implementation should strongly embody a BDI theoretical 
foundation. 
We specifically want to build agents for the Semantic Web. There 
are several reasons for this. Firstly, a number of key tools and 
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techniques likely to be of use to a deliberative agent are being 
developed under the aegis of Semantic Web research. In 
particular, we note the increasing prevalence of ontology design 
tools, ontology reasoners and persistent RDF [30] stores among 
others. Secondly, if it delivers on its promise, the Semantic Web 
will make available a variety of sources of knowledge for use by 
agents. The use of abstract or toy domains as a vehicle for 
demonstrating agent capabilities reduces the impact of the 
demonstration, but more importantly does not provide a suitable 
context for conducting realistic experiments with users. Finally, it 
can be hoped that the drive for the Semantic Web will provide a 
‘gravity well’ which will pull a variety of agent tools and 
applications into closer collaboration. 
We distil these top-level goals into the following design 
principles: 

1. Base the agent design on accepted BDI theory 
2. Use good software engineering practices to engineer a 

solid platform enabling robust agent applications; 
3. Embed the agent capabilities in the end-user application, 

not vice-versa; 
4. Re-use existing tools and standards where applicable; 
5. Design the architecture to interoperate with the emerging 

standards and tools of the Semantic Web. 
In order to make use of existing tools, and to minimise 
dependencies on the underlying operating system, our software is 
written in Java™. 

3 OUTLINE OF APPROACH 
3.1 BDI Foundations 
We wish to design agents that can perform practical reasoning in a 
dynamic, unpredictable world. The use of explicit mental 
attitudes, it has been argued, allows the agent to manage its 
internal structures and external environment, and so achieve a 
balance between optimal behaviour and resource limitations. A 
common choice of foundational mental attitudes is the set belief, 
desire, and intention [19]. BDI agents have been extensively 
studied in the agent literature, and have attracted both formal 
logical characterisations [28] and (rather fewer) practical 
implementations and re-usable tools (e.g. [14]). 
Our objective with the Nuin architecture is to create practical 
agents: that is, agents that not only perform practical reasoning, 
but realistically deployable embodiments in software. We must, 
therefore, balance the desire to build upon a formal, but non-
computable logical model, against ad hoc implementation 
approaches that do not have well-characterised properties. We 
have based our design on Rao’s AgentSpeak(L) [18]. Below, we 
briefly summarise AgentSpeak(L), and motivate our extensions to 
Rao’s framework. AgentSpeak(L) was selected as it distils 
experiences with the design of PRS [19] into a simple formalism 
that has both a tractable implementation and a formal 
characterisation. 

3.1.1 Overview of AgentSpeak(L) 
Rao proposed AgentSpeak(L) as an abstraction of the reactive 
planning model that underpins the Procedural Reasoning System 
(PRS) [19]. An AgentSpeak(L) agent consists of a set of beliefs, 
constructed from an alphabet of first-order terms, and a set of 
plans. 

Plans are constructed from a set of action symbols, together with 
connectives for serial action sequences, tests, achieving a goal and 
raising an event. A plan has the structure: 

e : b1 ∧ … ∧ bm ← h1 ; … ; hn 
where the hi are actions forming the plan body, bj are belief 
literals denoting the plan context, and e is a triggering expression. 
The triggering expression matches events, and thus may be used 
to respond reactively to the environment, or to chain between 
plans. AgentSpeak(L) distinguishes external (from the 
environment) and internal (raised from a plan body) events. 
Handling a new external event creates a new intention frame; 
internal events are handled in the context of the intention frame of 
the parent plan. For further details of AgentSpeak(L), including 
the proof theory, the reader is referred to [18]. 

3.1.2 Limitations of AgentSpeak(L) 
As a preliminary design exercise, we coded an implementation of 
AgentSpeak(L) in Prolog. This helped us identify the following 
issues that need to be addressed to make a practical programming 
tool based on AgentSpeak(L): 

• Intentions in AgentSpeak(L) are defined as a 
commitment to a particular plan to handle an initiating 
exogenous event. There is no sense of committing to 
achieve a goal held by, or shared with, another agent, 
nor of committing to maintain a state of the world. 

• All choices in the AgentSpeak(L) interpreter are non-
reversible and have no contingencies. If a plan body 
fails, the whole plan (and in a naïve implementation the 
whole interpreter) simply fails. 

• The subtlety in programming an agent comes down to 
which event to focus on, and which plan to intend to 
handle that event. These choices are encapsulated in 
choice functions (for example functions SO and SI, in 
[18]) but these are otherwise not discussed in Rao’s 
paper. 

These limitations notwithstanding, AgentSpeak(L) provides an 
elegant foundation for an extended architecture. In particular, we 
note the use of events and triggers to provide both goal-directed 
(back chaining) and data-directed (forward chaining) reasoning, 
and to allow the agent to multi-task multiple simultaneous plans. 

3.2 Architectural Foundations 
We now briefly outline the software engineering principles that 
provide the architectural foundations for our implementation. 
Firstly, we aim to re-use existing components wherever possible, 
without sacrificing the coherency of the design. For example, a 
key component of agent systems as a whole is the inter-agent 
communications framework. Many solutions exist for this 
capability, whether custom [22] or standards-based [2;6]. Rather 
than select and bind strongly to any one such platform, our 
approach is to abstract the key capabilities these platforms provide 
into interfaces. Using a particular agent middleware platform then 
becomes a matter of defining bindings from the platform’s 
services to the abstract communications interfaces with Nuin. 
The design pattern of using interfaces for all key abstractions, 
sometimes termed interface-driven design, provides a more 
extensible and adaptable starting point than other design 
approaches, such as the use of class hierarchies [5]. We therefore 
use interfaces, rather than classes, to define all of the key 



abstractions in the Nuin toolkit. The factory design pattern [11] is 
then used to insulate programmers from the detailed 
implementations of these interfaces. To create a new object 
conforming to a given interface, the programmer invokes a 
method on the appropriate factory object rather than directly 
invoke the class constructor. To extend the capabilities of one of 
these abstractions, for example adding probabilistic weights to a 
logical term, the programmer defines a new set of 
implementations of the logical value interfaces and registers a new 
factory object for creating them. This addresses one of our central 
goals of making the platform flexible and extensible for 
programmers. 

3.3 Semantic Web Foundations 
There is as yet no crisp definition of the Semantic Web, so it is 
difficult to be precise about what it means for an agent to be 
designed to operate on the Semantic Web. There are some 
principles, however, that are emerging: 

• symbols are uniform resource identifiers (URI’s); 

• XML namespaces [23] are used to keep vocabularies of 
symbols from clashing accidentally; 

• RDF [30] triples1 are the basic foundation of knowledge 
representation; 

• ontological information is encoded in DAML+OIL [1] 
or OWL [25], which extends the representational 
capability of the underlying RDF; 

• knowledge sources are openly available and 
decentralised, typically using HTTP as an access 
mechanism. 

Doubtless additional principles will continue to evolve as more 
Semantic Web applications are investigated and deployed. 
Beyond these technology foundations, a further theme in Semantic 
Web processing is the “web-ness” of information resources. This 
is primarily a social point, though it has technical implications. 
Roughly, it says that information, and authority, is decentralised, 
sometimes put as “anyone can say anything about anything”. It 
implies that any set of definitions or statements can be extended, 
and none can be considered authoritative except by consensus. In 
this worldview, provenance of information becomes paramount, 
and agents necessarily will have to deal with incomplete and 
contradictory information, tangled ontologies and potentially 
deliberate falsehoods. We do not claim that Nuin solves these 
problems; rather it is our intent to create a platform for exploring 
these issues in further research. 

4 NUIN AGENT ARCHITECTURE 
Figure 1 shows the principal components of the Nuin architecture. 
The configuration of the agent itself is defined by an RDF model. 
Thus the only start-up parameter that an agent requires is a URL 
from which it can retrieve its configuration. The components from 
figure 1 are described in further detail in the following sections. 

                                                                 
1 A triple is a ground tuple from a binary relation, and is the only 

knowledge structure that basic RDF contains. 

 
Figure 1 Nuin architecture overview 

 

4.1 Knowledge-representation model 
Nuin agents are deliberative reasoners in the tradition of first-
order logic-based inference. In this section we describe our 
knowledge representation formalism. 

4.1.1 Knowledge representation vocabulary 
Knowledge structures in Nuin are composed from a vocabulary of 
literals: integers, reals, Booleans, strings, and symbols, together 
with named single-assignment variables. Ordered lists may be 
composed of any value, and functional terms may be composed 
from a symbol as functor, and zero or more arbitrary values as 
arguments. Two values may be unified (or fail to unify) in the 
standard way. Logical sentences are formed from the usual first 
order connectives. 
An abstract syntax, using Java interfaces, provides a flexible 
representation, into which many surface syntaxes may be parsed. 
Currently implemented parsers include s-expressions (i.e. KIF-
like, though not currently supporting all of KIF’s definition 
machinery), and a Prolog-like syntax with infix operators. In 
addition, binary predicates are translated directly from RDF 
sources into the abstract syntax. 

4.1.2 Knowledge-sources and reasoners 
Logical sentences are stored within the agent in knowledge-
sources (KS’s). There is no commitment to any particular storage 
strategy: a KS may be stored entirely in-memory within the Java 
virtual machine, or may be stored in a persistent database. 
However, every KS is associated with at least one reasoner, 
which provides a set of abstract services for manipulating the 
contents of the KS. In particular, a reasoner may support the 
following services: 

• core services – serialisation, matching, identification, 
query dispatching, get meta-data; 

• backward chaining – query, query all, retry; 

• forward chaining – add listener; 

• updateable – assert, deny, retract. 
Every KS must support the core services, noting that ‘matching’ 
denotes a simple unification pattern-match against the facts in the 
KS. Other services are optional. Each of these sets of capabilities 
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is encapsulated in a Java interface, allowing a KS to be tested at 
run time for the services it supports. It is also convenient to have 
an explicit description of the capabilities of the KS. The meta-data 
on a KS is an RDF model, containing statements from a pre-
defined Nuin configuration ontology. Such explicit access to its 
own capabilities provides a convenient means for an agent to be 
able to make assertions about its own capabilities, perhaps during 
negotiations or in yellow-pages advertising. This self-modelling 
via RDF is a recurring theme in the Nuin design. 
We want agents be able to compose multiple KS’s when 
responding to queries or performing forward-chaining inferences. 
A similar requirement is addressed by Frank [10]. In Frank’s 
approach, queries are routed to different reasoners by a special-
purpose reasoner named the dispatcher. This implies that all 
complex queries must be directed to the dispatcher, which then 
delegates the query to a specialist reasoner, perhaps based on the 
predicate name of the query. Our scheme is slightly different from 
Frank’s, since we want to partition the knowledge bases (perhaps 
to distinguish the agent’s own knowledge, from that of its 
acquaintances). Thus, the two KS’s may contain instances of the 
same predicate, which are modelling entirely different things. 
Rather than rely on a dispatcher to direct queries to KS’s, we add 
a context parameter to the standard query interface, which 
encapsulates a strategy for delegating queries to other KS’s . 

4.1.3 Resource bounded reasoning 
Predicate logic is a powerful knowledge representation language, 
capable of a wide range of representation tasks [21]. However, 
first-order reasoning is computationally undecidable. Some 
queries will never terminate, or consume a great deal of 
computing resources before terminating. This has lead many 
researchers to define representation systems that are weaker than 
full first-order logic, but which are computationally more 
tractable. An example is description logics [12], which are widely 
used in the ontology research community. 
Our view is that practical agents will need rich representations to 
cope with the noisy and contradictory information available on the 
semantic web. We will not be able to rely on computational 
tractability alone to provide predictable response times and 
reasonable performance from our agents. We have therefore 
decided not to restrict our agents to reasoning over description 
logics, but to support resource bounds on reasoning tasks. All 
reasoners must be able to terminate cleanly if time or other bounds 
are exceeded. The agent’s plans must allow for contingencies 
arising from exceeding resource bounds. 

4.2 Agent mental states 
Using the representations described above, we now elaborate the 
representation of agents’ mental states. Each agent has three key 
state variables: beliefs, desires, and intentions.  
Beliefs are modelled as sets of first-order sentences. In the current 
architecture, sentences do not include modal operators, so the 
belief modality is not represented directly. Instead, we partition 
the agent’s knowledge sources, and label each with an implicit 
modality. Thus, 

Bi p( x )     is modelled as:     KSBi  p( x ) =
A similar scheme is used in the user-modelling system BGP-MS 
[16] for representing the user’s beliefs about the system, the 
system’s beliefs about the user, etc. If sentences containing 
complex compositions of modal operators are commonplace in a 

given domain, then this representation scheme will not be 
sufficient. We may, in future, extend the knowledge 
representation to include modal operators. For the time being, 
however, our hypothesis is that this folding of modalities into the 
KS label will be sufficient for many practical applications. 
Desires are modelled as collections of first-order sentences that 
represent characteristics of the world that an agent wishes to bring 
about, or the agent’s general preferences. The agent’s desires are 
available to the choice functions in the interpreter (below). Thus 
an agent’s desire to be helpful, or loyal to a particular user, might 
influence choices that it makes. In this way, we hope in future to 
be able to model social attitudes of agents [4], particularly with 
respect to human-agent interaction. 
Intentions model the agent’s current commitment to a course of 
action. In AgentSpeak(L), intentions are formed when a plan is 
adopted in response to an exogenous event. The intention then 
provides a scope in which variables may be bound as plans and 
sub-plans are executed. We adopt a similar view. Our intentions 
are explicitly triggered by various conditions, and provide a 
computational environment for the execution of actions and sub-
plans .  
Events In addition to the above mental states, each agent 
maintains two ordered lists of events. The first models the agent’s 
sensing of the world: all perceptions are delivered as events. The 
second models the agent’s memory of recent percepts. This is a 
fixed-length chronological queue of the N most recent events (N is 
a positive integer from the agent’s configuration). Maintaining a 
recent-event history allows agents to trigger behaviours on 
patterns of chronologically correlated events. 

4.3 Interpreter and processing model 
We now outline the processing model for the agent. Recall that all 
components of our architecture are pluggable using the interface-
based programming pattern described above. Therefore, the 
behaviours described here may be considered the default or built-
in behaviours, any of which may be extended by the programmer. 

4.3.1 Events 
All of the agent’s perceptions of the environment are delivered as 
events. These may be genuinely exogenous occurrences, such as a 
user instruction, a message from another agent, or a sensor value. 
Following AgentSpeak(L), endogenous events are also used as a 
uniform abstraction for managing control flow within the agent. 
An event is represented as a logical term, denoting the event type, 
and optional arguments. An event pattern is a Boolean expression 
formed from event terms and the predicates on  and after: 

• on E  
is true if E is a term that unifies with the term 
representing the most recently observed event; 

• after E  
is true if E is a term that unifies with any event term in 
the agent’s event history, or the most recent event. 

Thus, moderately complex but computationally tractable 
triggering conditions may be straightforwardly defined. 

4.3.2 Plans and actions 
Plans are the key abstraction defining the agent’s behaviour. A 
plan minimally is an action expression, together with either a 
predicate representing its post-condition, or a triggering pattern 
representing the conditions under which the agent will perform the 



while true do 
  f = select-focus(B, D, I, Ei) 
 
  if f is new-percept 
    add percept to history 
    let p* = plans-triggered(f) 
    if not empty p* 
      for each p ∈ p* do 
          add new intention-to p 
    endif 
  elseif f is active-intention 
    let α = next action of f 
    record choice point if backtrackable(α) 
    if side-effecting(α) 
      commit 
    endif 
    perform α 
    case  
      failed(α) → backtrack 
      completed(α) → remove α from f 
    endcase 
  endif 
endwhile 

action expression. A plan may have both a trigger and a post-
condition, but it may not have neither. In addition, a plan may be 
named (with a URI), take arguments, have a comment or have a 
priority. 
Action expressions are composed from atomic actions and tests, 
together with operators for sequencing actions (α | α’ means 
perform action α followed by action α’), and non-deterministic 
choice (α ; α’ means perform either action α or action α’). Non-
deterministic choice records a choice point in the evaluation of the 
action expression. Choice points may be backtracked through, 
providing no side-effecting action has been performed. Once a 
side-effecting action is performed, all of the open choice points in 
the plan are collapsed. This is because we assume that such 
actions are not, in general, reversible, and therefore it is not valid 
for evaluation to continue down a different branch from the choice 
point once the external environment has changed. Each action 
definition determines whether that action is side-effecting or not. 
By default, atomic actions are assumed to be side-effecting, tests 
are not. 
A number of standard actions are built-in to the standard script 
parser and interpreter. However, since each action is represented 
as an instance of a Java class implementing the Action interface, 
it is easy for the programmer to define new types of action and 
invoke them from the agent’s script. 

Figure 2: Interpreter cycle 
If there is no current event in the queue, or the agent chooses not 
to process an available event, there is then the choice as to which 
intention to pursue on this iteration. There are several methods 
here also. The agent could choose to process the intention that it 
regards as most advantageous (i.e. has the highest utility), given 
its current beliefs. Alternatively, it could choose to employ a 
scheduling algorithm, such as round robin or priority ordering, to 
ensure that intentions are processed in a suitable order. Again, 
there is no general solution, so we make the intention selection 
function configurable. 

Due to lack of space, we can only list, but not define, some of the 
built-in actions. They include achieve, add intention, add 
desire, drop intention, assert, retract, suspend, 
resume and send. Tests include holds, on and after. 

4.3.3 Interpreter 
Each agent has one interpreter that will process the events from 
the agent’s environment, and, in conjunction with the agent’s 
plans and other mental states, determine the agent’s behaviour. 
Once again, the interpreter is a configurable object, defined as a 
fixed interface and a default implementation providing the 
standard behaviours described here. 

In general, an agent is permitted to have a number of simultaneous 
intentions that it is pursuing. Any domain constraints on such 
commitments, such as being unable simultaneously to move in 
different directions, must be imposed by the agent designer. In 
effect, this changes the control structure of [28], fig 2.7, so that 
instead of having to decide when to reconsider, the agent must 
decide how to schedule multiple intentions. 

In essence, the interpreter acts similarly to the AgentSpeak(L) 
interpreter ([18], figure 1), and to Wooldridge’s abstract agent 
interpreter ([28], figure 2.7). The key steps for the Nuin interpreter 
are shown in Figure 21 below. Our percept selection function corresponds to the function Sε in 

AgentSpeak(L). We do not need Rao’s function SO since the 
interpreter can backtrack. One choice that must be accounted for 
is the agent’s decision about which course of action to take to 
achieve a given postcondition when backward chaining. The PRS 
interpreter can recurse to meta-level planning (i.e. using the 
agent’s current mental state to reason about plans to invoke). 
While this has a certain mathematical elegance, we feel that it 
may make for overly complex agent programs. Currently, where 
alternative plans are applicable in Nuin, plan selection effectively 
occurs in a Prolog-like backtracking search. We intend to add a 
scriptable evaluation function for selecting between alternative, 
valid, courses of action in a future version. 

At each interpreter cycle, the agent must select its focus for that 
time step. The first choice is whether to respond to an incoming 
(queued) event, or whether to continue pursuing a current 
intention. There is no general solution to the right choice to make 
at this point. Some agents will benefit from being highly 
responsive, and choosing as their focus any percept as soon as it is 
detected. Other agents will be better to be less distractible and 
ignore events for the sake of completing the current plan. Clearly 
some events will be more ignorable than others. We could fix this 
choice in the architecture, as some agent interpreters do. Our 
preference is to make this strategic decision one that agent 
designer should control. Therefore, the interpreter contains a 
scriptable choice function for selecting the current focus at each 
step. The default choice is to be responsive, and always process 
events in preference to current intentions. 

Note that in Wooldridge’s abstract interpreter, there is a function 
brf() that updates the agent’s beliefs given a percept. In Nuin, we 
delegate all revisions of the agent’s mental states to actions 
executed by the interpreter. Thus there is no requirement to have a 
separate belief revision function in the interpreter loop. Plan 
actions include making assertions into any of the agent’s KS’s, 
adding and dropping intentions explicitly or implicitly (by 



attempting to achieve a given post-condition), and adding and 
dropping desires. 

4.4 Operational details 
In the preceding section, we outlined the operation of the abstract 
interpreter. In this section, we briefly discuss some of the 
operational details of our platform. 

4.4.1 Agent configuration 
Given that we have an objective to make Nuin agents highly 
flexible and adaptable, we must provide some means of 
configuring a given agent prior to its operation. Consistent with 
the use of semantic web technology, Nuin agent configuration is 
specified using an RDF model. This is typically expressed as an 
RDF document with a resolvable URL. The RDF document is 
fetched when the agent starts, and used to configure the agent’s 
services, scripts and initial knowledge. 
We have defined an ontology to represent the various 
configuration options an agent may take. Options from the 
configuration model are passed through to any objects created, 
allowing fine-grain control over objects’ behaviour. Java 
reflection may also be used to directly instantiate custom elements 
of the agent implementation corresponding to the public interfaces 
(see §3.2). 
Since the agent needs only the URL of the configuration model to 
start up, it is easy to programmatically create agents in the context 
of other applications. This, we believe, is more consistent with 
application designers’ needs, rather than being forced to fit their 
application logic into an agent framework. 

4.4.2 Services 
While a single agent can be a useful abstraction in an application 
design, perhaps as locus for advanced user-facing affordances, the 
agent metaphor is perhaps most closely associated with multi-
agent systems (MAS) [26]. To participate in an ecosystem of 
autonomous, distributed agents, agents require access to a variety 
of key services. These include name resolution, messaging, 
migration, etc. 
There are many tools available to assist with fulfilling these 
requirements. This is, in part, due to an increasing emphasis on 
distributed systems in general, encouraged by the success of the 
WWW. To allow the Nuin agent platform to operate in a MAS 
context, we want to provide our agents with access to these multi-
agent services. However, the plethora of competing solutions 
presents the problem of which to choose. 
One solution would be to commit to the standards defined by 
FIPA [8]. While the FIPA abstract architecture (FAA) [9] does 
capture some of our requirements, it is not a priori clear that all 
application designers will take the FAA as the starting point for 
their system designs. It is clear, however, that there is extensive 
innovation in distributed-systems in general, some of which our 
agents may wish to take advantage of. For example, peer-to-peer 
message passing is an increasingly well-studied technology, for 
which a number of high-quality implementations exist. 
Our solution is to identify the key underlying services that our 
agents rely on, and package these as abstractions that may be 
instantiated in different ways. We build upon the research 
embodied in the FAA by re-using the names and abstractions from 
that standard where appropriate (though we map the names to 
URI’s per RDF).  

We define an abstract service that an agent has access to. The 
agent also has access, via the KS, to first-order assertions about 
the available platform services. A general service-invocation 
procedure is available as one of the built-in actions in the 
interpreter. Furthermore, some well-known services are more 
closely integrated, and supported with special-purpose actions. An 
example is message sending (see below). 

4.4.3 Interoperation with agent middleware 
The existence of the FIPA standards has encouraged the 
development of a number of freely available implementations of 
FIPA platform services (e.g. Jade [2]). Since such platforms exist 
precisely to provide the agent middleware services we discuss 
above, and given that we do not want to re-implement 
functionality that is already available, we aim to rely on FIPA 
platforms to provide the necessary platform services. Specifically, 
we provide service adapters that map between the abstract 
services in our architecture, and the capabilities of the host FIPA 
platform. In principle, this should be possible for a variety of 
Java-based FIPA platforms. To date, we have only investigated 
hosting our agents on the Jade platform. 
Alternatively, it may be that some application designers will want 
to base their system-level architecture on interoperation standards 
other than the FIPA agent middleware. In a web-services 
deployment, interactions are typically based on HTTP message 
transport, with XML payloads (e.g. SOAP [24] or XML-RPC 
[27]). Assuming that an appropriate binding to the abstract 
services can be defined, there is no reason why a web-services 
architecture should not provide a suitable basis for multi-agent 
operations with Nuin. This is not something we have yet 
investigated, however. 

4.5 Message passing 
The dominant metaphor for inter-agent communications is 
message passing (in contrast to, say, remote procedure call). 
Message passing is well suited to the view that agents have 
autonomous control over their own behaviour. Agent 
communications languages such as KQML [17] and FIPA-ACL 
[7] provide standard encodings for messages. 
Architecturally, message passing (and its ancillary services) are 
just another of the abstract services that an agent designer may 
wish to use. However, due to the ubiquity of message-passing in 
agent systems, we include built-in actions that directly invoke the 
messaging and directory services. 

4.5.1 Abstract messaging model 
Message is a sub-class of Event. A message has zero or more 
named attributes, corresponding to the fields of the encoded 
message structure. These include the to and from agent ID’s, 
ontology, content, reply-with, etc. Note that addresses are 
only ever agent identifiers. Resolution of names to transport 
bindings (including the transport mechanism and message 
encoding) are handled transparently by the messaging service. 
The messaging service provides the operations to create a new or 
reply message, encode and send a message, suspend until an 
expected message arrives and extract content sentences from 
incoming messages. The directory service provides both yellow-
pages and white-pages registration and name resolution 
operations. We currently make no assumption about the ability of 
directory services to federate, or perform distributed queries. 



The implementation of these services is largely delegated to the 
underlying platform (e.g. Jade), with a thin layer of adapter code 
to map between the two conceptual models. 
Parenthetically, we note that we had to define our own ontology in 
DAML+OIL of the various terms in the FIPA ACL standard. We 
hope that FIPA will provide its own, definitive versions of these 
ontologies in due course. 

4.6 Examples 
To illustrate the syntax of the default scripting language, we show 
in Figure 2 a translation of the example program from Rao’s 
AgentSpeak(L) paper. Note that plans may be named or 
anonymous, and that all names are URI’s in the default 
namespace, unless given explicit prefixes. 
As a second, again very simple, example, Figure 3 shows a basic 
plan for automatically booking a restaurant table near to the 
theatre if the user requests the agent to book theatre tickets. This 
plan depends on an ontology of dining concepts, referenced by the 
URI prefix dining. Because these queries have a distinguished 
namespace, they can easily be routed to the appropriate 
knowledge source. As background to the plan fragment shown, a 
suitable DAML+OIL ontology might define an instance 
SpiralGateCafe to be an instance of VegetarianBistro – a 
sub-class of both dining:Restaurant (a class of eating 
establishments) and dining:Vegetarian. (a class of meat-free 
food providers). Thus, taxonomic reasoning is used to entail 
additional beliefs. 

5 EVALUATION 
The central objective of this phase of our work is to design and 
build a practical toolkit for developing deliberative agents for 
Semantic Web applications. Our emphasis is on the higher-level 
behaviour of the agents, rather than infrastructure issues, and on 
the  engineering  aspects  of  constructing  a  stable,  flexible  and 
extensible platform. While this is an ongoing project, we can 
make a preliminary assessment of these factors by comparing the 
Nuin platform to related projects in this field. There are other 
tools that address processing information on the Semantic Web. 
The Jena toolkit [13] provides programmatic access to RDF 
sources, ontology  documents,  ontology  reasoning and RDF 
query. However, Jena provides only low-level access to RDF data. 
The BDI metaphor and associated tools provides much higher 
level  abstractions  for  defining  useful  end-user  services that 
make use of RDF data. To build upon the useful tools provided by 
Jena, Nuin can use a Jena RDF or ontology model as a knowledge 
source. This provides Nuin agents access to a wide range of 
Semantic Web data, including RDF stored in persistent databases 
or remotely accessed via HTTP. 
Huber’s JAM [14] is a Java re-implementation of the U.Michigan 
C++ implementation of PRS. JAM is therefore BDI-based. It does 
not, however, address Semantic Web reasoning, nor does it 
integrate with agent middleware platforms (JAM’s design pre-
dates both FIPA and the emergence of the Semantic Web). We 
claim that we also have a coherent BDI implementation, grounded 
in BDI theory, but that our implementation significantly more 
flexible and extensible than JAM. To illustrate this, consider 
adding defining an agent that handles RSS [20] data streams. RSS 
is an asynchronously updated series of meta-data descriptions, 
each of which describes a publication event. RSS descriptions are 

use default <http://hpl.hpl.com/nuin-demo#>. 
 
plan 
    trigger 
        on location( waste, ?x ) 
    do 
        holds location( robot, ?x ) && 
              location( bin, ?y ); 
        perform pick( waste ); 
        achieve location( robot, ?y ); 
        perform drop( waste ) 
end. 
 
plan move1 
    postcondition 
        location( robot, ?x ) 
    do 
        holds location( robot, ?x ) 
   end. 
 
plan move2 
    postcondition 
        location( robot, ?x ) 
    do 
        holds location( robot, ?y ) && 
              not ?x == ?y && 
              adjacent( ?y, ?z ) && 
              not location( car, ?z ); 
        perform move( ?y, ?z ); 
        achieve location( robot, ?x ) 
end. 

Figure 3: simple robot navigation example (from [18]) 

plan bookRestaurant 
  trigger on bookTheatre( ?t, ?d, ?n ) 
  do 
    holds for some business(?r) 
      holds 
        rdf:type( ?r, dining:Restaurant ) && 
        rdf:type( ?r, dining:Vegetarian ) && 
        nearTo( ?t, ?r ) in mapDistances; 
      invoke bookTable( ?r, ?d, ?n ) 
    end; 
    println “Booked ?r on ?d for ?n people” 
end. 

Figure 4: Plan for booking a restaurant 
encoded in RDF. It is not clear how to integrate RSS handling into 
JAM’s architecture without significant programming. In Nuin, we 
would define an RSS service, that would place an event into the 
interpreter’s input queue when an RSS item is updated. The event 
could either contain the RSS item data, or just a URI for retrieving 
the data from an RDF KS. Forward-chaining plans would trigger 
on these events allowing the agent to respond appropriately. 
Currently available FIPA platforms generally do not provide 
sophisticated reasoning capabilities. JADE, for example, allows 
agent designers to code agent behaviours using forward 
production rules, finite state machines, or as custom Java classes. 
While useful, these tools do not correspond to a developed agent 
theory such as BDI. If the agent designer wishes to define an 
agent that can be delegated goals by a user, there is no built-in 
knowledge representation in Jade that would assist directly to do 
so. The FIPA platforms do have significant strengths in providing 
and managing infrastructure services. Nuin makes use of these 
services by supporting service adapters modelled on the FIPA 
Abstract Architecture. 



6 CONCLUSIONS AND OPEN ISSUES 
We have outlined the Nuin agent platform: an open, extensible 
platform for developing intelligent agents for Semantic Web 
applications. The essence of our approach is to take the principles 
of multi-agent and autonomous agent theory, combined with 
strong adherence to the principles of good software engineering 
practice, to create a practical tool for agent designers. Our primary 
motivation in creating this platform has been to provide a basis for 
our own research into user interaction with Semantic Web agents. 
However, the software will also be available under an open 
license for other research groups to use. 
There are many difficult issues that require further research to 
meet our ambitions of a practical toolkit. Two central themes for 
our ongoing work on this platform are: how to extend the 
reasoning capabilities of the agents, and how to facilitate effective 
co-operation between agents with strong mental states and human 
users. A particular interest with respect to Semantic Web agents is 
to explore the relationships between the strong, but theoretically 
intractable, reasoning of BDI agents and the weaker, 
computationally tractable, reasoning embodied in OWL 
DAML+OIL – particularly in a open, changeable environment 
such as the Semantic Web. 
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