

Dial-Controlled Hash: Reducing Path Oscillation
in Multipath Networks

Minwen Ji
Systems Research Laboratory
HP Laboratories Palo Alto
HPL-2003-98
May 8th , 2003*

path
oscillation,
multipath
networking,
TCP

In a multipath network with a naive traffic partitioning scheme,
varied packet loss rates as well as varied delays on multiple paths
could seriously reduce TCP bandwidth. We propose a scheme,
called dial-controlled hash (DCH), for dynamically partitioning
traffic flows across multiple paths. DCH allows for fine-grained
load balance, minimizes path oscillation for each traffic flow, and
does not require per-flow state maintenance or packet tagging. We
evaluate DCH in two simulated networks, a parallel link topology
and a corporate intranet with trace-based traffic generation. In both
simulations, we compare the proposed scheme to a number of
alternatives. DCH reduces path oscillation by a factor of 1.6-37 and
improves TCP bandwidth by up to 66%, compared to alternatives.
Our simulation results also suggest that, without a good flow
partitioning scheme, there is a limit on how much one can save by
using low-quality networks in combination with high-quality ones.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2003

Dial-Controlled Hash:
Reducing Path Oscillation in Multipath Networks

Minwen Ji
Systems Research Center, HP Labs

Abstract

In a multipath network with a naive traffic partition-
ing scheme, varied packet loss rates as well as varied
delays on multiple paths could seriously reduce TCP
bandwidth. We propose a scheme, called dial-controlled
hash (DCH), for dynamically partitioning traffic flows
across multiple paths. DCH allows for fine-grained
load balance, minimizes path oscillation for each traf-
fic flow, and does not require per-flow state maintenance
or packet tagging. We evaluate DCH in two simulated
networks, a parallel link topology and a corporate in-
tranet with trace-based traffic generation. In both sim-
ulations, we compare the proposed scheme to a number
of alternatives. DCH reduces path oscillation by a factor
of 1.6-37 and improves TCP bandwidth by up to 66%,
compared to alternatives. Our simulation results also
suggest that, without a good flow partitioning scheme,
there is a limit on how much one can save by using low-
quality networks in combination with high-quality ones.

1 Introduction

A multipath network in this paper refers to a network
that has multiple media channels (such as wired and
wireless channels), multiple routes (such as those gener-
ated by a multipath routing protocol), or redundant links
between a source and a destination. Multipath network-
ing is common in today’s wide area networks, includ-
ing both the public Internet and private intranets. Multi-
path networks are deployed for reasons of performance,
economy, function or fault tolerance. In this paper, we
study the traffic partitioning schemes for multipath net-
works, which select a route (e.g. a single-hop link or an
end-to-end path) for each packet from a set of available
candidates.

In current practice, network managers often have all

traffic forwarded to only one of the routes (i.e. the pri-
mary route) or statically partition traffic across routes,
and configure the routers for failover in case of route
outages [6] [5]. The primary route strategy leaves the
secondary routes idle most of the time, and hence does
not have good utilization of network resources. The
static partitioning can be done by manually assigning
source/destination addresses to routes in the routing ta-
bles, or by mathematically hashing packet addresses to
routes on the fly. In either case, packets labeled with
the same source/destination addresses are always trans-
mitted over the same path, which is a desired behavior
since it eliminates path oscillation. However, static par-
titioning requires reconfiguration when network entities
or traffic patterns change. In the interim, packets may
be dropped if the traffic assigned to a route exceeds the
route capacity, while other routes stay idle.

On the other hand, a dynamic partitioning of traffic
across multiple routes can improve the utilization of net-
work resources and handle traffic bursts gracefully by
load balancing across routes. However, dynamic parti-
tioning is not popular in current multipath networks be-
cause load balancing inevitably causes path oscillation
to traffic flows, causing packets in the same flow to be
delivered out of order or with larger delay variance. This
could be a disaster to certain traffic flows, such as me-
dia streams (by reducing quality) and TCP connections
(by reducing bandwidth). We quantitatively analyze the
impact of path oscillation on TCP bandwidth in Section
2.

A number of techniques have been developed to re-
duce the negative impact of path oscillation or to reduce
path oscillation itself.

A resequencing buffer at the receiver can be used to
handle out-of-order delivery [2]. However, it requires
additional memory for buffers and increases packet de-
lays.

1

Configurations Single Pair Quad TwinL PairL
+SA

PairL PairL-
FR

SingleL

Number of
links

1 2 4 2 2 2 2 1

Link loss rates 0 0, 0 0, 0, 0, 0 0, 5% 0, 5% 0, 5% 0, 5% 5%
Link latency
(ms)

100 80, 120 66, 88,
112,
134

100,
100

80, 120 80, 120 80, 120 100

Fast retransmit On On On On On On Off On
Selective Ack Off Off Off Off On Off Off Off

Table 1: Configurations in the single-flow simulations. The configurations are listed from left to right in descending
order of TCP sending bandwidth. ”L” in the configuration names stands for ”lossy link”. Each link has 1 Mbps
bandwidth.

A brute-force method to reduce path oscillation is to
record the route assignment for each flow in a router
and adjust the assignment as needed for load balancing.
This method, of course, cannot scale to a large num-
ber of flows per router. It is also possible to encode the
route assignment into the packet headers rather than to
keep it in a router [9], but this requires all routers along
the paths to agree on the same encoding scheme, which
would be difficult to arrange on the public Internet.

A simple improvement to the brute-force method is
to maintain the route assignment at a coarser granular-
ity. In a commonly used hashing scheme called bucket-
based hash (BBH), flows are grouped into buckets by
hashing their addresses, where the number of buckets
is smaller than the number of flows, but larger than the
number of routes; then the router maintains the route
assignment for each bucket rather than for each flow.
When load is unbalanced, at least one bucket of flows
needs to be moved across routes in order to rebalance
the load. The question is how many buckets should there
be for a given network and traffic pattern. A large num-
ber of buckets allows for fine-grained load balance but
requires more memory and more computation, while a
small number of buckets may not be effective in reduc-
ing path oscillation, especially if buckets are unevenly
loaded. When traffic pattern changes, it might be neces-
sary to reset the number of buckets accordingly. This is
unattractive because it increases the burden on network
management.

Therefore, we are motivated to investigate flow par-
titioning schemes for multipath networks that have the
following desirable properties:

� Allow for fine-grained load balancing.

� Preserve the path for each traffic flow as long as
load balancing permits.

� In case of unbalanced load, only a minimal amount
of traffic needs to switch paths.

� Do not require per-flow state maintenance or
packet tagging.

In the rest of the paper, we will study the im-
pact of path oscillation on TCP traffic in depth (Sec-
tion 2), propose a new flow partitioning scheme using
dial-controlled hash (Section 3), and evaluate the new
scheme in simulations and compare it with alternatives
(Section 5).

2 Impact of path oscillation on TCP
bandwidth

2.1 Packet loss variation and out-of-order de-
livery

TCP, which is the protocol for the majority of traffic on
the Internet and private networks, uses a congestion win-
dow to limit how fast the sender can inject packets into
the network. The window size is adjusted in response to
measured network conditions, e.g. increased by 1 when
a new acknowledgement packet (ack) is received, and re-
set to 1 when a packet is inferred to have been lost and
hence needs to be retransmitted [3]. In general, a net-
work with larger capacity or less congestion will pro-
duce larger window size, which allows higher sending

2

bandwidth. In other words, the window size or sending
bandwidth of a TCP connection is negatively correlated
to the packet loss rate of the underlying network path. If
packets in the same TCP connection are transmitted over
paths of different loss rates, the resulting bandwidth may
reflect the highest loss rate rather than take advantage of
the bandwidth available in lower-loss paths.

Packets in a TCP connection are uniquely numbered
in the sequence in which they are transmitted for the
first time. When an above- or below-sequence packet
arrives, the TCP receiver generates a duplicate ack with
a sequence number that has been acknowledged previ-
ously. In another widely implemented retransmission
mechanism, called fast retransmit, when the number of
duplicate acks reaches a given threshold (typically 3),
the sender infers that a packet was lost and retransmits
it. Therefore, transmitting packets in the same TCP con-
nection over paths of different delays may mislead the
sender into shrinking the congestion window unneces-
sarily. A TCP extension for ”selective ack” (SACK)
allows more detailed feedback of which out-of-order
packets are received and hence reduces unnecessary re-
transmissions [7]. However, SACK does not address the
problem caused by loss rate variation in multipath net-
works.

Therefore, due to loss rate variation as well as out-of-
order delivery, TCP traffic may not be able to consume
the bandwidth otherwise made available by multipath
networking.

2.2 Quantitative impact

In order to quantitatively motivate the design of new
flow partitioning schemes, we studied the impact that
path oscillation could have on TCP congestion window
size and sending bandwidth. We simulated a single TCP
connection between two routers with a round robin flow
partitioning scheme. This simple configuration allows
us to isolate the impact of path oscillation from that of
other sources, such as congestion.

Detailed settings that are common in all simulations
throughout this paper are described in Section 5.1.

In the simulation discussed in this section, the topol-
ogy consists of two routers and the workload is a single
TCP connection with 1 Mbps nominal rate (i.e. rate at
which traffic is generated by an application). Table 1
shows the various configurations. In the configurations
with multiple (2 or 4) links between the routers, each

0

0.2

0.4

0.6

0.8

1

S
in

gl
e

P
ai

r

Q
ua

d

T
w

in
L

P
ai

rL
+

S
A

P
ai

rL

P
ai

rL
-F

R

S
in

gl
eL

S
en

t R
at

io

Configurations

0
10
20
30
40
50
60

S
in

gl
e

P
ai

r

Q
ua

d

T
w

in
L

P
ai

rL
+

S
A

P
ai

rL

P
ai

rL
-F

R

S
in

gl
eL

W
in

 S
iz

e
(P

kt
s)

Configurations

-600

-400

-200

0

200

400

600

S
in

gl
e

P
ai

r

Q
ua

d

T
w

in
L

P
ai

rL
+

S
A

P
ai

rL

P
ai

rL
-F

R

S
in

gl
eL

W
in

do
w

 S
iz

e
C

ha
ng

es
 (

P
ac

ke
ts

)

Configurations

"open"
"timeout"
"dupack"

Figure 1: Results of the single-flow simulations. “Sent
ratio” is the TCP sending bandwidth divided by the
nominal rate of the traffic generator. “Window size”
is the mean of the congestion window size in packets,
where the window size is sampled whenever it is con-
sulted to determine whether a packet should be sent. In
the chart of “window size changes”, the “open” num-
bers are the accumulated amount in packets that the
congestion window size is increased after a new ack
is received; the “timeout” numbers are the accumulated
amount that the window size is decreased after a retrans-
mission timeout; and the “dupack” numbers are the ac-
cumulated amount that the window size is decreased af-
ter 3 duplicate acks have arrived.

3

succeeding packet is forwarded to the next link from the
candidate set in a round robin fashion. Unless otherwise
noted, fast retransmit is turned on and selective ack is
turned off in TCP.

In the real world, other factors, such as traffic pat-
tern and over provisioning, may magnify or minimize
the impact of path oscillation. Therefore, the quantita-
tive results of this simulation reflect the impact of path
oscillation alone, rather than the overall impact of mul-
tipath networking.

Figure 1 shows the results. The following are our key
observations (the configurations following each bullet
are the ones on which the observation was made):

� Pair vs. Single: Two links with varied latency but
no packet loss do not have a negative impact on
TCP bandwidth. Packets reordered in pairs (e.g.
received in the sequence 2, 1, 4, 3, 6, 5, ...) will
not generate enough duplicate acks to invoke fast
retransmit.

� Quad vs. Pair: Four links with varied latency and
no packet loss reduce TCP bandwidth to 33% of the
nominal rate, because packets reordered in groups
of four generate enough duplicate acks to cause the
congestion window to shrink.

� TwinL, PairL vs. Pair: Two links with a lossy
link and with/without varied latency reduce TCP
bandwidth to 25/28%, respectively.

� PairL+SA vs. PairL: SACK reduces duplicate
acks, but slightly increases the frequency of re-
transmission timeout. The improvement in TCP
bandwidth or window size is insignificant.

� PairL-FR vs. PairL: Turning off fast retransmit
prevents duplicate acks from shrinking the window,
but gives rise to retransmission timeout. The win-
dow size is slightly increased, but the bandwidth is
slightly decreased, because the TCP sender has to
wait longer to retransmit a lost packet.

� TwinL, PairL+SA, PairL, PairL-FR vs. SingleL:
The naive load balancing scheme (i.e. round robin)
for multipath networks produces TCP bandwidth
close to that of the highest-loss path, despite the
available bandwidth in lower-loss paths.

In summary, varied packet loss rates as well as var-
ied delays on multiple paths could potentially have a

significant impact on TCP congestion window size and
sending bandwidth, even with fast retransmit and selec-
tive ack turned on. Therefore, we were convinced that
there is room for improvement in the flow partitioning
schemes for multipath networks.

3 Dial-controlled hash

We propose a flow partitioning scheme called dial-
controlled hash (DCH) that allows fine grained load
balancing and minimizes path oscillation in multipath
networks. DCH works on a per-hop basis and can be
deployed independently at each router. Given multiple
next hops (or links) to the same destination at a router,
DCH strives to assign packets of the same flow (defined
by source/destination addresses/ports) to the same next
hop, while maintaining load balance across links. As
long as each router along the path preserves the next
hop for each flow, the end-to-end path can be effectively
preserved for the flow. No coordination among routers
is necessary in the per-hop scheme.

3.1 The simple case: two links

Let us first consider the simple case where there are
exactly two links to a destination at a router. For
each packet addressed to the destination, the router first
hashes its flow address (e.g. the tuple � source IP ad-
dress, source port number, destination IP address, des-
tination port number �) to an integer ������� in the range� 	�
�

� ������������� , using a light-weight hash function such
as a universal hash function [1]. Then the router uses a
variable ������������� in the range

� 	�
�

� ��������� �"! to deter-
mine which link to forward the packet to. If �#����� �
�$� �%������� , then the packet goes to link 1; otherwise, it
goes to link 2. This is analogous to a dial labeled with
the range of hash values and a pointer that divides the
dial into two slices, one for each link. See Figure 2.

The value of ������������� is computed periodically or on
demand, based on the load balancing policy in the router
and the measured loads on the two links. The load con-
dition can reflect bandwidth, delay or any other desired
metric. The router keeps track of the recent load on
each link. This involves maintaining a variable per link,
e.g. the exponential weighted moving average (EWMA)
of load, and updating the variable after each packet is
fowarded; such bookkeeping has little space or compu-

4

������������
���������
���������
������������
������������
	�		�	
�

�

������������

�

�
������
���������
���������

������������

������������
���������
���������
������������

������������
���������
���������

��������������������

������ � �

0 4096

Path 2
(Overloaded)
Path 1

0 4096

Path 2
(Balanced)
Path 1

(Underloaded)

hash=525 hash=3277

PacketPacket

(Balanced)

pointer=3070

pointer=1592

Before Dial Adjustment After Dial Adjustment

Figure 2: Dial-controlled hash for two links.

tation overhead. Given the load balancing policy in the
router, the desired load change for each link can be com-
puted. If it exceeds a certain threshold, the pointer will
be adjusted to balance the load. The following is the
pseudocode for adjusting the pointer, given the current
link loads and the desired load changes.

Procedure AdjustPointer(DIAL dial, METRIC load[2],
METRIC dLoad[2])

if dLoad[1] � 0 � dLoad[2] then
link 1 overloaded and link 2 underloaded
INT units = HashUnitsOnThisSide(dial.pointer, 1)
METRIC weight = load[1]/units
INT dUnits[2] = ! dLoad[1]/weight,
dLoad[2]/weight "
INT delta = min(-dUnits[0], dUnits[1], units)
dial.pointer -= delta
dLoad[1] += delta*weight
dLoad[2] -= delta*weight

end if
if dLoad[2] � 0 � dLoad[1] then

link 2 overloaded and link 1 underloaded
do the mirror operation
...

end if
otherwise, pointer is not adjusted

The algorithm basically determines the number of
hash units to move from the overloaded link to the un-
derloaded link, based on the average amount of load in
each unit (“weight”), the desired load change on each
link (“dLoad”), and the maximum possible movement
of the pointer (“units”). It also updates the remaining
desired load changes for future use. (The purpose of
this update will become obvious in Section 3.2.)

The parameter
� ����������� determines the granular-

ity of load balancing, i.e. at least #$&%('*)+%-,/. of the flows
will switch links if the pointer is adjusted. Therefore,� ����������� plays the same role as the number of buck-
ets in the bucket-based hash scheme (Sections 1 and 4).
However, the value of

� � �$� ��� � does not affect the
amount of space required in the router for state main-
tenance, since the router maintains a state per dial (i.e.
�$� �%�������), not per hash unit. The only cost for a large� ����������� value is the number of bits that the hash
function needs to generate for each packet.

Obviously, this DCH scheme has all the desirable
properties (Section 1) for flow partitioning in dualpath
networks.

5

3

4

1

2 2

3

4

1Path

Pointer

Dial

(Overloaded)

(Underloaded)

Path

Pointer

Dial

(Balanced)

(Balanced)

Before Dial Adjustments After Dial Adjustments

Figure 3: Monotonic dial adjustments for multipath networks (with ��� �
links). In the example shown in the

figure, links 1 and 4 are initially overloaded while links 2 and 3 are underloaded. After the dial adjustments, the
pointers on dials ������� � ���	����
 � ��� � ��� � and � � ��
 � are moved closer to links 1 or 4, while the pointers on
dials ����� � � and ���
��
 � remain in the old positions. Therefore, traffic is moved from links 1 and 4 to links 2
and 3 monotonically.

3.2 The general case: multiple links

It is, however, not straightforward to apply the dual-
path version of DCH to general multipath networks. For
��� � � � � links, if we simply divide the range of hashes� 	�
�

� � �$� ��� �$� into � segments with ��� � pointers, we
can no longer guarantee that only a minimal amount of
traffic will switch links when pointers are adjusted. It
can be proved that the amount of traffic that switches
links can be minimized if and only if the changes in link
assignment are monotonic, i.e. each link either gains
traffic or loses traffic, but not both. In the naive exten-
sion to DCH described above, traffic can be moved from
an overloaded link to its two neighbor links only, by
moving two pointers away from the overloaded link. If
the neighbor links become overloaded as a result, other
pointers need to be adjusted, resulting in a cascading ef-
fect. Therefore, more traffic than necessary will have to
switch links.

We observe that, in order to make monotonic changes,
we need to be able to move traffic between any two
links. Therefore, we designed the following hashing
scheme for general multipath networks. We represent
each link as a vertex in space, draw an edge between ev-
ery pair of vertices, and maintain a dial on each edge.
For each packet, we use the high-order bits of its hash

value to assign it to one of the edges, and use the low-
order bits to position it on the corresponding dial. Then
we use the pointer on the corresponding dial to deter-
mine which vertex (or link) to forward the packet to.
Figure 3 illustrates the structure of dials.

At some routers, there might be a large difference in
the capacity of different links to the same destination.
If flows are evenly distributed to edges using high-order
hash bits, then any single link cannot get more than ��
of total flows even if the pointers are all pushed to the
far ends from this link. This problem can be solved by
weighted assignment of flows to edges. Let ��� be the ca-
pacity of link ��� ��� � � � � , and ����� ���� # � � . The
portion of flows that are assigned to the edge between
link � and ! is then "$#&%'"&() �+* #-,/.10 . The assignment can be de-
termined once, and stored in a table with � entries for
repeated lookups. This mechanism, however, is not in-
cluded in the simulations reported in this paper (Section
5), because the link capacity difference in those simula-
tions did not cause such a load balance problem.

Given the current load and desired load change on
each link, we use the following algorithm to determine
the monotonic pointer adjustments.

Procedure AdjustPointers(DIAL dials[n,n], METRIC
load[n], METRIC dLoad[n])

6

for each overloaded link O in ascending order of
dLoad[O] do

LINK SET neighbors = OtherEndsOfDials(dials,
O)
for each underloaded link U in neighbors in
descending order of dLoad[U] do

AdjustPointer(dials[O,U], ! load[O],load[U] " ,
! dLoad[O],dLoad[U] ")

end for
end for

In the version of AdjustPointer() for multiple links,
the variable “units” is calculated as the sum of units on
the near side of the pointers on all dials attached to the
overloaded link.

The algorithm adjusts the dial between an overloaded
link and an underloaded link one at a time, and updates
the remaining desired load changes accordingly. It does
not adjust the dials between overloaded links or between
underloaded links. There is a chance that some adjust-
ment may not be successful because the pointer has al-
ready been pushed to one end. Therefore, the order of
adjustment is significant. We uses a greedy strategy to
maximize the opportunity to move traffic from the most
loaded links to the least loaded ones, i.e. we move traffic
from overloaded links in ascending order of desired load
changes (which are negative), and move traffic to under-
loaded neighbor links in ascending order of desired load
changes (which are positive).

In summary, DCH has the four desirable properties of
a flow partitioning scheme (Section 1):

� It allows traffic to be moved across links for load
balancing by hash unit, which can be made arbi-
trarily small without requiring additional space for
state maintenance.

� It preserves the path for each traffic flow as long as
load balancing permits.

� In case of unbalanced load, it moves traffic only
from overloaded links to underloaded links; there-
fore, the movement is monotonic and path oscilla-
tion is minimized.

� It does not require per-flow state maintenance or
packet tagging.

3.3 Fairness

A potential problem of DCH is unfairness. Flows with
addresses that are hashed to values close to a bad vertex
(e.g. a link with high loss rate) tend to always receive
low quality of service. A simple fix to this problem is to
periodically change the parameters of the hash function
so that flows can be hashed to different links at different
times. However, this will increase path oscillation for
all flows.

We observe that the bandwidth of a TCP connec-
tion will likely be reduced when it switches from a
lower-loss path to a higher-loss path, but not necessar-
ily the other way around. We also observe that a short-
lived connection may be terminated before its conges-
tion window size grows above 1 or before it has a chance
to consume the available network bandwidth. Therefore,
we believe that bandwidth can be overall better utilized
if TCP connections move to lower-loss paths as they age.

We designed a fairness mechanism, called path rota-
tion, based on the observations above. In a router, the �
links for a destination are numbered in descending order
of their long-term average loss rates. Since the long-
term (e.g. daily) average loss rate of a link is reason-
ably stable, we rely on external information, e.g. Ser-
vice Level Agreement (SLA) with the network provider,
or simply network managers’ knowledge, for sorting the
links, rather than attempt to actively measure the loss
rates.

We use the same hashing scheme as described in Sec-
tion 3.2, except that each vertex in the dial structure
no longer corresponds to a fixed link. Instead, the link� � 	 � � � � � for a vertex � � 	 � � � � � is deter-
mined by

� ������������� � , where � is a non-negative in-
teger that increments by 1 at a certain interval 	 . When-
ever � increases, roughly #� of the flows switch from
link � � � (the lowest-loss link) to link 0 (the highest-
loss link), while roughly

� * #� of the flows switch from a
higher-loss link to a lower-loss one.

The interval 	 is assigned a random value between
60 and 90 seconds every time � increments. The 60-90
range is based on the statistics that 81%/84% of TCP
connections last less than 60/90 seconds [8]. This range
can and should be changed for connections with differ-
ent life spans. This way, most TCP connections will
remain in the same path during its life time, but flows
with any addresses have an equal opportunity to use any
path.

7

When the relative loss rates of links change, the map-
ping from vertices to links will change, which will likely
result in path changes for most flows. However, we do
not expect it to have a noticeable impact in practice be-
cause changes in long-term link characteristics are in-
frequent.

3.4 Other issues

In some extreme conditions, the link determined by
DCH may not be able to accept any packets. For exam-
ple, a link can go down, or the traffic hashed to a certain
edge is so bursty that the links on both ends of the edge
are congested. In the cases where a link is temporar-
ily unavailable, we simply redirect the packets from that
link to another one that is available.

In cases where links are permanently added or re-
moved, the dial structure needs to be updated accord-
ingly, e.g. some dials need to be added or removed and
the pointers need to be reset. Although this will cause
most flows to switch paths, we do not expect it to be a
big problem in practice because permanent addition or
removal of links are rare.

4 Bucket-based hash

In this section, we study another hash-based scheme, the
bucket-based hash (BBH), and compares its space and
computation overhead to that of DCH. As introduced in
Section 1, BBH is a fairly straightforward improvement
over a brute-force scheme.

Like DCH, BBH first hashes each packet to an integer
in a given range, using a universal hash function. Un-
like DCH, BBH maps each hash integer to a link by first
mapping it to a bucket and then looking up the bucket in
a table. The table records the assignment of buckets to
links and hence has an entry per bucket. The number of
buckets � needs to be larger than the number of links �
but smaller than the number of flows in order for BBH
to be effective.

The per-packet computation of both DCH and BBH
involves a light-weight hash computation and a lookup
in a data structure, i.e. a dial structure of size

� .) �+* #-,�for DCH and a bucket table of size � for BBH.
In case of unbalanced load, BBH uses the following

algorithm to monotonically move buckets across links,
given the current load and desired load change on each

link.

Procedure MoveBuckets(BUCKET buckets[m],
METRIC load[n], METRIC dLoad[n])

BUCKET SET orphans = empty
for each bucket i do

link = buckets[i].link
if link without bucket i is overloaded then

move bucket i away from link
orphans = orphans � i

end if
end for
for each bucket i in orphans in descending order of
load do

link = LinkWithMostDesiredChange(dLoad)
if link with bucket i is underloaded then

buckets[i].link = link
end if

end for

The computation cost for load rebalancing is
� ��������	� � �
��� � � for BBH and

� � � � � ���	� � � for DCH
(Section 3.2). If � is chosen to be

� � � � � , then the cost
for BBH is

� � ��
�� .
Assume that both DCH and BBH hash each packet

to an integer in the range
� 	�
�

� ��������� �$� in the first

step. DCH can maintain load balance at the granular-
ity of #$&%('*)+%-,/. , at the cost of keeping a dial structure of

size
� .) � * #-,� per destination. If it uses � buckets, where

� � � � � ����������� , BBH can maintain load balance
at the granularity of #� , at the cost of keeping a bucket
table of size � per destination. One can improve the
granularity of DCH by increasing

� � �$� ��� � , without
increasing the space requirement for DCH. However, the
improvement in granularity for BBH, i.e. larger � , al-
ways comes with increased space requirement.

The difference in space requirement of DCH and
BBH is magnified by the number of destinations at a
router, which is often a large number in the real world.
In cases where different destinations have the same set
of next hops, the space requirement for both DCH and
BBH can be reduced by sharing the same dial structure
or bucket table among those destinations.

In summary, with � � � � � � ����������� , BBH
maintains load balance at a coarser granularity than
DCH, but has more computation and space overhead
than DCH.

8

Actual topology

Internediate nodes

Simulated Topology

1Mbps, 80ms, 0%

2Mbps, 120ms, 5%
DestinationSource

1Mbps,40ms,0% 1Mbps,40ms,0%

2Mbps,60ms,5%2Mbps,60ms,0%

Figure 4: Simulating a parallel link with two single links
and an intermediate node in ns-2. The labels on links are
bandwidth, latency and loss rate.

5 Simulations

In this section, we present our simulation results that
help answer the following questions about DCH:

1. How much does the scheme reduce in path oscilla-
tion?

2. How does the reduction in path oscillation, if any,
translate to improvement in end-to-end TCP per-
formance?

3. How does the scheme compare to alternatives, such
as BBH?

4. How does the fairness mechanism (i.e. path rota-
tion) affect the performance of the scheme?

5.1 Common setup

We used ns-2, a well-known network simulator, for our
study. The following settings are common in all the sim-
ulations reported in this paper, including the ones in Sec-
tion 2.2.

We use traffic generators with Pareto On/Off distribu-
tion and the Tahoe implementation [3] of TCP, with one
traffic generator for each TCP connection. The Pareto

Links 1 2 3 4
Bandwidth
(Mbps)

38.4 28.8 19.2 9.6

Latency (ms) 134 112 88 66
Loss rate 8% 6% 4% 2%

Table 2: Configuration of the parallel link topology.

shape parameter is 1.5. The packet size is 1000 bytes.
Each link has a tail-drop queue, with maximum queuing
delay equal to the link latency or the transmission time
of 40 packets, whichever is larger.

We consider the loss rate of a link to be independent
of its bandwidth, because packet loss can be caused by
physical transmission errors, or by congestion on remote
physical segments of a logical link. We use the error
model in ns-2 to simulate packet loss at the given packet
error rates, rather than use queue drops as the sole source
of packet loss.

Since ns-2 does not support parallel links between
nodes, we simulate each parallel link with two single
links and an intermediate node, as illustrated in Fig-
ure 4. We set the queue limit in the intermediate nodes
to be sufficiently high so that they never drop packets.
We have checked all simulation results and verified that
there were no packet drops at the intermediate nodes.
Since the input bandwidth to each intermediate node is
no higher than the output bandwidth at any time, there
is no queuing delay at the intermediate nodes.

5.2 Specific setup

The following settings are specific to the simulations re-
ported in this section.

We simulated DCH and alternatives in two different
configurations: 1) two routers connected by four paral-
lel links, with randomized synthetic workload, and 2)
a corporate intranet that has redundant links between a
subset of its core routers, with traced-based workload.
The following settings are common in both configura-
tions.

Each traffic generator in our simulations has its own
nominal rate, starting and ending times. The starting
and ending times are uniformly randomized in the sim-
ulation duration (with the starting time no later than the
ending time). Redundant links between the same nodes
are assigned varied bandwidth, latency and packet loss
rates. We run the link state routing protocol in ns-2 with

9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8

P
at

h
O

sc
ill

at
io

n
R

at
io

Number of Connections (x128)

"NH"
"BBH"
"DCH"

"DCH-PR"

Figure 5: path oscillation ratio on the parallel link topol-
ogy.

a constant cost of 10 assigned to each link. The rout-
ing protocol produces multiple routes of equal cost, if
available, to each destination.

We compare the following four flow partitioning
schemes:

� Dial-controlled hash (DCH): the scheme pro-
posed in Section 3. For � links, it maintains� .) � * #-,� dials. It hashes each packet with a 16-bit
universal hash function to a position on one of the
dials.

� Dial-controlled hash with path rotation (DCH-
PR): the fairness mechanism described in Section
3.3 is added to DCH.

� Bucket-based hash (BBH): the scheme discussed
in Section 4. For � links, it maintains � � buckets so
that on average � buckets can be assigned to each
link. It hashes each packet with a 16-bit universal
hash function to one of the buckets.

� No hash (NH): a pure load balancing scheme that
forwards each packet to the currently lowest-loss
link that has available bandwidth.

The four schemes above are applied to the same load
balancing policy, a biased load balancing policy. It al-
ways attempts to utilize a lower-loss link up to 95% of
its capacity before it transmits any packets to a higher-
loss link.

We implemented DCH, BBH and NH in a sub class
of multipath classifier (a traffic classification module

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8

S
en

t P
ak

ce
ts

 (
x1

00
00

00
)

Number of Connections (x128)

"DCH-PR"
"DCH"
"BBH"

"NH"

Figure 6: TCP sent packets on the parallel link topology.

that supports multiple routes to the same destination)
in ns-2. We added a few extensions to ns-2 to mea-
sure end-to-end flow metrics (e.g. bandwidth, delay, de-
lay variation, out-of-order packets, estimated round trip
time, etc.) and to record TCP congestion window ac-
tivities (e.g. open, close by timeout, close by duplicate
acks, etc.). We present in this section the path oscilla-
tion counts and sent packet counts in TCP as the main
metrics. When a packet is transmitted on a different path
from the last packet in the same connection, we count it
as a path oscillation. A sent packet in TCP is one that is
sent to the network by a TCP agent, not one generated
by the application or traffic generator.

5.3 Results on parallel links

We first run a set of simulations on a simple topology in
which two routers are connected by four parallel links.
Table 2 shows the parameters in configuration. Work-
load on this topology is a variable number of traffic
generators with nominal rates between 160 Kbps and 6
Mbps.

Figure 5 shows the total path oscillation counts in all
connections, divided by the total number of sent packets
in TCP. Both DCH and DCH-PR have very low (� 0.02)
path oscillation ratio, regardless of the workload. BBH
and NH have 2-18 times and 13-37 times higher path
oscillation ratios than the DCH schemes, respectively.

The path oscillation ratio increases with the workload
(i.e. number of connections) in both NH and BBH. With
more traffic, more links are pushed to their capacity lim-
its and cause workload to be rebalanced more frequently.

10

5Mbps, 244ms 12Mbps, 160ms

80ms 44ms 41ms
20Mbps

40ms
2.5Mbps

12Mbps, 88ms4Mbps, 108ms 1Mbps, 64ms

2.5Mbps 15Mbps

Legend

Core router
Low−loss link
High−loss link

Figure 7: Topology of a corporate intranet. For each
redundant link pair, the bandwidth and latency labels are
the total bandwidth and average latency of the two links,
respectively.

The difference between BBH and DCH comes from the
frequent redirections that BBH experiences. The redi-
rection in BBH is similar to that in DCH (Section 3.4).
In BBH, an entire bucket of connections (roughly ##�� of
total traffic in this case) must be moved from its old link
to a new one in order to rebalance the load; if the bucket
to be moved contains so much traffic that it will overload
the new link, BBH takes the conservative measure by
leaving it with the old link. When the queuing buffer for
the old link is filled, BBH temporarily redirects packets
to other links without changing the bucket assignment.
In DCH and DCH-PR, traffic can be moved in the gran-
ularity of hash unit (roughly #�����

�
in this case); therefore,

load balance can be maintained more precisely.

Figure 6 shows the total number of sent packets in
each scheme. Both DCH and DCH-PR improve TCP
sending bandwidth over BBH by up to 15% and over NH
by up to 20%. The improvement by the DCH schemes
becomes more significant as the number of connections
increases.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

P
at

h
O

sc
ill

at
io

n
R

at
io

Bandwidth Fraction on Higher-Loss Link

"BBH"
"DCH"

"DCH-PR"
"NH"

Figure 8: path oscillation ratio on the corporate intranet.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

S
en

t P
ak

ce
ts

 (
x1

00
00

00
)

Bandwidth Fraction on Higher-Loss Links

"BBH"
"DCH"

"DCH-PR"
"NH"

Figure 9: Sent packets on the corporate intranet.

5.4 Results on a corporate intranet

We simulated the same schemes on a corporate intranet1

to answer a “what-if” question for the corporate network
planning: what improvement on price-performance ratio
can a company achieve if it adopts a cost saving strat-
egy in which it purchases bandwidth from a cheaper but
lower-quality provider (such as virtual private networks
over the Internet) and uses it in addition to a more ex-
pensive and reliable network (such as leased lines and
ATM links)?

Figure 7 shows the high level topology of the cor-
porate intranet. For each redundant link pair, we vary
the portion of total bandwidth that is purchased in the
higher-loss network (presumably at a lower price) and
measure the impact of such variation on TCP perfor-

1The details on the intranet topology and traffic traces in this
paper are limited for confidentiality reasons.

11

mance. The following parameters are artificially set in
the “what-if” simulations and do not necessarily reflect
their actual values. The latency of the lower-loss link
in a pair is set to the average latency times 0.8, while
the latency of the higher-loss one is set to average times
1.2. The packet loss rate of each single or lower-loss
link is set to its latency (in ms) divided by 50, while the
loss rate of each higher-loss link is set to its latency di-
vided by 12.5, i.e. roughly 4 times more than that of
the other link in the same pair. Therefore, the simula-
tion results are intended to reflect what would happen if
the company adopted such a cost saving strategy, rather
than what happens in the actual corporate network that
the company is using.

The workload in this set of simulations is based on an
hour worth of actual traffic on the intranet, reported by
a network monitoring tool called “NetScout”. NetScout
RMON2 probes are installed on selected locations of the
intranet and monitor traffic that goes through their loca-
tions. The reports we use for the simulations have an en-
try for each traffic flow in the following format: � source
IP address - destination IP address, maximum in rate
(bps), maximum out rate (bps), in bytes, out bytes, to-
tal bytes � . The terms “in” and “out” refer to the traffic
directions between the source and destination.

Since the flows in the reports are classified by IP ad-
dresses, but not port numbers, we expect that each flow
contains one or more TCP connections. (Statistics show
that TCP accounts for the majority of traffic. Therefore,
we ignore non-TCP traffic in the simulations.) In the
simulations, we made a simplified approximation of the
TCP traffic by creating 4 Pareto traffic generator of the
same nominal rate over TCP connections for each flow
in the NetScout reports. We need to set the nominal rate
of each traffic generator to the rate at which the appli-
cation wishes to send data. However, the rates in the
NetScout reports are the actual rates, which are a result
of the TCP congestion control mechanism. Therefore,
we scale the recorded rates with a sufficiently large fac-
tor (2 to 32) and use the scaled rates as the nominal rates
instead. We show the results with the scale factor 16 in
this paper. The final workload in the simulations is 692
TCP connections with nominal rates between 1 Kbps
and 10 Mbps, including 528 connections that traverse
at least one redundant link pair.

Figure 8 shows the average path oscillation ratio of
the TCP connections as a function of the fraction of
bandwidth on higher-loss links. Figure 9 shows the total

number of sent packets in TCP. In these two figures, the
164 TCP connections that do not traverse any redundant
link pairs are excluded, since they are not affected by the
higher-loss link bandwidth variation or by the flow par-
titioning schemes. They are included in the simulations,
however, to generate a more realistic workload.

The path oscillation ratios of both NH and BBH first
increase as a larger portion of the bandwidth is pur-
chased on the higher-loss link, and start to decrease
when the TCP sending bandwidth drops below a thresh-
old. Below that threshold, the majority of traffic goes
to the lower-loss links and leaves most higher-loss links
idle. This behavior has an interesting consequence:
without a good flow partitioning scheme for multi-
path networks, there is an upper limit on how much a
company can save by purchasing more bandwidth on
cheaper, lower-quality networks; beyond that limit, the
TCP performance will be nearly as low as if no band-
width were purchased at all on the lower-quality net-
works.

On the other hand, with the DCH schemes, TCP
performance degrades more gracefully with increased
bandwidth fraction on less expensive links. Both DCH
and DCH-PR reduce path oscillation ratio by a factor of
1.6-3.2 over BBH and by a factor of 3-13 over NH. The
DCH schemes improve TCP sending bandwidth over
BBH by up to 13% and over NH by up to 66%.

5.5 Discussions

During our simulations, we also learned some limita-
tions about DCH and about dynamic flow partitioning
schemes in general. While DCH performs better than
alternatives in all of our simulations, its improvement is
marginal or negligible in the following cases:

� If the network resource is over provisioned, a static
partitioning scheme can work just fine.

� Static partitioning can also work well for work-
loads that have constant sending rate per flow.

� For applications with such a small sending rate that
they do not need a TCP congestion window size
larger than 1, a (biased) load balancing scheme can
work reasonably well.

� If the number of flows is no greater than the number
of links, hash-based schemes would not help.

12

� If all links are highly lossy, then none of the sim-
ulated schemes can make any difference, because
TCP will always be in the slow start mode with a
window size close to 1.

On the other hand, the application of DCH does not
need to be restricted to flow partitioning in multipath
networks. In fact, it can be applied (with certain ex-
tensions) in many contexts that require a dynamic par-
titioning of objects and desire minimal changes when a
re-partitioning is necessary. For example, we expect it
to be useful in content distribution networks and peer-
to-peer information sharing systems as well.

The bandwidth difference in DCH and BBH is less
than dramatic in the simulations reported in this paper.
However, this should be viewed with the awareness that
BBH in those simulations has roughly twice of the space
requirement and three times of the computation over-
head of DCH (Section 4).

6 Related work

Multipath routing, also called alternate-path routing,
which generates multiple paths from a router to a des-
tination, has gained increasing attention as traffic on the
wide area networks exhibits growing and dynamically
changing demand [12] [11] [10]. Multipath routing can
potentially improve the utilization of network resources
by load balancing. DCH, or dynamic flow partitioning
schemes in general, work on a different aspect of mul-
tipath networking: given the routes generated by a mul-
tipath routing protocol, a partitioning scheme like DCH
determines the next hop for each packet at each router
independently. The goal of DCH is to best utilize the
bandwidth made available by the multipath routing pro-
tocols.

Traffic dispersion [2] is a different way of utilizing
multiple routes, often on a different network layer (e.g.
ATM networks vs. IP networks). Like DCH, it makes a
route selection per packet or per batch of packets. Un-
like DCH, it intentionally spreads packets (of the same
flow) across multiple disjoint paths for load balance or
redundancy purposes. It typically uses a buffer at the re-
ceiver that resequences out-of-order packets, which re-
quires additional buffer space and increases packet de-
lay. In redundant dispersion, it is possible to reconstruct
out-of-order packets using an error-correcting code, at
the expense of consuming more network bandwidth.

In the LIRA network [9], each TCP connection is
bound to a fixed path at establishment time and pack-
ets are tagged with the encoded hops in the fixed path at
the source router. It requires per-flow state maintenance
at edge routers. It binds a new flow based on the selec-
tion probability of each path, and never changes its path
once a flow is bound. It makes constant adjustment to
path selection probabilities in case of unbalanced load.
In contrast, DCH does not maintain per-flow state, is
more flexible in route selection, and makes more adap-
tive adjustments for load balancing.

A consistent hash function [4] is one that changes
minimally as the range of hash values changes. Both
consistent hash and DCH have the property of mono-
tonic changes. However, consistent hash was designed
to accommodate the dynamically changing hash range,
such as the instances of content distribution servers on
the Internet, while DCH is designed to accommodate the
dynamically changing workload. In case of permanent
addition or removal of links (which are rare in practice),
the changes in DCH may not be monotonic. On the other
hand, consistent hash is not directly applicable to a dy-
namically changing workload because it assumes that
load is evenly distributed across hash units or buckets.

7 Conclusions

We quantitatively studied the impact of path oscillation
on TCP performance. In addition to the well-known ef-
fects of out-of-order delivery, we observed that varied
packet loss rates on multiple paths also have a significant
impact on TCP bandwidth. TCP bandwidth on multiple
paths with lossy links is close to that on the highest-
loss path, despite the available bandwidth in lower-loss
paths.

We designed a new flow partitioning scheme for
multipath networks, called dial-controlled hash (DCH).
DCH has the following properties: it preserves the path
for each traffic flow as long as load balancing permits;
in case of unbalanced load, it moves traffic from over-
loaded paths to underloaded paths in fine granularity and
in a monotonic fashion; and it does not require per-flow
state maintenance or packet tagging. We also designed a
path rotation (PR) mechanism that works with DCH and
ensures fairness among flows with various addresses or
hash values.

We evaluated DCH with path rotation turned on and

13

off in two sets of simulation studies, a parallel link topol-
ogy with randomized synthetic workload and a corpo-
rate intranet with trace-based workload. We compared
DCH to two alternatives, a bucket-based hashing (BBH)
scheme that has higher space and computation overhead
than DCH, and a non-hashing, pure load balancing (NH)
scheme. DCH reduces path oscillation by a factor of 1.6-
18 compared to BBH and by a factor of 3-37 compared
to NH. It improves TCP bandwidth over BBH by up to
15% and over NH by up to 66%. DCH reduces path
oscillation more effectively than BBH because DCH is
able to move traffic across paths in smaller unit. In all
simulations, path rotation did not have any noticeable
negative impact on TCP bandwidth.

Our simulations on the corporate intranet also have an
interesting implication to how much one can save by us-
ing lower-quality networks in combination with higher-
quality ones: without a good flow partitioning scheme,
the TCP performance on a multipath network with a
fraction of lower-quality bandwidth exceeding a certain
threshold will be nearly as low as if no bandwidth were
purchased at all on the lower-quality networks.

We conclude that dial-controlled hash makes it fea-
sible to dynamically partition traffic flows in multipath
networks, which requires less human intervention and
achieves better resource utilization than static partition-
ing.

References

[1] J. L. Carter and M. N. Wegman. Universal classes
of hash functions. In Journal of Computer and Sys-
tem Sciences 18, 1979.

[2] E. Gustafsson and G. Karlsson. A literature survey
on traffic dispersion. IEEE Network, March/April
1997.

[3] V Jaccobson. Congestion avoidance and control.
In Proceedings of ACM SIGCOMM, August 1988.

[4] D. Karger, E. Lehman, T. Leighton, M. Levine,
D. Lewin, and R. Panigrahy. Consistent hashing
and random trees: Distributed caching protocols
for relieving hot spots on the world wide web. In
Proceedings of the 29th ACM Symposium on The-
ory of Computing, May 1997.

[5] S. Knight, D. Weaver, D. Whipple, R. Hinden,
D. Mitzel, P. Hunt, P. Higginson, M. Shand, and
A. Lindem. Virtual router redundancy protocol.
Technical Report RFC-2338, IETF, April 1998.

[6] T. Li, B. Cole, P. Morton, and D. Li. Cisco hot
standby router protocol (hsrp). Technical Report
RFC-2281, IETF, March 1998.

[7] M. Mathis, J. Mahdavi, S. Floyd, and A. Ro-
manow. Tcp selective acknowledgment options.
Technical Report RFC-2018, DDN Network Infor-
mation Center, Octobor 1995.

[8] V. Paxson and S. Floyd. Wide-area traffic: The
failure of poisson modeling. IEEE/ACM Transac-
tions on Networking, (3), June 1995.

[9] I. Stoca and H. Zhang. Lira: An approach for ser-
vice differentiation in the internet. In NOSSDAV,
1998.

[10] X. Su and G. de Veciana. Dynamic multi-path rout-
ing: Asymptotic approximation and simulations.
In Proceedings of ACM SIGMETRICS, June 2001.

[11] Z. Wang and J. Crowcroft. Shortest path first with
emergency exits. In Proceedings of ACM SIG-
COMM, August 1990.

[12] W. T. Zaumen and J. J. Garcia-Luna-Aceves.
Loop-free multipath routing using generalized dif-
fusing computations. In Proceedings of IEEE IN-
FOCOM, March 1998.

14

