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Abstract

We derive bounds on the probability that the L1 distance between the empirical distri-
bution of a sequence of independent identically distributed random variables and the true
distribution is more than a specified value. We also derive a generalization of Pinsker’s
inequality relating the L1 distance to the divergence.
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1 Preliminaries

Let A denote the finite set {1, . . . , a}. For two probability distributions P and Q on A let

‖P −Q‖1 =
a∑

k=1

|P (k)−Q(k)|

denote the variational, or L1, distance between P and Q. For a sequence of symbols xm =

x1, . . . , xm ∈ Am, let P̂xm be the empirical probability distribution on A defined by

P̂xm(j) =
1

m

m∑
i=1

1(xi = j), (1)
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where 1(·) denotes the indicator function of the specified event.

For probability distributions P and Q on A, let

D(P‖Q) =
a∑

k=1

P (k) log
P (k)

Q(k)
(2)

denote the divergence between P and Q, where throughout log(·) denotes the natural logarithm.

For 0 ≤ p1, p2 ≤ 1 let

DB(p1‖p2) = p1 log
p1

p2

+ (1− p1) log
1− p1

1− p2

(3)

denote the binary divergence, whereas for (p1, p2) /∈ [0, 1]2 we set DB(p1‖p2) = ∞.

The following conventions implied by continuity are adopted: for c > 0, c/0 = ∞, c/∞ = 0,

c∞ = ∞, log∞ = ∞, e−∞ = 0. Additionally, in (2) and (3) it is assumed that 0 log(0/0) = 0

and 0 log 0 = 0.

For p ∈ [0, 1/2), we define

ϕ(p) =
1

1− 2p
log

1− p

p
(4)

and, by continuity, set ϕ(1/2) = 2.

For a probability distribution P on A, we define

πP = max
A⊆A

min(P (A), 1− P (A)). (5)

Note that πP ≤ 1/2 for any P .

Finally, throughout we take the minimum of a function over an empty set to be ∞.

2 Results

In this work, we prove the following theorem on the probability that the L1 distance between

the empirical distribution of a sequence of independent identically distributed random variables

and the true distribution is more than a specified value.

Theorem 2.1 Let P be a probability distribution on the set A = {1, . . . , a}. Let Xm =

X1, X2, ..., Xm be independent identically distributed random variables distributed according to
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P . Then, for all ε > 0,

− lim
m→∞

1

m
log Pr(‖P − P̂Xm‖1 ≥ ε) = min

A⊆A
DB

(
P (A) +

ε

2

∥∥∥ P (A)
)

. (6)

Additionally,

Pr(‖P − P̂Xm‖1 ≥ ε) ≤ (2a − 2)e−m[minA⊆A DB(P (A)+ε/2‖P (A))] (7)

≤ (2a − 2)e−mϕ(πP )ε2/4. (8)

We also strengthen Pinsker’s inequality ([3], Problem 3.17; [2], Lemma 12.6.1), relating the

L1 distance to the divergence, as follows.

Theorem 2.2 Let P and Q be two probability distributions on the set A = {1, . . . , a}. Then

‖P −Q‖1 ≤ 2

√
D(P‖Q)

ϕ(πQ)
. (9)

Theorems 2.1 and 2.2 are discussed in Section 3 and proved in Section 4.

3 Discussion

Pinkser’s inequality states that

‖P −Q‖1 ≤
√

2D(P‖Q). (10)

Theorem 2.2 strengthens (10) since, by Proposition 4.3 below, ϕ(πQ) ≥ 2 with equality if and

only if πQ = 1/2.

The method-of-types argument underlying the proof of Sanov’s Theorem ([2], Theorem

12.4.1), and Pinsker’s inequality, can be used to directly derive the well-known bound for the

L1 norm

Pr(‖P − P̂Xm‖1 ≥ ε) ≤ (n + 1)a−1e−m[minP ′:‖P ′−P‖1≥ε D(P ′‖P )] (11)

≤ (n + 1)a−1e−mε2/2. (12)

It follows from Sanov’s Theorem and (6) in Theorem 2.1 that the exponent in (11) is the same

as in (7). A minor advantage of (7) is the improved factor multiplying the exponential decay,
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i.e., it avoids the polynomial factor of (11).1 In comparing (8) and (12), we see that (8) not only

retains the improved factor multiplying the exponential decay, but, more importantly, may also

have a faster exponential decay. Again, this follows from the fact that ϕ(πP ) ≥ 2 with equality

if and only if πP = 1/2 (Proposition 4.3).

One may wonder why weakening (7) to (8) is useful at all. In many situations, the com-

plicated dependence on ε of the exponent in (7) leads to an intractable analysis. The usual

simplifying step involves applying the Pinsker, Hoeffding, or Bernstein inequalities (see, e.g.,

[1]). The Pinsker and Hoeffding inequalities have the disadvantage of dropping the dependence

on the underlying distribution by assuming a worst case behavior. Bernstein’s inequality, on

the other hand, is useful only for small ε. The bound (8) avoids these disadvantages by scal-

ing the ε2 form of the exponents of the Hoeffding and Pinsker approaches with the optimum

distribution-dependent factor.

One concrete application of this tool is in the proof of Theorem 2 of [4], in which numerous

bounds on Pr(‖P − P̂Xm‖1 ≥ ε) for different P ’s and ε’s must be aggregated through a series

of union bounds and optimizations over the constituent ε’s. The complicated dependence on

ε of the exponent in (7) makes the aggregation of bounds of this form prohibitively complex.

The simpler exponent of (8), on the other hand, leads to a tractable analysis. The presence of

ϕ(πP ) in the exponent of (8) allows the final aggregated exponent to retain a dependence on

the constituent distributions P (unlike (11)), which in [4] correspond to the per input channel

output probabilities of a discrete memoryless channel.

It should be noticed that other refinements of Pinsker’s inequality considered in the literature

(see [5], [6, Corollary 1.4], and references therein) are still independent of the underlying distri-

bution. Rather, the idea is to add higher powers of ‖P − Q‖1 to the lower bound on D(P‖Q)

(e.g., one such result states that D(P‖Q) ≥ (1/2)‖P −Q‖2
1 + (1/36)‖P −Q‖4

1).

1In the binary case, the Chernoff bounding technique, as opposed to the method-of-types, also yields the
multiplicative factor of (7). In fact, the arguments behind our proof of (7) can be viewed as extending the
Chernoff bounding technique to the non-binary case.
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4 Proofs of main theorems

The proofs of Theorems 2.1 and 2.2 will make use of the following four propositions, which are

proved in Appendix A.

Proposition 4.1 For p ∈ [0, 1/2], DB(p + ε‖p) ≤ DB(1− p + ε‖1− p).

Proposition 4.2 For p ∈ [0, 1/2]

inf
ε∈(0,1−p]

DB(p + ε‖p)

ε2
= ϕ(p).

Proposition 4.3 The function ϕ(p) is strictly decreasing for p ∈ [0, 1/2].

Proposition 4.4 For all distributions Q on A = {1, . . . , a},

min
P ′:‖P ′−Q‖1≥ε

D(P ′‖Q) = min
A⊆A

DB

(
Q(A) +

ε

2

∥∥∥ Q(A)
)

.

Proof of Theorem 2.1: By Sanov’s Theorem (cf., e.g., Equation (12.96) of Theorem 12.4.1 in

[2]),

− lim
m→∞

1

m
log Pr(‖P − P̂Xm‖1 ≥ ε) = min

P ′:‖P ′−P‖1≥ε
D(P ′‖P )

= min
A⊆A

DB

(
P (A) +

ε

2

∥∥∥ P (A)
)

, (13)

where (13) follows from Proposition 4.4, proving (6).

To prove (7) and (8), we start with the well-known fact that for any distribution Q on A

‖Q− P‖1 = 2 max
A⊆A

(Q(A)− P (A)), (14)

which, together with a union bound, implies that

Pr
(
‖P̂Xm − P‖1 ≥ ε

)
≤
∑
A⊆A

Pr
(
P̂Xm(A)− P (A) ≥ ε

2

)
. (15)
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For ε > 0 and A = A, ∅, clearly Pr(P̂Xm(A)−P (A) ≥ ε/2) = 0. For the other subsets of A, the

standard Chernoff bounding technique applied to the binary random variable 1(Xi ∈ A) shows

that

Pr
(
P̂Xm(A)− P (A) ≥ ε

2

)
≤ e−mDB(P (A)+ε/2‖P (A)). (16)

Combining (16) with (15) results in

Pr
(
‖P̂Xm − P‖1 ≥ ε

)
≤

∑
A⊂A:A6=A,∅

e−mDB(P (A)+ε/2‖P (A))

≤ (2a − 2)e−m[minA⊆A DB(P (A)+ε/2‖P (A))],

proving (7).

Now,

min
A⊆A

DB

(
P (A) +

ε

2

∥∥∥ P (A)
)

= min
A⊆A

DB

(
min(P (A), 1− P (A)) +

ε

2

∥∥∥ min(P (A), 1− P (A))
)

(17)

≥ minA⊆A ϕ(min(P (A), 1− P (A)))ε2

4
(18)

=
ϕ(πP )ε2

4
, (19)

where (17), (18), and (19) follow, respectively, from Proposition 4.1, Proposition 4.2 (the case

ε/2 > 1 − min(P (A), 1 − P (A)) follows by our conventions), and Proposition 4.3 and (5),

completing the proof of (8).

Proof of Theorem 2.2: We have

D(P‖Q) ≥ min
P ′:‖P ′−Q‖1≥‖P−Q‖1

D(P ′‖Q)

= min
A⊆A

DB

(
Q(A) +

‖P −Q‖1

2

∥∥∥∥∥ Q(A)

)
(20)

≥ ϕ(πQ)‖P −Q‖2
1

4
, (21)

where (20) follows from Proposition 4.4 and (21) follows from Propositions 4.1, 4.2, and 4.3, as in

equations (17) through (19) in the proof of Theorem 2.1. The proof is completed by rearranging

terms.
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Appendix

A Proofs of propositions

Proof of Proposition 4.1: If p < ε, the result holds by the conventions supporting the defini-

tion (3). For p ≥ ε, let

f(p, ε) = DB(p + ε‖p)−DB(1− p + ε‖1− p).

We show that f(p, ε) ≤ 0 for p ∈ [ε, 1/2] by showing below that ∂f/∂p|p=1/2 ≥ 0 and ∂2f/∂p2 ≤ 0

for p ∈ (ε, 1/2]. The claim then follows for p ∈ (ε, 1/2] since f(1/2, ε) = 0. The claim for p = ε

follows by continuity.

By definition,

f(p, ε) = (p + ε) log
p + ε

p
+ (1− p− ε) log

1− p− ε

1− p

−(1− p + ε) log
1− p + ε

1− p
− (p− ε) log

p− ε

p
.

Differentiating we obtain

∂f

∂p
= log(p + ε)− log(1− p− ε) + log(1− p + ε)− log(p− ε)− 2ε

p
− 2ε

1− p
, (A.1)

and

∂2f

∂p2
=

1

p + ε
− 1

p− ε
− 1

1− p + ε
+

1

1− p− ε
+

2ε

p2
− 2ε

(1− p)2

= 2ε

[
− 1

p2 − ε2
+

1

(1− p)2 − ε2
+

1

p2
− 1

(1− p)2

]
= 2ε

(
(1− p)2 − p2

) [ 1

p2(1− p)2
− 1

(p2 − ε2)((1− p)2 − ε2)

]
. (A.2)

From (A.2) we see that ∂2p/∂f 2 ≤ 0 for p ∈ (ε, 1/2], as claimed above, since x(1 − x) is

non-decreasing for x ∈ [0, 1/2].

From (A.1) we have

∂f

∂p

∣∣∣
p=1/2

= 2 log(1 + 2ε)− 2 log(1− 2ε)− 8ε
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so that ∂f/∂p|p=1/2,ε=0 = 0. Differentiating with respect to ε we have

∂2f

∂ε∂p

∣∣∣
p=1/2

=
4

1 + 2ε
+

4

1− 2ε
− 8

=
8

1− 4ε2
− 8,

which is non-negative for ε ∈ [0, 1/2). This implies that ∂f/∂p|p=1/2 ≥ 0 for all ε ∈ [0, 1/2),

again, as claimed above.

Proof of Proposition 4.2: For a given p ∈ [0, 1/2], consider the function

f(ε) = DB(p + ε‖p)− ϕ(p)ε2

= (p + ε) log
p + ε

p
+ (1− p− ε) log

1− p− ε

1− p
− ε2

1− 2p
log

1− p

p
.

Let f ′(ε) be the derivative of f(ε). We will show below that:

1. f ′(ε) ≥ 0 for ε ∈ [0, 1/2− p].

2. f ′(ε) ≤ 0 for ε ∈ [1/2− p, 1− 2p].

3. f ′(ε) ≥ 0 for ε ∈ [1− 2p, 1− p].

The first property of f ′(ε) and f(0) = 0, together, imply that f(ε) ≥ 0 for ε ∈ [0, 1/2 − p].

Similarly, properties 2 and 3 and the readily verified f(1 − 2p) = 0 imply that f(ε) ≥ 0 for

[1/2− p, 1− p]. Thus, f(ε) ≥ 0 with equality at ε = 1− 2p, which proves the proposition.

We now verify the above properties 1-3 of f ′(ε). Let

g(ε)
4
= f ′(ε) = log

p + ε

p
− log

1− p− ε

1− p
− 2ε

1− 2p
log

1− p

p
.

After differentiating we have

g′(ε) =
1

p + ε
+

1

1− p− ε
− 2ϕ(p)

and

g′′(ε) = − 1

(p + ε)2
+

1

(1− p− ε)2
,

from which we see that g′′(ε) ≤ 0 for ε ∈ [0, 1/2− p] and g′′(ε) ≥ 0 for ε ∈ [1/2− p, 1− p]. Thus,

g(ε) is concave for ε ∈ [0, 1/2 − p], which, together with the fact that g(0) = g(1/2 − p) = 0,
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implies Property 1 above. Analogously, properties 2 and 3 follow from the convexity of g(ε) for

ε ∈ [1/2− p, 1− p] and the fact that g(1/2− p) = g(1− 2p) = 0.

Proof of Proposition 4.3: Differentiating ϕ(p) (see (4)) with respect to p yields

ϕ′(p) =
1

(1− 2p)2

[
−1− 2p

1− p
− 1− 2p

p
+ 2 log

1− p

p

]
.

Thus, to show that ϕ′(p) < 0 for p ∈ (0, 1/2), it suffices to show that

g(p)
4
= −1− 2p

1− p
− 1− 2p

p
+ 2 log

1− p

p
< 0.

To this end, note that g(1/2) = 0 and that the derivative of g(p) is

g′(p) = −−2(1− p) + (1− 2p)

(1− p)2
− −2p− (1− 2p)

p2
− 2

1− p
− 2

p

=
1

(1− p)2
+

1

p2
− 2

(1− p)p

=

[
1

1− p
− 1

p

]2

.

In particular, g′(p) > 0 for p 6= 1/2. Continuity arguments complete the proof for p = 1/2 and

p = 0.

Proof of Proposition 4.4: The argument is similar to a step in the proof of Pinsker’s inequality

([3], Problem 3.17; [2], Lemma 12.6.1). For distributions P and Q on A let A(P, Q) = {a ∈ A :

P (a) ≥ Q(a)}. It is then not difficult to see that

‖P −Q‖1 = 2(P (A(P, Q))−Q(A(P, Q))). (A.3)

Therefore

min
P ′:‖P ′−Q‖1≥ε

D(P ′‖Q)

= min
A⊆A

[
min

P ′:‖P ′−Q‖1≥ε,A(P ′,Q)=A
D(P ′‖Q)

]
≥ min

A⊆A

[
min

P ′:‖P ′−Q‖1≥ε,A(P ′,Q)=A
DB(P ′(A)‖Q(A))

]
(A.4)

= min
A⊆A

[
min

P ′:P ′(A)−Q(A)≥ε/2,A(P ′,Q)=A
DB(Q(A) + P ′(A)−Q(A)‖Q(A))

]
(A.5)

= min
A⊆A

DB

(
Q(A) +

ε

2

∥∥∥ Q(A)
)

, (A.6)
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where (A.4) follows from the data processing inequality ([3], Lemma 3.11), (A.5) follows from

(A.3), and (A.6) follows from the fact that DB(p‖q) is non-decreasing in p for p ≥ q, continuity,

and, in the event that the set in (A.5) is empty, from our conventions.

The reverse inequality follows by letting

A∗ = arg min
A⊆A

DB

(
Q(A) +

ε

2

∥∥∥ Q(A)
)

.

If Q(A∗) + ε/2 > 1 then DB(Q(A∗) + ε/2‖Q(A∗)) = ∞, in which case the reverse inequality is

trivial. If Q(A∗) + ε/2 ≤ 1, define the distribution P ∗ as

P ∗(k) =

{
(Q(A∗)+ε/2)Q(k)

Q(A∗)
for k ∈ A∗

(1−Q(A∗)−ε/2)Q(k)
1−Q(A∗)

for k ∈ A \ A∗,

and check that D(P ∗‖Q) = DB(Q(A∗) + ε/2‖Q(A∗)) and ‖P ∗ −Q‖1 = ε.
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