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1 Introduction

In a finite-memory process, the conditional probability assigned to the next emitted symbol, given all

the past, depends only on a finite number m of contiguous past observations. This class of processes can

be parametrized with a Markov model of order m, but since for practical data the actual memory length

often varies from location to location, such parametrizations can be very inefficient. The number of

model parameters, which grows exponentially with m in a Markov model, can be dramatically reduced

by lumping together equivalent states (i.e., m-vectors) that yield identical conditional distributions.

In lossless coding, for example, this reduction can improve the rate at which the average length of a

universal code can converge to the entropy for most parameter values, as Rissanen’s lower bound [1,

Theorem 1] on this average includes a model cost term proportional to the number of parameters. The

reduced models, first considered in [2], were termed tree models in [3], since they can be represented

with a simple tree structure. Roughly speaking, a tree model consists of a full α-ary context tree,1

where α is the size of the source alphabet, and a set of conditional probability distributions on the

alphabet, one associated with each leaf of the tree (the states). Tree models have also been adopted as

data models in statistics (being referred also as variable length Markov chains [4] in the literature). The

appeal of this class of models is two-fold: on one hand, it appears to efficiently capture redundancies

typical of real life data (e.g., text or images), while on the other hand the models in the class can be

optimally estimated using the Context algorithm in its various flavors, e.g. [2, 3, 5]. Moreover, the

Context Tree Weighting (CTW) algorithm [6, 7] produces a sequential probability assignment which is

a two-stage mixture of all models in the class. The appeal of such two-stage mixtures was first observed

in [8], leading in the lossless data compression application to a coding scheme which is universal also

in the setting of individual sequences.

In this work, we investigate various representations of finite-memory processes, as well as supporting

data structures and their impact on the computational complexity of the algorithms in which they

are applied. In contrast to this algorithmic approach, most of the discussion of tree models in the

information-theoretic literature has focused on the redundancy aspects of their universal modeling and

coding, be it with the “plug-in” type of approach of the Context algorithm [2, 9, 3], with the mixture

approach of the CTW algorithm [6, 7], or with the two-pass approach outlined in [10] for countable

“hierarchies” of models. One major application of our results is an algorithm that implements, in

linear encoding/decoding time, a classical universal code derived from the latter approach. Since this

application highlights the importance of data structures in the analysis of tree models, we next discuss

in more detail the literature on universal lossless coding for these models, as well as other popular,

non-universal coding schemes that also employ tree models.

The redundancy of universal lossless codes for tree models is analyzed in the framework of double

universality [10, 11], in which it is shown that for any tree model with K free parameters, the normalized

excess code length given by these codes on sequences of length n, over the empirical entropy determined

by the model, is at most (K log n)/(2n)+O(K/n), for any K. This upper bound holds for any individual

sequence with the mixture and two-pass approaches, or in the average (i.e., when the reference model

is assumed to have indeed produced the data) with the plug-in approach. Thus, optimality for most

1We say that an α-ary tree T is full if every internal node of T has exactly α children; T is full balanced if it is full

and all its leaves are at the same depth.
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parameter values and any model size in a probabilistic setting follows from Rissanen’s lower bound [1]

(see [12] for a notion of optimality for “most” sequences in a deterministic setting). In some works,

a bound on the value of K is assumed [9, 5, 6]; this assumption is removed from the analysis in [3]

for the plug-in approach, and in [7] for the mixture approach (see also [12] for a broader model class).

Since much of the emphasis is on sequentiality, the two-pass approach of [10], in which the best model

structure in a hierarchy (e.g., a tree) is estimated and described to the decoder in a first pass, and then

the data is encoded in a second pass with a universal code for the above best model structure, has

not received much attention. In [13], this approach is termed “semi-predictive” for the case in which

the universal code used for a given model structure is sequential. The semi-predictive approach for

the class of tree models (see, e.g., [5, 14]), competes with CTW (as, with an appropriate probability

assignment [15], they both achieve double universality for individual sequences), but it is redundant

in the sense that once the best tree is described, coding space is still allocated to sequences for which

this tree is not optimal. The mixing approach overcomes this intrinsic redundancy, and is therefore

preferred in theory, although the per-symbol difference in code length is clearly of order O(K̂/n), where

K̂ denotes the number of leaves in the tree that yields the shortest code in the second pass.2

A major advantage of tree models (over, e.g., models based on general finite-state machines) is

that the statistical information needed to implement the above schemes can be stored in a context

tree, which is grown as the sequence is observed, recording essentially all the occurrences of each letter

in every context. The manner in which context trees are employed depends on the coding approach.

With the plug-in approach, a “distinguished” coding context is sequentially selected for each symbol

to be coded (context selection rule), and the coding distribution is conditioned on this context. With

the semi-predictive approach, the context tree is “pruned” to minimize code length [5], and described

to the decoder in a first pass through the data. In a second pass, again, each symbol is assigned

a conditional probability sequentially, conditioned on the coding context determined by the pruned

tree (which is used as a state). This assignment, in turn, is used for, e.g., arithmetic coding. With

the mixing approach, the probability assignment is a mixture of assignments for all possible contexts.

Since the literature did not focus on the computational complexity of these algorithms, the basic data

structure to describe tree models and context trees has typically been a plain atomic tree [16]. It is

only recently that more efficient data structures such as compact suffix trees [16] have been discussed

in connection with these algorithms [17].

On the other hand, the use of suffix trees is customary in the implementation of popular data

compression algorithms that are also based on context models but lack the above strong universality

properties, such as PPM [18] in its multiple variants, and those based on the Burrows-Wheeler transform

(BWT) [19] (see [20] and references therein). Moreover, suffix trees are crucial for low complexity

implementations [21, 20]. The approach in PPM is similar to the context algorithms of the plug-in type,

except that the context selection rule is a heuristic based on the number of occurrences of the possible

contexts. The BWT-based algorithms can also be viewed as coding based on a context tree (see [22] for

an information-theoretic analysis), except that no attempt at context selection is made. Instead, the

sequence is reordered based on a traversal of the context tree such that symbols occurring in “similar”

2In a probabilistic setting in which the data is assumed to be drawn from a tree source with K∗ parameters, K̂ = K∗

with high probability, due to the consistency of the Minimum Description Length estimator.
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contexts appear in nearby locations. Coding is often done by sub-optimal, simple methods in a second

pass. While these works emphasize data structures and complexity analysis, the focus on redundancy

rates for the universal context-based codes relegated the investigation of algorithmic aspects. The

reader is referred to [17] for a study of the computational complexity of proposed implementations

of these universal codes, which demonstrates that no algorithm for both encoding and decoding in

linear time is available. In the past, this dichotomy may have led to the misconception that the

implementation of such codes is hopelessly complex. As a result, implementable context algorithms

have often limited the tree depth [5, 6].

The popularity of BWT-based schemes suggests that, in many applications, sequentiality is not a

fundamental requirement. Thus, in such cases, a low-complexity implementation of the semi-predictive

approach is of interest, despite the outlined slight theoretical disadvantage relative to mixing schemes.

Notice that this approach is especially suited for a clean complexity analysis, as three major issues can

be identified and treated separately:

(a) Gathering of all relevant statistical information in a context tree;

(b) Pruning of the tree at the encoder, to obtain the model that minimizes the code length; and

(c) Transitioning from context to context.

The “relevant statistical information” mentioned in (a) is different at the encoder and the decoder,

since, at the encoder, it must facilitate the optimization procedure in (b), which is not needed at the

decoder. While compact suffix trees address, as we discuss later, some of the computational issues in

(a)–(b), the tree structure of the model is clearly an obstacle for transitioning from context to context

in a constant number of operations per symbol, as it requires descending the (pruned) tree starting

at the root until the new context is found. This context may occur at a depth that is not necessarily

bounded by any constant independent of n. In this sense, a finite-state machine (FSM) is preferable,

since fast transition between states is built into the model definition. However, FSMs do not enjoy the

hierarchical data collection advantages of trees. Unfortunately, as noted in [9], a minimal tree model

might not be representable as an FSM with the same number of states. Thus, further research into

these data structures is necessary for an efficient implementation of the three computations above.

Since the relevant statistical information can be organized in the compact suffix tree of the given

string, the classical algorithmic tools surveyed in [16] are instrumental in addressing the first issue

above in linear time.3 In fact, the techniques in [20], while targeted at PPM, imply that suffix trees are

instrumental for any scheme based on tree models (see also [21]). As for the second issue, [5] showed

that, due to the (full) tree structure of the model class, pruning reduces essentially to a dynamic

programming problem, with the cost function given by the code length that each potential node in the

context tree would contribute in case it were selected as a state. This problem can also be solved in time

that is linear in the number of nodes of the context tree, which, with a compact representation of the

suffix tree, can in turn be made linear in the sequence length. Combining [23] and [5], and addressing

the third issue by use of the BWT, Baron and Bresler [17] recently showed that the semi-predictive

3Throughout, we will measure complexity by the number of register-level operations, defined as arithmetic and logic

operations, address computations, and memory references, on operands of size O(log n).
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approach can be implemented in linear encoding time.4 Unfortunately, the BWT is not available during

decoding to provide a constant transition time per symbol.5

In this paper, we first formalize an extension of the class of tree models, letting the model structure

take the form of a compact digital tree. In the extended model, the trees need not be full (so that

states may be given by nodes other than the leaves), and the edges may be compacted (i.e., labeled

by strings of length greater than one). This extension serves here as an auxiliary structure, facilitating

the use of suffix trees which are generally not full (a key factor in maintaining linear time complexity).

However, we formalize and discuss the class of generalized tree models in detail on its own right, as

this richer class offers potentially significant improvements in model fitting capability relative to the

usual full-tree models. The derivation of efficient algorithms to capitalize on these potential savings,

however, remains an open problem of both theoretical and practical interest. We then proceed to define

the FSM closure of a tree, which is the smallest FSM that generates all the processes generated by

the tree as the parameters are allowed to range over their valid domain. We present an algorithm that

builds this closure in time that, in case the tree was derived by optimal pruning of a suffix tree, is linear

in the length of the sequence that generated the suffix tree. Again, our formalization of the concept of

FSM closure and the study of its properties extends beyond the applications considered in this paper.

In the first such application, generalized trees and their FSM closures allow us to achieve linear

time encoding/decoding complexity for the semi-predictive twice-universal code in the class of full-tree

models, without recourse to the BWT, by solving the context transition problem efficiently. We point

out that, in this application, our contribution is algorithmic in nature, in the sense that, as discussed,

the proposed algorithm implements a code whose double universality is well known. Our algorithm

shows that the key complexity issues pertain to data structures, and that a judicious choice of these

structures can be done for universal, context-based schemes, as efficiently as with the sub-optimal

approach of coding based on the BWT. An optimal context selection rule, and the corresponding

context transitions, are computationally not more expensive than the various steps involved in the

implementation of BWT-based coding schemes. Furthermore, we present a reversible transform that

displays the same “context deinterleaving” feature as the BWT but is naturally based on an optimal

context tree. The comparison leads to the observation that the claimed advantages of BWT result just

from a clever use of compact suffix trees, even for variants that rule out the use of arithmetic coding.

The proposed transform is related to work in [23].

In a second application, we use the FSM closure to investigate the effects of time reversal on the

structure of the minimal tree model of a finite-memory process. This problem is motivated in part by

the following simple question that arises in some data compression applications: When compressing a

data sequence with a twice-universal code in the class of tree models, can it make a difference whether

we read the sequence from left to right or from right to left? Time reversal of stationary Markov

processes is well understood in the literature. In particular, it is known that time reversal preserves

4To complete a linear time encoder, it is shown in [17] that the cost functions used in the pruning step can be

computed with the required precision on registers of size O(log n) in overall linear time, whereas the extra redundancy

due to arithmetic coding was shown in [9] to be negligible, provided again that the coding operations are carried out on

registers of size O(log n).
5An alternative approach for efficient context transition, used for PPM in [20], is the use of suffix links. For the

semi-predictive Context algorithm, again, this approach cannot be used directly at the decoder.
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both the order and the entropy of a stationary Markov process (see, e.g., [24, Ch. 4]). This fact

still leaves the question of the effect on the size of the minimal tree model (which is crucial in the

setting of double universality) open. To address this question, we characterize the class of two-sided

finite-memory processes whose time-reversed versions are well defined. These processes also admit tree

models, and for a given tree T , we present a construction of the minimal tree that generates the reverses

of all the processes generated by T . This “reverse” tree turns out to be linked to the FSM closure of

T . We show that the number of states in the reverse tree might be, in the extreme case, quadratic in

the number of states of T . This result yields an affirmative answer to the above motivating question.

The remainder of this paper is organized as follows. Section 2 formally defines the (extended)

class of tree models and investigates its properties. Section 3 introduces the FSM closure of a tree,

investigates bounds on its size, and presents a linear time algorithm for its construction. Section 4

applies the FSM closure and associated data structures to a linear time implementation of the semi-

predictive universal code in the class of full-tree models. Section 5 introduces the concept of two-sided

processes, and investigates the effect of time reversal on the size of a tree model. Finally, Section 6

concludes the paper.

2 Generalized context tree models

2-A Finite-memory processes and tree models

In this sub-section, we review finite-memory processes and their parametrizations, particularly tree

models. While most concepts we discuss are not novel, some of the formalisms (e.g., the transient states

of a tree) are. An important aspect emphasized in this review is the distinction between a process and

its representations. We first introduce some notation. Let A be an alphabet of α ≥ 2 symbols, and let

λ denote the empty string. As is customary, we let A∗, A+, and Am, denote, respectively, the set of

finite strings, the set of positive-length strings, and the set of strings of length m ≥ 0 over A. We use

the notation uk
j as shorthand for ujuj+1 . . . uk, ui ∈ A, j ≤ i ≤ k, and extend it by defining uk

j = λ

when j > k. Also, we omit the subscript when j = 1, i.e., uk = uk
1. For u = uk, we let |u| = k denote

the length of u, u = ukuk−1 . . . u1 its reverse string, head(u) its first symbol, u1 (or λ if k = 0), and

tail(u) = uk
2 its longest proper suffix. For strings u, v ∈ A∗, we denote by uv the concatenation of u

and v. If u is a prefix (resp. proper prefix) of v, we write u ¹ v (resp. u ≺ v) or v º u (resp. v Â u).

Formally, we use the terms string and sequence interchangeably, but favor the latter term in cases

where the sequence length is presumed to be unbounded.

Following [25], we consider a (probability assignment) function P from A∗ into the real interval

[0, 1] satisfying the conditions

(Q1) P (λ) = 1,

(Q2) P (u) =
∑

a∈A P (ua), ∀u ∈ A∗.

We will refer to P as a string process, or simply a process (the term information source is used

in [25]). Notice that although the string process formalism is different from the usual setting of

discrete time, discrete space random processes, all notions of interest in the conventional setting can
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be expressed very naturally with string processes. For example, assuming P (xn) 6= 0, the function

P (a|xn)
∆
= P (xna)/P (xn), a∈A, is a conditional probability mass function (CPMF) by (Q2), and is

naturally interpreted as the probability of the “next” symbol xn+1 being equal to a, conditioned on

xn.6 The string process setting, on the other hand, is very natural when discussing universal coding

schemes, which can be regarded as carefully crafted string processes [25].

One way of generating string processes is by use of a recursive model [25]. Specifically, given a set

of states S, consider a state function σ : A∗ → S and a set of CPMFs {p(·|s)}s∈S . For an arbitrary

sequence xn ∈ An, let the state sequence sn
0 be given by si = σ(xi), 0 ≤ i ≤ n, and define the function

P by

P (λ) = 1; P (xn) =
n∏

i=1

p(xi|si−1), n ≥ 1 . (1)

Clearly, this assignment defines a string process. We say that the model, denoted 〈σ, p〉, generates the

process P .7 For any state s, and xn such that σ(xn) = s, we say that xn selects s, and that s accepts

xn. A state is called permanent if it accepts arbitrarily long sequences; otherwise, the state is called

transient. An important particular class of state functions considered, e.g., in [26], is defined through

finite state machines. For our purposes, an FSM over A is given by a triple F = (S, f, s0), where S

is a finite set of states, f : S × A → S is a next-state function, and s0 ∈ S is the initial state. The

state sequence sn
0 for xn is recursively defined by si = f(si−1, xi). In classical probability theory, the

state sequence corresponds to a Markov chain (cf., e.g., [27]). Notice, however, that our definition of

permanent state is based solely on the state function, and is independent of the CPMFs associated

with the states. Thus, this definition differs from the notion of a recurrent state in the theory of

Markov chains, which depends on the CPMFs. It is possible to find CPMF assignments that will make

a permanent state non-recurrent (provided that some conditional probabilities are set to zero). Our

notion of permanent state corresponds to one for which there exists some assignment of CPMFs that

makes the state recurrent in the classical sense.8 Our transient states, on the other hand, are always

non-recurrent in the classical sense, independently of the CPMFs. Notice that if s′ = f(s, a) and s is

a permanent state then so must be s′ (as it accepts strings of arbitrary length).

For a set of strings B ⊆ A∗, and a process P , we define BP = {u ∈ B |P (u) 6= 0 }. A process P

has the finite-memory property if there exists a nonnegative integer m such that, for all n ≥ m, a ∈ A,

and xn ∈ An
P , P (a|xn) satisfies

P (a|xn) = P (a|xn
n−m+1). (2)

The minimum integer m for which the finite-memory property holds for P is referred to as the order

of the process. Clearly, this property holds for m if P can be generated with a recursive model such

that, for all n ≥ m and xn ∈ An, xn selects the same state as xn
n−m+1.

Conversely, every finite-memory process P of order m can be generated by a “basic” FSM such

that S = ∪m
j=0A

j , s0 = λ, and for a ∈ A and bj
1 ∈ Aj , 0 ≤ j ≤ m, the next-state function is given by

6When P (xn) = 0, the numerator in the definition of P (a|xn) must also vanish by (Q2), and the function is undefined.
7This model is termed recursive in [25] since, in full generality, σ is any recursive function on A∗.
8In fact, all but a set of measure zero of the assignments will make a permanent state recurrent. In this sense, the

structural model properties we will be interested in will be generally graph-theoretic or algebraic, will be required to hold

for “some choice” of CPMFs, but will actually hold “for most choices.”
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f(b1b2 . . . bj , a) = b1b2 . . . bja for j < m, and f(b1b2 . . . bm, a) = b2 . . . bma. To complete the FSM model

it suffices to select p(a|b1b2 . . . bj) = P (a|bj
1) for all bj

1 ∈ Aj
P , 0 ≤ j ≤ m (the choices when P (bj

1) = 0 are

inconsequential). On the other hand, not all FSM-generated processes are finite-memory [26]. Notice

that the states corresponding to strings shorter than m symbols in the above FSM are transient, and

their sole purpose is to accommodate arbitrary CPMFs P (·|xn) for n < m (these CPMFs are not

constrained by (2)). As an alternative to transient states, a particular assignment for these strings is

often obtained by letting S = Am and assuming that s0 is a given fixed state. In any case, for a given

finite set S and arbitrary n, the computation in (1) involves a constant number of factors p(xi|s) for

transient states s (and each transient state occurs at most once). Thus, the contribution of transient

states to the ideal code length, − log P (xn), is O(1), and the properties of the process of most interest

to us are determined by the permanent states (each carrying, in general, α−1 parameters). Transient

states are just a “nuisance” that requires formal treatment, but has no impact on the main results.

The finite-memory property depends only on the probability assigned to long enough sequences. To

simplify the discussion, we will also constrain the choice of probabilities conditioned on short sequences

by further requiring, for each string v ∈ A∗, the condition

if P (a|uv) is independent of u ∀u ∈ A+
P , then P (a|uv) = P (a|v), a ∈ A (3)

on the process P . The condition requires that probability assignments conditioned on short strings be

consistent with the memory properties of longer strings, ruling out situations, for example, in which

the order of the process is determined by the CPMFs of the transient states.9

For each particular finite-memory process of order m, other FSM representations may involve less

than αm (permanent) states. A tree model (see, e.g., [2, 9, 3]) is another type of recursive model

(possibly not an FSM) which may involve less states than the above “basic” FSM. In a tree model, the

permanent states are not necessarily all of the same length m. Specifically, given a full prefix-free set

over A∗, the state selected by xn is given by the (unique) prefix of xn in the set, if n is large enough

for such a prefix to exist (permanent state), or by xn otherwise (transient state). Thus, the set of

permanent states is most naturally represented by the leaves of a full α-ary tree. We will represent the

states as strings σ(xn) = xnxn−1 . . . xn−j , where the symbols are reversed relative to their order in the

corresponding suffix of xn. To avoid ambiguity, we will use the notation p(a|s) to denote conditioning

on an abstract state s, and P (a|xn
n−j) to denote conditioning on an arbitrary suffix of xn, which may

or may not correspond to a state. Any suffix of xn will be called a context in which xn+1 occurs.

The “basic” FSM representation is equivalent to a tree model in which all the leaves in the tree have

depth m. In a minimal tree representation, the state σ(xn) for xn ∈ An
P is determined by the smallest

integer `(xn) such that P (·|uxn
n−`(xn)+1) is independent of u, uxn

n−`(xn)+1 ∈ A∗
P . Sets of “sibling” leaves

{b1b2 . . . bm−1b | b ∈ A } sharing the same CPMF in the original model can be merged into one state

(leaf), represented by the parent node b1b2 . . . bm−1 (where (3) guarantees compatibility with the CPMF

corresponding to the shorter state). The merging is repeated recursively whenever possible, seeking

9For example, consider a binary finite-memory process for which P (0|u) = p for all strings u ∈ A+, and P (0|λ) = q.

Clearly, whenever q 6= p, the condition (3) is not satisfied by this process and m = 1, whereas m = 0 for q = p. Thus,

the value of q, given by the CPMF corresponding to a transient state, determines the order of the process, a situation

avoided by requiring (3).
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Figure 1: Binary context tree T

the shortest possible context that determines the CPMF, until any set of α sibling leaves contains at

least two leaves with different associated CPMFs. A precise characterization of minimality is given in

the more general setting of Section 2-B.

The minimal tree model might not be representable as an FSM with the same number of states.

For example, as noted in [9], in the binary context tree of Figure 1, the state following the emission

of a 1 at state 0 in T could be either 100 or 101, and more past symbols are required to make the

determination than provided by the length-one context (which is nevertheless sufficient to determine

the CPMF). The relation between these two classes of models will be the subject of Section 3.

In practice, the use of variable-length contexts often yields significant savings in model size compared

to a full balanced tree. It is due to these savings that the theory and practice of context tree models

based on full trees have received much attention in the literature, and efficient methods for model

optimization have been developed (see, e.g., [2, 9, 3, 14]). There might be other opportunities for

model size reduction, however, that are difficult to exploit using a full tree. Full tree models, for

example, do not provide a mechanism for merging a proper subset of sibling leaves sharing a common

CPMF into a single state.10 We next present a more general class of tree models that could exploit some

of these additional relations and provide a more economical parametrization of the process. Although

this feature makes the general class interesting in itself, our main motivation in discussing it here is its

use for auxiliary data structures in sections 3 and 4.

2-B Generalized context trees

Terminology and notation. For the remainder of the paper, the variables a, b, and c will always

represent symbols from A, and r, s, t, u, v, w, x, y, and z will represent strings in A∗. Consider a

finite, rooted, ordered, and directed tree T (see, e.g., [28, 29] for tree terminology) with the following

properties:

1. Each edge is labeled with a string from A+.

2. Each node has one incoming edge, except for the root of the tree, which has none. Each node

has at most α outgoing edges, which must be labeled with strings starting with different symbols

from A.

10The compression algorithm of [23] leads in some cases to such merges, although the model is not formalized.
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Figure 2: A GCT T over {a,b,c} and the corresponding Tfull (with added nodes in gray)

3. Each node is labeled with a finite string, obtained by concatenating the labels of the edges on

the path from the root to the node. The root is labeled with λ.

For simplicity, we do not distinguish between nodes and their labels, and, for w ∈ A∗, we use the

expression “w is a node of T” as shorthand for “T has a node labeled with w.” Furthermore, we

identify T with its set of nodes, and we write, for instance, u ∈ T when u is a node of T . We denote

the number of outgoing edges of a node u by deg(u), and if aw is the label of an edge outgoing from

u, we say that this edge is in the direction of a. If T has an edge labeled w, going from node u to node

v, we write u
w−→ v, and say that v is a child of u, and that u is the parent of v, denoted u = parT (v).

The set of children of a node u is denoted chldT (u). A node v is a descendant of u if u ¹ v (u is then

an ancestor of v). An edge of T is said to be atomic if it is labeled with a single-letter string; otherwise

it is said to be composite. If u
a−→ ua is an atomic edge, then ua is an atomic child of u. A tree T

is atomic if every edge of T is atomic. We recall that T is defined to be full if it is atomic and every

node has either no outgoing edges (in which case it is a leaf ), or it has α outgoing edges, one for each

symbol in the alphabet. A string w is a word of T if it is a prefix of a node of T . The set of words of T

will be denoted word(T ). Thus, by our convention of identifying the symbol T with its set of nodes,

we have T ⊆ word(T ), with equality holding if and only if T is atomic.

The combinatorial structure just described has been widely used, under various guises and ter-

minologies, as an underlying data structure for efficient string processing algorithms. The structure

(or variants sharing many of its properties) has been referred to as an A+ tree [16], a PATRICIA

tree [30, 29, 31], a compact digital tree [31], etc. It has found numerous applications, for instance, in

string storing, searching and retrieval [29, 31], pattern matching [32, 33, 16], and in the mentioned

works [21, 20, 17] related to data compression, to list just a few (we cite a few references which contain

extensive bibliographies; an exhaustive listing of references for the different variants and applications

of digital trees would be far beyond the scope of this paper). To emphasize the application of interest

in this paper, we will refer to T as a generalized context tree (GCT). An example of a GCT over

A = {a,b,c} is shown in Figure 2(A).

Source definition. We next describe how a GCT defines the state function of a recursive model

which generates a string process. For a GCT T , and an arbitrary string y ∈ A∗, we define the canonical

decomposition of y with respect to T as the triplet CT (y) = 〈r, u, v〉 such that r, u, v ∈ A∗, r is the

longest prefix of y that is a node of T , ru is the longest prefix of y that is a word of T , and y = ruv.

10



Figure 3: Canonical decomposition of ccbab = 〈c, cb, ab〉

The decomposition is illustrated in Figure 3 with an example, taken over the GCT T of Figure 2(A).

Notice that v is the suffix of y that “falls off” the tree. In general, any, or all, of r, u and v may be null

strings. A similar notion of canonical reference was defined in [16]. As we will often make separate

reference to it, we will denote the first component, r, of CT (y) by VT (y).

Let $ be a symbol such that $ 6∈ A. Given a sequence xn and a GCT T , we define the tree-state

function sT : A∗ → A∗ ∪ {w$ |w ∈ A∗ } as follows:

sT (xn) =

{
VT (xn) if VT (xnz) = VT (xn) ∀z ∈ A∗,
xn$ otherwise.

(4)

Since T is finite, the first case of (4) must hold for sufficiently large n, making sT (xn) a node of T . For

small values of n, the second case in (4) may hold. Thus, viewing sT as a state function, its permanent

states are given by all the nodes s of T for which there exist arbitrarily long sequences yn ∈ A∗ satisfying

VT (yn) = s, whereas its transient states are arbitrary words of T other than leaves, with the symbol $

appended. By extension, we call these nodes and words, respectively, permanent and transient states

of T . A transient state u$ accepts only the single string u, which is not long enough to “fall off” the

tree or reach a leaf. We denote the set of permanent states of T by ST , the set of transient states of T

by S$
T , and the set of all states of T by SA

T = ST ∪ S$
T .

As an example, for the GCT shown in Figure 2(A), we have ST = {a,b,c,ca,ccbb} and S$
T =

{λ$,c$,cc$,ccb$}. In this example, c ∈ ST but we still have sT (cc) = cc$, namely, the second case

in (4) holds. The extra symbol $ serves to distinguish states that would otherwise correspond to the

same string from A∗, e.g., c and c$ in the example. A natural interpretation of this symbol, which

will be more explicitly adopted in Section 4, is that of a conceptual marker preceding the first actual

symbol of xn.

The following lemma summarizes the above discussion, characterizing permanent and transient

states by giving formal meaning to situations in which a sequence “falls off the tree.”

Lemma 1 A string s is a permanent state of T if and only if s ∈ T and either deg(s) < α or s has a

composite outgoing edge. A string w$ is a transient state of T if and only if w ∈ word(T ) and w is

not a leaf of T .

When T is a full tree, the set of permanent states is identical to the set of leaves. For the full binary

GCT of Figure 1, for example, we have ST = {0, 100, 101, 11} and S$
T = {λ$, 1$, 10$}.

11



We denote with 〈T, p〉 the recursive model defined by the state set SA
T , the state function sT (·)

of (4), and an associated set of CPMFs {p(·|s)}, s ∈ SA
T . The probability assignment (1) generated by

〈T, p〉 clearly has finite-memory, with order m upper-bounded by the length of the longest word of T .

In order to satisfy also (3), it suffices to require that if s$ is a transient state such that all permanent

states of the form VT (su), u ∈ A∗, share the same CPMF, then this CPMF is also associated with s$.

Remark. Our definitions are quite general in letting arbitrary words define transient states of the

GCT, and allowing arbitrary CPMFs to be associated with these states, as long as (3) is satisfied. A

popular convention is to use for a transient state the CPMF associated with the permanent state that

would be selected had the sequence been preceded by as many copies of a fixed symbol as needed [2].

In the context of source coding, another reasonable convention is to assume that transient states

are associated with uniform distributions. We will specify a particular CPMF choice for transient

states only when required for the results. For example, the results of Section 5 require this choice

to be consistent with the stationary distribution of the Markov chain associated with the CPMFs of

permanent states.

Relation to full-tree models. The conventional full-tree models are a special case of GCTs. For

any model 〈T, p〉, the GCT T can be completed to a full tree Tfull, for which there exists a probability

assignment p′ such that 〈T, p〉 and 〈Tfull, p
′〉 generate the same process, as follows. Let s be a permanent

state of T , with associated CPMF p(·|s). Then,

a. if s is a leaf of T , then s is a state (leaf) of STfull
and p′(·|s) = p(·|s);

b. otherwise, for every a ∈ A such that s does not have an edge in the direction of a, sa is a state

of STfull
and p′(·|sa) = p(·|s);

c. for every composite edge aw emanating from s, with w = w`
1, ` ≥ 1, all the strings sawi

1ci,

0 ≤ i < `, ci ∈ A \ {wi+1}, are states of STfull
, sharing the CPMF p(·|s).

d. S$
Tfull

= S$
T , and for any w$ ∈ S$

T we have p′(·|w$) = p(·|w$).

It is possible, therefore, for ST to be significantly smaller than STfull
, providing a more economical

parametrization of the process. In other words, a minimal model in the full-tree sub-class may still

be reducible in the GCT class. Part (B) of Figure 2 shows the underlying full tree Tfull corresponding

to the GCT in Part (A) of the same figure. In the example, we have |ST | = 5 and |STfull
| = 9. Later

on in this sub-section, and in Appendix A, we characterize minimal representations in the GCT class.

However, the current state of the art in modeling algorithms does not allow us to efficiently optimize

code length in this class. Thus, we cannot take advantage of the additional flexibility. The GCT

extension will be used in our case as an algorithmic tool for dealing with suffix trees which may not be

full, in order to achieve the complexity results of Section 4. The code length optimized, however, will

still correspond to the sub-class of full-tree models.

Normal GCTs. We next present a partition of the set of GCTs into equivalence classes. This partition

simplifies the derivation of further results. Given a GCT T , we say that a node v ∈ T is a pseudo-leaf

if deg(v) ≤ 1 (the case deg(v) = 0 corresponds to a leaf). We say that v is a phantom node of T if

v 6∈ T , and v = ua, where a ∈ A, u ∈ T , and for every b ∈ A \ {a}, ub ∈ T . By Lemma 1, u ∈ ST .
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If we add ua as a node to T (by either adding or splitting an edge), it becomes a pseudo-leaf and a

permanent state accepting the same set of strings previously accepted by u which, again by Lemma 1,

ceases to be a permanent state. Also, since the set of words of the GCT which are not leaves remains

unchanged, so does the set of transient states. Thus, the sets of states of the two GCTs are in one-

to-one correspondence. Moreover, for a GCT model 〈T, p〉, if we also associate with the added node

ua the CPMF p(·|u), then the new GCT model generates the same process as the original one. Thus,

a GCT T with a phantom node ua is indistinguishable, from the point of view of the properties of

interest to us, from T ∪ {ua}.
We call the operation of replacing a phantom node of a GCT with the actual node a normalization

step, and we call a GCT without phantom nodes normal. For α = 2, normalization might be a two-step

process, in that replacing a phantom node with the actual node by splitting a composite edge labeled

with a string of length two, creates another phantom node, which in turn needs to be replaced by

adding a leaf to the new node. Clearly, this situation does not occur for α > 2. One can also take

an “unnormalization” step by eliminating a pseudo-leaf from a full set of sibling nodes. Again, in the

binary case, this step could create another “unnormalizable” pseudo-leaf. Notice that a full tree is

always normal.

The normalization/unnormalization operations define a partition of the set of all α-ary GCTs into

classes, where two GCTs belong to the same class if and only if one can be obtained from the other

through a finite sequence of normalization/unnormalization operations. Let N(T ) denote the class

of T in this partition. Clearly, N(T ) contains one and only one normal GCT TN , which we call the

normalized presentation of T . The GCT TN can be obtained from T by replacing each phantom node

with an actual node (and, in the binary case, possibly adding leaves as noted, so that no phantom

nodes are left). Also, note that TN =
⋃

T ′∈N(T ) T ′.

Minimal GCT models. A GCT model 〈T, p〉 is said to be minimal if no other GCT model 〈T ′, p′〉
generates the same process and has a smaller number of permanent states.11 To characterize minimality,

we start with the conventional sub-class of full-tree models, for which the characterization is simple

and well known (see, e.g., [3]). For completeness, we derive this characterization in Lemma 2 below.

We say that a GCT T ′ is an extension of a GCT T if it contains all the nodes of T .

Lemma 2 A full-tree model 〈T, p〉 with A∗ = A∗
P is minimal if and only if there is no set of α sibling

leaves of T sharing the same CPMF. Moreover, if 〈T, p〉 is minimal, and 〈T ′, p′〉 generates the same

process, where T ′ is also full, then T ′ is an extension of T .

Proof. The necessity of the minimality condition is straightforward, since sets of sibling leaves with

identical CPMFs can always be merged, reducing the number of states (constraint (3) guarantees that

transient CPMFs do not impede the merging). Assume the condition holds, and 〈T ′, p′〉 generates the

same process as 〈T, p〉, with T ′ full. Assume u is a node in T \ T ′. Then, there is a leaf u′ ∈ T ′ such

that u′ ≺ u, and there is a full set of sibling leaves of T that descend from u′. But, since u′ ∈ ST ′ ,

A∗
P = A∗, and both tree models generate the same process, these leaves of T must be associated with

the same CPMF that is associated with u′ in T ′, contradicting the assumed condition. Thus, we must

11While we emphasize the permanent states because they determine the lasting statistics of the source, it can be shown

that a minimal GCT model is also minimal in its number of transient states.

13



have T ⊆ T ′, which also establishes the minimality of T . 2

The situation is far more complex for the GCT class. Since the resulting characterization is not

needed for the results in the sections to follow, its discussion and proof are deferred to Appendix A.

3 FSM closures of generalized context trees

As discussed in Section 2, FSMs and GCTs are combinatorial mechanisms used for process generation,

providing the state function σ of a recursive model. For a GCT T , σ is given by the tree-state function

sT and s0 = λ$, whereas for FSMs σ is recursively defined by the next-state function, starting from

an initial state s0. The class of FSM-generated processes properly includes finite-memory processes

(see, e.g. [26]). However, as shown by the example in Figure 1, a minimal tree representation of a

finite-memory process might have fewer states than an FSM representation of the same process. In

this section, we study the relation between these two process-generating mechanisms, we define the

FSM closure of a GCT, and we present an efficient algorithm for constructing it.

3-A Refinements

We now study structural relations between recursive models that generate the same process, and

develop tools that will prove useful in investigating the FSM closure of a GCT. Let σ and σ′ be state

functions taking values in state sets S and S′, respectively. We say that σ′ is a refinement of σ if there

exists a refinement function g : S′ → S such that for all sequences xn, if σ′(xn) = s′ and σ(xn) = s,

then g(s′) = s. This notion of refinement was presented in [34] for FSMs, and is used also in [35]. We

will loosely identify state functions with the mechanisms defining them and say, e.g., that an FSM F
is a refinement of a GCT T .

Lemma 3 Let σ and σ′ denote state functions taking values in state sets S and S′, respectively.

(i) If σ′ is a refinement of σ with refinement function g, then for any set of CPMFs {p(·|s)}s∈S

there exists another set {p′(·|s′)}s′∈S′ such that 〈σ, p〉 and 〈σ′, p′〉 generate the same process, and

p′(·|s′) = p(·|g(s′)) (as functions).

(ii) Conversely, if for a set of distinct CPMFs {p(·|s)}s∈S there exists another set {p′(·|s′)}s′∈S′ such

that 〈σ, p〉 and 〈σ′, p′〉 generate the same process P , and A∗
P = A∗, then σ′ is a refinement of σ.

Proof. First, notice that for two recursive models 〈σ, p〉 and 〈σ′, p′〉 that generate the same process P ,

if u ∈ A∗
P selects s = σ(u) and s′ = σ′(u), then, for any c ∈ A, we have

p′(c|s′) =
P (uc)

P (u)
= p(c|s) (5)

where both equalities follow from (1) (as u ∈ A∗
P ). Now, To prove the first part of the lemma, the set

of CPMFs {p′(·|s′)}s′∈S′ defined by

p′(·|s′) = p(·|g(s′)) ∀s′ ∈ S′ (6)
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clearly satisfies that 〈σ, p〉 and 〈σ′, p′〉 generate the same process. Moreover, by (5) and the definition of

refinement, any set {p′(·|s′)}s′∈S′ such that 〈σ, p〉 and 〈σ′, p′〉 generate the same process must satisfy (6).

Conversely, assume that for a set of distinct CPMFs {p(·|s)}s∈S there exists another set {p′(·|s′)}s′∈S′

such that 〈σ, p〉 and 〈σ′, p′〉 generate the same process, and A∗
P = A∗. If σ′ is not a refinement of σ,

there exist two sequences u and v that select the same state s′ of S′ but two different states su and

sv of S, respectively. By (5), since A∗
P = A∗ we have p(·|su) = p′(·|s′) = p(·|sv). Thus, the identity

p(·|su) = p(·|sv) contradicts the assumption that the CPMFs in {p} are distinct. 2

Lemma 3 implies, a fortiori, that σ′ is a refinement of σ if and only if any process generated by

a model of the form 〈σ, p〉 can also be generated by a model of the form 〈σ′, p′〉. While our original

definition of a refinement (which does not involve any process) targets the application of FSM closures

in Section 4, this alternative characterization is convenient for some of the arguments in Section 5.

The following lemma characterizes the FSM refinements (if any) of a given state function σ.

Lemma 4 Let the state function σ admit an FSM refinement, and let F denote the FSM refinement

of σ with the least number of states. Then, all the FSM refinements of σ are also refinements of F .

Proof. Let F = (S, f, s0), let g denote the corresponding refinement function with respect to σ, and

let F ′ = (S′, f ′, s′0) denote another FSM refinement of σ, with refinement function g′. We will extend

our notation by denoting f(s, z) the state reached by F after emission of z ∈ A∗, starting at s ∈ S

(the same abuse of notation applies to f ′). Suppose F ′ is not a refinement of F . Then, there exist two

sequences, z1 and z2, which select the same state w ∈ S′, but two different states u and v, respectively,

in S. For an arbitrary sequence z ∈ A∗, z1z and z2z select the same state for F ′, and consequently

also for σ. Therefore, we have

g(f(u, z)) = g′(f ′(w, z)) = g(f(v, z)) . (7)

Clearly, (7) implies that if we delete u from F and redirect all its incoming edges to v, the resulting

FSM will still be a refinement of σ. This FSM has fewer states than F , a contradiction. 2

We now focus on refinement relations between GCTs, using the partition, defined in Section 2, of

the set of all α-ary GCTs into equivalence classes of GCTs sharing a common normalized presentation.

Lemma 5 below is an obvious consequence of our discussion on normalization.

Lemma 5 If N(T ∗) = N(T ) then there exists a one-to-one refinement mapping between T ∗ and T .

Next, we relate the notion of refinement more directly to the combinatorial structure of a GCT.

Lemma 6 Let T and T ′ be GCTs. T ′ is a refinement of T if and only if T ′
N is an extension of T ,

where T ′
N is the normalized presentation of T ′.

Proof. Assume first that T ⊆ T ′
N . Consider a sequence of transformations in which we start with T ,

and we add one node of T ′
N \T at a time, until we obtain T ′

N . Let T ∗ denote a generic tree obtained at
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an intermediate step of this process. Since T ′ ∈ N(T ′
N ), by transitivity of the refinement and Lemma 5,

it suffices to prove that every addition step in this process produces a refinement T ∗
r of T ∗.

The addition of a node v can be the result of either adding an outgoing edge to a node u of T ∗ in

a direction in which u did not have an edge, or splitting an outgoing composite edge of u, inserting

v. Clearly, in either case, u ∈ ST ∗ , {v} = ST ∗
r
\ ST ∗ , and ST ∗ \ ST ∗

r
is either {u} or empty. Thus, a

refinement function g∗ is defined such that g∗(v) = u and g∗(z) = z for all z ∈ ST ∗
r
\ {v}. As for the

transient states, S$
T ∗

r
= S$

T ∗ (thus defining an identity mapping), unless u is a leaf of T ∗, in which case

S$
T ∗

r
= S$

T ∗ ∪ {u$}. Clearly, in the latter case, g∗(u$) = g∗(u). Hence, T ′
N is a refinement of T .

Assume now that T ′ is a refinement of T . Then, by transitivity of the refinement and Lemma 5,

there exists a refinement function g : T ′
N → T . If T 6⊆ T ′

N , there exists a node w ∈ T \ T ′
N . Clearly,

w 6= λ, so we assume w = ua for some u ∈ A∗, a ∈ A. Since ua 6∈ T ′
N , for some y ∈ A∗, we

have sT ′

N
(yau) = u′ ¹ u, and sT (yau) = g(u′) º ua. Write ua = u′bv, b ∈ A. We claim that for all

d ∈ A\{b}, we must have u′d ∈ T ′
N . Otherwise, if u′d /∈ T ′

N , by Lemma 1, we would have sT ′

N
(zdu′) = u′

for some z, and sT (zdu′) 6º ua, a contradiction to our previous determination of g(u′). Now, since T ′
N

is normal, we must also have u′b ∈ T ′
N , for otherwise u′b would be a phantom node of T ′

N . Thus, we

have a contradiction to the fact that VT ′
N

(u′bv) = u′. Therefore, T ⊆ T ′
N . 2

Remarks

(a) It follows from Lemma 6 that the notions of refinement and extension coincide for normal trees,

and, thus, for all full trees. Lemma 6 also implies that the sufficient condition given in Lemma 5

for the existence of a one-to-one refinement mapping between two GCTs is also necessary.

(b) The notions of refinement and minimality were related in [35] for FSM models. An FSM model

is minimal if no other FSM model can generate the same process with fewer states. It is shown

in [35, Lemma 1] that if 〈F , p〉 and 〈F ′, p′〉 generate the same process, and F is minimal, then F ′

is a refinement of F . While an analogous result holds for full-tree models (see Lemma 2), and for

ternary normal GCT models (see Theorem A.1 in Appendix A), it is interesting to notice that

this property does not hold, in general, for GCT models with α 6= 3, as shown by the examples,

given in Appendix A, of multiple minimal GCT models of the same process.12

3-B Definition and properties of FSM closures

We say that an FSM F is an FSM closure of T if it is a refinement of T with minimal number of

permanent states. As in the definition of a minimal GCT model, we adopt the number of permanent

states in F as the most relevant measure of minimality. However, Lemma 7 below shows that, in fact,

there exists an FSM closure of T that is also minimal in the stronger sense of having a minimal (total)

number of states.

12These multiple minimal GCT models, however, may be proper refinements of a minimal FSM model (not derived

from a GCT). This is the case in the example given in Appendix A for α = 4, where it is easy to see that the process

admits a minimal FSM model with two recurrent states (and one transient state).
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Figure 4: FSM closure TF of binary GCT T and corresponding finite state machine

Lemma 7 Let F be an FSM refinement of a GCT T having a minimal (total) number of states. Then,

any FSM refinement of T is a refinement of F and F is, a fortiori, an FSM closure of T .

Proof. The fact that any FSM refinement F ′ of T is a refinement of F is a direct result of Lemma 4.

Clearly, if g denotes the corresponding refinement function and s is a permanent state of F , there exists

at least one permanent state s′ of F ′ such that g(s′) = s, for otherwise a transient state of F ′ would

accept arbitrarily long strings. Thus, F ′ has at least as many permanent states as F and, consequently,

F is an FSM closure of T . 2

We say that a GCT T has the FSM property if it defines a next-state function f : SA
T × A → SA

T

such that, for any sequence xn+1, we have

sT (xn+1) = f(sT (xn), xn+1).

For brevity, when T has the FSM property we say that “T is FSM,” and we do not distinguish between

T and the corresponding FSM. Clearly, if T is FSM then it is also an FSM closure of T . The FSM

property facilitates the implementation of GCT models, due to the recursive form of the next-state

function. However, as discussed in Section 2 and exemplified in [9] and Figure 1, a GCT may not be

FSM. In such cases, its FSM closure is instrumental for efficient implementation.

Figure 4(A) shows a GCT TF with the FSM property which is an FSM closure of the GCT T of

Figure 1. New nodes added to T are shaded. Figure 4(B) shows the finite state machine associated

with TF . Transient states and their transitions are shown with dashed lines. While the FSM closure of

T shown in this example is itself a GCT, it is conceivable that, in general, an FSM refinement which

is not constrained to having an underlying GCT structure (namely, one that does not correspond to a

GCT with the FSM property), might have fewer permanent states than any FSM refinement that is

also a GCT. Next, we show this not to be the case, and we characterize an FSM closure of a GCT. We

start with a sufficient condition for a GCT to have the FSM property.
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Lemma 8 Let T be a GCT. If for every permanent state s ∈ ST , the suffix tail(s) is a node of T , then

T is FSM and the next-state function f satisfies, for all a ∈ A, f(s, a) = VT (as).

Proof. We show that a next-state function f can be defined for T . Let s ∈ ST , and let ws be a

string accepted by s, w ∈ A∗. For any a ∈ A we have asw 6∈ word(T ), for otherwise asw is a prefix

of a permanent state and, by the lemma assumption, we would have sw ∈ word(T ) implying that

ws selects a transient state. Thus, wsa selects a permanent state r = VT (asw). Clearly, r ¹ as, for

otherwise s ≺ tail(r) and, by the lemma assumption, tail(r) ∈ T , implying that ws would not have

selected s. Therefore, r = VT (as), and we can define the state transition f(s, a) = VT (as).

For a transient state z = u$ of T , if au ∈ word(T ) then we define f(z, a) = az. Otherwise, au

selects the permanent state VT (au), and we can define f(z, a) = VT (au). The next-state function is

now defined for all states s ∈ SA
T , and, hence, T is FSM. 2

Consider the GCT Tsuf obtained from a GCT T by adding, as nodes, all the suffixes of nodes of

T . Notice that the addition of a node may cause a composite edge to split. Thus, Tsuf might contain

nodes that are added to satisfy structural constraints of the tree, rather than directly as suffixes of

nodes of T . For example, if w is a node of T with an outgoing edge uv, and the construction calls for

adding the node wu, then the edge w
uv−→ wuv is split as w

u−→ wu
v−→ wuv. The GCTs in Figures 1

and 4(A) satisfy TF = Tsuf. The suffix 00 of state 100 of T is not a node of T , and therefore T does

not satisfy the sufficient condition of Lemma 8. We can now state the main result of this section.

Theorem 1 Let T be a GCT. Then, Tsuf is an FSM closure of T .

Proof. Since Tsuf is an extension of T , by Lemma 6, it is also a refinement of T . Moreover, from the

definition of Tsuf and from Lemma 8, it follows immediately that Tsuf is FSM.

To prove minimality, let F = (S, f, s0) denote another FSM refinement of T , having a minimal

(total) number of states. By Lemma 7, Tsuf is a refinement of F , and let g denote the corresponding

refinement function. We will show that the existence of u, v ∈ STsuf
, u 6= v, such that g(u) = g(v) = s ∈

S, leads to a contradiction, proving that the restriction of g to STsuf
is a one-to-one mapping between

STsuf
and the set of permanent states of F , and, consequently, Tsuf is an FSM closure of T . To this

end, we first observe that since F is a refinement of T , by transitivity, u and v correspond to the same

(permanent) state w of T in the refinement ϕ : SA
Tsuf

→ SA
T . Since Tsuf is an extension of T , w must be

a common prefix of u and v and, without loss of generality, we can assume that v 6¹ u, so that w ≺ v

and w ¹ u.

Consider strings x, y ∈ A∗ such that STsuf
(xu) = u and STsuf

(yv) = v. Both xu and yv bring F to

the same state s, and we must also have ST (xu) = ST (yv) = w ≺ v, so that v 6∈ T . Therefore, since

v ∈ Tsuf, by the definition of Tsuf, there exists t ∈ A+ such that tv ∈ T . Next, consider emission of t

after xu and after yv. In both cases, F evolves from state s to some s′ ∈ S, and let w′ = ϕ(s′) be the

corresponding (permanent) state of T . Since tv ∈ T and w′ = VT (tvy), we must have tv ¹ w′. On the

other hand, w′ = VT (tux) ¹ tu, for otherwise we would have tur ∈ T , with r ∈ A+ and r ¹ x, implying

that ur ∈ Tsuf, in contradiction with STsuf
(xu) = u. Thus, we have tv ¹ w′ ¹ tu, in contradiction with

v 6¹ u. 2
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Theorem 2 below fully characterizes GCTs having the FSM property.

Theorem 2 A GCT T with normal presentation TN is FSM if and only if every suffix of a node of

TN is a node of TN .

Proof. By Lemma 5, we can assume without loss of generality that T is normal. If T is FSM, it must

have as many permanent states as its FSM closure Tsuf. Since T has no phantom nodes, any node

added in order to extend it to Tsuf will increase the number of permanent states. Thus, we must have

Tsuf = T , and the claim follows from the definition of Tsuf. Conversely, if every suffix of a node of T is

a node of T , T is FSM by Lemma 8. 2

Remarks

(a) It can be shown that the FSM derived from Tsuf by deleting all transient states u$ such that

u 6∈ word(T ) ∪ Tsuf and redirecting the corresponding incoming edges to VT (u)$ is an FSM

closure of T with a minimal (total) number of states. We omit the proof.

(b) By Lemma 4, the permanent state sets of any two FSM closures of a GCT T are in one-to-one

correspondence, which extends to the state sequences followed by any string. Thus, all FSM

closures are essentially equivalent, differing possibly only in the transient states, which are of

little interest to us. Therefore, we will henceforth refer to Tsuf as the FSM closure of T .

(c) If T is atomic, then T is FSM if and only if every substring of a node of TN is a node of TN , since

in such a tree every prefix of a node is a node.

(d) It is readily verified that if T is full, so is Tsuf.

(e) By Theorem 2, for any normal GCT TF that is an FSM refinement of T we have T ⊆ Tsuf ⊆ TF .

Thus, if Tsuf is normal, it is the only normal GCT which is an FSM closure of T . This property

holds in particular for full trees.

3-C The size of the FSM closure

We now investigate the size of Tsuf, and, in particular, how it compares with that of T . We will focus

our attention on full trees, mainly because those will be the relevant models in our application of these

results in Sections 4 and 5. Also, we are interested in finding functional relations and bounds between

the sizes of T and Tsuf. In the case of full trees, these relations will become clear, regardless of the

precise definition of “size.” The situation is not as well-defined in the case of GCTs with arbitrary

trees. For example, consider the GCT T = {λ, wk}. This GCT has two nodes (and permanent states).

The number of nodes (and states) of Tsuf, on the other hand, is a function of k, which is arbitrary. The

sizes could be measured in terms of the sum of the lengths of the strings that label the edges, and a

more meaningful functional relation would be obtained. However, this measure does not seem relevant

to the issues of interest in our applications in Sections 4 and 5.
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Let K denote the number of leaves (permanent states) of a full α-ary tree T , and |T | the total number

of its nodes. As is well known (see, e.g., [28, p. 595]), K = ((α − 1)|T | + 1) /α, or, equivalently,

|T | =
αK − 1

α − 1
. (8)

Lemma 9 Let T be a full α-ary tree with K leaves, and Tsuf its FSM closure. Then,

|Tsuf| ≤
α

2(α − 1)2
K2 +

α(α − 3)

2(α − 1)2
K +

(α − 1)2 + 1

2(α − 1)2
. (9)

Proof. We prove the claim by induction on K. If K = 1, the tree consists just of the root, |Tsuf| = 1,

and the validity of (9) (with equality), is verified by straightforward algebraic manipulations. Assume

now the claim holds for 1 ≤ K ′ < K, let Ta, a ∈ A, denote the subtrees of T rooted at the children of

the root of T , and Ka the number of leaves of Ta. By definition, the nodes of Tsuf are all the suffixes

of nodes of T . A suffix of a node of T is either a suffix of a node of one of the Ta’s, or of the form aua,

where ua is a node of the subtree Ta in the direction of a from T ’s root (ua is read as a word of Ta).

Therefore, we can write

|Tsuf| ≤
∑

a∈A

|(Ta)suf| − (α − 1) +

(
αK − 1

α − 1
− 1

)
, (10)

where the first term in (10) bounds the number of suffixes of nodes of the subtrees Ta, the second

term compensates for over-counting the string λ, which is guaranteed to be in the suffix set of all

the subtrees, and the last term is, by (8), the number of nodes in the subtrees. Let β = α
2(α−1)2

,

γ = α(α−3)
2(α−1)2

, and δ = (α−1)2+1
2(α−1)2

. Then, the expression at the right hand side of (9) can be written as

f(K) = βK2 + γK + δ. By the induction hypothesis, we have |(Ta)suf| ≤ f(Ka), and, thus

|Tsuf| ≤
∑

a∈A

f(Ka) − (α − 1) +
αK − 1

α − 1
− 1

= β
∑

a∈A

K2
a + γK + αδ − (α − 1) +

α

α − 1
(K − 1)

= β
∑

a∈A

K2
a +

(
γ +

α

α − 1

)
K +

(
αδ − α2

α − 1
+ 1

)
. (11)

The first term in the last line of (11) is proportional to a sum of squares of positive integers, constrained

by
∑

a Ka = K. Such a sum attains its maximum value when one of the numbers is as large as possible,

while the others are kept at their minimum value, i.e., say, Kb = K − α + 1 for some b ∈ A, and

Kc = 1, c ∈ A \ {b}. Thus, we have
∑

a∈A K2
a ≤ (K − (α − 1))2 + α − 1. Substituting in (11), and

rearranging terms, we obtain the bound

|Tsuf| ≤ βK2 +

(
γ +

α

α − 1
− 2(α − 1)β

)
K

+

(
α(α − 1)β + αδ − α2

α − 1
+ 1

)
. (12)
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Substitution of the definitions of β, γ, and δ in (12) yields (9). 2

Lemma 9 gives an upper bound on the size of Tsuf, which is quadratic in the size of T . The proof

of the lemma also hints at what the “worst case” structure for T is (in the sense of inflating Tsuf the

most): take a full α-ary tree in which, at each level, all the nodes except one are leaves (i.e., a tree as

deep as possible). However, the starting point in the proof of the lemma is the “union bound” type

inequality (10), which can be relatively tight only if the various suffix sets whose cardinalities are being

added up do not have significant intersections. We next show that a tree with this property can be

explicitly constructed, attaining the upper bound of Lemma 9 up to second order terms.

Lemma 10 For every positive integer K such that K ≡ 1 mod (α − 1), there exists a full α-ary tree

Tb with K leaves such that

|(Tb)suf| =
α

2(α − 1)2
K2 − O(K log K). (13)

Proof. The condition K ≡ 1 mod (α − 1) is necessary, by (8), for K to be the number of leaves of a

full α-ary tree. An α-ary de Bruijn sequence [36] b = bαk−1
0 , of order k and length αk over A, has the

following property: the sliding windows bibi+1 . . . bi+k−1, where indices are taken modulo αk, exhaust

all distinct k-tuples over A. De Bruijn sequences exist for all alphabet sizes α and orders k, and have

been extensively studied (see, e.g., [37, 38]). Consider a de Bruijn sequence b of order k = dlogα
K−1
α−1 e.

We construct a tree Tb as follows: starting at the root, construct children for all a ∈ A. All these

nodes will be leaves of Tb, except the child corresponding to a = b0, which will be the root of a subtree

where the same construction is repeated with the sequence bαk−1
1 . The construction continues for the

prefix of length L − 1 = (K − 1)/(α − 1) − 1 of b, until the tree has (α − 1)(L − 1) + α = K leaves.

By construction, the prefix b′ of length L of b is one of α longest words in Tb. By the properties of

the de Bruijn sequence, every suffix of length k or more of b′ starts with a unique k-tuple of symbols.

Since the construction of (Tb)suf includes adding such suffixes of nodes of Tb as paths from the root,

the added paths will be disjoint after taking k − 1 steps from the root. Since Tb is full, so is (Tb)suf.

Therefore, all the nodes needed to complete the added paths to a full tree are also in (Tb)suf. Thus,

a suffix of length ` ≥ k contributes at least a set of (` − k)α distinct nodes to (Tb)suf, and, hence,

recalling the definitions of L and k, we have

|(Tb)suf| ≥ α
L∑

`=k

(` − k) = α
(L − k)(L − k + 1)

2
=

α

2(α − 1)2
K2 − O(K log K).

2

We summarize the results of lemmas 9 and 10 in the following theorem.

Theorem 3 The largest FSM closure of any full α-ary tree T with K leaves has size

|Tsuf| =
α

2(α − 1)2
K2 + o(K2).
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3-D A linear-time algorithm for constructing FSM closures

We present an algorithm that constructs the FSM closure Tsuf of an arbitrary GCT T , together with

the associated next-state function. We will prove that the algorithm runs in time that is linear in the

sum of the lengths of the strings that label edges of T and in the total number of nodes in Tsuf.

The algorithm starts with a representation of T , and adds the necessary nodes and edges to construct

Tsuf. At any time during the computation, we denote by T ′ the intermediate GCT in existence at the

time. Thus, T ′ evolves from T to Tsuf. When referring to canonical decompositions CT ′ , we mean the

decomposition with respect to the instantaneous state of T ′ at the time of the reference.

The algorithm is presented in the form of a main routine MakeFSM, and three subroutines, whose

functions are broadly described as follows:

• Verify(w): Receives a node w of T ′ as input, and verifies that the suffix tail(w) is in T ′, adding it

if necessary together with the FSM transition f(tail(w), head(w)) = w. The entire (evolving) tree

is traversed and verified through recursive calls to this subroutine. Clearly, the condition verified

by Verify is necessary and sufficient (if applied recursively to all the nodes) for the constructed

tree to be Tsuf.

• Insert(r,u,v): Receives a node r of T ′, and strings u, v. Inserts, if necessary, new nodes ru

and ruv, doing necessary edge splits and additions.

• PropagateTransitions(F,w): For a function F : A → Tsuf adds to the description of the FSM

associated with Tsuf a set of state transitions of the form f(w, a) = F (a), originating from w, for

all a ∈ A such that f(w, a) was not defined by Verify.

The routines maintain the following data arrays:

• Tail[w]: A pointer from the node in the tree containing w to the node containing tail(w), which

allows the algorithm to jump from w to its suffix in constant time. These suffix links [16] are

essential to the efficient implementation of the algorithm.

• Traversed[w,a]: A flag indicating whether an attempt was made to traverse an edge starting

from node w in the direction of a. Initially set to false for all a ∈ A for nodes w ∈ T as well as

for new nodes as they are created.

• Transitions[w]: A function mapping A into T ′ ∪ {⊥}, where ⊥ denotes an undefined state.

The function lists the FSM transitions from state w. The list of transitions is initially set to ⊥
for all a ∈ A.

• Origin[w]: The original node in T that w descends from. Initially, Origin(w)=w. This array

connects the states of the constructed FSM closure to the original states of T and their associated

CPMFs, which the FSM states must inherit.

• Children[w]: The list of children of a node w. Maintained as part of the representation of T ′.

The routines of the algorithm are listed in Figure 5. We initially omit implementation details, in

order to establish functional correctness. Some of the implementation details are essential for analyzing

the complexity of the algorithm, and will be provided when we pursue that analysis.
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MakeFSM

1. Verify(λ)
2. PropagateTransitions({ (a, λ) | a ∈ A }, λ)

Verify(w)

1. Set c = head(w), x = tail(w)
2. Compute 〈r, u, v〉 = CT ′(x)
3. If u 6= λ or v 6= λ
4. Insert(r,u,v)
5. If u 6= λ
6. If Traversed[r, head(u)]
7. Verify(ru)
8. Else If v 6= λ and Traversed[r, head(v)]
9. Verify(rv)
10. Set Tail[w] = pointer to node x
11. Set Transitions[x](c) = w
12. For a ∈ A
13. If not Traversed[w, a]
14. Set Traversed[w,a] = true
15. If w has an edge az in the direction of a
16. Verify(waz)

Insert(r, u, v)

1. If u == λ

2. Add r
v−→ rv to T ′

3. Set Origin(rv) = Origin(r)
4. Else

5. Split r
uy−→ ruy into r

u−→ ru
y−→ ruy

6. Set Origin(ru) = Origin(r)
7. Set Traversed[ru, head(y)] = Traversed[r, head(u)]
8. If v 6= λ

9. Add ru
v−→ ruv to T ′

10. Set Origin(ruv) = Origin(ru)

PropagateTransitions(F,w)

1. For a ∈ A
2. If Transitions[w](a) =⊥
3. Set Transitions[w](a) = F (a)
4. For v in Children[w]

5. PropagateTransitions(Transitions[w], v)

Figure 5: Algorithm for computing Tsuf
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Proposition 1 MakeFSM constructs Tsuf, and the permanent structure of the associated FSM.

Proof. We say that Verify visits a node t of T ′ whenever the subroutine is invoked with t as its

argument. First, we observe that Verify visits each node at most once. Clearly, the invocation from

Step 1 of MakeFSM (see Figure 5) is not repeated. When Verify is recursively invoked from its Step 16,

the edge leading to the visited node is marked as “traversed,” and the node is never visited again from

that step. Invocations from steps 7 and 9 visit nodes that have just been created in a call to Insert,

and whose incoming edges are already marked as traversed. Therefore, Verify never revisits a node.

Notice also that when new nodes are inserted in the tree (Step 4 of Verify), the string associated with

the new node is shorter than one that already existed in the tree. It follows from the finiteness of the

initial tree T that the total number of nodes inserted is finite, and, thus, the recursion sequence of

Verify is finite and MakeFSM terminates. On the other hand, notice that new nodes that are created

are either visited immediately (steps 7 and 9), or their incoming edges were marked as “not traversed.”

Hence, since the loop in Step 12 recursively traverses all edges outgoing from the current node that had

not been traversed (which is done in a conventional pre-order tree traversal recursion), every node of

the final tree T ′ is visited exactly once. We now claim that when the algorithm terminates, T ′ = Tsuf.

To prove the claim, observe that in Step 1, Verify extracts the suffix x = tail(w) of its argument. In

Step 2, the canonical decomposition of x is computed, The first component, r, of this decomposition,

corresponds to a prefix of x that is already in the tree. Step 4 constructs the parts of x that were

missing. Therefore, a call to Verify(w) guarantees that tail(w) will be a node of the constructed tree.

Since the algorithm starts with T , and it only adds suffixes of nodes that were already in the tree,

every node of T ′ is either a suffix of a node of T , or a node inserted to allow a bifurcation (e.g., if 001

and 01 are suffixes, a node must exist at 0, even if it is not a suffix). Finally, since all the nodes of T ′

are visited, every suffix of a node of T is a node of T ′. Hence, upon termination of MakeFSM, T ′ = Tsuf.

Transitions of the FSM associated with Tsuf, of the form f(x, c) = cx, are constructed in Step 11 of

Verify. Transitions of the form f(x, c) = u ≺ cx are added in the PropagateTransitions subroutine.

Overall, this process exhausts all transitions between permanent states.13 2

A key supporting structure generated by the algorithm is the array Tail of suffix links, constructed

in Step 10. A comment is in place here about the apparent redundancy between Step 1 and Step 10,

both of which seem to “compute” the longest proper suffix, x, of w. In Step 1, we read the symbols of

x as a substring of w, a pointer to which we get as input to Verify. In Step 10, after possibly having

built it, we have access to a pointer to the node labeled x in T ′. That pointer is then stored in the

array Tail for use in later stages of the algorithm. Note that w and x, as nodes, could be located in

very different parts of T ′.

An example of the workings of the algorithm is presented in Figure 6. Figure 6(A) (excluding the

dashed arrow) shows a non-FSM GCT T over the alphabet A = {a,b,c}. Figures 6(A), 6(B), and 6(C)

present the tree T ′, and the suffix links created, after each iteration of the loop in Step 12 of Verify(λ)

(namely, one iteration for each child of λ in T ). Nodes added to T ′ in each iteration are shaded in light

gray, switching to dark gray in later iterations. Nothing changes in the first iteration, except for the

addition of the suffix link from node a, which is verified in this iteration, to the root. In the second

13In addition, also the transitions involving transient states that are nodes of Tsuf are constructed.
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Figure 6: FSM closure (C) and intermediate stages (A,B), with suffix links

iteration, processing the branch in the direction of b leads to the verification of nodes ba, baa and

bac. The tails of the latter two (aa and ac, respectively) were not previously in the tree, and are thus

added by Verify via calls to Insert. Since node a has already been verified, Traversed[a,a] is true

for all a∈A and Verify is recursively called for the inserted nodes. No further insertions are required,

and suffix links are defined for the new nodes as shown in Figure 6(B). Execution for the branch in the

direction of c proceeds in a similar way, though in this case, recursive verification of some new nodes

leads to further insertions. For instance Verify(cbacb) leads to successive creations of nodes bacb,

acb, cb and b, the latter two causing the split of previously traversed edges. Notice how the search

for the longest proper suffix of an inserted node during its verification is helped by following the suffix

link of its parent. For example, during verification of bacb, we can start the search for acb directly at

node ac by following the suffix link from bac in Figure 6(B).

Complexity analysis. Most individual steps of the algorithm listed in Figure 5 can be executed in

constant time per node visited, assuming strings associated with edges in the input tree T are efficiently

represented, e.g., following the suffix tree methods surveyed in [16], the string v in an edge u
v−→ uv of

T is defined by a pair of pointers to some memory buffer where the actual symbols are held. Thus, for

example, a substring of v can be defined and “copied” somewhere else by manipulating the pointers

in constant time. Notice that any new edges inserted by the algorithm are labeled with substrings of

previously existing labels, so no additional memory buffer space is needed.

The exception to the statement above is Step 2 of Verify, namely, the computation of CT ′(x). In

principle, the step calls for a string comparison seeming to require symbol by symbol access, and time

proportional to |x|, which could lead, in the worst case, to total execution time quadratic in the total

length of strings in the tree. However, the suffix links available at that point in the execution of the

algorithm can be used to improve the efficiency of this computation.

The shallowest layer of executions of the loop in Step 12 iterates over the children of the root λ. It

is readily verified, by observing Figure 5, that except for that layer, every time Verify(w) is invoked,
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w is a node of the form w = auv, w’s parent is au 6= λ, and au was previously verified and has a

suffix link pointing to node u. Then, we can compute CT ′(uv) starting from node u, reading individual

symbols of v (which we access by reading the appropriate part of w as a string), and traversing the

tree until we find the first prefix of uv that is not a word of T ′. When the node being verified is

bv ∈ chldT ′(λ), we take u = λ, and proceed in a similar fashion with v. In any case, the number of

operations is proportional to |v| rather than |x|.
Further savings are possible when the invocation Verify(ru) is made from Step 7. For this case,

we show that we can count on x′ = tail(ru) being a word of T ′, and we only need to find its location in

the tree to verify whether it is a node, or an edge must be split to create one. To see this, recall that

we get to Step 7 after a call to Insert which split an edge r
uy−→ ruy. Also, since Traversed[r, head(u)]

must be true, the node ruy must have been visited either from Step 16 of Verify or from Step 7 or 9

immediately after creation. This guarantees that tail(ruy) is a node of T ′ and so x′ = tail(ru) is a word

of T ′. Now, to find x′ in the tree, we can start from node r′ = tail(r), and traverse in the direction of

string u, advancing by full edges of the tree, and making comparisons only at the nodes to determine

the direction of the next edge. Each time an edge is traversed, we advance in u by the same number of

symbols as the length of the edge, until we exhaust the symbols of u. In this case, therefore, the cost

of the computation is proportional to the number of nodes we encounter in the path from r′ to r′u,

rather than the number of symbols |u|. We will refer to this case as the fast mode of Verify.

The following theorem bounds the running time of MakeFSM. Its proof is based on the observations

above, and an analysis of the various configurations arising during the recursive sequence of invocations

of routine Verify. The proof is deferred to Appendix B.

Theorem 4 Let NE =
∑

e |e|, where the sum is taken over labels e of edges of T , and let N ′ = |Tsuf|,
the number of nodes in Tsuf. Then, MakeFSM runs in time O(NE + N ′).

4 Linear time universal coding in the class of tree models

In this section, we apply the results of Section 3 to the implementation, in linear encoding/decoding

time, of the semi-predictive approach to universal coding in the sub-class of full-tree models, outlined

in Section 1 and reviewed in more detail in the following Subsection 4-A. Thus, we seek universality

among full trees only, and the GCT extension is used as an algorithmic tool.

4-A The semi-predictive approach

Next, we review the semi-predictive universal code for full-tree models outlined in Section 1. Notice

that the basic idea of a two-pass approach to double universality for countable hierarchies of models

is given in [10], the case in which the second pass executes a sequential code is termed semi-predictive

in [13], and the class is particularized to full-tree models in [5]. Thus, the universality result presented

in this subsection (both for individual sequences and in a probabilistic setting) is well known; it can

be found, e.g., in [14], and we re-derive it here for completeness.

For an individual sequence xn, the coding scheme searches, in a first pass through the data, for the
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full tree T (x) that minimizes the (ideal) code length

L(T, xn) = LKT

T (xn) + C(T ) (14)

over all full trees T of any size, where LKT

T (xn) denotes the (ideal) code length assigned by the

Krichevsky-Trofimov (KT) sequential probability assignment [15] conditioned on the states of T (with

a uniform distribution assigned to symbols occurring in transient states), and C(T ) denotes the cost of

encoding T using a natural code (see, e.g., [5, 6]). With a natural code, a full tree is encoded with one

bit per node, specifying whether the node is a leaf or internal. Thus, by (8),

C(T ) = |T | =
α|ST | − 1

α − 1
. (15)

To specify LKT

T (xn), let ns(x
j−1) denote the number of occurrences of state s ∈ ST in the sequence

sT (λ), sT (x1), sT (x1x2), · · · , sT (xj−1), 1 ≤ j ≤ n, and let ns,a(x
j) denote the number of occurrences of

a ∈ A at state s in xj , namely

ns,a(x
j) = |{i : 1 ≤ i ≤ j, xi = a, sT (xi−1) = s}| .

Clearly, ns(x
j−1) =

∑
a∈A ns,a(x

j). Then, upon observing xj , the KT probability assignment takes the

form

pj+1(xj+1 = a|sT (xj) = s) =
2ns,a(x

j) + 1

2ns(xj−1) + α
.

Further, let

n(T ) =
∑

s∈ST

ns(x
n−1) .

Notice that n−n(T ) is the number of symbols which, using tree T , are coded in a transient state with

a uniform distribution, and is therefore no larger than the depth of T (which, in turn, is at most the

number (|ST | − 1)/(α − 1) of internal nodes of T ). Consequently,

LKT

T (xn) = (n − n(T )) log α +
∑

s∈ST

κ(xn, s), (16)

where hereafter logarithms are taken in base 2, and, by [15],

κ(xn, s)
4
= log

Γ
(
ns(x

n−1) + α
2

)
Γ

(
1
2

)α

Γ
(

α
2

) ∏
a∈A Γ

(
ns,a(xn) + 1

2

) . (17)

In a second pass, the algorithm uses the KT probability assignment to encode the data conditioned

on T (x). Clearly, upon decoding T (x), the decoder can decode the data in a single pass. Due to

the properties of the KT probability assignment [15] used at each state, with an arithmetic coder

of sufficient precision, this scheme is twice-universal in the sense that, for any sequence xn, and any

number M of states, it achieves a per-symbol code length

L(xn) = min
T

L(T, xn) ≤ ĤM (xn) +
M(α − 1)

2

log n

n
+ O

(
M

n

)
, (18)

where ĤM (xn) denotes the minimum, over all trees with M (permanent) states, of the empirical

entropy of xn conditioned on the tree. Universality in a probabilistic setting also follows by taking

expectation with respect to the true model in (18), and noticing that the expected empirical entropy

is upper-bounded by the entropy rate.
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Encode(xn)

1. //First pass:

2. Compute ST (x), compact suffix tree of xn−1$

3. Compute T ′(x) s.t. T ′

full
(x) = T (x) by pruning ST (x) and making edges leading to leaves atomic

4. Encode T ′

full
(x)

5. //Second pass:

6. Compute T ′

F (x) = T ′

suf(x)

7. Set s = λ

8. For i in 1..n

9. Encode xi using statistics located in array Origin[s] of T ′

F (x)

10. Set s = Transitions[s](xi) using T ′

F (x)

Figure 7: Coding algorithm

4-B An efficient algorithm: complexity analysis

We first present the linear time algorithm for the encoding stage. The algorithm is detailed below and

summarized in Figure 7.

First encoding pass: finding the optimal tree. A procedure for finding the optimal full tree T (x)

in linear time is described in [17]. The procedure described below is similar in that it is also based

on the application (pioneered in [21]) of suffix tree techniques, and on the tree pruning ideas of [5].

Nevertheless, our procedure is given in terms of the GCT formalism.

First, notice that all the nodes in T (x) correspond to strings that actually occurred as substrings

of xn, except for those leaves that are added to complete a full tree, for otherwise C(T (x)) could have

been made shorter without affecting LKT

T (x)(x
n). Let T ′(x) denote the GCT that is obtained from T (x)

by deleting all leaves that did not occur as substrings of xn, as well as any node u such that deg(u) = 1

after deleting those leaves, except if u ¹ xn. This exception guarantees that all transient states emitting

symbols of xn take the form u$, where u ∈ T ′(x).14 Moreover, even though internal nodes of T ′(x)

may now become permanent states, the only permanent states that will emit symbols of xn are leaves.

Thus, for the purpose of coding xn, T ′(x) is equivalent to T (x). Clearly, we have T ′
full(x) = T (x).

Now, consider the compact suffix tree (see, e.g., [16]) ST (x) of xn−1$ where, as introduced in

Section 2, $ denotes a special symbol that is conceptually assumed to precede x1. The leaves of ST (x)

are given by all strings of the form xj$, 0 ≤ j < n, and v is an internal node of ST (x) if and only if

there exist two different symbols a, b ∈ A∪{$} such that both av and bv are sub-strings of $xn−1 (thus,

deg(v) > 1). The last symbol of the string labeling the incoming edge of any leaf of ST (x) is $ (on the

other hand, T (x) is an α-ary tree, and $ is just a symbol appended to its transient states). The use of

this symbol in ST (x) guarantees that the mentioned nodes u of T ′(x) with deg(u) = 1 belong also to

ST (x). Thus, by the definition of ST (x) and T ′(x), all internal nodes of T ′(x) are also internal nodes

14We recall that, in full generality, transient states correspond to all the words of the tree except for the leaves, and

not just to those words corresponding to nodes.
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of ST (x). Moreover, the leaves of T ′(x) are words of ST (x), but notice that since the incoming edges

corresponding to these leaves must be atomic (for otherwise the description of T (x) could be shortened

without affecting LKT

T (x)(x
n)), it may be the case that a leaf of T ′(x) is not a node of ST (x). Thus, one

can obtain T ′(x) by “pruning” ST (x) and possibly shortening incoming edges of the resulting leaves

to make them atomic (Step 3 in Figure 7). By (16) and (17), the information required for the pruning

decisions consists, for each potential leaf s, solely of {ns,a(x
n)}a∈A. Clearly, these counts are obtained

recursively as the sum of the corresponding counts over all children of s. The recursion starts from the

leaves u$ of ST (x), for which the symbol a that follows $u in xn can be recorded during the suffix tree

construction and associated to the leaf.

The algorithm that derives T ′(x) by pruning ST (x) is based on the observation that, by recursively

assigning costs to sub-trees, an optimal tree consists of optimal sub-trees, and can be obtained by

dynamic programming. This observation was first made in [5] and is used also in [17]. It should be

noticed, however, that the formulation in [5] is simplified by the fact that the tree to be pruned has

bounded depth and is atomic. In our case, to assign the costs consider a given GCT T ′ and a sequence

xn such that for all j, 0 ≤ j < n, sT ′(xj) = sT ′

full
(xj) (as observed, only sequences emitted from leaves

of T ′ are relevant to the discussion). We associate to each sub-tree rooted at an internal node u of T ′

the cost KT ′(u) recursively defined by

KT ′(u) =
∑

w∈chldT ′ (u)

[KT ′(w) + α(|w| − |u| − 1)] + (α − deg(u)) + δu log α + 1 (19)

where δu = |{ i : VT ′(xi) = u }|, whereas for a leaf s of T ′ we define

KT ′(s) = 1 + κ(xn, s) .

Since C(T ′
full) = |T ′

full|, by (14), (15), and (16), we have KT ′(λ) = L(T ′
full, x

n), as the terms α(|w|−|u|−1)

in the summation, and (α − deg(u)) outside the summation on the right-hand side of (19), account

for the additional nodes needed to complete T ′ to a full tree; the term δu log α, on the other hand,

accounts for symbols coded in transient states. Thus, Equation (19) can be used as the basis of a

dynamic programming minimization procedure. However, the pruning algorithm must also take into

consideration the possible insertion of additional nodes in ST (x), as mentioned above, as the incoming

edges of the leaves of T ′(x) must be atomic.

Specifically, in a post-order traversal [28] of ST (x), we compare, for each node u, the sum of the

costs of the optimal sub-trees rooted at all its children, with the cost of making u′ a leaf, where u′ ¹ u

and |u′| = |parST (x)(u)|+1 (or u′ = λ if u = λ). It is easy to see that this comparison can be performed

by recursively associating to each internal node visited in ST (x) the cost

K(u) = min


α(|u| − |u′| + 1) +

∑

w∈chldST (x)(u)

K(w) , κ(xn, u)


 (20)

and marking u′ as a leaf in case the minimum is achieved by the second argument, where for a leaf

w = v$ of ST (x) we define K(w) = log α in (20). Notice that the term δu log α of (19) is incorporated

into the summation over all children in (20) since, due to the use of the special symbol $ in ST (x), we

have u$ ∈ chldST (x)(u) in case x|u| = u (therefore, u may have up to α + 1 children).
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Summarizing, the computational cost of finding the optimal tree T (x) is given by the cost of the

following operations:

1. Building the (compact) suffix tree ST (x) of $xn−1, and some associated data structures;

2. Computing the costs K(u) for all nodes u of ST (x); and

3. Pruning ST (x) in a post-order traversal, with possible insertion of new nodes as leaves of T (x).

It is well known (see, e.g., [16]) that the computational cost of building ST (x) is O(n). The adaptation

of the generic suffix tree algorithms to building also some additional ad hoc structures (e.g., associating

an emitted symbol with each leaf of the tree) is straightforward and does not affect the complexity.

Since, by definition, ST (x) has n leaves, it has O(n) nodes when represented as a compact tree. The

insertion of additional nodes as possible leaves of T (x) clearly does not affect the linearity. It is shown

in [17, Theorem 1] that the computation of each κ(xn, u) can be performed in registers of size O(log n)

in a constant number of operations, and that this precision is sufficient for preserving the validity

of (18). Finally, since a post-order traversal of the tree requires a number of operations which is linear

in the number of its nodes, the pruning step can also be done in linear time.

Second encoding pass. After encoding T (x) with a natural code (which can be specified recursively

with a pre-order traversal of the tree [28]), the encoder makes a second pass through the data which

involves, for each j, finding sT (x)(x
j) and arithmetic encoding xj+1 using the corresponding KT proba-

bility assignment. As observed in [17, Corollary 1], even though |T (x)| may be significantly larger than

|T ′(x)| (since ST (x) is a compact tree), it is still O(n), for otherwise T (x) would not have emerged as the

optimal tree in (14) (think, e.g., of the tree {λ}, for which C({λ}) = 1 and LKT

{λ}(x
n) < n log α + o(n)).

Therefore, T (x) can be described in linear time. As for arithmetic coding once sT (x)(x
j) is determined,

it is shown in [9] that, again, performing a constant number of arithmetic operations per symbol in

registers of size O(log n) guarantees a precision that will not affect the validity of (18). Thus, we focus

on the determination of the state.

In [17], the BWT of $xn facilitates the transition between states in constant time. Alternatively,

notice that the algorithms that construct ST (x) in linear time can also maintain pointers (the so-called

suffix links) between each leaf au$ of ST (x), and the leaf u$, as suffixes are inserted by length. If each

leaf u$ is in turn linked to the corresponding state sT (x)(u), then each state transition can be done in

constant time. Clearly, these links can be created with an additional traversal of ST (x) in linear time,

or during the pruning phase without affecting its complexity. These methods, however, require either

the BWT of $xn, or the suffix tree ST (x), none of which are, in principle, available to the decoder.

Thus, we propose an alternative linear time method, based on the FSM closure of T ′(x), that can be

employed also at the decoding side.

Specifically, before starting the second pass, the encoder builds an FSM closure T ′
F (x) of T ′(x)

(without loss of generality, T ′
suf(x)), using the algorithm MakeFSM of Section 3-D.15 For every permanent

state w of T ′
F (x), and every symbol c ∈ A, the encoder then has access to the next-state transition

f(w, c) via the mapping Transitions[w]. This mapping also provides the state transitions for all

15Notice that while only states associated with leaves actually occur in the sequence of permanent states of T ′(x)

determined by xn, this is no longer the case with T ′
F (x), for which we take full advantage of the GCT formalism.
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transient states that are associated with nodes. Since, by the definition of T ′(x), all the transient

states that are actually visited with xn are indeed associated with nodes, it follows that, starting from

the root (which is used to encode x1), the encoder can make each transition between states of T ′
F (x)

in constant time. In addition, the link Origin[w] provides access to the state of T ′(x) that is being

refined by w, which accumulates the relevant statistics for the KT probability assignment (loop starting

at Step 8 in Figure 7). These statistics are possibly shared with other states of T ′
F (x). The following

corollary to Theorem 4 establishes the linear time complexity of the proposed encoder.

Corollary 1 MakeFSM(T ′(x)) runs in time O(n).

Proof. By Theorem 4, it suffices to prove that both the sum of the lengths of the strings that label

edges of T ′(x) and the number of nodes of T ′
F (x) are O(n). The former is clearly upper-bounded by

|T (x)|, which was already observed to be O(n). As for T ′
F (x), let T ′′(x) denote the tree obtained by

deleting from T ′(x) those nodes that are not in ST (x) (and the corresponding incoming edges). By the

definition of a (compact) suffix tree, u ∈ ST (x) if and only if either u is a prefix of $xn−1, or there exist

a, b ∈ A ∪ {$}, a 6= b, such that both au and bu are sub-strings of $xn−1. Thus, every suffix of a node

of ST (x) is also a node of ST (x). Since T ′′(x) ⊆ ST (x), and T ′′
F (x) is formed by adding as nodes all

the suffixes of the nodes of T ′′(x), it follows that the added nodes are in ST (x), and therefore we also

have T ′′
F (x) ⊆ ST (x). Consequently, |T ′′

F (x)| = O(n). Now, in addition to the nodes of T ′′
F (x), T ′

F (x)

includes all the suffixes of the nodes of T ′(x) that are not in ST (x). As observed in the description of

the pruning step, these nodes can only be leaves of T ′(x), and all corresponding incoming edges have

length 1. Thus, these leaves take the form wa, where w ∈ T ′′(x) (and, hence, w ∈ T ′′
F (x)) and a ∈ A.

Thus, the corresponding suffixes take the form va, where v ∈ T ′′
F (x), so that the number of additional

nodes of T ′
F (x) cannot be larger than α|T ′′

F (x)| = O(n). 2

Decoding. The situation would be analogous at the decoder if, as it starts scanning the compressed

bit-stream, it had access to T ′(x). However, only T (x) has been described and, by Theorem 3, its FSM

closure might, in principle, have a super-linear number of nodes. Of course, a modified encoder can

describe T ′(x) (by simply specifying, for every node of T (x), whether it is also a node of T ′(x)), without

affecting the validity of (18). This modified code is still universal, and a linear time implementation of

the decoder follows trivially from reversing some of the operations at the encoder. However, it is not

necessary to penalize the code length to preserve linear time complexity. Next, we present a decoder

that has access to T (x) only, but requires a more elaborate analysis.

Assume T (x) 6= {λ} (for otherwise T ′(x) would also be known), and let T̂ ′(x) denote the tree

obtained from T (x) by deleting all the leaves, as well as nodes whose outgoing degree after deleting the

leaves is 1. Clearly, T̂ ′
full(x) ⊆ T (x) (equality holds only for T (x) = λ), and |T̂ ′(x)| ≤ |T ′| for any T ′ such

that T ′
full = T (x). Thus, T̂ ′(x) ⊆ T ′(x). The decoder starts by building an FSM closure T̂ ′

F (x) of T̂ ′(x),

which, by the proof of Corollary 1, can be done in linear time (again, we assume T̂ ′
F (x) = T̂ ′

suf(x)).

Then, the key idea is to relate, for every i, 0 ≤ i < n, the state ŝi
4
= s

T̂ ′
F

(x)(x
i) to si

4
= sTF (x)(x

i),

which is the state needed by the decoder, and to show that the linkage between the two states can be

executed in linear time. The statement of this relation and the complexity analysis of the procedure

are deferred to Appendix C.
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Figure 8: Decoding tree

Figure 8 illustrates some of the decoding operations. Figure 8(A) shows a tree T (x), and the

leaves (light gray) and internal nodes (dark gray) deleted to obtain T̂ ′(x). The latter tree is shown in

Figure 8(B), which also illustrates the relation between ŝi and si. In this particular case both T (x)

and T̂ ′(x) are FSM. The strings zi and symbols bi shown in the figure are discussed in Appendix C.

The implementation of the semi-predictive approach to Context algorithm outlined in this section

(and in Appendix C) is denoted SPContextFSM. The following theorem summarizes our discussion.

Theorem 5 SPContextFSM encodes and decodes any sequence xn in time O(n).

Remarks

(a) SPContextFSM does not explicitly obtain T ′(x), the pruned tree given by the set of nodes of T (x)

that actually occurred as substrings of xn. Since, after decoding xn, the decoder can determine

T ′(x), a plausible approach to linear time decoding would be to obtain T ′
F (x) adaptively, starting

from T̂ ′
F (x) and adding the missing nodes as new words of T (x) are decoded. Thus, T̂ ′

F (x) would

grow on the fly “as needed.” It can be shown that such a procedure can indeed be implemented

in linear time without recourse to additional data structures such as Jump[u]. However, the

description of SPContextFSM is simpler.

(b) SPContextFSM is presented as an application of the concept of FSM closure, solving the open

problem of linear time decoding. In [39], we present another solution to this problem, without

recourse to the FSM closure. This approach will typically require more storage space than

SPContextFSM at the decoder. The idea in [39] is to extend T (x) on the fly with the suffix tree

of the string decoded so far. To this end, the suffix tree of xi−1$ is built in an “anti-sequential”

manner as in [20], i.e., the suffix tree of xj$ is available at each step j, 0 < j < i.
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4-C Context Algorithm and the BWT

Algorithm SPContextFSM sheds light on the relation between the Context algorithm and coding schemes

based on the BWT [19], which use similar data structures. An information-theoretic analysis of this

transform in the context of tree models was first given in [22]. The discussion below will show that the

sub-optimality of BWT-based codes in compressing tree models is the result of inverting the order in

which operations are carried out in SPContextFSM, without any significant complexity advantage.

The BWT traverses the suffix tree ST (x) sorting the suffixes of xn lexicographically, and outputting

the symbol emitted at each suffix. Thus, it reorders xn so that symbols that occurred in “similar”

contexts are grouped together for any tree model structure T , without attempting at selecting the

best coding tree. Coding is then typically performed by move-to-front heuristics, or by segmenting the

(transformed) sequence sub-optimally [22], and treating each segment as an i.i.d. sequence. Thus, the

statistics of nearby contexts are merged. SPContextFSM, instead, groups statistics only among symbols

that occurred at the same context in the optimal tree T (x). As shown in Section 4-B, the complexity of

finding T (x) (by pruning ST (x)) and of building the FSM closure of the equivalent GCT T (x) is similar

to that of implementing the BWT and, in fact, the schemes use similar algorithmic tools. Moreover, the

decoder need only build an FSM closure, with a complexity that depends on the size of the optimizing

tree. Even though this complexity might be O(n) in the worst case, it will typically be much smaller in

practice. Then, the decoder can proceed to decode the sequence on the fly. In contrast, in BWT-based

schemes, the decoder typically decodes the entire sequence, and only then proceeds to reorder it by

performing the inverse BWT.

Yet, the “context deinterleaving” feature of BWT (in which symbols emitted in the same context are

processed consecutively) may still be desirable in situations in which we want to avoid frequent context

switching. However, this property is provided in a more efficient manner by an invertible transform

of the input sequence, defined for each tree T , which we will call the T -transform. Specifically, for a

GCT T , we order the permanent states, say, lexicographically, and we reorder a sequence xn so that

all symbols emitted at the same state are contiguous and appear in chronological order in a “segment,”

with segments ordered by the lexicographical order of the states, preceded by all the symbols emitted in

transient states (also in chronological order). By following the state transitions of the FSM built from

T , each input symbol is assigned to the appropriate segment. Clearly, given all segment lengths, the

T -transform is invertible since, given xi, xi+1 is the first symbol in the segment corresponding to sT (xi)

that has not yet been inverted. Moreover, just as with the BWT, the transform and its inverse can be

implemented in linear time with the tools described in this paper. Selecting T = T (x), each segment

can be coded separately with a memoryless model. If the coding scheme starts by describing α−1

symbol counts for the segment (rendering the overall approach two-pass, rather than semi-predictive),

the length information necessary for inverting the T -transform can be omitted, as it is implicit in the

type information. With an enumerative code for each segment type [40], such schemes are known

to yield the same code length as Laplace’s rule of succession, and are therefore still optimal in a

probabilistic setting (but, as opposed to the KT rule, not for individual sequences; see, e.g., [11]).16 An

16We point out that the T -transform extends and formalizes ideas that are related to [23]. In [23], length information

is also transmitted, but the pruning procedure (that yields a possibly incomplete tree) is heuristic. It can be interpreted

as an attempt at optimizing the code length in the GCT class.
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Sequence xn: 1 1 0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 1 0

States sn−1
0 : λ β D A A A A B A C D A A B A C D A A B A C D A A B A A B

Transformed sequence: 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0

States: λ β A A A A A A A A A A A A A A A B B B B B C C C D D D D

Figure 9: T -transform of a binary sequence

example of the T -transform of a binary sequence xn, whose optimal context tree T (x) is T of Figure 1,

is given in Figure 9. In the figure, the states λ$, 1$, 0, 100, 101, and 11 of T (with permanent states

in lexicographical order) have been re-labeled λ,β,A,B,C, and D, respectively, for succinctness. The

T -transform is computed by means of the FSM closure of T , which is given in automaton form in

Figure 4.

One situation in which it may be advantageous to group together symbols occurring in the same

context arises when we wish to replace the arithmetic code with a simpler “symbol-by-symbol” code on

an extended alphabet.17 Even though arithmetic coding does not affect the linearity of the complexity,

it is sometimes considered, in practice, an expensive operation. Obviously, the same simple symbol-by-

symbol coding techniques that are used in BWT-based schemes can be employed with the T -transform.

Of course, in this case, the cost function to be minimized in the pruning of ST (x) should account for

the specific code adopted, rather than for the KT code length.

To summarize our discussion, we notice that the description of the T -transform reveals, in fact, the

main weakness of the BWT approach to universal lossless compression. While the approach with the

T -transform is to first prune the suffix tree to obtain the best coding tree, and then reorder the input

sequence, BWT first reorders the input sequence in a manner that is compatible with any coding tree,

and then the transformed sequence is segmented by ad hoc (or sub-optimal, see [22]) means.

5 Tree models under time reversal

In this section, we investigate the effect of time reversal on the minimal tree model of a finite-memory

process. The investigation is motivated by the question posed in Section 1 of possible differences in

compression performance between a left-to-right and right-to-left scanning of a string by a universal

compressor. Since the effect we are most interested in is the possible variation in estimated model

size, we restrict our attention to full-tree models, for which efficient model optimization algorithms

exist. As mentioned, this is an open question for the more general GCT models. All trees mentioned

in the remainder of the section are assumed to be full α-ary trees. We shall also assume that in all

finite-memory processes mentioned, the defining CPMFs associated with permanent states of a GCT

are such that any Markov chains associated with these states are irreducible and aperiodic [27, 24].

17In fact, such deinterleaving techniques date back to [41] and were crucial, e.g., for facsimile coding, before the invention

of arithmetic coding. In [41], an interlacing scheme for taking separate extensions for each state in the binary case is

proposed.
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It is known (see, e.g., [24, Ch. 4]) that the order and entropy rate of a stationary Markov process

are preserved under time reversal. However, the translation of this fact to the formal setting of string

processes defined in Section 2 involves some nuances, including an appropriate characterization of

stationarity in that setting. In any case, the classical results do not address the issue of the effects of

time reversal on the more detailed tree structure or its size. As in Section 4, the FSM closure will play

a crucial role in the derivation of the main results of this section.

5-A Two-sided finite-memory processes

We define the reverse of a string process P as a probability assignment P : A∗ → [0, 1] such that

P (u) = P (u), u ∈ A∗.

Clearly, since P satisfies postulate (Q1) of Section 2, so does P . For P to satisfy (Q2), P must satisfy

(Q2) P (u) =
∑

a∈A P (au), ∀u ∈ A∗.

Therefore, a process satisfying (Q1), (Q2), and (Q2) is reversible, in the sense that its reverse is also

a process. We call such a process two-sided.

For a tree T with a set of leaves ST and a string u over A, define

ST [u] = { v ∈ ST |u ¹ v } .

Lemma 11 Let r be an arbitrary node of a tree T . If P is any two-sided process, then, for all u ∈ A∗,

we have ∑

v∈ST [r]

P (vu) = P (ru). (21)

Proof. Let Tr denote the subtree of T rooted at r. We prove the claim by induction on |Tr|. It

holds trivially for for all r such that |Tr| = 1. Assume it holds for all r′ such that |Tr′ | < |Tr|, and let

Tra, a ∈ A, denote the subtree rooted at ra. For v ∈ ST [ra], write v = rav′. Then, we have

∑

v∈ST [r]

P (vu) =
∑

a∈A

∑

v∈ST [ra]

P (vu) =
∑

a∈A

∑

v′∈STra

P (v′aru) =
∑

a∈A

P (aru) = P (ru),

where the next to last equality follows from the induction hypothesis applied to the root of the subtrees

Tra, and the last equality follows from (Q2). 2

Recall from Section 3-B that if 〈T, p〉 is a full-tree model of a process, and the GCT TF is an FSM

refinement of T , then TF is an extension of T (Lemma 6), and 〈TF , p′〉, with p′(·|t) = p(·|s), s ∈ ST , t ∈
STF

[s], generates, by Lemma 3, the same process as 〈T, p〉. We say that the CPMF set {p′} is derived

by refinement from 〈T, p〉.

Lemma 12 Assume 〈T, p〉 generates a two-sided finite-memory process P of order m. Then,

(i) P is a finite-memory process of order m, and
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(ii) if TF is an FSM refinement of T , and pF (t) denotes the stationary probability of t ∈ STF
in

the Markov chain defined by the permanent states of TF , with transition probabilities derived by

refinement from 〈T, p〉, then P satisfies

P (s) =
∑

t∈STF
[s]

p
F
(t) ∀s ∈ ST . (22)

Proof. (i) If such a process exists, then the finite-memory property of P is an immediate consequence

of that of P . Let z ∈ Am
P , and a ∈ A. Then, for all u such that z u ∈ A∗

P , we have

P (a|uz) =
P (uza)

P (uz)
=

P (az u)

P (z u)
=

P (az)P (u|az)

P (z)P (u|z)
=

P (az)P (u|z)

P (z)P (u|z)
=

P (az)

P (z)
, (23)

where we have extended the conditional probability notation to strings in a natural manner. Since the

right-most side of (23) is independent of u, the order m of P is at most m. Considering now the process

P , it follows that the order of its reverse is at most m. Since P = P , we conclude that m = m.

(ii) If |T | = 1, there is only one CPMF in play and the claim is straightforward. Hence, we assume

|T | > 1. Since TF is an extension of T , STF
[s] is not empty for any s ∈ ST , and by Lemma 11 applied

to the subtree of TF rooted at s, with u = λ, we have

P (s) =
∑

t∈STF
[s]

P (t). (24)

For a state t ∈ STF
, write t = br, b ∈ A. Since TF is FSM, by Theorem 2, we have r ∈ TF , and

STF
[r] is not empty. In fact, STF

[r] is the set of permanent states of TF that have FSM transitions to

t. Applying Lemma 11 to the subtree rooted at r, and with u = b, we can write

P (t) =
∑

z∈STF
[r]

P (zb) =
∑

z∈STF
[r]

P (z)p′(b|z), t ∈ STF
. (25)

Here, p′(·|z) is the CPMF derived by refinement from 〈T, p〉. Recalling that z runs over all states with

transitions to t, we recognize (25) as a typical equation in the linear system satisfied by the stationary

probabilities of the Markov chain induced by P , with set of states STF
. Under our assumptions on

the processes of interest, this system has a unique solution, {P (t) = p
F
(t) | t ∈ STF

}. Part (ii) of the

lemma now follows from (24). 2

Lemma 12 determines the probability assignments for strings corresponding to permanent states

of T as a function of the stationary probabilities of the permanent states of an FSM refinement of

T . It can be readily verified that these assignments are, in fact, independent of the specific FSM

refinement selected. This independence is due to the fact that all FSM refinements are refinements of

the FSM closure (see Lemma 7), which is, in turn, a refinement of T , and the CPMFs are propagated by

refinement. The lemma also shows that if 〈T, p〉 generates a two-sided finite-memory process, then the

probability assignments for (short) strings that do not select permanent states are uniquely determined

by the permanent CPMFs, and must be obtained as marginals of the (stationary) probabilities of the
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permanent states (via Lemma 11).18 This observation also tells us how to construct a two-sided finite-

memory process given its permanent CPMFs. The discussion is summarized in the following theorem.

Theorem 6 Let T be a tree of depth m, and {p(·|s) | s ∈ ST } a set of CPMFs associated with the

permanent states of T , such that the Markov chain associated with Tsuf by refinement is irreducible and

aperiodic. Then, there exists one and only one assignment of CPMFs to transient states of T such that

the defined finite-memory process P is two-sided. The resulting reverse P is a finite-memory process

of order m.

Remarks. The results above show that any process that satisfies (Q1),(Q2), (Q2), and the

finite-memory property is a two-sided tree process whose reverse is also a tree process. In fact, it turns

out that these requirements are redundant: it can be readily shown that any process that satisfies

(Q1),(Q2), and the finite-memory property must also satisfy (Q2).

The relation between condition (Q2) and the stationarity of the process P was observed in [25].

It is known that time reversal preserves the entropy of a stationary Markov chain (see, e.g., [24]).

In the string process setting, a comparison of entropies is meaningful only after restricting the string

probability assignment to a domain where it defines a random variable. As noted in [25], a string

process P defines a random variable if and only if it is restricted to a full prefix-free subset of A∗. For

this condition to hold for both P and P , the subset has to be both prefix- and suffix-free, e.g., the

set of all strings of a given length n (other such fix-free sets are possible [42]). Once this formality is

satisfied, it is obvious that P and P define random variables of the same entropy. In addition, P and P

have the same order, as stated in Lemma 12. This fact constrains their minimal tree representations to

be of the same maximum depth (see Lemma 2), but does not say much more about relations between

their sizes or structures. We investigate these questions next.

5-B Reverse trees

It follows from Theorem 6 that P admits a minimal tree model 〈T̂p, p̂〉. One explicit method to

compute the CPMFs p̂(·|t), t ∈ S
T̂p

in terms of the parameters of 〈T, p〉 proceeds by first extending T

to a full balanced tree TF of depth m (which is an FSM refinement of T ), extending the CPMFs p(·|·) by

refinement accordingly, then solving the system (25) for the stationary probabilities P (t), t = tm1 ∈ STF
,

and finally writing

p̂(a|t) =
P (ta)

P (t)
=

P (at)

P (t)
=

P (atm2 )p(t1|atm2 )

P (t)
, t ∈ STF

. (26)

To obtain a minimal tree T̂p, by Lemma 2, sets of identical sibling CPMFs are merged recursively to

the maximum possible extent. The tree T̂p in this model depends on both T and p. In contrast, we

are interested in the minimal representation for the reverses of all the processes whose minimal tree

models have T as underlying graph, and we define the reverse tree of T as

T =
⋃

p(·|·)∈P

T̂p ,

18It is easy to see that this assignment is consistent with (3).
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which depends solely on T . The union is taken over the set P of all CPMFs p(·|·) for which P is

irreducible and aperiodic. The tree T is the minimal common refinement of all T̂p for the given tree T .

Notice that, while there is a symmetry between T and T̂p, so that (̂T̂p)p̂
= T , no such symmetry exists

between T and T , and we might have T 6= T . We will use T as a tool to bound the size difference

between T and T̂p, which is what matters when dealing with a specific process P .

We can also view T as the minimal tree of a reversed process P ξ, where Pξ is a symbolic process

with a minimal tree model 〈T, pξ〉 in which we have substituted (α−1) symbolic indeterminates ξa,s

for the free parameters p(a|s) at each state s. The conditional probabilities of the symbolic reversed

process, obtained, as before, from (26) and the system (25), are rational functions in the indeterminates

ξa,s. Following the initial computation of the parameters of the full balanced tree, the structure of T

emerges through recursive merging of sets of sibling leaves with identical symbolic CPMFs. At the end

of this process, every set of sibling leaves contains at least two CPMFs that are not identical vectors of

rational functions. A specific (numerical) assignment p of CPMFs can still lead to further merging of

leaves, resulting in T̂p ⊂ T . However, this can happen only when p (regarded as a vector in R
(α−1)|ST |)

lies in a nontrivial algebraic variety, namely, the set of solutions of the nontrivial system of polynomial

equations in the ξa,s obtained by imposing equality on sets of sibling CPMFs. This algebraic variety

has measure zero in P (which has positive measure in R
(α−1)|ST |, since CPMF assignments that do

not satisfy the irreducibility and aperiodicity conditions also form a zero-measure set). By a similar

argument, given a tree T , the set of CPMFs p such that P (u) vanishes for some u also has measure

zero in P. The foregoing discussion is summarized in the following lemma.

Lemma 13 For any tree T , and almost all CPMFs p(·|·) ∈ P, we have T̂p = T , and P (u) 6= 0 for all

u ∈ A?.

The tree T of the example in Figure 1 is shown again in Figure 10(A), with a symbolic parametrization.

The reverse tree T and its associated conditional probabilities obtained by explicitly solving the system

of symbolic equations resulting from (25) and (26) are shown in Figure 10(B). Since, in the example,

α = 2, we omit the first index in ξa,s after assuming a = 0. The conditional distributions associated

with the nodes of T are, as expected, rational functions of the ξs. Thus, T is associated with exactly the

same number of free parameters as T , even though it has more leaves. These “hidden” redundancies

would not be exploited efficiently by modeling algorithms that target the class of tree models (e.g.,

Context, CTW).

The symbolic procedure outlined above will produce the reverse tree T and its symbolic parametriza-

tion for any given tree T . However, the procedure does not provide general insight into the structure

of T . To this end, we now derive a combinatorial characterization and construction of T .

Given a tree T , let R(T ) be the smallest full α-ary tree constructed according to the following rule:

For every internal node w of T , w is an internal node of R(T ). Notice that R(T ) might contain internal

nodes that are added to satisfy structural constraints of the tree, rather than directly as reverses of

internal nodes of T . However, any internal node of R(T ) that has only leaves as children must be the

reverse of an internal node of T (as its children must have been included in R(T ) to make the node

internal, and not as reverses). We will rely on this fact in the propositions below.
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Figure 10: Binary tree with symbolic parametrization and reversed tree

Theorem 7 For every tree T , we have T = R(T ).

Proof. Assume T 6⊆ R(T ). Then, there exists an internal node s ∈ T such that sa ∈ ST , a ∈ A, and

s is not an internal node of R(T ). By the definition of R(T ), s is not an internal node of T , which

implies that it selects a permanent state of T . Choosing, by Lemma 13, p(·|·) ∈ P such that T̂p = T

and P (u) 6= 0 for all u ∈ A∗, it follows that P (a|bs) is independent of b for all a, b ∈ A. Thus,

p̂(b|sa) =
P (asb)

P (as)
=

P (bsa)

P (sa)
=

P (bs)P (a|bs)
P (s)P (a|s) =

P (bs)P (a|s)
P (s)P (a|s) =

P (bs)

P (s)
,

which does not depend on a. As a result, leaves sa of T = T̂p share the same CPMF, contradicting the

minimality of T̂p.

Assume now that R(T ) 6⊆ T . Then, there exists a leaf s ∈ SR(T ) such that s 6∈ T . Write s = tua,

where t ∈ ST , a ∈ A, and u ∈ A∗. Since tu is an internal node of R(T ), there exists an internal node

tv ∈ R(T ) all of whose children are leaves of R(T ). By the property discussed before Theorem 7, v t

must be an internal node of T . Define a tree T ′, obtained from T by pruning all nodes descending

from, but not including, the children of v t, thus making the latter leaves of T ′. Let P ′ be a process

for which T ′ is a minimal tree. Since T ′ ⊆ T , T can generate all the processes that T ′ generates, and,

therefore, we must also have T
′ ⊆ T . Hence, there exists a prefix w ¹ t such that w is a leaf of T

′
.

Write tv = wr. Then, for all b ∈ A, we have

P ′(b|awr) =
P ′(awrb)

P ′(awr)
=

P
′
(a|br w)P ′(wrb)

P ′(awr)
=

P
′
(a|r w)P ′(wrb)

P ′(awr)
=

P ′(wrb)

P ′(wr)
,

where the third equality follows from the fact that w is a leaf of T
′
. We get P ′(b|awr) independent of

a, contradicting the fact that r wa = v ta, a ∈ A are leaves of the minimal tree T ′. 2

It follows from Theorem 7 and the definition of R(T ) that T has the same depth as T , and that when

T is a full balanced tree, so is T , consistent with the time reversal properties of stationary Markov

processes [24]. The following lemmas establish a connection between R(T ) and the FSM closure of T ,

which will allow us to bound the size of R(T ). The first lemma below shows that if T is FSM, then all

nodes of R(T ) are there to satisfy its basic construction rule directly.
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Lemma 14 If TF is FSM, then v is an internal node of R(TF ) if and only if v is an internal node of

TF . Therefore, |R(TF )| = |TF |, and R(R((TF ))) = TF .

Proof. It suffices to prove that if sa ∈ R(TF ) is the reverse of an internal node of TF , then so is s. Let

as be an internal node of TF , so that sa ∈ R(TF ). Then, as v is a leaf of TF for some v 6= λ, and, by the

FSM property of the full tree TF and Theorem 2, we have s v ∈ TF . Hence, s is an internal node of TF . 2

Lemma 15 For any tree T , R(T ) is FSM, R(T ) = R(Tsuf), and |R(T )| = |Tsuf|.

Proof. Consider a leaf s = au of R(T ). If u = λ, then u ∈ R(T ). Otherwise, s = avb for some b ∈ A,

and, thus, there exists a node avw ∈ R(T ) all of whose children are leaves. Such a node must be in

R(T ) only because w va is an internal node of T , and, hence, w v is also an internal node of T , which,

in turn, implies by construction that vw is an internal node of R(T ), and so is v. Therefore, vb is a

node of R(T ). It follows that for all s ∈ SR(T ), tail(s) is a node of R(T ), which, by Lemma 8, implies

that R(T ) is FSM.

We claim that if T1 and T2 are trees such that T1 ⊆ T2, then R(T1) ⊆ R(T2). If u is an internal node

of R(T1) then v u is an internal node of T1 for some v ∈ A∗, i.e., either u is the reverse of an internal

node of T1, or was added to R(T1) to allow the insertion of a descendant node uv with that property.

Therefore, v u must be an internal node of T2 (it cannot be a leaf of T2, since otherwise its children

would not be in T2, contrary to the inclusion assumption). Thus, uv ∈ R(T2), and, hence, u ∈ R(T2).

Clearly, if all the internal nodes of R(T1) are internal nodes of R(T2), then all the leaves of R(T1) must

be nodes of R(T2). Thus, R(T1) ⊆ R(T2), as claimed. Therefore, R(T ) ⊆ R(Tsuf). Consider now an

internal node u ∈ R(Tsuf). By Lemma 14, u is an internal node of Tsuf, so ub ∈ Tsuf, and ub is a suffix

of a node of T for all b ∈ A. Hence, vub ∈ T for some v and all b, and vu is an internal node of T . It

follows that uv is an internal node of R(T ), and so is u, and, hence, R(Tsuf) = R(T ). Finally, it follows

from this equality and Lemma 14 that |Tsuf| = |R(Tsuf)| = |R(T )|. 2

Putting together the results of Theorem 3 and Lemma 15, and the definition of T , we obtain the

following theorem.

Theorem 8 Let P be a process with minimal tree model 〈T, p〉, and let K=|ST |. Then, the minimal

tree model 〈T̂p, p̂〉 of P satisfies

√
2(α − 1)K − o(

√
K) ≤ |S

T̂p
| ≤ 1

2(α − 1)
K2 + o(K2) .

It follows from Theorem 8 that, when using tree data models, there might be significant differences

between the size of the tree estimated by the modeler when reading the data from left to right and the

size of the tree estimated when reading the data from right to left. This fact, in turn, may translate

into differences in the model cost incurred by the modeler. These differences are a consequence of the

choice of model class, since, as noted above, the number of free parameters determining the reversed

process is identical to the number of parameters in the original process. On the other hand, it is this

choice of model class that allows for efficient estimation algorithms.
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6 Conclusion

SPContextFSM is the first algorithm for linear time encoding/decoding of a twice-universal code in

the class of tree models. Beyond the practical significance of this result, in this paper we choose to

emphasize and investigate the algorithmic tools employed in its derivation, as well as its information-

theoretic implications. Our starting point was the identification of two basic drawbacks of full-tree

models that affect the computational efficiency of the Context algorithm.

First, efficient implementations of context-based schemes require that the data collection be done

in a compact suffix tree of the input sequence. Thus, the optimal full-tree model for a given sequence

will generally not be a sub-tree of the suffix tree of this sequence, as it may contain paths that did

not occur in the sequence and were added to make the tree full. This observation led to the GCT

extension, which was investigated not only as an auxiliary data structure in a merely computational

setting, but also from an information-theoretic viewpoint, as this richer model class offers potentially

significant improvements in model fitting capability relative to the usual full-tree models. In this sense,

we derived necessary and sufficient conditions for a GCT model to be minimal. These conditions are

considerably more involved than for the sub-class of full-tree models. Consequently, the derivation of

efficient algorithms for capitalizing on the potential savings offered by this model class is still an open

problem of both theoretical and practical interest.

The second drawback of tree models is that they do not offer, in principle, a low-complexity mech-

anism for transitioning from one conditioning context to another in order to, e.g., code a sequence.

We thus characterized the FSM closure of a GCT, which is instrumental in solving the context tran-

sition problem in constant time, and presented an efficient algorithm for constructing it. From an

information-theoretic viewpoint, the FSM closure turned out to be closely related to the effect of time

reversal on tree models, which we also investigated.

Finally, we observed that the sub-optimality of BWT-based codes in compressing tree models

is the result of inverting the order in which operations are carried out in SPContextFSM, without

any significant complexity advantage. This observation contributes to establish the standing of this

transform in the universe of tree-modeling tools, where it was first placed in [22].

Appendix

A Minimal GCT models

Clearly, a model is minimal if and only if it remains so after normalization. Thus, to characterize

minimality, we can assume without loss of generality that T is normal. We say that a pseudo-leaf

v ∈ T is a pseudo-child of u ∈ T if v ∈ chldT (u), or v is a leaf of the form v′b, where b ∈ A,

v′ ∈ chldT (u), and α = 2. By the discussion on normalization in Section 2-B, the case in which

v 6∈ chldT (u) corresponds to the only case in which a node can be eliminated from a normal GCT in

an unnormalization step making its parent a pseudo-leaf. If v or v′ are atomic children of u, then v is
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called an atomic pseudo-child of u. Let LT (u) denote the set of atomic pseudo-children of u, and let

νT (u) = max { 1, |{ a ∈ A |ua 6∈ T }| } .

The following theorem characterizes minimal normal GCT models.

Theorem A.1 A normal GCT model 〈T, p〉 with A∗ = A∗
P is minimal if and only if every node u ∈ T

satisfies the following conditions:

(i) Any subset of nodes in LT (u) that share a common CPMF is of size νT (u) or less.

(ii) If u is a permanent state, and v a pseudo-child of u, then p(·|u) 6= p(·| v).

In addition, for α = 3, if 〈T, p〉 is minimal and 〈T ′, p′〉 generates the same process with T ′ normal,

then T ′ is an extension of T .

It can be shown that if T is not normal, the conditions of Theorem A.1 hold on TN if and only if

they hold on T ; therefore, the step of normalizing T can be avoided. The theorem implies that the

minimal normal GCT model is unique for α = 3. However, it might not be so for α 6= 3. For example,

let α = 4, denote A = {ai}4
i=1, and consider the normal GCTs T = {λ, a1, a2} and T ′ = {λ, a3, a4}.

Clearly, if p(·| a1) = p(·| a2) = p′(·|λ) (as functions), p′(·| a3) = p′(·| a4) = p(·|λ) 6= p′(·|λ), and

p(·|λ$) = p′(·|λ$), 〈T, p〉 and 〈T ′, p′〉 generate the same process and are both minimal. This example

can be generalized to any α > 4 in an obvious manner (but not to α < 4, since T and T ′ must be

normal). For α = 2, let A = {0, 1}, T = {λ, 01, 10}, T ′ = {λ, 00, 11}, p(·| 01) = p(·| 10) = p′(·|λ), and

p′(·| 00) = p′(·| 11) = p(·|λ) 6= p′(·|λ). Again, assuming that the two models use identical CPMFs for

the transient states λ$, 0$, and 1$, both 〈T, p〉 and 〈T ′, p′〉 are minimal GCT models that generate the

same process.

Proof. First, we show the necessity of the conditions. If u does not satisfy condition (i) we can

modify the model, without affecting the process, as follows. If u ∈ ST , add new pseudo-leaves ua for

all a ∈ A such that ua 6∈ T , and associate them with the CPMF of u. By Lemma 1, u ceases to be

a permanent state. By our assumption, there are ν ′ > νT (u) atomic pseudo-children of u that share

the same CPMF. These nodes can be eliminated so that the strings they accepted are now accepted

by u, which also inherits their common CPMF (for α = 2, the elimination of an atomic pseudo-child

v 6∈ chldT (u) also causes the elimination of parT (v), which is not a permanent state as T is normal).

Overall, the number of permanent states in T decreases by at least ν ′ − νT (u) > 0. If u ∈ ST and does

not satisfy condition (ii), then it has a pseudo-child v with the same CPMF, which can be eliminated

without affecting the process, decreasing the number of permanent states of T (again, for α = 2, the

elimination of v may also imply the elimination of parT (v)). In both cases, not satisfying the condition

implies that T is not minimal. Notice that, since the CPMFs of the transient states are assumed to

satisfy the constraint (3), the above state eliminations are not impeded by the transient CPMF p(·|u$).

Next, we prove the sufficiency of the conditions. Consider two normal GCT models 〈T, p〉 and

〈T ′, p′〉 that generate the same process P , with A∗ = A∗
P , and assume that 〈T, p〉 satisfies conditions (i)

and (ii). We first state two general properties that will be used in the proof.
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(P1) If u ∈ A∗ is such that u 6∈ word(T ′), then VT (u) ∈ ST , VT ′(u) ∈ ST ′ , and p(·|VT (u)) =

p′(·|VT ′(u)) (as functions). Moreover, if u ∈ T , then u is a leaf of T .

(P2) If u ∈ T \ T ′, then either u is a pseudo-leaf of T , or α = 2 and there exists b ∈ A such that ub is

a leaf of T . In addition, denoting by v the claimed pseudo-child of parT (u) (either u or ub), we

have p(·| v) = p′(·|VT ′(u)) (as functions).

For u 6∈ T , (P1) is an obvious consequence of the existence of b ∈ A such that ub 6∈ word(T ), of

Lemma 1, and of P (·|zu) being independent of z ∈ A∗ (as the two processes are identical and all

strings have nonzero probability); conditions (i) and (ii) on 〈T, p〉 are not required. The case u ∈ T and

the second part of (P1) follow from the fact that any nontrivial subtree of T must contain permanent

states with at least two different CPMFs, for otherwise the subtree would contain a node all of whose

children are leaves and that violates either condition (i) or condition (ii).

To prove (P2), observe first that since u 6∈ T ′ the set Au = {a ∈ A : ua 6∈ word(T ′)} contains

at least α − 1 symbols. Thus, since T is normal, if u ∈ ST then there exists a symbol a′ ∈ Au such

that ua′ 6∈ T , and therefore, by (P1), p(·|u) = p′(·|VT ′(u)). Now, consider the strings ub ∈ word(T ),

b ∈ Au, and let uby ∈ chldT (u), y ∈ A∗. By (P1), uby must be a leaf of T . If u is not a pseudo-leaf of

T , then there exists at least one such leaf uby and, moreover, uc must be a leaf of T for every c ∈ Au,

for otherwise u ∈ ST and it would have the same CPMF p′(·|VT ′(u)) as uby, violating condition (ii).

This case can only occur for α = 2, for otherwise the number of leaves sharing the same CPMF would

be α − 1 > 1 = νT (u), violating condition (i). The proof of (P2) is complete.

Now, to prove the sufficiency of conditions (i) and (ii), we will show that if a GCT model 〈T ′, p′〉
generates the same process as 〈T, p〉 and it also satisfies the conditions, then T and T ′ are identical up

to transformations of 〈T ′, p′〉 that do not affect neither |ST ′ | nor the generated process. Without loss

of generality, we can assume that T ′ is also normal. Clearly, it suffices to prove that if u ∈ T ∩T ′, then

after such transformations, u is unaffected and chldT (u) = chldT ′(u).

The claim is obvious for u 6∈ ST ∪ST ′ , as u has a full complement of atomic children in both GCTs.

Next, we show that if u ∈ ST , then u ∈ ST ′ or, equivalently, that u ∈ ST \ ST ′ implies u 6∈ T ′. If the

claim did not hold, we would have uc ∈ T ′ for all c ∈ A. Since T is normal and u ∈ ST , there exist

a, a′ ∈ A, a 6= a′, such that ua, ua′ 6∈ T . Thus, by (P2), T ′ has pseudo-children in the directions of a

and a′ sharing the same CPMF. Since νT ′(u) = 1, T ′ does not satisfy condition (i), a contradiction.

Consequently, it suffices to consider the case u ∈ ST∩ST ′ . Assume first α > 2. If ua ∈ T \T ′ for some

a ∈ A, then, by (P2), ua is a pseudo-leaf of T and p′(·|u) = p(·|ua). Therefore, if p(·|u) = p′(·|u),

the sets of atomic children of u for T and T ′ coincide for otherwise condition (ii) is violated. If

p(·|u) 6= p′(·|u), we must have ua ∈ T ∪ T ′ for all a ∈ A, for otherwise there exists b ∈ A such that

uab 6∈ word(T ′) and uab 6∈ T , and a contradiction to (P1) follows. Moreover, in order for both T and

T ′ to satisfy condition (i), the sets {ua ∈ T \T ′} and {ua ∈ T ′ \T} must have the same size. Therefore,

by deleting from T ′ all nodes in the latter set (which are pseudo-leaves) and adding the nodes in the

former set, the size of ST ′ remains unchanged, while the process 〈T ′, p′〉 is preserved by replacing the

distribution p′(·|u) with p(·|u) and associating p′(·|u) with the added pseudo-leaves (this operation

does not affect the transient states). After this transformation, again, the sets of atomic children of T

and T ′ coincide, and p(·|u) = p′(·|u).
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For α = 2, the two sets of atomic children are empty by normality. We show that we can also assume

p(·|u) = p′(·|u). For all c ∈ A, there exists b ∈ A such that ucb 6∈ word(T ′). If p(·|u) 6= p′(·|u), then

ucb is a leaf of T , for otherwise a contradiction to (P1) would follow. We can assume, without loss

of generality, that c = b. Thus, letting A = {a, a′}, T has leaves uaa and ua′a′, with CPMF p′(·|u).

Similarly, T ′ has leaves uaa′ and ua′a, with CPMF p(·|u). Therefore, we can replace the subtree of

T ′ rooted at u with the corresponding subtree of T (replacing also the associated CPMFs), without

affecting the size of ST ′ or the generated process.

To complete the sufficiency proof, it remains to show that, for any α, if uay ∈ chldT (u) and

uaz ∈ chldT ′(u) for some a ∈ A, y, z ∈ A+, and p(·|u) = p′(·|u), then y = z. Suppose it is not. Then,

either VT ′(uay) = u or VT (uaz) = u. Assume, without loss of generality, that the former holds. Then,

by (P2), u has a pseudo-child v with p(·| v) = p′(·|u) = p(·|u), violating condition (ii).

Finally, assume that 〈T ′, p′〉 generates the same process as 〈T, p〉, with T ′ normal, 〈T, p〉 minimal,

and α = 3. We prove that T ⊆ T ′. Since T ⊆ TN , we can assume, without loss of generality, that T is

normal. Suppose, to the contrary, that w ∈ T \ T ′. Clearly, there exists v ¹ w such that v ∈ T \ T ′

and parT (v) ¹ VT ′(v)
4
= u. Let v = uax, with a ∈ A and x ∈ A∗. By (P2), v is a pseudo-leaf of T

and p(·| v) = p′(·|u). Since T ′ is normal, there exists b ∈ A \ {a} such that ub 6∈ T ′. Moreover, for

any a′ ∈ {a, b} we must have ua′ ∈ T , for otherwise VT (u) ∈ ST and ua′c 6∈ T ∪ word(T ′) for some

c ∈ A, implying, by (P1), p(·|VT (u)) = p′(·|u) = p(·| v), violating condition (ii) for T . Thus, u ∈ T

and v = ua. Again by (P2), ub is a pseudo-leaf of T with p′(·|u) = p(·|ub). It follows that {ua, ub}
is a subset of pseudo-leaves in LT (u) that share the same CPMF, violating condition (i) for T since

νT (u) = 1 as α = 3. 2

B Proof of Theorem 4

We claim that the total number of comparisons made during computations of CT (x) is upper-bounded

by 2NE + N ′. By the preceding discussion, this fact establishes the claimed upper bound, as the other

operations take constant time per node of Tsuf.

Let T0 = T , and, for i > 0, let Ti be a snapshot of T ′ after the i-th computation of CT (x) in Step 2

of Verify, and the corresponding call to Insert in Step 4, if such a call was made. Let Ci be the total

number of comparisons made in computations of CT (·) up to that point, and C the total number after

completion of the algorithm, when T ′ = Tsuf. Denote by T ∗
i the set of nodes of Ti excluding the root,

by T−
i the subset of those nodes that have not been visited at the time of the snapshot, and by T−

L,i

the subset of nodes in T−
i that are leaves of Ti. We construct two sequences of functions fi : T ∗

i → Z

and gi : T ∗
i → Z, i ≥ 0, such that

f0(uv) = 2|v|, uv ∈ T ∗
0 , u = parT ∗

0
(uv), u

v−→ uv,

g0 ≡ 0, and, for i > 0, and each node uav ∈ T ∗
0 , with u = parT ∗

0
(uav),

fi(uav) =

{
2|av| uav ∈ T−

L,i or Traversed[u, a]=false,

0 otherwise,
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and

gi(uav) =

{ |av| uav ∈ T−
i \ T−

L,i and Traversed[u, a]=true,

0 otherwise.

Notice that the condition for gi(uav) 6= 0 can only hold when uav was just created as a result of an

edge split in Step 5 of Insert. We prove, by induction on i, that the following condition holds for all

i ≥ 0 for which the relevant quantities are defined:

Ci ≤ |T ∗
i | + 2NE −

∑

t∈T ∗
i

fi(t) −
∑

t∈T ∗
i

gi(t). (B.1)

Condition (B.1) implies that at the end of the execution of the algorithm, after all nodes have been

visited, we have C ≤ N ′ + 2NE , as claimed. The inequality clearly holds for i = 0. Assume now

it holds for all i ≤ n − 1. We determine fn and gn after the next execution of Step 2 and any

necessary insertions, assuming Verify was called with argument w = cx, and CT (x) = 〈r, u, v〉. We

have fn(cx) = gn(cx) = 0, since cx is being visited. If u 6= λ, let u = au′, a ∈ A. In this case, Insert

was called, and an internal node was created by splitting an edge r
uy−→ ruy into r

u−→ ru
y−→ ruy.

Hence, we have

fn(ru) =

{
2|u| Traversed[r, a] = false,
0 otherwise,

(B.2)

fn(ruy) =

{
2|y| Traversed[r, a] = false,
0 otherwise,

(B.3)

and

gn(ru) =

{
|u| Traversed[r, a] = true,
0 otherwise.

(B.4)

For node ruy, notice that if Traversed[r, a] = true, ruy had been visited either immediately after

creation from Step 7 or 9, or after setting Traversed(r, a) = true from Step 16. Therefore, we have

gn(ruy) = 0. If v 6= λ, a new node ruv was created, and has not yet been visited, i.e. ruv ∈ T−
L,i. Thus,

we have fn(ruv) = 2|v|, and gn(ruv) = 0. All other values of fn and gn are unchanged from their values

at i = n− 1. We prove that the condition in (B.1) holds for i = n. Assume first that the invocation of

Verify at which snapshot n was taken was made recursively from Step 7. It follows from the discussion

preceding the theorem that in this case, CT ′ was computed in fast mode, since we know that x was

a word of Tn−1. This also implies that v = λ, and ru was the only node possibly created (if any).

Now, if the invocation of which Step 7 was part was with argument ĉx̂, and CT ′(x̂) = 〈r̂, û, v̂〉, then

the number of comparisons needed in the fast computation of CT ′(x) is upper bounded by |û| − |u|+ 1

if u 6= λ, or |û| otherwise. Thus, we can write

Cn − Cn−1 ≤ |û| − |u| + |T ∗
n | − |T ∗

n−1|. (B.5)

Also, we have fn(cx) = 0, and fn−1(cx) = 0, since we call Verify from Step 7 only for nodes that are

not leaves, and whose incoming edge has Traversed = true. Now, it follows from (B.2), (B.3), and the

fact that edges resulting from a split inherit the “traversed” status of the original edge, that

fn(ru) + fn(ruy) − fn−1(ruy) = 0. (B.6)
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Therefore, we have ∑

t∈T ∗
n

fn(t) −
∑

t∈T ∗
n−1

fn−1(t) = 0. (B.7)

As for the functions g, we have gn(cx) = 0,

gn−1(cx) = |û|, (B.8)

since coming from Step 7, cx is a newly created internal node that did not exist at i = n − 1,

gn(ru) ≤ |u|, (B.9)

gn(ruy) = 0, (B.10)

and

gn−1(ruy) = 0 whenever ruy 6= cx. (B.11)

The last two equations follow from the fact that if the incoming edge of ruy has Traversed= true, the

node had already been visited at i = n−1. The only exception is the coincidental case where ruy = cx,

the node being visited at i = n, in which case the node had not been visited at i = n− 1 and the value

from (B.8) takes precedence. Other values of gn remain unchanged from gn−1, and, hence, it follows

from (B.8)–(B.11) that

−
∑

t∈T ∗
n

gn(t) +
∑

t∈T ∗
n−1

gn−1(t) ≥ |û| − |u|. (B.12)

Now, from (B.5),(B.7),(B.12), and the induction hypothesis we obtain (B.1) for i = n, as desired.

It remains to consider the case where the invocation of Verify at which snapshot n was taken was

not made from Step 7. In this case, the number of comparisons made in computing CT ′(x) is |û|−|v|+1

when v 6= λ, or |û| otherwise, where 〈r, u, v〉 and 〈r̂, û, v̂〉 are defined as before. Thus,

Cn − Cn−1 ≤ |û| − |v| + |T ∗
n | − |T ∗

n−1|. (B.13)

Using reasoning very similar to the previous case, we also obtain

fn(cx) = 0, fn−1(cx) = 2|û|, fn(ru) + fn(ruy) − fn−1(ruy) = 0,

and

−
∑

t∈T ∗
n

fn(v) +
∑

t∈T ∗
n−1

fn−1(t) = 2|û| − 2|v|. (B.14)

Also,

gn(cx) = 0, gn−1(cx) = 0,

gn(ru) ≤ |u|, gn(ruv) = 0, gn(ruy) = 0

gn−1(ruy) = 0 whenever ruy 6= cx,

and, thus,

−
∑

t∈T ∗
n

gn(t) +
∑

t∈T ∗
n−1

gn−1(t) ≥ −|u|. (B.15)
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From (B.14) and (B.15) we obtain

−
∑

t∈T ∗
n

fn(t) +
∑

t∈T ∗
n−1

fn−1(t) −
∑

t∈T ∗
n

gn(t) +
∑

t∈T ∗
n−1

gn−1(t) ≥ 2|û| − 2|v| − |u| ≥ |û| − |v|, (B.16)

where the rightmost inequality follows from |û| ≥ |u|+|v|, which in turn follows from ruv = x = tail(r̂)û

and tail(r̂) ¹ r. Finally, combining with (B.13), and applying the induction hypothesis, we obtain the

desired result. 2

C Linear time decoding

The relation between ŝi
4
= s

T̂ ′
F

(x)(x
i) and si

4
= sTF (x)(x

i) is given by Lemma C.1 below, for which we

remove the $ symbols from transient states, and define zi such that ŝizi is the longest prefix of xi in

word(T̂ ′
F (x)). Further, define bi

4
= xi−|ŝizi| in case |ŝizi| < i, or bi = λ otherwise (these definitions are

illustrated in Figure 8 of Section 4).

Lemma C.1 For every i, 0 ≤ i < n, we have si = ŝizibi.

Proof. Since TF (x) is a full tree, it suffices to show that ŝizibi ∈ word(TF (x)), and that either

bi = λ, or ŝizibic 6∈ word(TF (x)) for any c ∈ A. To prove the first claim, observe that, by definition,

ŝizi ∈ word(T̂ ′
F (x)), so that there exists a string y such that ŝiziy ∈ T̂ ′

F (x). Thus, by construction of

the FSM closure, there exists another string u for which uŝiziy ∈ T̂ ′(x), implying that uŝiziyb ∈ T (x)

for every b ∈ A. Consequently, ŝiziyb ∈ TF (x), and the claim follows from the fact that TF (x) is full.

As for the second claim, assume that ŝizibic ∈ word(TF (x)) for some c ∈ A. Since TF (x) is full,

this assumption implies that ŝizibic ∈ TF (x) for all c ∈ A, so that there exists a string v for which

vŝizibic ∈ T (x). Thus, vŝizibi ∈ word(T̂ ′(x)), implying that vŝizibiw ∈ T̂ ′(x) for some string w, and

further that ŝizibiw ∈ T̂ ′
F (x). Since, by definition, ŝizi is the longest prefix of xi that is a word of

T̂ ′
F (x), we must then have bi = λ. 2

Next, we show that, in fact, it is not necessary to revisit the decoded sequence for all the symbols

in zi in order to determine si. Observe that, by the FSM property of T̂ ′
F (x), ŝi+1 ¹ xi+1ŝi. Removing

again the $ symbols from transient states, define ui+1 to be the string satisfying xi+1ŝi = ŝi+1ui+1.

Lemma C.2 If ŝi+1ui+1head(zi) ∈ word(T̂ ′
F (x)), then zi+1 = ui+1zi.

Proof. By the definition of zi and ui, there exist sequences t and v such that

xi+1 = xi+1ŝizibit = ŝi+1zi+1v = ŝi+1ui+1zibit . (C.1)

Further, by the assumption of the lemma and the definition of zi+1, we have ui+1head(zi) ¹ zi+1; we

show that we also have zi+1 ¹ ui+1zi. Otherwise, by (C.1) and the definition of zi+1, ŝi+1ui+1zibi would

be a word of T̂ ′
F (x) with bi 6= λ, implying the existence of a string y such that ŝi+1ui+1zibiy ∈ T̂ ′

F (x).

Thus, since T̂ ′
F (x) is FSM, ŝizibiy is also a node by (C.1), so that ŝizibi ∈ word(T̂ ′

F (x)), in contradiction

with the definition of zi. Now, if zi = λ, the proof is complete. If zi 6= λ, we then have zi+1 = ui+1z
′
i,
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where z′i is a non-empty prefix of zi, and define z′′i by zi = z′iz
′′
i . The proof is complete if we show that

z′′i = λ. There exists a string w such that ŝi+1ui+1z
′
iw is a node of T̂ ′

F (x) and, by the FSM property,

so is ŝiz
′
iw. Moreover, w 6= λ, for otherwise ŝiz

′
i would be a node, and thus ŝi would not be the state

at time i. If z′′i 6= λ, we have head(w) 6= head(z′′i ), for otherwise ŝi+1zi+1head(z′′i ) ∈ word(T̂ ′
F (x)),

contradicting the definition of zi+1. It follows that ŝiz
′
ihead(w) and ŝiz

′
ihead(z′′i ) are two different words

in T̂ ′
F (x), making ŝiz

′
i a node, a contradiction. 2

Given ŝi, |ui|, and |zi−1| (starting with z0 = λ), we can recursively determine |zi| by checking decoded

symbols and descending T̂ ′
F (x), starting from ŝi, in the direction xi−|ŝi|, xi−|ŝi|−1, · · · , xi−|ŝi|−|ui|−1. If,

at some point, the concatenated string is not a word of T̂ ′
F (x), by definition, we have determined

|zi|. Otherwise, ŝiuihead(zi−1) ∈ word(T̂ ′
F (x)), and, by Lemma C.2, |zi| = |ui| + |zi−1|. Thus, the

determination of |zi| requires at most |ui| + 1 comparisons. Since |ui| = |ŝi−1| − |ŝi| + 1, we need at

most n comparisons along xn.

Now, given ŝi, |zi|, head(zi), and bi, it is easy to determine sT (x)(x
i) (which contains the decoding

statistics) in constant time per input symbol by defining an additional data structure. Specifically, for

every internal node u of T (x) that is also a node of T̂ ′
F (x), consider the set Au of symbols for which

u has an edge of T̂ ′(x) in their direction, and let u(a) denote the edge of T̂ ′
F (x) in the direction of

a ∈ Au. For every j, 1 ≤ j < |u(a)|, let vu,a(j) denote the node of T (x) obtained by concatenating j

symbols of u(a) to u. A data structure Jump[u], linking u with each vu,a(j), can be built in constant

time for all relevant nodes, e.g., by initially setting up the data structure for the nodes of T̂ ′(x), and

then updating it as edges of T̂ ′(x) are split by MakeFSM. In addition, for a node w of T̂ ′
F (x) that is not

a node of T (x), the initialization of Origin[w] in MakeFSM can readily be modified so that it points to

its ancestor in T (x), rather to an ancestor in T̂ ′(x). Equipped with the data structures Jump[u], and

based on Lemmas C.1 and C.2, we can determine sT (x)(x
i) for zi 6= λ as follows:

• If ŝi is an internal node of T (x) and head(zi) ∈ Aŝi
, then ŝizi is given by vŝi,head(zi)(|zi|) (by

definition, |zi| < |ŝi(head(zi))|), and sT (x)(x
i) = si = ŝizibi (Lemma C.1).

• If ŝi is an internal node of T (x) and head(zi) 6∈ Aŝi
, then sT (x)(x

i) = ŝihead(zi).

• If ŝi is a leaf of T (x), then sT (x)(x
i) = ŝi.

• If ŝi is not a node of T (x), then Origin[ŝi] points to sT (x)(x
i).

When zi = λ, sT (x)(x
i) = ŝi if ŝi is a node of T (x), and Origin[ŝi] points to sT (x)(x

i) otherwise.
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Wheeler transform,” IEEE Trans. Inform. Theory, vol. IT-48, pp. 1061–1081, May 2002.

[23] N. J. Larsson, “The context trees of block sorting compression,” in Proc. 1998 Data Compression Conference,

(Snowbird, Utah, USA), pp. 189–198, Mar. 1998.

49



[24] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: John Wiley & Sons, Inc.,

1991.

[25] J. Rissanen and G. G. Langdon, “Universal modeling and coding,” IEEE Trans. Inform. Theory, vol. IT-27,

pp. 12–23, Jan. 1981.

[26] R. B. Ash, Information Theory. John Wiley & Sons, Inc., 1967.

[27] W. Feller, Probability theory and its applications, vol. 1. New York: John Wiley & Sons, Inc., third ed.,

1968.

[28] D. E. Knuth, The Art of Computer Programming. Fundamental Algorithms, vol. 1. Reading, MA: Addison-

Wesley, third ed., 1997.

[29] D. E. Knuth, The Art of Computer Programming. Sorting and Searching, vol. 3. Reading, MA: Addison-

Wesley, second ed., 1997.

[30] D. R. Morrison, “Patricia - practical algorithm to retrieve information coded in alphanumeric,” Journal of

the ACM, vol. 15, no. 4, pp. 514–534, 1968.

[31] W. Szpankowski, Average Case Analysis of Algorithms on Sequences. New York: John Wiley & Sons, Inc.,

2001.

[32] P. Weiner, “Linear pattern matching algorithms,” in Proc. 14th IEEE Annual Symposium on Switching and

Automata Theory, pp. 1–11, 1973.

[33] E. McCreight, “A space-economical suffix tree construction algorithm,” Journal of the ACM, vol. 23, no. 2,

pp. 262–272, 1976.

[34] M. Feder, N. Merhav, and M. Gutman, “Universal prediction of individual sequences,” IEEE Trans. Inform.

Theory, vol. IT-38, pp. 1258–1270, July 1992.

[35] M. J. Weinberger and M. Feder, “Predictive stochastic complexity and model estimation for finite-state

processes,” Journal of Statistical Planning and Inference, vol. 39, pp. 353–372, 1994.

[36] N. G. de Bruijn, “A combinatorial problem,” Koninklijke Nederlands Akademie van Wetenschappen, Pro-

ceedings, vol. 49 Part 2, pp. 758–764, 1946.

[37] S. W. Golomb, Shift Register Sequences. San Francisco: Holden-Day, 1967.

[38] J. Marshall Hall, Combinatorial Theory. New York: John Wiley & Sons, second ed., 1986.

[39] A. Mart́ın, G. Seroussi, and M. J. Weinberger, “Linear time universal coding of tree sources.” Hewlett-

Packard Laboratories Technical Report, May 2003.

[40] T. M. Cover, “Enumerative source encoding,” IEEE Trans. Inform. Theory, vol. IT-19, pp. 73–77, Jan.

1973.

[41] D. Preuss, “Two-dimensional facsimile source encoding based on a Markov model,” Nachrichtentechn.

Zeitschrift, vol. 28, pp. 358–363, Oct. 1975.

[42] D. Gillman and R. L. Rivest, “Complete variable-length “fix-free” codes,” Designs, Codes and Cryptography,

vol. 5, no. 2, pp. 109–114, 1995.

50




