

A Resource Management Framework
For Interactive Grids

Raj Kumar, Vanish Talwar, Sujoy Basu
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2003-85 (R.1)
July 8th , 2003*

E-mail: {raj.kumar, vanish.talwar, sujoy.basu}@hp.com

interactive
grid,
middleware,
distributed
resource
management

Traditional use of Grid Computing Systems has been for batch jobs in the
scientific and academic computing. We envision the next generation Grid
computing systems to support graphical interactive sessions. In this paper,
we propose a resource management framework for supporting graphical
interactive sessions in a Grid computing system. We describe the high
level architectural resource management framework distributed among the
submission node, central scheduler node, and the execution node. We then
describe in detail the resource management framework on the execution
node. The description of the resource management framework on the
scheduler node is kept at a high level in this paper. The framework on
execution nodes consists of resource management agents, an admission
control system and application predictor system. The agents on the
execution node are startup agents, sensor agents, monitoring agents,
aggregator agents, enforcement agents and registration agents. The
session admission control system is responsible for determining if a new
application session can be admitted to the execution node. An application
predictor system is responsible for predicting the resource utilization
behavior of applications based on data obtained from the resource
management agents. The proposed framework allows for implementation
of a scalable and extensible middleware for interactive grid resource
management. It supports fine grained performance guarantees specified in
service level agreements and brings forth some important and novel
contributions to enable graphical interactive sessions on Grids.

* Internal Accession Date Only Approved for External Publication
 Publis hed in and presented at the 1st International Workshop on Middleware for Grid Computing, 17 June 2003,
Rio de Janeiro, Brazil
 Copyright Hewlett-Packard Company 2003

A RESOURCE MANAGEMENT FRAMEWORK FOR INTERACTIVE
GRIDS

Raj Kumar, Vanish Talwar, Sujoy Basu

Hewlett-Packard Labs
1501 Page Mill Road, MS 1181

Palo Alto, CA 94304 USA
{ raj.kumar,vanish.talwar,sujoy.basu}@hp.com

ABSTRACT

Traditional use of Grid Computing Systems has been for batch jobs in the scientific and academic computing. We envision the next
generation Grid computing systems to support graphical interactive sessions. In this paper, we propose a resource management
framework for supporting graphical interactive sessions in a Grid computing system. We describe the high level architectural resource
management framework distributed among the submission node, central scheduler node, and the execution node. We then describe in
detail the resource management framework on the execution node. The description of the resource management framework on the
scheduler node is kept at a high level in this paper. The framework on execution nodes consists of resource management agents, an
admission control system and application predictor system. The agents on the execution node are startup agents, sensor agents,
monitoring agents, aggregator agents, enforcement agents and registration agents. The session admission control system is responsible
for determining if a new application session can be admitted to the execution node. An application predictor system is responsible for
predicting the resource utilization behavior of applications based on data obtained from the resource management agents. The proposed
framework allows for implementation of a scalable and extensible middleware for interactive grid resource management. It supports
fine grained performance guarantees specified in service level agreements and brings forth some important and novel contributions to
enable graphical interactive sessions on Grids.

1. INTRODUCTION

Grid Computing technology [1] provides resource
sharing and resource virtualization to end-users, allowing
for computational resources to be accessed as a utility.
Resource Management is one of the key research areas
for Grid Computing. Traditionally, Grid technologies
have been used for executing batch jobs in the scientific
and academic community. We believe that the
application domains addressed by Grid technologies
need to be extended to include graphical, interactive
sessions. We propose interactive grids - next generation
grids addressing the needs of graphical, interactive
sessions. Interactive Grids permit end-users to access and
control a remote resource eg. remote workstation in the
Grid for graphical, interactive use. Such an interactive
session on a remote workstation can be used for graphics
visualization applications, engineering applications like
CAD/MCAD, digital content creation, streaming media,
video games, text editing, command line interactions, e-
mail applications. Applications execute on the remote
workstation, and the end-user can view the graphical
output of the applications using remote
display technologies like VNC [2]. Distributed Resource
Management is one of the key research areas for the
design of interactive grids. The resource
management problem in our work is broken as :
(i) Wide-area Scheduling of the job requests for
graphical interactive sessions onto execution nodes in the
Grid.

(ii) Fine grained resource management on execution
nodes, during the progress of graphical interactive
sessions.
In this paper, we first present a high level architecture of
our proposed framework, and then focus on the second
problem of fine grain resource management on execution
nodes. The key contribution of our paper is the resource
management framework on the execution node
consisting of resource management agents, a session
admission control system, and an application predictor
system.

2. REQUIREMENTS

We are considering interactive grids [3] - Grid
computing systems that extend the application domain to
include graphical interactive sessions. Specifically, an
Interactive Grid Computing System allows the end-user
access and control of a remote resource in the Grid for
graphical, interactive use. To enable such grids, we
require a resource management architecture that
effectively manages the vast heterogeneous resources
across administrative domains, as well as effectively
manages the resources during the graphical interactive
session. This leads to the following requirements:
(1) Wide-area scheduling system that can perform (a)
Discovery of resources. (b) Matching of resources to user
requirements for graphical interactive sessions. (c)
Global admission control before the launching of
graphical interactive sessions. (d) Reservation of
resources for the desired usage time, as well as fine
grained reservations like CPU, network bandwidth

Global Interactive session: A global interactive session
constitutes the association between the end-user and the
remote execution node, wherein: the end-user interacts
with the remote execution node to launch one or more
applications, and subsequently interacts with the
launched applications through per-application sessions.
An example of a global interactive session is the VNC
remote display session wherein the graphical desktop of
the remote node is exported. We are most interested in
such graphical global interactive sessions.

reservations. (e) Resource allocation. (f) Job dispatching.
(g) Global session state management.
(2) Local resource management of allocated resources
during a graphical interactive session to perform (a) Fine
grained monitoring of resources. (b) Enforcement of
Service Level Agreements (SLAs) and Quality of
Service (QoS) guarantees for graphical interactive
sessions and applications. (c) Fine grain admission
control for per-application sessions. (d) Per application
session state management.

3. IMPORTANT ISSUES Per-application interactive session: A per-application

interactive session for an application executing on the
remote execution node, constitutes the association
between the end user and the executing application,
wherein: the end-user interacts directly with the
application. A per-application interactive session occurs
in the context of a global interactive session. We are
most interested in graphics application sessions.
However, our proposed solution would also work with
text only applications as a special case. (Note: The terms
‘global session’ and ‘global interactive session’, ‘per-
application session’ and ‘per-application interactive
session’, are used interchangeably in the remainder of the
paper.)

The important issues to consider for a resource
management framework for interactive grids, as
compared to traditional batch-oriented grids are: (i)
Providing QoS guarantees for graphical sessions. (ii)
Guaranteeing SLAs per graphical session. (iii) Accurate
prediction of application behavior and resource load.

Grid Scheduler
Node Execution NodeSubmission Node

Application
Profiles

Repository

Information
Service

1. Submit request for a
global interactive

session

2. Schedule
global interactive

session with
reservation of fine
grained resources

like CPU and
network bandwidth

3. Global Interactive Session

Policies

4. Per-application Interactive Session(s)

Application Profiles: The application profiles contain the
estimated CPU and bandwidth required for various
classes of applications to provide acceptable frame rate
and performance levels while executing remotely in an
Interactive Grid computing system. Example classes of
applications are engineering applications, visualization
applications, video games etc. Such application profiles
are determined by a system administrator, and refined by
an application predictor system. Figure 2 shows example
application profiles.

Application Acceptable
Frame Rate

CPU
Requirement

(Remote
Display Server)

Engineering ~10 frames/
sec

Video ~30 frames/
sec

Games ~5 frames/
sec

Network
Bandwidth

Requirement
(Remote Display

Server)

 8% 10%

 20% 25%

 3% 5%

 Low Allowed

 8% 10%

 20% 25%

 3% 5%

 Low Allowed

 CPU
 Requirement
 (Application)

 Low Allowed

 15% 20%

35% 40%

 10% 15%

Figure 1: High level overview of the Interactive Grid
computing system

4. PROPOSED ARCHITECTURE

We first define some terms as used in the remainder of
the paper (refer to Figure 1 for a context):

4.1. Definitions

Interactive Grid Computing System: An interactive grid
computing system is a Grid computing system
supporting Graphical Interactive sessions to remote
nodes. At a high level, it consists of Submission nodes, a
Distributed Resource Management System, Execution
nodes and Storage nodes. The end-user submits job
requests through a submission node, and is given access
to a remote execution node for graphical, interactive use.

Figure 2: An example of application profiles

4.2. High Level Overview

Figure 1 shows the high level overview of the proposed
architecture for interactive grids. It consists of
submission nodes, Grid scheduler node, and execution
nodes. An information service stores the information

6. A configuration process configures the system before
launching the global interactive session. This also
involves the creation of a dynamic account by the
Dynamic Account Manager. A global interactive session
is then initiated between the allocated execution node
and the end-users’ submission node. The Dynamic
Account Manager maintains pools of dynamic accounts
on each resource. Unlike normal user accounts which
remain permanently assigned to the same real-world
user, a dynamic account is assigned to a user
temporarily. After the user has been authenticated, he
may be authorized to use a normal static account if the
gridmap-file has an entry mapping his identity obtained
from his certificate during the authentication phase into
this static account. If such an entry is missing, he may be
assigned a dynamic account if the gridmap-file entry for
his identity specifies a pool of dynamic accounts.
Alternately the user's membership in a virtual
organization (VO) may be verified by a directory service
maintained by the VO. In that case, a dynamic account
from the pool maintained for that VO can be assigned to
the user. This approach is more scalable since every user
joining or leaving a VO does not require the addition or
deletion of a gridmap-file entry on all the resources
made available to the VO. We can adopt a flexible
approach of allowing the user to authenticate with a
certificate that specifies the VO the user belongs to. The
user's membership in the VO still needs to be verified by
the VO's directory service. For further flexibility, we can
assume that a community authorization service (CAS)
[6] allows the user to authenticate to the resource with a
restricted proxy certificate [7]. The policy specified in
this restricted certificate can then be used to assign a
dynamic account to the user, and customize the system
policy files governing the dynamic account.

about the resources in the system. An application profiles
repository contains the application profiles in the system.
The distributed resource management framework is
distributed across the submission nodes, Grid scheduler
node, and execution nodes. The user submits the request
through submission nodes, for a new global interactive
session along with the set of applications desired to be
launched through the global interactive session. The
request for global interactive session is scheduled onto
an execution node in the grid by the Grid scheduler. A
global interactive session is then established between the
selected execution node and the end-users’ submission
node. The end-user now submits requests for per
application interactive sessions through this global
interactive session.
Corresponding to global and per-application interactive
sessions, we introduce the notion of hierarchical
admission control in our framework consisting of a
global admission control module at the Grid Scheduler
node, and a per-application session admission control
module at the execution node. The Global and per-
application admission control modules make admission
control decisions for global and per-application sessions
respectively. The following is the sequence of steps in
such a proposed system:
1. The end-user creates a job request template for a new
global interactive session, specifying the resource
requirements, session requirements, and the desired list
of applications to be launched during the session. This
request is submitted to the Grid Scheduler node.
2. The request is received by a Grid Scheduler running
on the Grid Scheduler Node. In the first pass, the Grid
Scheduler performs a matching of resources in the Grid
to satisfy the coarse requirements of the user, for
example, matching of the hardware requirements of the
user. The grid middleware provides a distributed
repository (like MDS [4]), where various resources can
publish their services. The scheduler queries this
repository to discover resources that match with the
user's job needs.

7. The end-user can now request for new per-application
interactive sessions directly through the started global
interactive session.
8. The requests for per-application interactive sessions
are verified for access control checks, and if successful
are passed onto the Session Admission Control system
on the execution node.

3. In the next pass, the Grid Scheduler selects the best
execution node that can admit the requested global
interactive session satisfying the QoS requirements for
the desired list of applications to be launched during the
global session. During this step, the Grid Scheduler
interfaces with the Global Admission Control system,
which performs the admission, check for the requested
global interactive session, [5].

9. The Session Admission Control system performs an
admission control check to determine if the requested per
application session can be admitted into the global
interactive session. If not, the request for new per-
application session is denied. Else, the per-application
session is started.
10. The Resource Management Monitoring Agents
monitor the global interactive session and per-application
session utilization values. The monitored data is
aggregated by aggregator agents. Enforcement agents use
this data to enforce the SLA and QoS requirements. An
Application predictor system uses the aggregated data to
predict the application behavior.

4. A reservation is made on the selected execution node
for the requested global interactive session. The
reservation is also made for fine grained resources such
as CPU, network bandwidth etc.
5. At the requested time, the selected execution node is
allocated to the end-user, and the job dispatcher
dispatches the request for the new global interactive
session to the execution node along with the SLA for the
session.

11. The enforcement agents end the global interactive
session at the time specified in the SLA.

5.3. Execution Node 12. The execution node is now freed up to execute a new
global interactive session if scheduled by the Grid
Scheduler.

The resource management framework on execution node
is responsible for providing QoS and SLA guarantees for
per-application sessions, and the global interactive
sessions, launched on this node. Figure 4 shows the
resource management framework on the execution node.
At a high level, this consists of resource management
agents, a session admission control system, and an
application predictor system. These are shown separately
in Figure 5, and Figure 6. Figure 7 shows how some of
the components co-ordinate and interact with each other.
This co-ordination model is based on the producer-
consumer paradigm [9]. Some of the components act as
both producers and consumers. The source data is
provided by sensor agents like CPU sensors, memory
sensors, network bandwidth sensors, and storage sensors.
Monitoring Agents interface to these sensor agents, and
act as a ‘Producer’ to consumers - Aggregator Agents,
Registration Agents, and other archival agents. The
Aggregator Agents themselves serve as producers to
Application Predictor System, Enforcement Agents, and
Session Admission Control System.

In the next few sections, we describe the resource
management framework on the submission node, Grid
scheduler node, and execution node. We focus mainly on
the resource management framework on the execution
node.

5. RESOURCE MANAGEMENT
FRAMEWORK

5.1. Submission Node

The submission node contains the job submission client,
which is responsible for submitting requests to the Grid
scheduler node. There is also a session management
agent that would co-ordinate with the resource
management agents on the allocated execution node.
This would be used, for example, for network bandwidth
monitoring during application sessions [8].

 5.2. Grid Scheduler Node

Operating System

Resource Management Agents

Admission Control System Application Predictor System

Applications

Resource Management Framework

Grid SchedulerRequests

Global
Admission

Control
System

Information
Service

Jobs
dispatched

onto resources

Policies

Logs

Application
Profiles

Figure 4: High level overview of the resource
management framework on the execution node

 The agent implementations could follow open standards
like FIPA [10], [11]. The system can be extended to
support a registry service, which would aid in supporting
information publication about components, and
discovery of components. Figure 7 shows these
components residing on a single node. We now describe
these components in detail in the following subsections.

Figure 3: High level overview of the scheduler

The Grid scheduler node hosts the Grid scheduler. Figure
3 shows the high level structure of the Grid scheduler.
The Grid scheduler accepts requests from the end-user.
An Information Service maintains global information
about all the resources in the Grid. This information is
obtained by resource management agents distributed
across the grid. The information is used by the Grid
Scheduler while making scheduling decisions. In
addition, the Grid scheduler is fed in with the global
application profiles for the applications installed on the
Grid. The Grid Scheduler also interfaces with a global
admission control system, for making admission control
decisions for admitting new global interactive sessions.

Master Agent

Session
Startup
Agent

Monitoring
Agent(s)

Enforcement
Agent(s)

Aggregation
Agent(s)

Registration
Agent(s)

Figure 5: Resource management agents on the execution Node

5.3.1. Resource Management Agents
Figure 5 shows the agents on the execution node. We
assume a master agent that is responsible for all of the
agents on the execution node. We describe the agents
below.

Startup and configuration agent
This agent is responsible for launching a new global
interactive session on the execution node. This agent is
also responsible for configuring the system appropriately
for the launched global interactive session. For example,
in our implementation, this agent configures the KDE
desktop environment based on the system policy files
corresponding to the allocated dynamic account. Our
implemented startup agent also starts up a VNC server
and connects to the end users’ VNC client thus
establishing a graphical, global interactive session.

Sensor Agents
The sensor agents collect resource information in real
time on a continuous basis. These sensor agents are off-
the-shelf sensors like CPU sensors, memory sensors,
network bandwidth sensors, and storage sensors. The
monitoring agent interfaces with these sensors to obtain
this resource information.

Session Admission Control
Application

Profiles

SLA

Data from
Aggregator

agents

Session
Policies

Admission
Control

Decision

Requested
application

Figure 6: Session Admission Control System

Monitoring Agent
The monitoring agent acts as a ‘Producer’ and makes
resource usage data available to other components. It
itself obtains the resource usage data from sensor agents.
The monitoring agent uses the producer interface as
being defined in the Grid Monitoring Architecture [9] to
send events to a consumer. The event data is the overall
and per-application resource usage data (CPU, network,
memory, storage) obtained from the sensor agents. The
monitoring agent could also apply a prediction model on
the gathered data and supply the forecasted resource load
values to the consumers, for example, the predicted CPU
load assuming current set of processes. Based on
implementation choice, separate Producer interfaces and
interaction channels may be required for each resource
type like CPU, memory, network bandwidth etc. The
consumers for the monitoring agent in our framework are
Aggregator Agents, and Registration Agents. These
consumers subscribe to the event data made available by
the monitoring agent using publish/subscribe model. The

monitoring agent sends the event data to these consumers
at periodic intervals agreed upon in the subscription.
Other interaction models may also be considered based
on implementation choice. Other consumers of the
monitoring agent data could be archival agents for
storing the history of resource usage information, fault
detectors to detect resource aliveness. Based on
implementation choice, the event data could be sent as
messages to the consumers, or could be communicated
via shared memory paradigm. The exact protocols and
data formats to be used are implementation dependent.

CPU Sensor
Agent(s)

Network
Bandwidth

Sensor Agent(s)

Memory Sensor
Agent(s)

Storage Sensor
Agent(s)

Monitoring Agent(s)

Other Archival
Agents

Aggregator and
Archival Agent(s)

Registration
Agent(s)

Application
Predictor System

Enforcement
Agent(s)

Session Admission
Control System

Source
Data

Event Data

Event Data

Figure 7: High level overview of the co-ordination model
for resource management components on the execution
node

Aggregator Agent
The monitoring agent provides raw resource data from
the sensor agents. However, we need a framework to
support the aggregation of this data. This would allow
compaction of data to minimize storage, as well
application of filtering for interpreting data at various
granularities. The aggregator agent behaves as a
compound Producer/Consumer. It acts as a Consumer to
subscribe to per-application resource usage data from the
monitoring agent. The periodicity for receiving the event
data is determined through policies, and is agreed upon
in the subscription. The aggregator agent aggregates this
received data based on an aggregation function and
policies. For example, this aggregation could be per time,
per-process, or per-session based. Further, for each
global interactive session, the total current session
resource usage values can be determined like number of
processes launched during the session, session wall-clock
usage time, session CPU utilization, session bandwidth
utilization, session storage utilization etc. The aggregated
data is then archived into persistent storage. A prediction
model could also be run on the data to obtain the
forecasted resource utilization per global session,
assuming current set of processes for this global session.
The aggregator agent acts as a ‘Producer’ for the
aggregated data to consumers. Some of the consumers
we have identified are Application Predictor System,

Enforcement Agents, and Session Admission Control
System. The interaction between the Aggregator Agent
and consumers is based on publish/subscribe or query-
response model. Similar to monitoring agent, the
aggregator agent uses the producer and consumer
interface as defined in the Grid Monitoring Architecture
[9]. The event data format, and communication paradigm
is implementation dependent.

Enforcement Agent
The enforcement agent is responsible for enforcing
Service Level Agreements (SLAs) for global sessions,
and providing guaranteed QoS for graphics applications.
The Enforcement Agent behaves as a ‘Consumer’ to
receive aggregated resource usage data from Aggregator
Agent. The periodicity for receiving the data is
determined through policies, and is agreed upon in the
subscription. These agents take as input the data from the
aggregator agents, the SLAs for the global sessions, the
application profiles, and policies. Using these inputs, it
checks for violation of the SLAs or QoS guarantees.
Once a violation is detected, an enforcement action is
taken. For example, this enforcement action could be one
or combination of the following: (i) Decrease the priority
of applications that exceed their resource utilization
levels. (ii) Increase the priority of applications falling
below their desired resource utilization levels. (iii) Kill
applications that have violated their resource utilization
levels by a large amount. The enforcement process is
controlled by policies.

Input: Application request, reservation agreement from SLA,
 data from Aggregator agents, application profiles

Output: Admission control decision (Allow or Deny)

1. Determine the class of applications that the requested
 application belongs to.
2 Obtain from the application profiles, the CPU and network
 bandwidth usage requirement for this application.
3. Use the data gathered by Aggregator agents to obtain the
 current CPU and network bandwidth utilization values for
 the session.
4. Obtain from the SLA, the CPU and network bandwidth
 reservation values made for this session.
5. Compare the values from Step 3 and Step 4 to determine
 the CPU and network bandwidth available for the requested
 application, to comply with the SLA.
6. Compare the values from Step 2 and 5 to determine if
 executing the requested application would violate the SLA.
 If so, return "Deny". Else return "Allow".

Figure 8: An algorithm for SAC with CPU and network
bandwidth utilization as the session parameters

Registration Agent
The Registration Agent behaves as a ‘Consumer’ to
receive the resource usage value from the Monitoring
Agent. Typically, the data of interest is that of overall
CPU load. The periodicity for receiving the data is
determined through policies, and is agreed upon in the

subscription. The Registration Agent registers this
information to a global information service so as to be
used by the Grid Scheduler while making scheduling
decision. The Registration agent could supply a
prediction model to the Monitoring agent for forecasting
the predicted CPU load based on load measurement
history.

5.3.2. Session Admission Control System
A session admission control system (SAC) is responsible
for determining if a global interactive session can admit a
new per-application session. Figure 6 shows the
admission control system. The inputs to a Session
Admission Control system are:
(i) Requested application: The graphics application,
which the user is requesting to be launched in the
considered global interactive session. This request would
be typically provided through a shell.
(ii) SLA: The Service Level Agreement for the global
interactive session in progress. The SLA is determined
prior to the start of the session.
(iii) Application profiles: Each resource has a copy of the
application profiles for the applications installed on that
resource.
(iv) Data from Aggregator agents: The aggregated
resource usage data for this global session obtained from
the aggregator agent using a query/response model. SAC
could also supply the Aggregator agent with a prediction
model for forecasting the resource utilization for this
global session based on session load measurement
history, and assuming current set of processes.
(v) Policies: The session policies in place for the session.
Given these inputs, the session admission control system
checks for availability of resources in compliance to
SLAs, before starting the requested application session.
It checks the following global session parameters: (a)
Number of processes launched during a session. (b)
Usage time for a session. (c) Disk quota usage for a
session. (d) CPU utilization percentage for a session. (e)
Network bandwidth utilization percentage for a session.
The limiting values for these global session parameters
are specified in the SLA for the considered global
interactive session. SAC compares the current values of
these global session parameters with the limiting values
agreed upon in the SLA, for the considered global
interactive session. If there is a violation, or if a violation
would occur upon executing the application, SAC
decides on a ‘Deny’ decision for executing the
application. Otherwise, SAC makes an ‘Allow’ decision
for the application. Figure 8 shows an algorithm for SAC
to make an admission control decision, based on the
CPU and network bandwidth utilization parameters for a
session. SAC could be extended to support other session
parameters as seemed appropriate for a particular
implementation. We have proposed a framework for
SAC, and have presented a few session parameters that
we envision to be necessary in an Interactive Grid
computing system.

5.3.3. Application Predictor System

An Application predictor system predicts the QoS
requirements for the applications and remote display
servers to deliver an acceptable frame rate and
performance to the end user. The application predictor
system behaves as a ‘Consumer’ and receives the
application resource usage data from the aggregator
agents. The application predictor system applies a
prediction model on the history of this data, to make its
prediction. The newly made predictions are finally
reflected in the application profiles. The application
profiles are used by the enforcement agents and Session
Admission Control System.

Intra Cluster Aggregator
Node(s)

.

Sensing Agents on local
resources

Monitoring Agents on local
resources

Aggregator Agents on local
resources

Sensing Agents on local
resources

Monitoring Agents on local
resources

Aggregator Agents on local
resources

Inter Cluster Aggregator
Node(s)

Execution Node Aggregator Execution Node Aggregator

Figure 9: Hierarchical aggregator nodes

5.4. Aggregator Node

The aggregator nodes host the aggregator agents. Figure
9 shows a hierarchy of aggregator nodes. The lowest
level corresponds to execution nodes. The aggregator
agents on the execution nodes send their aggregated data
to the intra-cluster aggregator node. The intra-cluster
aggregator nodes in turn send their aggregated data to
inter-cluster aggregator node, thus forming a hierarchy.
The aggregator agents on each of these hierarchical
aggregator nodes execute different aggregation
functions.

6. RELATED WORK

The majority of the work in the area of grid computing
has been for batch jobs. Recent projects on interactive
applications like Crossgrid [12] do not address the
problems and scenarios as presented in this paper. Our
architecture leverages the architectural framework being
defined in the Grid Monitoring Architecture [9]. Unlike
the Grid Monitoring systems being developed [13], [14],
[15], our monitoring infrastructure addresses the goal of
providing QoS guarantees for graphics applications. We
plan to leverage the low level hardware and software
sensors to collect CPU, memory, network bandwidth
measurement data. Other scheduling and resource

management systems do not address supporting
graphical interactive sessions on a Grid.

7. CONCLUSIONS

In this paper, we have presented a resource management
framework for Interactive Grids. We presented the high
level architectural framework across submission nodes,
Grid scheduler node, and execution nodes. We focused
on the framework on the execution node, consisting of an
admission control system, application predictor system,
and resource management agents. We introduced the
notions of hierarchical admission control consisting of
global admission control, and per-application session
admission control. This implies one global session per
user, and one or more per application sessions per user.
Finally, we proposed a framework for monitoring, and
managing a grid in terms of a hierarchy of agents.

8. REFERENCES

[1] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the
Grid: Enabling Scalable Virtual Organizations. In International J.
Supercomputer Applications, 15(3), 2001.
[2] T. Richardson, Q. Stafford-Fraser, K.R Wood, and A. Hooper.
Virtual Network Computing. In IEEE Internet Computing, Vol 2.
No. 1, pp. 33-38, Jan/Feb 1998.
[3]Vanish Talwar, Sujoy Basu, Raj Kumar. An Environment for
Enabling Interactive Grids. Accepted in HPDC 2003, Seattle,
Washington, June 22-24, 2003.
[4] Globus MDS. http://www.globus.org/mds/.
[5] P. Mundur, R. Simon, A. Sood. Integrated Admission Control
in Hierarchical Video-on-Demand Systems. In IEEE International
Conference on Multimedia Computing and Systems Volume I-
Volume 1, June 07 - 11, 1999, Florence, Italy.
[6] L. Pearlman, V. Welch, I. Foster, C. Kesselman, S. Tuecke, A
Community Authorization Service for Group Collaboration. In
Proceedings of the IEEE 3rd International Workshop on Policies
for Distributed Systems and Networks, 2002.
[7] S. Tuecke et. al., Internet X.509 Public Key Infrastructure
Proxy Certificate Profile. In IETF PKIX Working Group Draft.
[8] Fabio Kon, Tomonori Yamane, Christopher Hess, Roy
Campbell, and M. Dennis Mickunas. Dynamic Resource
Management and Automatic Configuration of Distributed
Component Systems. In Proceedings of the 6th USENIX
Conference on Object-Oriented Technologies and Systems (CO-
OTS 2001), pages 15 30, San Antonio, Texas, February 2001.
[9] R. Tierney et al. A Grid Monitoring Architecture. GGF
Document series available from http://www.gridforum.org.
[10] FIPA. http://www.fipa.org/repository/index.html.
[11] Bigus, and Bigus, Constructing Intelligent Agents Using Java,
2nd edition, Wiley, 2001.
[12] CrossGrid. http://www.crossgrid.org.
[13] B.Tierney et al. A Monitoring Sensor Management System for
Grid Environments. In HPDC-9, August 2000.
[14] A. Waheed et al. An Infrastructure for Monitoring and
Management in Computational Grids. In Proceedings of 2000
Conference on Languages, Compilers, and Runtime Systems, 2000.
[15] R. Wolksi et al. The Network Weather Service: A Distributed
Performance Forecasting Service for MetaComputing. In Future
Generation Computing Systems, 1999.

http://www.globus.org/mds/
http://www.gridforum.org/
http://www.fipa.org/repository/index.html
http://www.crossgrid.org/

	A RESOURCE MANAGEMENT FRAMEWORK FOR INTERACTIVE GRIDS
	
	Hewlett-Packard Labs

	ABSTRACT

