

LP-ECOS: An Energy Efficient RTOS

Andrea Acquaviva, Tajana Simunic, Luca Benini
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2003-81
April 17th , 2003*

low-power,
operating
system,
application
driven

In this report we present an energy efficient implementation of a
commercial-strength operating system (ECOS) running on a real-
life hardware platform (HP SmartBadge IV). We integrate into the
OS a power manager module that cooperates with the applications
and power-aware device drivers through a set of APIs. The power
manager makes decisions on power states of various system
components, and sets processor clock frequency dynamically. We
tested our RTOS implementation in single and multiple task
environments. We used typical streaming multimedia applications
that exploit wireless network and audio resources. Measurements
obtained on MP3 audio decoder and other signal processing
algorithms show that the whole system energy can be reduced by
more than 50% with no effect on performance when using our
extensions to the operating system.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2003

LP-ECOS: An Energy Efficient RTOS

Andrea Acquaviva

Tajana Simunic

Luca Benini

Abstract

In this report we present an energy efficient implementation of a commercial-strength operating system
(ECOS) running on a real-life hardware platform (HP SmartBadge IV). We integrate into the OS a
power manager module that cooperates with the applications and power-aware device drivers through
a set of APIs. The power manager makes decisions on power states of various system components, and
sets processor clock frequency dynamically. We tested our RTOS implementation in single and multiple
task environments. We used typical streaming multimedia applications that exploit wireless network
and audio resources. Measurements obtained on MP3 audio decoder and other signal processing
algorithms show that the whole system energy can be reduced by more than 50% with no effect on
performance when using our extensions to the operating system.

1. Introduction

Battery-operated portable systems impose tight constraints on the energy consumption. Low cost with
fast time to market are critical. As a result, typical portable appliances have a microprocessor-based
hardware architecture, which, coupled with embedded operating systems, eases application
development. The energy efficiency of such systems can be improved by power-aware design of
hardware and software, and by better utilization of system components at run-time.
In processor-based systems, such as palmtop computers and PDAs, the OS can play a strategic role in
orchestrating power management for the entire system. A set of actions taken by the OS to configure
processor and peripherals in order to reduce the system power consumption is called power management
policy. Typical actions taken by the OS to reduce power include tuning processor voltage and frequency
and switching among different power states available on both the processor and the other system
devices. Only a few power-aware task scheduling and resource-allocation policies have been
implemented in an operating system running on a hardware platforms in the past [9, 20, 21].
Unfortunately, none of the previous implementations integrate power management techniques for both
the processor and the devices on a real hardware platform.
In this work we present a low-power version of Red Hat ECOS [1], a real-time embedded operating
system. The new operating system, called LP-ECOS, supports both processor and peripheral power
management. Processor clock scaling and run-time power state management is implemented by
extending the standard hardware abstraction layer (HAL) of ECOS. Run-time device
allocation/deallocation is possible because of OS collaboration with our power-enabled device drivers.
Our power management strategy is application-driven. We designed a set of application-program
interfaces (APIs), called LP-API, that collaborate with the OS-integrated power manager(PM) in order
to: i) Efficiently manage processor power modes; ii) Perform dynamic clock frequency scaling, iii)
Manage dynamic device shut-down and wake-up.

Following is an example of how LP-ECOS operates. The system normally starts with all components in
the low-power mode. As soon as an application begins execution, the power manager is informed via
LP-API call. Next, the application passes its utilization profile as a function of processor frequency to
the PM. When such utilization profiles are available for all applications currently running in the system,
the PM can set processor frequency to the minimum value guaranteed to meet performance constraints.
During execution the application signifies to the power manager when it needs to access a resource,
such as wireless network card. The PM updates a resource allocation table, and, if needed, wakes up the
resource. In this way, the time overhead for device transition into the active states can be hidden due to
application’s internal initialization sequence. Once an application is done using a particular resource,
the PM again updates the resource allocation table. If no other applications are using the particular
resource, it is placed into a low-power state, thus saving energy. When an application terminates
execution, it informs the PM. Once all applications have finished executing, the PM transitions all
devices and the processor into the sleep mode.
Clearly, our approach gives the largest energy savings for systems with power-aware applications. Such
applications use our LP-API to communicate with the power manager. Many portable systems come
with a set of pre-loaded applications that can be very easily adapted to use our LP-API. In systems with
an application mix involving both power-aware applications, and those that do not use our LP-API, the
power manager can use predictive techniques such as those described in [18, 25].
In this report we show how LP-ECOS can obtain large energy savings because it has a tight
collaboration between power-aware applications, power manager and power-aware device drivers. We
ported LP-ECOS on the HP’s SmartBadge IV [2] wearable platform running typical streaming
multimedia applications such as the MP3 audio decoder and the front-end of a speech recognizer. The
measurement results show that more than 50% of power savings can be obtained when applications
exploit the new APIs to communicate processing and resource needs to the power
The rest of the report is organized as follows. Section 2 gives an overview of the related work. The
implementation of LP-ECOS is presented in Section 3. We show measurement results with MP3 audio,
speech recognition algorithm and low-pass filter running on the SmartBadge IV in Section 4. Finally,
we summarize our findings in Section 5.

2. Related Work

A significant amount of work has been published in the context of system-level power management
techniques. Power management strategies can be classified depending on what and how a low power
hardware feature is exploited. Low power hardware features include dynamic power states
configuration and run-time frequency/voltage adjustment [8, 29]. These features can be exploited using
different policies.
A first major distinction can be made between policies aimed to shut-down components and those that
scale down processing voltage and frequency dynamically. In [12] a predictive processor shut-down
method using exponential average is presented in the context of general purpose systems. In [25] and
[18] the predictive shut-down policy is based on Markov decision processes. Good results on power
reduction are obtained with these policies on systems with large idleness. Run-time policy adaptation is
presented in [3]. The cooperation between multimedia applications and the OS with the goal of
controlling system resources to save energy have also been studied [7, 15, 16, 23].

Shutdown policies are not very effective in periods of extended system activity due to large power and
performance cost incurred during state transitions. For such situations, Dynamic Voltage Scaling, DVS,
can provide energy savings proportional to the square of the voltage. Many algorithms have been
proposed that exploit this capability to save power 5, 6, 10, 11, 13, 14, 19, 22, 25, 27, 28].
Unfortunately, very small energy savings were measured when DVS heuristics have been implemented
on real hardware, such as a part of Linux OS on Itsy portable device [9]. One of the main causes for
such low power savings is very limited a priori knowledge of the application needs. On the contrary,
work presented in [21] measures large processor power savings on DVS-enhanced hardware platform
(LART) running Linux OS. The savings are largely due to the fact that information about the average
task execution time, its start time and the deadlines is provided by the application to aid the OS in
energy efficient scheduling.
A different approach is presented in [5] for a class of applications that know sufficiently ahead of time
their processing characteristics and resource needs. The appropriate processor speed level is determined
on-line by from a look-up table. The table contains the relationship between the minimum processor
speed indexed by the important application processing characteristics. For example, when decoding the
MP3 stream, both the sample rate and the bit rate are used as indicators of the computational effort of
the processor.
In [20], the authors present a power-aware scheduling algorithm implemented on a DVS capable
platform based on Intel XScale micro-architecture running ECOS operating system. The authors
propose a set of APIs that can be used by tasks to communicate their characteristics (period, worst case
execution time (WCET), deadline) to the OS. Using this information, the operating system can
determine either statically or dynamically the processor frequency settings. Energy savings are
estimated by determining the average power consumption of XScale instructions off-line for different
frequency levels and then multiplying this value by the execution time.
In contrast to the previous work, this work presents a low-power RTOS operating system that for the
first time integrates the support of all the three main approaches for lowering power consumption: (i)
processor and peripheral shutdown (IDLE, SLEEP and OFF), (ii) processor frequency setting, (iii)
application-driven DPM. In addition, we measured large energy savings on HP SmartBadge IV running
typical multimedia applications when using LP-ECOS.

3. Low-Power Support

In this section we outline the low-power features implemented in our energy-efficient RTOS. We used
ECOS real-time embedded operating system as our test vehicle. The structure of the power-aware
version of ECOS, LP-ECOS, is shown in Figure [1]. It consists of four layers that span from the
hardware to the application space. The first component is the Low-Power Hardware Abstraction Layer
(LP-HAL), which defines architecture and platform specific modules. Kernel, which resides above
HAL, consists of schedulers, support for thread synchronization, exception handling, interrupt handling
and timers. Device drivers define mechanisms for accessing devices. The fourth component of LP-
ECOS is the power manager. Based on the information obtained from the applications via LP-API, the
power manager makes decisions on device power states (via power-aware device drivers) and processor
power and performance states (via LP-HAL). The next Sections describe low-power enhancements in
more details.

3.1 Low-Power HAL

The hardware abstraction layer interfaces directly to hardware, thus hiding the architecture and platform
details from the kernel. We modified ECOS HAL in order to control processor power modes and
perform run-time clock scaling.
The StrongARM processor supports three different power modes: running, idle and sleep. The processor
is placed in the idle state, in which the core clock is disabled, as soon as OS executes an idle thread.
Instead of starting the idle thread, LP-ECOS executes the instruction sequence needed to put the
processor into the idle state. The processor exits from the idle mode when the real-time clock triggers
the timer interrupt routine. Since the period of the real-time clock is about 5ms, the overhead imposed
by entering-exiting the idle mode, measured at 50us, is negligible.
Sleep state is more aggressive in terms of power reduction. When the processor sleeps, its power-supply
is turned off, and thus the contents of all processor registers are lost. The processor can be woken-up
only by pre-programmed external interrupt sources. The transition overhead to and from sleep is about
150ms. Power manager can reduce some of the overhead by saving only critical OS registers, and the
registers related to devices currently in use. In addition to saving registers, the processor start-up routine

KERNEL

APPLICATIONS

POWER MANAGER

LP−HAL

HARDWARE

Operating System

POWER−AWARE DRIVERS

Figure 1. LP-ECOS System Architecture

has been modified. The system initialization sequence contains a trap to distinguish between the
execution of hardware reset and exit from the sleep state. In both cases the execution starts at the zeroth
memory location. When waking up from the sleep state, the trap code gives the control of the execution
to the PM. The PM restores the contents of the registers and re-enables the data cache. Note that the
code controlling the sleep transition has been designed to support sleep state operation even during a
remote debugging session.
We also implemented real-time clock scaling as a part of LP-HAL. Even though StrongARM’s clock
speed can be changed by writing into the PLL control register, a more complex sequence of instructions
is needed to support dynamic frequency setting at run time. The frequency setting procedure changes
depending on what devices are active at the time. Some on-chip units (LCD controller, DMA controller,
OS timer, all serial controllers) experience an interruption for approximately 150us after writing to the
PLL [24]. If one of these units is active, it must be disabled before changing the PLL configuration.
The next step is to disable the caches and the clock switching, followed by changing the memory timing.
Similar steps were taken in Linux OS implementation for Itsy [17].
In contrast with previous work, our frequency scaling implementation works in concert with the power
manager. Thus we can speed up the clock transition by exploiting the knowledge PM has of which
devices are currently in use. For example, if the on-chip audio controller uses DMA to perform input-
output transfer, the PM saves DMA configuration registers and disables the DMA. When the new
frequency is programmed, the DMA configuration is restored. If the DMA is not used by any device,
this operation is not needed, so transition-time and energy can be saved.

3.2 Power-Aware Device Drivers

In this section we outline our implementation of device shut-down procedure as a part of the overall
power management strategy. We illustrate the device shut-down methodology on two low-power
device drivers we developed: wireless LAN card (WAVELAN) and audio CODEC.
The WAVELAN driver uses two dedicated functions, wavelan_wake-up() and wavelan_sleep(), to
interface to the power manager. These functions save and resume the necessary registers of the
WAVELAN card. In addition, the PCMCIA driver has been extended with two similar functions,
pcmcia_wake-up() and pcmcia_sleep(). These two functions control the WAVELAN’s power supply.
With all four functions, the power manager is able to shut-down and restart the WAVELAN card in way
completely transparent to the network stack.
Audio CODEC can also be shut-down by the power manager in a way similar to the WAVELAN. In
addition, the audio driver implements another low-power feature aimed at saving the processor power.
Since it is programmed to use the DMA controller in order to perform the data transfers, the processor is
placed into the idle state when the DMA buffer is full and no other threads are active.

3.3 Power Management

The power management layer of LP-ECOS exploits the application knowledge via Low-Power API in
order to more accurately control system resources, and thus lower the power consumption. Figure 2 lists
the set of LP-APIs. When an application starts, it informs the power manager via pm-application-
start(app-handle, app-name) function, where app-name is the name by which the application is
identified, and app-handle is the associated handle. The PM in turn updates the application running list.
As soon as an application either needs a resource or releases a resource, it informs the PM with a pair of
function calls, pm-res-alloc(app-handle, res-handle) and pm-res-dealloc(app-handle, res-handle), where
res-handle is the handle associated to the resource. The PM responds by updating the resource
application table and transitioning resources to/from low-power state. In this way, resources are started
only shortly before the application actually needs them, and released as soon as they are not needed
anymore. Often the time needed by the power manager to initialize a device can be masked by the
initialization phase of the algorithm. Function pm-application-end(app-handle) is called once the
application ends. When no more applications are running, the processor and all the devices can be put in
the sleep state
As an example, we show in Figure 3 the pseudo-code of MP3 audio decoder illustrating LP-APIs.
When the system boots, it initializes both the audio and the network interface. MP3 calls pm-
application-start() function at its start time. For MP3 we implemented a frequency setting policy
presented in [5]. This policy changes frequency at run time depending on the content of the header of the
MP3 frames. As soon as the appropriate speed value is computed, the application calls the pm-change-
frequency(new-speed) function to adjust the frequency. Shortly before first compressed frames are
needed, the decoder calls pm_alloc_res() to inform the power manager of its need for the WAVELAN
card. The power manager responds by waking up WAVELAN. Once the input buffer is filled, the
decoder calls pm_res_dealloc() so that the power manager can shut-down the WAVELAN if it is not
used by any other application. Then the collected frames are decoded and placed into an output buffer.
Each time the output buffer is full, it is passed to the audio driver. Once the decoding is finished, the
whole system transitions into sleep state.

pm_change_speed(new_speed)

*pm_pcmcia_init(pcmcia_data)

*pm_wavelan_init(wavelan_data)

pm_application_start(app_handle, app_name)
pm_application_end(app_handle, app_name)
pm_res_alloc(app_handle, res_handle)
pm_res_dealloc(app_handle, res_handle)

Power Manager Interface LP-APIs

APPLICATIONS

DRIVERS

APPLICATIONS & DRIVERS

Figure 2. LP-APIs

4. Experimental Results

In this Section we present measurement results for LP-ECOS implementation on the HP SmartBadge IV
device. We measure system power by monitoring the current absorption of the SmartBadge IV with
National Instruments Data Acquisition (DAQ) board. The board is capable of collecting samples at a
rate of 1.25 MHz, but we found that 1KHz was sufficient for most of our experiments. We tested our
RTOS implementation in single and multiple task environments with typical streaming multimedia
applications that exploit wireless network and audio resources.

4.1 Single-task Environment

We compare the power savings obtained when running MP3 audio decoder in a single-task environment
on the SmartBadgeIV while using LP-ECOS. MP3 audio decoder receives frames through the wireless
link, decodes them and plays the resulting audio out on the speakers. Table 1 shows the average power
measured and the percentage of power savings obtained for four different test cases:

• No policy. Task runs at full speed with all devices always turned on.
• CPU shut-down. Task uses only processor shutdown but not device shutdown capabilities.
• CPU & devices shut-down: Both processor and device shutdown are exploited.
• CPU & devices shut-down + clock scaling. Processor clock frequency is scaled in addition to

utilizing both processor and device shutdown. The frequency processor runs at is reported in the
policy column.

The shut-down policies use our LP-HAL layer, power-aware device drivers and the implementation of
LP-API in order to control both the processor and the device power states (WAVELAN and audio
CODEC) . Processor transitions into running state as soon as MP3 decoder starts execution. MP3 uses
calls to LP-API in order to inform the power manager of its device needs. The power manager responds

}
output_decoded_frames();

{
while(!end_of_bitstream)

...

pm_application_start(app_handle, app_name);

pm_application_end(app_handle, app_name);

...
decode_collected_frames();

...
pm_dealloc_res(app_handle, res_handle);
network_read()
pm_alloc_res(app_handle, res_handle);

frequency_setting(bit-rate, sample-rate);

 ...

...

Figure 3. Pseudo-code of the MP3 decoder

by initializing calls to power-aware WAVELAN and audio CODEC device drivers. When a resource is
not needed during decoding time, the power manager is again informed via LP-API call, and responds
by transitioning the resource to a low-power state. When decoding process is finished, the power
manager first transitions all the devices to sleep through LP-API calls. The last step is to place the
processor in a sleep state by initiating the shut-down sequence through LP-HAL layer.

Table 1. Power Consumption of MP3 Audio Decoder

Policy Pave(W) % Reduction
No Policy 3.25 0%
CPU shutdown 2.69 17.2%
CPU & device shutdown 1.60 50.7%
CPU & device shutdown @191.7 MHz 1.49 54.1%
CPU & device shutdown @176 MHz 1.35 58.4%

In addition to shut-down policies, the MP3 decoder also utilizes frequency scaling via LP-API calls.
The performance of the MP3 decoding process is a function of bit and sample rates, both of which are
available in the MP3 header. Thus, the minimum clock frequency that provides the required decoding
frame rate can be obtained based on the pre-stored curves. The curves show a trade-off between the
frame-rate versus processor frequency for different bit and sample rates. This technique is described in
more details in [5]. At the start of the MP3 decoding process, LP-API function call provides the power
manager with the MP3 frequency-performance trade off curves. The PM responds by calculating the
minimum clock frequency, and then calls the LP-HAL layer to actually perform the processor frequency
adjustment. This process is repeated when either bit or sample rate change.
The results in Table 1 show that the combination of processor clock scaling, device and processor shut-
down more than double the system power efficiency. About 50.7% of power savings occur when only
processor and device shut-down are utilized. In addition to saving power, the performance improves
because the CPU does not process useless broadcast packets coming from the network since the
WAVELAN card is shut down as soon as incoming frame buffer is full. Additional 8% savings are
obtained by using processor clock scaling. Such small increase in power savings is due to two issues.
First, the MP3 decoder is computationally quite intensive, so as a consequence the clock speed cannot
be safely decreased under 176MHz. Second, we use only frequency scaling. We could obtain much
larger power savings if we also scaled down the voltage while slowing down the frequency. Additional
hardware needs to be built to enable voltage scaling on the SmartBadge IV.

In addition to reporting the average power measurements, we also show the current waveforms
corresponding to MP3 execution at full speed, in Figure 4, and at reduced speed, in Figure 5. The peak
current consumption can be observed in both Figures when the WAVELAN card is activated by the
decoder in order to perform network reads. Since MP3 decoder runs faster than real-time at full speed,
we can see the drop in current levels when the processor transitions into the idle state (Figure 4). In
contrast, when running at reduced speed (Figure 5), there are no chances to place the processor into the
idle state since now MP3 decodes close to real-time.

Figure 4. MP3 current at 202.6 MHz

Figure 5. MP3 current at 191.7 MHz

4.2 Multi-Task Environment

LP-ECOS is well suited to handle multi-task environment. In this Section we show the measurement
results when running two different streaming applications on SmartBadge IV. In our test case, we use a
low-pass filter and a front-end of a speech recognizer [4]. The first application reads data through the
wireless network and sends it to the audio output, while the second task takes speech samples from the
audio input and sends them to a server via network interface.
The utilization versus frequency characteristics for both applications are obtained off-line, and are then
supplied to the power manager via LP-API calls. Let us assume that the filter application starts first.
The power manager in turn sets the processor frequency to the minimum value that keeps the processor
utilization less than 100% (to take into account intertask interference). The value is obtained from pre-
stored utilization characteristic, such as the one shown in Figure 6. As soon as the speech recognizer
starts, the power manager recalculates the minimum allowed processor frequency setting. The new
setting is a value of processor frequency for which the sum of utilizations of both applications is less
then 100% (see the top curve in Figure 6).

50 100 150 200 250
Frequency(MHz)

20

40

60

80

100

120

C
P

U
 U

til
iz

at
io

n(
%

)

SR Front−End
Low−Pass Filter
Sum

fmin1
fmin2 fmin

Figure 6. Characterization of streaming applications

In addition to processor frequency scaling, each application communicates its resource requirements
through LP-APIs. In this way the power manager can allocate and deallocate I/O devices on demand. A
device transitions to the active state as soon as the power manager receives a first request from an
application for that device. When all applications release a resource, the power manager places the
device into the sleep state. Once all tasks in the system terminate, the power manager puts the CPU into
the sleep state as well.
Table 2 shows that the processor and device shut-down save 25% of power when running in a multi-task
environment described here. Adjusting the processor frequency leads to additional 10% power savings
with respect to the CPU and device shut-down policy. As discussed earlier, the processor frequency
scaling savings are smaller since they do not include the voltage scaling. Adding voltage scaling would
significantly increase the overall power savings.

Table 2. Energy Consumption in Multi-Task Environment

Policy Pave(W) % Reduction
No Policy 2.83 0%
CPU & device shutdown 2.10 25.7%
CPU & device shutdown @191.7 MHz 1.84 34.9%

5. Conclusions

In this work we presented a complete implementation of an energy-efficient operating system, LP-
ECOS. LP-ECOS cooperates with the applications when making both processor and peripheral power
management decisions. We illustrate our ideas by running typical streaming media applications on the
HP SmartBadge IV in cooperation with LP-ECOS. The experimental results show that up to 58%
energy savings when running MP3 audio decoder with our approach. Similarly, we obtain more than
34% savings when running two streaming media applications concurrently.

6. References

[1] http://sources.redhat.com/ecos/
[2] G. Q. Maguire, M. Smith and H. W. Peter Beadle, “SmartBadges: a wearable computer and communication system”, 6th

International Workshop on Hardware/Software Codesign, 1998.
[3] E. Chung, L. Benini and G. De Micheli, “Dynamic Power Management for non-stationary service requests”, Proceedings of

DATE, pp.77--81, 1999.
[4] B. Delaney, N. Jayant, M. Hans, T. Simunic, A. Acquaviva, “A Low-Power, Fixed-Point, Front-End Feature Extraction for

a Distributed Speech Recognition System”, IEEE ICASSP, May 2002.
[5] A. Acquaviva, L. Benini, B. Ricco, “Software Controlled Processor Speed Setting for Low-Power Streaming Multimedia,”

IEEE Transactions on CAD, pp. 1283--1292, November 2001.
[6] A. Sinha, A. Chandrakasan, “Energy efficient real-time scheduling,” ICCAD, pp. 458--463, Nov 2001.
[7] F. Bellosa, “Endurix: OS-Direct Throttling of Processor Activity for Dynamic Power Management,” Technical Report TR-

I4-99-03, University of Erlangen, June 1999.
[8] L. Geppert, T. Perry, “Transmeta’s magic show,” IEEE Spectrum, vol. 37, pp. 26--33, May 2000.
[9] M. Neufeld, D. Grunwald, P. Levis, C. Morrey, K. Farkas, “Policies for Dynamic Clock Scheduling,” OSDI, San Diego,

USA, October 2000.
[10] K. Govil, E. Chan, H. Wasserman, “Comparing Algorithm for Dynamic Speed-Setting of a Low-Power CPU,”International

Conference on Mobile Computing and Networking, pp. 13--25, November 1995.
[11] I. Hong, M. Potkonjak, M. B. Srivastava, “On-Line Scheduling of Hard Real-Time Tasks on Variable Voltage Processors,”

ICCAD, pp. 653--656, November 1998.
[12] C. H. Hwang, A. C. H. Wu, “A Predictive System Shutdown Method for Energy Saving of Event-Driven Computation,”

ICCAD, pp. 28--32, November 1997.
[13] T. Ishihara, H. Yasuura, “Voltage Scheduling Problem for Dynamically Variable Voltage Processor,” ISLPED, pp. 197--

202, August 1998.
[14] S. Lee, T. Sakurai, “Run-time voltage hopping for low-power real-time systems,” ISLPED, pp.806--809, July 2000.
[15] J. Lorch, A. J. Smith, “Software Strategies for Portable Computer Energy Management,” IEEE Personal Communications,

pp 60--73, June 1998.
[16] Y. Lu, L. Benini, G. De Micheli, “Operating System Directed Power Reduction,” ISLPED, pp 37--42, July 2000.
[17] T. L. Martin. “Balancing Batteries, Power and Performance: System Issues in CPU Speed-Setting for Mobile Computing,”

PhD thesis, Carnegie Mellon University, 1999.
[18] Q. Qiu and M. Pedram, “Dynamic power management based on continuous-time Markov decision processes”, Design

Automation Conference, pp. 555--561, 1999.
[19] T. Pering, T. Burd, R. Brodersen, “Voltage Scheduling in the lpARM Microprocessor System,” ISLPED, July 2000.
[20] C. Pereira, V. Raghunathan, S. Guptha, R. Ghupta, M. Srivastava, “A Software Architecture for Building Power Aware

Real Time Operating Systems,” ISLPED, 2002.
[21] J. Pouwelse, K. Langendoen,H. Sips, “Energy Priority Scheduling for Variable Voltage Processors,” ISLPED, pp. 28--33,

Huntington Beach, USA 2001.
[22] Y. Shin, K. Choi, “Power Conscious Fixed Priority Scheduling for Hard Real-Time Systems,” DAC, pp. 134--139, June

1999.
[23] J. Flinn, M. Satyanarayanan, “Energy-aware adaptation for mobile applications,” In Proceedings of SOSP, December 1999.
[24] Intel, “Intel StrongARM SA-1110 Microprocessor Advanced Developer’s Manual,” June 2000.
[25] T. Simunic, L. Benini, P. Glynn, G. De Micheli, “Event-driven Power Management,” IEEE Transactions on CAD, July

2001.
[26] T. Simunic, L. Benini, A. Acquaviva, P. Glynn, G. De Micheli, “Dynamic Power Management of Portable Systems,” IEEE

Transactions on Computer-Aided Design, July 2001.
[27] I. Weiser, B. Welch, A. Demers, S. Shenker, “Scheduling for Reduced CPU Energy,” SOSDI, pp. 13--23, November 1994.
[28] F. Yao, A. Demers, S. Shenker, “A Scheduling Model for Reduced CPU Energy,” Annual Foundation of Computer

Science, pp. 374--382,
[29] http://developer.intel.com/design/intelxscale/

Appendix A

Installation and testing of LP-eCos on SmartBadge IV

This appendix describes how to install, configure and run a demo of a multimedia
streaming application on LP-eCos on the SmartBadgeIV using Windows XP as a host
and National Instruments DAQPad6070E as a data acquisition board.

1. Introduction

The following software is needed on the Windows XP host system for installation of LP-
eCos on the SmartBadge IV:

• LP-eCos distribution
• Cygwin software under Windows
• GNU Tools
• Apple AirBaseStationConfig

And the following additional hardware:

• SmartBadgeIV with Lucent Wavelan Card
• Ethernet card
• Java Run-Time environment
• Apple Airport Base Station

DAQpad6070E board (or similar) and NI – DAQ Data Acquisition Driver Software for
Windows can be used to perform power measurements.

2. Host software setup

The software configuration for the host system includes these four steps:

a. Downloading and installing Cygwin environment
b. Downloading and building the GNU tool chain
c. Unpacking and configuring the LP-eCos distribution
d. Build and download RedBoot Rom Monitor
e. Build, download and run an example program

2.a Downloading and installing Cygwin

Cygwin is a tool that provide a linux-like environment under windows. We need it in
order to use the GNU toolchain to compile and build eCos.

To install the Cygwin net release, go to http://cygwin.com/ and click on "Install Cygwin
Now!". This will download a GUI installer called setup.exe which can be run to
download a complete cygwin installation via the internet. Follow the instructions on each
screen to install Cygwin.

If you want to directly install the necessary packages from the net, choose “Install from
Internet”. You will be required to specify the root installation directory and the packages
directory. Then specify how you want it to connect to the internet. If you are behind a
proxy, type the name and the proxy port like:

• Use HTTP/FTP Proxy:

Proxy Host: proxy.hpl.hp.com

Port: 8088

At that point you will be prompted for choosing the packages to be installed. The basic
packages you need are:

• Base
• Devel
• Shells → bash
• System → setup
• Utils → bzip2, cygutils, patch

Now download the selected packages. Each time you need to upgrade the packages, run
the set – up utility and select the packages you want to add. If the installation procedure
ends successfully, you will find a shortcut to cygwin bash shell on your desktop.

2.b Downloading and building the GNU tool chain

eCos requires arm-elf development tools to develop programs for ARM targets. The
development tools come in three parts: the GNU compiler collection (GCC), the GNU
Debugger (GDB) and the GNU binary utilities, which includes the GNU assembler and
linker.

http://cygwin.com/
http://cygwin.com/
http://cygwin.com/

You can find a detailed explanation of this step in the Red Hat eCos web page: ”Building
the ARM development tools for Windows” at http://sources.redhat.com/ecos/tools/win-
arm-elf.html.
In this page you will find the related link to the proper download pages. Otherwise, try
directly with the following links:

• Binary Utilies:
ftp://mirrors.kernel.org/gnu/binutils/binutils-2.10.1.tar.gz

• C and C++ compilers:

GCC 2.95.2 core compiler distribution
GCC 2.95.2 C++ distribution

• GDB debugger:
ftp://sources.redhat.com/pub/gdb/releases/insight-5.2.tar.gz

Notice that the link to insight-5.0 in the ecos page is not more valid.

At that point you are ready to build the toolchain. I reported below for convenience the
instructions that you can find in the ecos web page.

2.b.1 Unpacking the tools
Once the tools sources have been downloaded, they must be prepared before building.
These instructions assume that the tool sources will be extracted in the /src directory
hierarchy. Other locations may be substituted throughout. Similarly placeholders of the
form YYYYMMDD and YYMMDD should be replaced with the actual date of the downloaded
files. Ensure that the file system used has sufficient free space available. The contents of
each archive will expand to occupy approximately 6 times the space required by the
compressed archive itself. The following steps should be followed at the Cygwin bash
prompt:

1. Create a directory for each set of tool sources, avoiding directory names
containing spaces as these can confuse the build system:

mkdir -p /src/binutils /src/gcc /src/gdb

2. Extract the sources for each tool directory in turn. For bzip2 archives:

 cd /src/binutils
 bunzip2 < binutils-2.10.1.tar.bz2 | tar xvf -
 cd /src/gcc
 bunzip2 < gcc-core-2.95.2.tar.bz2 | tar xvf -
 bunzip2 < gcc-g++-2.95.2.tar.bz2 | tar xvf -
 cd /src/gdb
 bunzip2 < insight-5.2.tar.bz2 | tar xvf -

The following directories should be generated and populated during the extraction
process:

http://sources.redhat.com/ecos/tools/win-arm-elf.html
http://sources.redhat.com/ecos/tools/win-arm-elf.html
ftp://mirrors.kernel.org/gnu/binutils/binutils-2.10.1.tar.gz
ftp://gcc.gnu.org/pub/gcc/releases/gcc-2.95.2/gcc-core-2.95.2.tar.gz
ftp://gcc.gnu.org/pub/gcc/releases/gcc-2.95.2/gcc-g++-2.95.2.tar.gz
ftp://sources.redhat.com/pub/gdb/releases/insight-5.2.tar.gz

 /src/binutils/binutils-2.10.1
 /src/gcc/gcc-2.95.2
 /src/gdb/insight-5.2

3. You may now need to apply a small number of source patches that are required to
fix outstanding problems and add eCos support to the tools. Patches may be
downloaded using most browsers by either shift-clicking or right-clicking on the
link to the patch. You must not view the link and cut-and-paste because white
space must be preserved exactly.

Cygwin users should verify that their /tmp directory (or the directory specified by
the TMPDIR, TMP or TEMP environment variables) is mounted in binary mode. If
this is not the case the patches will apply, but the build will later fail. You may
verify this using the Cygwin mount command. If /tmp is not explicitly listed, the
entry for / will be used. If it says textmode for this entry, use the following
command from a Cygwin bash prompt:

 mount -f -b c:/cygwin/tmp /tmp

You may need to substitute another path for c:/cygwin if Cygwin was installed
to another directory.

2.b.2 Building the tools
Before attempting to build the tools, ensure that the GNU native compiler tools directory
is on the PATH and precedes the current directory. The following build procedures will
fail if . is ahead of the native tools in the PATH.

Avoid using spaces in build and install directory paths. Building on an NTFS file system
is strongly recommended due to the large number of small files involved in the build
process. Cygwin users must set the MAKE_MODE environment variable as follows:

 export MAKE_MODE=UNIX

Approximate disk space requirements for building the development tools are as follows:

Tool Build Install

Binary Utilities 35MB 25MB

GCC 40MB 20MB

Insight 110MB 35MB

TOTAL 180MB 75MB

Following successful building and installation of each set of tools, the associated build
tree may be deleted to save space if necessary. These instructions assume that the tools
will be built in the /tmp/build directory hierarchy and installed to /tools. Other
locations may be substituted throughout:

1. Configure the GNU Binary Utilities:

 mkdir -p /tmp/build/binutils
 cd /tmp/build/binutils
 /src/binutils/binutils-2.10.1/configure --target=arm-elf \
 --prefix=/tools \
 --exec-prefix=/tools/H-i686-pc-cygwin \
 -v 2>&1 | tee configure.out

If there are any problems configuring the tools, you can refer to the file
configure.out as a permanent record of what happened.

2. Build and install the GNU Binary Utilities:

 make -w all install 2>&1 | tee make.out

If there are any problems building the tools, you can use the file make.out as a
permanent record of what happened.

3. Configure GCC, ensuring that the GNU Binary Utilities are at the head of the
PATH:

 PATH=/tools/H-i686-pc-cygwin/bin:$PATH ; export PATH

(for sh, ksh and bash users);

 set path = (/tools/H-i686-pc-cygwin/bin $path)

(for csh and tcsh users).

 mkdir -p /tmp/build/gcc
 cd /tmp/build/gcc
 /src/gcc/gcc-2.95.2/configure --target=arm-elf \
 --prefix=/tools \
 --exec-prefix=/tools/H-i686-pc-cygwin \
 --with-gnu-as --with-gnu-ld --with-newlib \
 -v 2>&1 | tee configure.out

4. Build and install GCC:

 make -w all-gcc install-gcc \
 LANGUAGES="c c++" 2>&1 | tee make.out

5. Configure Insight:

 mkdir -p /tmp/build/gdb
 cd /tmp/build/gdb
 /src/gdb/insight-5.2/configure --target=arm-elf \
 --prefix=/tools \
 --exec-prefix=/tools/H-i686-pc-cygwin \
 -v 2>&1 | tee configure.out

6. Build and install Insight:

 make -w all install CC='gcc -mwin32' 2>&1 | tee make.out

On completion, the ARM development tool executable files will be located at /tools/H-
i686-pc-cygwin/bin. This directory should be added to the head of your PATH. You
can do this by editing the file .profile located in your home directory /home/username.
The next time a cygwin shell will be started you will see the GNU executable from any
directory.

2.c Installing the Apple Airport configuration software

In order to configure the access point to communicate with the SmartBadgeIV you need
to configure it to be seen by the host. For this reason, if you have an additional ethernet
adapter, use adapter to set – up a local network between the host and the access point by
giving to the host a fixed IP address, for example 15.9.74.184.
Now you need to configure the access point so that the host can see it and give an IP
address. You need the Java Run-time Environment to run the .jar file that configures the
airport access point. If you don’t have a JRE installed, you can download it at:
http://java.sun.com/Download6 .

If you don’t have the airport configuration file, you can find one at:
http://edge.mcs.drexel.edu/GICL/people/sevy/airport/#Configurator .

By running the .jar file you can access to the airport configuration. Give it an IP address,
for example: 15.9.74.183.

http://java.sun.com/Download6
http://edge.mcs.drexel.edu/GICL/people/sevy/airport/

3. Target software setup

3.a Unpacking and configuring the LP-eCos distribution.

3.a.1 Packages description
LP-eCos distribution comes as a compressed .tgz archive containing the tools for
configuring eCos packages and the package repository. The archive comprehends the
whole package repository (version 2.0 alpha) plus the following packages targeted to the
Smartbadge4:

• CYGPKG_HAL_ARM_SA11X0_BADGE4

Location: hal/arm/sa11x0/badg4/
Notes: Basic package to build SmartBadgeIV target.

• CYGPKG_SA1111_BADGE4
 Location: devs/sa1111/
 Notes: Package containing initialization code for the SA1111 companion chip on

the SmartBadge4. This package is mandatory since the sa1111 initialization is made
partially by the gdb-stub (or redboot) and must be completed by ecos.

• CYGPKG_DEVS_PCMCIA_BADGE4
 Location: devs/pcmcia/arm/badge4/
 Notes: Implements the lower layer of the pcmcia ecos driver. It is needed to support

the Lucent Wavelan card package. Augmented with low power features to safely
shut-down/wake-up the wavelan at run time.

• CYGPKG_DEVS_ETH_WVLAN
 Location: devs/eth/wvlan/
 Notes: Hardware dependent Lucent/Orinoco wireless lan driver. This package

requires pcmcia and net packages to work. Augmented with low power features.
• CYGPKG_AUDIO_BADGE4
 Location: devs/audio_tmp/
 Notes: This package is the first version of the audio driver. A recent version can be

found in the audio directory but it is under revision.
• CYGPKG_POWMAN_BADGE4
 Location: /devs/powman/
 Notes: Power Manager.

3.a.2 Unpacking and setting – up the environment
Application program under eCos can be built in two different ways: the first is intended
to run with a ROM monitor. For this reason, the user application will reside in RAM. The
second possibility is to build independent applications. In this case the executable will be
downloaded in ROM.
In this example we take the first approach, that allows to easily test and debug user code.
For this reason, we need firstly to build a rom monitor that will be downloaded in to the
flash memory of the SmartBadgeIV through the JTAG port.

In order to do this, you need to have the tap utilities somewhere in your host. At least you
need: unl, erasefl, loadfl (this version of ecos does not uses the 2nd flash bank). Now add
the directory containing these utilities to your path, for example:

 PATH=/home/username/taputils/:$PATH; export PATH

To get this setting permanent, modify the path line also in /home/username/.profile.

At this point you must handle a WindowsNT trick. It does not allows you to directly
access I/O peripherals using user code, so you must install and run two drivers that allow
to go around this problem. You can find a .zip file containing this drivers at:
http://www.ddj.com/ftp/1996/1996.05/directio.zip . Once unpacked, you must run the
loaddrv.exe executable and insert at the command line the full path to the file giveio.sys,
which is GIVEIO\I386\FREE\giveio.sys. Press install first and start next.
Repeat the same procedure for totalio.sys. At that point you are able to access the JTAG
port of the SmartbadgeIV through the tapmaster.

NOTE: These drivers are also mandatory to allow an user made client-server application
to access the network ports.

Now you must unpack the LP-eCos distribution. To do this, open a cygwin shell and use
the tar utility to extract the files for example in /c/ecoscvs/:

tar –xzf lp-ecos.tgz

In order to see the configuration tools from any directory under the Cygnus bask shell,
modify the path variable:

 PATH=/c/ecoscvs/ecos/:$PATH; export PATH

Next, define add the package repository environment variable to specify where the
configuration tools find the ecos packages:

ECOS_REPOSITORY=/c/ecoscvs/ecos/packages/; export ECOS_REPOSITORY

To get permanent this setting, add the previous lines to the .profile file in your
/home/username directory.

http://www.ddj.com/ftp/1996/1996.05/directio.zip

3.b Building and downloading the target software

3.b.1 Building and downloading Redboot
Redboot is the new rom monitor that substituted the older gdb. In order to build it, first
run a bush shell and create a working directory, usually in the same directory where the
ecos packages reside, for example:

mkdir /c/ecoscvs/ecos/ecos-stubs

Now cd to this directory and run the ecosconfig tool with the following parameters:

 ecosconfig new badge4 redboot

After displaying some messages, an ecos.ecc file will be created. This file is a
configuration script that determine what and how the ecos packages will be compiled to
generate a binary redboot image. Now type:

 ecosconfig add CYGPKG_IO_SERIAL

to enable the use if the serial port debugging with redboot. Then change the startup mode
from RAM (default) to ROM by editing the ecos.ecc file and modifying the following
line:

 cdl_component CYG_HAL_STARTUP {
 …
 user value ROM
 …
 }

Then perform a check of the configuration, create the build tree and make:

 ecosconfig check
 ecosconfig tree
 make

At the end of this process, you will find a binary redboot image redboot.bin in
install/bin/.

Now you are ready to download redboot. First check that your JTAG cable is properly
connected to the badge4 and that the board is keep in reset state. Then power up and give
the following commands:

 unl
 erasefl
 loadfl -b install/bin/redboot.bin –a0x0

NOTE: If you have badgelinux installed, you need also to erase the upper bank of the
flash, so use unl2 and erasefl2 also.

3.b.2 Building the eCos library file and the demo application
In order to create an ecos executable, you need to create a library file that will be
statically linked to the user program. To do this, create a new working directory at your
bash prompt (different from the redboot one), for example:

mkdir /c/ecoscvs/ecos/ecos-work/

Now cd to this directory and give the following commands:

 ecosconfig new badge4 net
 ecosconfig import /c/ecoscvs/ecos/network.ecm

You are ready to build the ecos library file properly configured to build the demo
application. If you need to change the networking options (ip address, netmask, ecc…),
edit the network.ecm file now and import it again.
Now create the build tree and start building:

 ecosconfig tree
 make

Now you can build the demo application that can be found in the example subdirectory
/c/ecoscvs/ecos/example/MPEGnet/. Go in this subdirectory and type:

 make mpeg

3.b.3 Downloading and running with GDB
Your application is ready. Now you need to download it into the SmartBadge4 RAM.
This step is accomplished by gdb, the GNU debugger. At the bash prompt give the
following command:

 arm-elf-gdb -nw /c/ecoscvs/ecos/mpeg

this will start the gdb debugger with a command line interface. If you omit the –nw
options you will get the nicer graphical interface, but it can be not so stable depending on
the host system. However, at the gdb prompt type:

 set remotebaud 115200
 target remote com1

Check that the SmartBadgeIV serial port is connected to the right serial port. If
everything it’s ok you will see an output like that:

 Remote debugging using com1
 0x400016b4 in ?? ()

If this is the case, type:

 load

You must see the following output:

 Loading section .rom_vectors, size 0x40, lma 20000
 Loading section .text, size 0x45498, lma 0x20040
 Loading section .rodata, size 0x18494, lma 654d8
 Loading section .data, size 0xe11c, lma 0x7d96c
 Start address 0x20040, load size 440968
 Transfer rate 82040 bits/sec, 305 bytes/write.

Now you are ready to start the demo, but you first have to run the server program.
Open a command window and go in c:\ecoscvs\ecos\examples\Host\WINMPEGserver.
Here start the server executable:

 feedclient.exe 9879 mp3file.mp3

 Where mp3file is one of the available mpeg3 file you find in this directory. While the
server is waiting for connections, start the demo application by typing at the gdb prompt;

 continue

Measurements can be performed by connecting the DAQ probes across resistors in series
with CPU, WAVELAN and system power supplies. The resulting waveforms are
displayed automatically on the DAQ GUI interface.

	Appendix A
	Installation and testing of LP-eCos on SmartBadge IV
	
	
	
	This appendix describes how to install, configure and run a demo of a multimedia streaming application on LP-eCos on the SmartBadgeIV using Windows XP as a host and National Instruments DAQPad6070E as a data acquisition board.

	1. Introduction
	2. Host software setup
	You can find a detailed explanation of this step
	
	In this page you will find the related link to the proper download pages. Otherwise, try directly with the following links:

	2.b.2 Building the tools

	3. Target software setup

