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1. Introduction 

For thousands of years, buyers and sellers have come together to exchange money for 

goods or services. Economists use the word “auction” to refer to the mechanism (or rules) 

by which buyers and sellers interact in such marketplaces. Almost all traders in the global 

international financial markets interact via a particular form of auction market 

mechanism known as the continuous double auction (CDA), more details of which will 

be given later.1  The CDA has been the subject of much study by economists, partially 

because it is so important in the world of finance, but also because CDA markets 

typically exhibit a very attractive characteristic: experimental studies have demonstrated 

that the transaction prices in a CDA market rapidly converge on the market’s theoretical 

equilibrium price. Students of microeconomics know the equilibrium price as the price at 

which the market’s supply and demand curves intersect; but, colloquially, the equilibrium 

price is important because if transactions are taking place at off-equilibrium prices then 

someone somewhere in the market is being ripped off. Hence, rapid equilibration is 

desirable in any auction. The precise reasons why CDA markets typically exhibit rapid 

and stable equilibration are still the topic of research and debate (see e.g. [12]).  

 

With the advent of e-commerce, various forms of auction mechanism have become very 

popular for online trading, and web-based auction sites such as www.ebay.com have 

proven highly successful. As auctions dematerialize, moving online and becoming virtual 

“e-marketplaces”, it becomes perfectly plausible for software-agent “robot” traders to 

participate in those auctions. In comparison to human traders, such “bots” have the 

                                                           
1 It is beyond the scope of this paper to provide a review of all possible auction 
mechanisms: for a recent relevant paper, see [25]. 
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advantage of being very fast and very cheap, and in principle they can assimilate and act 

on volumes of data that would swamp even the most able of human traders.    

 

ZIP (Zero-Intelligence-Plus) artificial trading agents, introduced in [3], are software-

agent “trader bots” that use simple machine learning techniques to adapt to operating as 

buyers or sellers in open-outcry auction-market environments similar to those used in 

Smith’s [22] pioneering experimental economics studies of the CDA and other auction 

mechanisms. ZIP traders were originally developed as a solution to the pathological 

failures of Gode & Sunder’s (1993) “ZI” (Zero-Intelligence) traders, but recent work at 

IBM by Das et al. [11] has shown that ZIP traders (unlike ZI traders) consistently out-

perform human traders in human-against-robot experimental economics CDA 

marketplaces. The ZIP traders consistently made profits a few percentage points higher 

than did the human traders they were competing against. Das et al. [11] wrote that the 

“…successful demonstration of machine superiority in the CDA … could have a … 

powerful financial impact – one that might be measured in billions of dollars annually”, 

and in their conclusions they speculate on the future possibility of online e-marketplaces 

currently populated by human traders becoming populated entirely by trader agents. 

 

The operation of ZIP traders has been successfully demonstrated in experimental versions 

of CDA markets similar to those found in the international financial markets for 

commodities, equities, capital, and derivatives; and in posted-offer auction markets 

similar to those seen in domestic high-street retail outlets [3]. In any such market, there 

are a number of numeric parameters that govern the adaptation and trading processes of 

the ZIP traders. In the original 1997 version of ZIP traders, the values of these were set 
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by hand, using “educated guesses”.  However, subsequent papers [4,5] presented the first 

results from using a standard technique to automatically optimize these parameter values, 

thereby eliminating the need for skilled human input in deciding the values. 

  

Prior to the research described in [6], in all previous work using artificial trading agents – 

ZIP or otherwise – the market mechanism (i.e., the type of auction the agents are 

interacting within) had been fixed in advance. Well-known market mechanisms from 

human economic affairs include: the English auction (where sellers stay silent and buyers 

quote increasing bid-prices), the Dutch Flower auction (where buyers stay silent and 

sellers quote decreasing offer-prices); the Vickery or second-price sealed-bid auction 

(where sealed bids are submitted by buyers, and the highest bidder is allowed to buy, but 

at the price of the second-highest bid: game-theoretic analysis demonstrates that this 

mechanism encourages honesty and is robust to attack by dishonest means); and the CDA 

(where sellers announce decreasing offer prices while simultaneously and 

asynchronously the buyers announce increasing bid prices, with the sellers being free to 

accept any buyer’s bid at any time and the buyers being free to accept any seller’s offer at 

any time, in the absence of an auctioneer).  

 

In this paper, we explore in detail the some specific consequences of asking the following 

question: if, as Das et al. [11] speculate, trader agents will come to replace human traders 

in online e-marketplaces, then why should those online e-marketplaces use auction 

mechanisms designed by humans, for humans? Perhaps there are new market 

mechanisms, suitable only to populations of robot-traders, that are more efficient (or 

otherwise more attractive) than currently-known human-based mechanisms.  
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Designing new market mechanisms is hard, and the space of possible mechanisms is vast. 

For this reason it is attractive to use an automated search of the space of possible 

mechanisms: in essence, we ask a computer to do the auction-design for us. This paper 

reports on exploring the application of one type of automated search/optimization 

algorithm, which is inspired by Darwinian notions of evolution via random variation and 

directed selection, and hence is known as a Genetic Algorithms (GA).  

 

The first results from experiments where a GA optimizes not only the parameter values 

for the ZIP trading agents, but also the style of market mechanism in which those traders 

operate, were presented in [6]. To do this, a space of possible market mechanisms was 

created for evolutionary exploration. The space includes the CDA and also one-sided 

auctions similar (but not actually identical to) the English Auction (EA) and the Dutch 

Flower Auction (DFA). Significantly, this space is continuously variable, allowing for 

any of an infinite number of peculiar hybrids of these auction types to be evolved, which 

have no known correlate in naturally occurring (i.e., human-designed) market 

mechanisms. While there is nothing to prevent the GA from settling on solutions that 

correspond to the known CDA auction type or the EA-like and DFA-like one-sided 

mechanisms, it was found that hybrid solutions can lead to the most desirable market 

dynamics. Although the hybrid market mechanisms could easily be implemented in 

online electronic marketplaces, they have not been designed by humans: rather they are 

the product of an automated search through a continuous space of possible auction-types. 

Thus, the results in [6] were the first demonstration that radically new market 

mechanisms for artificial traders may be designed by automatic means. 
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This is not a trivial academic point: although the efficiency of the evolved market 

mechanisms are typically only a few percentage points (or even only a few basis points) 

better than those of the established human-designed mechanisms, the economic 

consequences could be highly significant. According to figures released by the New York 

Stock Exchange (NYSE), the total value of trades on the CDA-based NYSE for the year 

2000 was $11060bn (i.e., a little over 11 trillion dollars: see [16]). If only 0.1% of that 

liquidity could be eliminated or captured by a more efficient evolved market mechanism, 

the value saved (or profit generated) would still be in excess of $10bn.  And that is just 

for one market: similar savings could presumably made at NASDAQ, at European 

exchanges such as LSE and LIFFE, and at similar exchanges elsewhere around the globe. 

 

Section 2 gives an overview of ZIP traders and of the experimental methods used, 

including a description of the continuously-variable space of auction types. This 

description is largely identical to the account given in previous papers [6,7], albeit 

extended to describe how the new experiments whose results are presented here differ 

from the previous work. The new results are presented in Section 3 and are discussed in 

Section 4. Related work is reviewed in Section 5, and conclusions are drawn in Section 6. 

 

2. Methods 

2.1 Zero-Intelligence-Plus (ZIP) Traders 

ZIP trading agents are described fully in a lengthy report [3], which includes sample 

source-code in the C programming language. For the purposes of this paper a high-level 

description of the key parameters is sufficient.  
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ZIP traders deal in arbitrary abstract commodities. Each ZIP trader i is given a private 

(i.e., secret) limit-price, λi, which for a seller is the price below which it must not sell and 

for a buyer is the price above which it must not buy. If a ZIP trader completes a 

transaction at its λi price then it generates zero utility (“profit” for the sellers or “saving” 

for the buyers). For this reason, each ZIP trader i maintains a time-varying utility margin 

µi(t) and generates quote-prices pi(t) at time t according to pi(t)=λi(1+µi(t)) for sellers and 

pi(t)=λi(1-µi(t)) for buyers. The “aim” of traders is to maximize their utility over all 

trades, where utility is the difference between the accepted quote-price and the trader’s λi 

value. Trader i is given an initial value µi(0) (i.e., µi(t) for t=0) which is subsequently 

adapted over time using a simple machine learning technique known as the Widrow-Hoff 

rule which is also used in back-propagation neural networks [20] and in learning 

classifier systems [24]. This rule has a “learning rate” parameter βi that governs the speed 

of convergence between trader i’s quoted price pi(t) and the trader’s idealized “target” 

price τi(t). When calculating τi(t), traders introduce a small random absolute perturbation 

generated from2 U[0,ca] (this perturbation is positive when increasing τi(t), negative 

when decreasing) and also a small random relative perturbation generated from U[1-cr,1] 

(when decreasing τi(t)) or U[1,1+cr] (when increasing τi(t)). Here ca and cr are global 

system constants. To smooth over noise in the learning system, there is an additional 

“momentum” parameter γi for each trader (such momentum terms are also commonly 

used in back-propagation neural networks).  

 

                                                           
2 Note that in this paper v=U[x,y] denotes a random real value v generated from a uniform 
distribution over the range [x,y]. 



D. Cliff: Explorations in Evolutionary Market-Mechanism Design.                                                             8 

Thus, adaptation in each ZIP trader i has the following parameters: initial margin µi(0); 

learning rate βi; and momentum term γi.  In an entire market populated by ZIP traders, 

values for these three parameters are randomly assigned to each trader via the following 

expressions: µi(0)=U(µmin, µmin+µ∆); βi=U(βmin, βmin+β∆); and γi=U(γmin, γmin+γ∆).  

 

Hence, to initialize an entire ZIP-trader market it is necessary to specify values for the six 

market-initialization parameters µmin, µ∆, βmin, β∆, γmin, and γ∆; and also for the two global 

system constants ca and cr. And so it can be seen that any set of initialization parameters 

for a ZIP-trader market exists within an eight-dimensional real space. Vectors in this 8-

space can be considered as “genotypes” in a genetic algorithm (GA), and from an initial 

population of such genotypes it is possible to allow a GA to find new genotype vectors 

that best satisfy an appropriate evaluation function. This is exactly the process that was 

introduced in [4,5], and that is described further below. Before that, the issue of 

simulating the passage of time is discussed.  

 

When monitoring events in a real auction, as more precision is used to record the time of 

events, so the likelihood of any two events occurring at exactly the same time is 

diminished. For example, if two bid-quotes made at five minutes past nine are both 

recorded as occurring at 09:05, then they appear to be simultaneous; but a more accurate 

clock would have been able to reveal that the first bid was made at 09:05:01 and the 

second at 09:05:02. Even if two events occur absolutely at the same time, some random 

process (e.g. what direction the auctioneer is looking in) may break the simultaneity.  
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Thus, we may simulate real marketplaces (and implement electronic marketplaces) using 

techniques where each significant event always occurs at a unique time. We may choose 

to represent these by real high-precision times, or we may abstract away from precise 

time-keeping by dividing time (possibly irregularly) into discrete slices, numbered 

sequentially, where one significant event is known to occur in each slice. In the ZIP-

trader markets explored here, we use such a time-slicing approach. In each time-slice, the 

atomic “significant event” is one quote being issued by one trader and the other traders 

then responding either by ignoring the quote or by one of the traders accepting the quote. 

(NB Das et al. [11] used a continuous-time formulation of the ZIP-trader algorithm). 

  

In the markets described here (and in [3,4,5,6,7,8,9]), on each time-slice a ZIP trader i is 

chosen at random from those currently able to quote (i.e. those who hold appropriate 

stock or currency), and trader i’s quote price pi(t) then becomes the “current quote” q(t) 

for time t. Next, all traders j on the contraside (i.e. all buyers j if i is a seller, or all sellers 

j if i is a buyer) compare q(t) to their own current quote price pj(t) and if the quotes cross 

(i.e. if pj(t)<=q(t) for sellers, or if pj(t)>=q(t) for buyers) then the trader j is able to 

accept the quote. If more than one trader is able to accept, one is chosen at random to 

make the transaction. If no traders are able to accept, the quote is regarded as “ignored”. 

Once the trade is either accepted or ignored, the traders update their µ(t) values using the 

learning algorithm outlined above, and the current time-slice ends. This process repeats 

for each time-slice in a trading period, with occasional injections of fresh currency and 

stock, or redistribution of λi limit prices, until either a maximum number of time-slices 

have run, or a maximum number of sequential quotes have been ignored. 
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2.2. A Space of Possible Auctions 

Now consider the case where we implement a ZIP-trader continuous double auction 

(CDA) market. In any one time-slice in a CDA either a buyer or a seller may quote, and 

in the definition of a CDA a quote is equally likely from each side.  One way of 

implementing a CDA is, at the start of each time-slice, to generate a random binary 

variable to determine whether the next quote will come from a buyer or a seller, and then 

to randomly choose one individual as the quoter from whichever side the binary value 

points to. Here, as in previous ZIP work [3,4,5,6,7,8,9] the random binary variable is 

always independently and identically distributed over all time-slices. 

  

So, let Q=b denote the event that a buyer quotes on any one time-slice and let Q=s 

denote the event that a seller quotes, then for the CDA we can write Pr(Q=s)=0.5 and 

note that because Pr(Q=b)=1.0-Pr(Q=s) it is only necessary to specify Pr(Q=s), which 

we will abbreviate to Qs hereafter. Note additionally that in an English Auction (EA) we 

have Qs=0.0, and in the Dutch Flower Auction (DFA) we have Qs=1.0. Thus, there are at 

least three values of Qs (0.0, 0.5, and 1.0) that correspond to three types of auction 

familiar from centuries of human economic affairs. Although the ZIP-trader case of 

Qs=0.5 is indeed a good approximation to the CDA, the fact that any ZIP trader j will 

accept a quote whenever q(t) and pj(t) cross means that the one-sided extreme cases 

Qs=0.0 and Qs=1.0 are not exact analogues of the EA and DFA.  

 

The inventive step introduced in [6] was to consider the Qs values of 0.0, 0.5, and 1.0 not 

as three distinct market mechanisms, but rather as the two endpoints and the midpoint on 

a continuum of mechanisms. For values other than these, there is a straightforward 
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implementation. For example, Qs=0.1 can be interpreted as specifying an auction 

mechanism where, on the average, for every nine quotes by buyers, there will be one 

quote from a seller. Yet the history of human economic affairs offers no examples of such 

markets: why would anyone suggest such a bizarre way of operating? And who would go 

to the trouble of setting themselves up to act as an auctioneer for such a mechanism? 

Certainly, it is perfectly possible for a human auctioneer to run an auction using a value 

of Qs other than 0.0, 0.5, or 1.0. For any given value of Qs, all that the auctioneer needs is 

an unbiased roulette-wheel partitioned into two segments: one marked “Seller” and 

measuring Qs*360 degrees of arc; the other marked “Buyer” and measuring (1.0-Qs)*360 

degrees of arc. To determine the source of each successive new quote in the auction, the 

auctioneer would spin the wheel and then, depending on whether the ball ends up in the 

“Seller” or the “Buyer” segment, would take the next quote either from a seller or a 

buyer. Clearly, an online version of such an auction mechanism can be implemented in 

only a few lines of code, so long as an appropriate method for generating random 

numbers is available. But (to the best of my knowledge) neither the manual roulette-

wheel version nor the online implementation of such auction mechanisms have ever been 

implemented before for any value of Qs other than 0.0, 0.5, or 1.0.     

 

Nevertheless, there is no a priori reason to argue that these three previously-known 

points on this Qs continuum are the only loci of useful auction types. Maybe there are 

circumstances in which values such as Qs=0.25 (say) are preferred. Given the infinite 

nature of this real continuum it seems appealing to use an automatic exploration process, 

such as the GA, to identify useful values of Qs.   
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Thus, in [6] a ninth dimension was added to the search space, and the genotype in the GA 

became the eight real values for ZIP-trader initialization, plus a real value for Qs.  No 

“NYSE” quote-improvement rule [3] was used in the experiments reported in this paper.  

 

2.3. The Genetic Algorithm 

The simple GA used in [5] is also used here, with one difference. In [5] a population of 

size 30, evolving for 1000 generations, was used. Each experiment was repeated 50 

times, and it was found that several of the experiments yielded multi-modal results. 

However, in all the experiments reported on in that paper, the qualitative nature of the 

outcome of the experiment was very clear by generation 500: all runs settled to a 

particular mode by generation 300, and the improvement in performance (i.e., fitness) 

between generation 500 and generation 1000 was always very small. Thus the 

experiments reported here were ended after 500 generations. All other GA control 

parameters are unchanged. For an introduction to GAs, see [14] or [15]. 

 

In each generation, all individuals were evaluated and assigned a fitness value; and the 

next generation’s population was then generated via mutation and crossover on parents 

identified using rank-based tournament selection. Elitism (where, on each generation, an 

unadulterated version of the fittest individual from the evaluated population is copied into 

the new successor population) was also used.   

 

The genome of each individual was simply a vector of nine real values. In each 

experiment, the initial random population was created by generating random values from 

U[0,1] for each locus on each individual’s genotype. Crossover points were between the 
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real values, and crossover was governed by a Poisson random process with an average of 

between one and two crosses per reproduction event. Mutation was implemented by 

adding random values from U[-m(g),+m(g)] where m(g) is the mutation limit at 

generation g (starting the count at g=0). Mutation was applied to each locus in each 

genotype on each individual generated from a reproduction event, but the mutation limit 

m(g) was gradually reduced via an exponential-decay annealing function of the form: 

log10(m(g))=log10(ms)-((g/(ng-1)).log10(ms/me)) where ng is the number of generations 

(here ng=1000 for consistency with [6], despite the fact that all experiments are now 

terminated after 500 generations) and ms is the “start” mutation limit (i.e., for m(0)) and 

me is the “end” mutation limit (i.e., for m(ng-1)). In all the experiments reported here, as 

in [6], ms=0.05 and me=0.0005.    

   

If ever mutation caused the value at a locus to fall outside the range [0.0,1.0] it was 

simply clipped to stay within that range. This clip-to-fit approach to dealing with out-of-

range mutations has been shown [1] to bias evolution toward extreme values (i.e. the 

upper and lower bounds of the clipping), and so Qs values of 0.0 or 1.0 are, if anything, 

more likely than values within those bounds. Moreover, initial and mutated genome 

values of µ∆, β∆, and γ∆ were clipped where necessary to satisfy the constraints 

(µmin+µ∆)<=1.0, (βmin+β∆)<=1.0, and (γmin+γ∆)<=1.0. 

 

The fitness of genotypes was evaluated using the methods described in [4,5,6]. One trial 

of a particular genome was performed by initializing a ZIP-trader market from the 

genome, and then allowing the ZIP traders to operate within the market for a fixed 

number of trading periods, with allocations of stock and currency being replenished 
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between each trading period. During each trading period, Smith’s [22] α measure (root 

mean square deviation of transaction prices from the theoretical market equilibrium 

price) was monitored, and a weighted average of α was calculated across the trading 

periods in the trial, using the method described in Section 2.5 below. As the outcome of 

any one such trial is influenced by stochasticity in the system, the final fitness value for 

an individual was calculated as the arithmetic mean of 100 such trials. Note that as 

minimal deviation of transaction prices from the theoretical equilibrium price is desirable, 

lower scores are better: we aim to minimize fitness scores.  

 

2.4. Previous Results 

Results from nine investigative sets of experiments have been presented in our prior 

publications. Those results are included for completeness in the tables presented in 

Section 3, where results from an additional 23 new experiments are published for the first 

time. All the experiments whose results are tabulated in Section 3 involve evaluating the 

performance of the evolving auction-market mechanisms on one or more of four market 

supply and demand schedules. These four schedules are referred to as markets M1, M2, 

M3, and M4, and are illustrated in Figure 1. 

  

*** FIGURE 1 NEAR HERE *** 

 

In all four schedules there are 11 buyers and 11 sellers, each empowered to buy/sell one 

unit of commodity: these relatively small numbers are the cause of the stepped supply 

and demand curves. Market M1 is taken from [22]. The remaining three markets are 

minor variations on M1. In M2 the slope of the demand curve has been greatly reduced 
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while the slope of the supply curve has been increased only slightly; and in M4 the slope 

of the supply curve has been greatly reduced while the slope of the demand curve has 

been increased only slightly. In M3 the slopes of both the supply and demand curves are 

only slightly steeper than the slopes in M1. Despite the apparent similarity between M1 

and M3, a detailed empirical study presented in [8] demonstrated that these minor 

differences between the supply and demand curves in M1 and M3 can lead to significant 

differences in the final best evolved solutions.  

 

In the so-called “single-schedule” experiments, only one of the market schedules was 

used throughout the evolutionary process. Results from the four single-schedule 

experiments are summarized in Table 1 in Section 3. The key qualitative issue is that in 

all four experiments, the best evolved mechanisms all differed from the CDA, and in two 

cases the best evolved mechanism was not even a one-sided auction like the EA or DFA 

mechanisms; rather, the best evolved auction-mechanism was a peculiar hybrid, partway 

between the CDA and a pure one-sided auction.   

 

However, because for each trial in all four of these experiments a single fixed market 

schedule was used in evaluating the evolving solutions, there is a manifest possibility that 

the GA tailored the final evolved solutions to peculiarities of the specific market supply 

and demand schedules employed – i.e., that it “over-fitted”. To test this hypothesis, a new 

suite of experiments was run, where “shock changes” were inflicted on the market by 

swapping from one schedule to another partway through the evaluation process. The 

results from 19 of these experiments are presented in Section 3. Initially, dual-schedule 

experiments were run, where the supply and demand schedules were suddenly changed 
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halfway through the evaluation process. Some early results from these experiments were 

presented in [7]: these showed that when M1 was used for the first half of the evaluation, 

followed by M2 for the second half (which we refer to here as M1-2), the results evolved 

by the GA were order-dependent. That is, when the order of the schedules was reversed, 

so that in the evaluation process M2 was followed by M1 (which we refer to here as M2-

1), the results differed from the M1-2 case. Furthermore, for both M1-2 and M2-1, the 

optimal evolved values of Qs differed from the values that were found to be optimal when 

evaluation involved either M1 or M2 alone. The M1-2 results are presented in detail in 

the next section, as illustration of the process used to compare the results from evolving-

mechanism (EM) experiments with the results from fixed-mechanism (FM) experiments. 

In all the FM experiments, the value of Qs is not evolved, but the remaining eight ZIP-

trader parameter-values on the genotype are still optimised by the GA. The M2-1 results 

are presented in summary form in Table 2 (Section 3), along with results from new dual-

schedule experiments, presented for the first time in this paper.   

 

The order-dependence shown by the M1-2 and M2-1 results could again potentially be a 

consequence of the GA over-fitting: a “dual schedule” experiment could also reasonably 

be described as a “single-shock” experiment; and perhaps the GA evolved solutions that 

were over-fitted to each particular shock. For instance, in the M1-2 case the GA might be 

over-fitting the evolved parameter-values and market-mechanism to the specific market-

shock of suddenly transitioning from M1 to M2. To explore this possibility, additional 

sets of experiments were run where two shocks occurred during each evaluation process 

(i.e., switching between three schedules). Results from four such sets of triple-schedule 

experiments were presented in [9], all involving schedules M1, M2, and M3. In one 
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experiment, referred to here as M1-2-1, the evaluation involved six trading periods with 

supply and demand determined by M1, then a sudden change to M2, then six periods 

later a reversion to M1 for a final six periods. The other sets of experiments are referred 

to here as M2-1-2, M1-2-3, and M3-2-1 (and so on), the meaning of which should be 

obvious. The results from these four sets of experiments are presented in summary form 

in Table 3 (Section 3) along with results from an additional 14 new sets of experiments.       

For ease of comparison with the single-schedule results presented in [6], a six-period 

duration was used for each market schedule, meaning that a dual-schedule trial lasts for 

12 periods: 6 periods with the ZIP trading agents adapting to trade under the first 

schedule, then at the end of the 6th period a sudden “shock change” of the market supply 

and demand to the second schedule (without altering any of the traders’ parameters or 

variable values), followed by 6 periods of the traders adapting to trade and under that new 

schedule. Similarly, the triple-schedule experiments each lasted for 18 trading periods.  

 

In [6], the evaluation function was a weighted average of Smith’s α measure: in each 

trading period p the value αp was calculated, and the fitness score was computed as 

(1/Σwp).Σ(αp.wp) for p=1…6 with weights w1=1.75, w2=1.5, w3=1.25, and w p>3=1.0. In 

the dual-schedule experiments reported here, this was extended so that p=1…12 and 

wp>6=wp-6.  Similarly, in the triple-schedule experiments, p=1…18 and wp>12=wp-12. 

 

3. Results 

Results from 32 sets of experiments are presented here: one set for each sequence of 

schedules explored. Each set involves 100 individual experiments: 50 repetitions of the 

GA experiment for the evolving-mechanism (EM) case where the value of Qs is under 
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evolutionary control, and (for comparison) a further 50 repetitions for the same sequence 

in the fixed-mechanism (FM) case, where Qs is fixed at the CDA value of 0.5. Of the 32 

sets, 4 are single-schedule, 10 are dual-schedule and the remaining 18 are triple-schedule. 

 

Section 3.1 gives a detailed presentation of results from the M1-2 case, for illustration of 

the process used to compare the EM and FM cases. Section 3.2 then presents tables 

summarizing the results from all the experiments performed so far. 

 

3.1 Detailed Dual-Schedule Results: M1-2 

Figure 2a shows the fitness of all 30 genotypes in the population at each generation from 

1 to 500 in a single run of the M1-2 evolving-market (EM) experiment. In each 

generation the elite (best-scoring) individual is of most interest, and Figure 2b shows the 

trajectory of the elite fitness score for the population shown in Figure 2a. The results 

shown in Figure 2 are non-deterministic: different runs of the GA (with different seed 

values for its random number generator) will yield different elite trajectories.  

 

*** FIGURE 2 NEAR HERE **** 

 

Examining the results from 50 repetitions of this experiment (with a different random 

seed used in each experiment), the results are clearly bimodal. Of the 50 repetitions, in 36 

the elite ends up on fitness minima of about 3.85, while the other two elite fitness mode 

involves less-good minima around 4.2 to 4.3.  Figure 3 shows the evolutionary trajectory 

of the mean and standard deviation (s.d.) of the Qs values on the genomes of the 36 

members of the best elite mode. Clearly, the elite mode uses a hybrid auction mechanism 

partway between the one-sided Qs=0.0 market and the Qs=0.5 CDA. 
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*** FIGURE 3 NEAR HERE **** 

 

For comparison, similar trajectories of fitness values were recorded from 50 repetitions of 

the M1-2 experiment in fixed-market (FM) conditions (i.e., where the value of Qs was not 

evolved) for Qs=0.0, Qs=0.5, and Qs=1.0 respectively. Using Qs=0.0 is plausible because 

in [6] separate experiments evolving on M1 and on M2 alone both converged on optima 

at Qs=0.0. Moreover, using Qs=0.5 gives a CDA, which is often celebrated as an auction 

mechanism in which transaction-price equilibration is rapid and stable, so we could 

plausibly expect the best fitness from using that market type. Fixed-market Qs=1.0 results 

were generated as this is analogous to the human-designed DFA mechanism. 

 

With Qs fixed at zero, the mean best-mode elite score is around 4.1; and with Qs=1.0 the 

results are worse, by a factor of more than two [7]. With the fixed CDA Qs=0.5 

mechanism, an average elite fitness of around 4.05 is settled on by almost all 

experiments. To ease the comparison between the EM and FM-CDA results, Figure 4 

shows the mean and standard deviation of the best-mode elite scores on the same graph. 

The EM results are clearly lower (and hence better) than those for the FM CDA. 

 

*** FIGURE 4 NEAR HERE **** 

 

As our fitness values are effectively measures of market efficiency, from Figure 4 it 

appears that using Qs values of around 0.23 give more efficient markets than using the 

previously “known” Qs values such as 0.0, 0.5, or 1.0 for the M1-2 schedule sequence. 
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Noting that the evolved value of Qs=~0.23 is close to ¼, we can informally claim that a  

close approximation of this evolved auction mechanism could easily be implemented in 

an electronic marketplace by allowing, on the average, roughly one quote in four to come 

from a seller while the remaining three quotes in four come from buyers.  

 

3.2 Summary Statistics 

Having discussed the M1-2 results in detail, the tables in this section show summary data 

for a further 31 sets of experiments (each set consisting of 50 EM experiments and 50 FM 

experiments). As was stated earlier, results for M1, M2, and M3 were presented in [6]; 

Table 1 summarizes those results and presents new results from M4. The column labeling 

for all tables in this paper is as follows. The left-most column indicates the market 

schedules for each row of data. The column labelled “EM:µ” is the mean fitness at 

generation 500 in the best elite mode from the 50 repetitions of the EM (evolving-market) 

experiment, and the column labelled “EM:σ” is the standard deviation for that mean. The 

column labelled “EM:n” shows the number of repetitions of the EM experiment that 

settled on the best elite fitness mode. The columns marked “FM:µ”, “FM:σ”, and “FM:n” 

show the mean fitness, standard deviation of the mean fitness, and number of repetitions 

(from a total of 50) for the best elite fitness mode at generation 500 in the FM (fixed-

market) experiments for each schedule. The column labelled “1%?” shows whether the 

Wilcoxon-Mann-Whitney test [21] indicates a statistically significant difference at the 

1% confidence level between the EM and FM data. Finally, the columns labelled “Qs:µ” 

and “Qs:σ” respectively show the mean Qs value at generation 500, and the standard 

deviation on that mean, for the best elite mode from the EM experiments. Rows typeset 
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in italics are those for which there is a statistically significant difference at the 1% level 

between the EM and FM best elite mode data. 

 

Results for M1-2 and M2-1 were previously presented in [7]; Table 2 summarizes those 

results and presents new results from an additional 8 single-shock experiments. Results 

for M1-2-1, M2-1-2, M3-2-1 and M1-2-3 were first presented in [9]; results from an 

additional 14 sets of dual-shock experiments are presented for the first time here in 

Tables 3 to 6.  

 

*** TABLE 1 NEAR HERE *** 

 

*** TABLE 2 NEAR HERE *** 

 

Tables 3 to 6 all involve dual-shock (triple-schedule) evaluations, but they are grouped by 

the nature of the shocks. Table 3 shows results from experiments where only the demand 

curve undergoes a major change on each shock. Table 5 shows results from experiments 

where only the supply curve undergoes a major change on each shock. In Table 4, one of 

the two shocks involves a major change only to the demand curve while the other shock 

involves a major change only to the supply curve; and in Table 6 each shock involves a 

major change to both the supply curve and the demand curve.  

 

*** TABLE 3 NEAR HERE *** 

 

*** TABLE 4 NEAR HERE *** 

 

*** TABLE 5 NEAR HERE *** 
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*** TABLE 6 NEAR HERE *** 

  

Comparing the data in Tables 1 to 6, three points stand out. First, it is noticeable that in 

some cases, the elite evolved value of Qs may differ quite markedly from the CDA value 

of 0.5, without there being a statistically significant effect on the market dynamics (i.e. on 

the fitness scores) in comparison to the FM Qs=0.5 case. For example, in both M2-1 and 

in M2-3-2 the EM Qs values have a mean that is over two standard deviations away from 

the CDA value of 0.5, which on face value could lead one to expect that the mean EM 

and FM fitness scores would be significantly different; yet they are not.  This is a 

consequence of the optimum Qs value lying on a shallow plateau-like surface in the 

fitness landscape, such that apparently quite different values of Qs yield very similar 

fitness values: a point explored and illustrated in detail in [8]. 

  

The second notable point it that the no-shock and single-shock data are not obviously 

useful in predicting the results of the dual-shock experiments, despite the fact that each of 

the dual-shock sequences explored in Tables 3 to 6 can be considered as the 

concatenation of two of the single-shock sequences explored in Table 2. For instance, 

both M1-2-1 and M2-1-2 involve an M1-2 and an M2-1 transition. In isolation, the mean 

best-mode Qs for M1-2 is 0.226 and for M2-1 is 0.456; yet for M1-2-1 the mean best-

mode Qs is 0.509 and for M2-1-2 it is 0.497.  

 

Finally, it is clear that in the single-schedule (no-shock) experiments of Table 1, 100% of 

the optimum Qs values are non-CDA; while in the dual-schedule (single-shock) 

experiments of Table 2, 70% are non-CDA; and in the triple-schedule (dual-shock) 
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experiments of Tables 3 to 6, the proportion of non-CDA optima drops again to 56%. 

Thus, these new data add further weight to the conjecture (first made in [9]) that the more 

changes to the market supply and demand schedules during evaluation of a genotype, the 

more likely it is that the CDA Qs=0.5 value is the optimal mechanism. That is, in the limit 

when nothing is predictable in advance about the market supply and demand curves, the 

CDA is likely to be the optimal mechanism. A corollary to this is that if there is some 

regularity in the market supply and demand, then a hybrid auction mechanism might 

exhibit better dynamics than a CDA.   

 

4. Discussion 

This paper extends the line of research first reported on in [6]. It again demonstrates the 

use of an evolutionary search through an infinite space of possible market designs that 

includes the CDA of Qs=0.5 and also the two pure one-sided solutions of Qs=0.0 and 

Qs=1.0. Again, in the majority of our experiments, new “hybrid” market mechanisms 

were found to give better market dynamics than the previously-known auction styles. To 

reiterate: while such evolved market mechanisms are unlike any human-designed 

mechanism, they could nevertheless readily be implemented as online electronic 

marketplaces.  

 

Thus, one contribution of this paper is the confirmation that the evolution of one-sided 

Qs=~0.0 results for M1 and M2 in [6] were consequences of (unrealistically) using 

unchanging supply and demand curves for the duration of each experiment. The results 

presented here show that, for dealing with shock changes in the M1-2, M2-1, M1-2-1, 

and M2-1-2 cases, Qs=~0.0 is not the best value, even though it was the optimum for M1 
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and M2 individually. A second contribution is the confirmation that the optimum Qs 

value is order-dependent in both the dual-schedule and the triple-schedule experiments: 

e.g. that the evolved value of Qs for M1-2 is different to that for M2-1, and different 

again for M1-2-1 and M2-1-2. A third contribution is the hypothesis suggested by these 

data, i.e. that the CDA may be best when nothing can be predicted about the nature of the 

supply and demand curves, but that hybrid two-sided non-CDA mechanisms may be 

optimal when some regularity can be observed in the supply and demand schedules.  

 

5. Related Work 

The field of automated design of online auction markets by genetic algorithm is very 

new. To the best of my knowledge, it appears that the first paper in this field was the 

initial publication on evolving Qs for ZIP-trader marketplaces [6]. The key results in that 

paper have since been replicated by Robinson [18] and by Qin [19]. In particular, Qin 

used a different genetic encoding that allowed true versions of the one-sided English and 

Dutch-Flower auctions to be evolved, but hybrid auction mechanisms were still settled on 

by the GA. Qualitatively similar results have also since been demonstrated in e-

marketplaces populated by non-ZIP software-agent traders [10]. Results from a similar 

research project, using another evolutionary algorithm (i.e., genetic programming) for 

mechanism design in a different context, have subsequently been published [17]. Most 

recently, Byde [2] has published results from using a genetic algorithm to develop new 

forms of sealed-bid auction mechanism, independent of the intelligence (or lack of 

intelligence) of the traders taking part in those auctions. Significantly, Byde demonstrates 

that hybrid auction mechanisms (similar in spirit to the hybrid “non-standard” Qs values 

evolved here) are found by the GA to be optimal for a number of realistic scenarios.  
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6. Conclusions 

It is widely acknowledged within artificial evolution research that blind evolutionary 

search processes such as that implemented by the GA used here will frequently improve 

fitness via ruthless exploitation of any regularity in the task environment. We have seen 

that, although in the minority of the experiments reported here no such regularity was 

identified for exploitation, in the majority of our experiments there was an underlying 

regularity that allowed an evolved hybrid market mechanism to be more efficient. Thus, 

the major contribution of this paper is to demonstrate that, even when there are shock 

changes in supply and demand, there may be sufficient regularity in some market 

situations such that non-CDA hybrid two-sided auctions are more efficient than any 

human-designed market mechanism. Given these results, coupled with the results of Das 

et al. [11] who demonstrated that ZIP artificial trading agents reliably outperform human 

traders in experimental CDA settings, it seems plausible to conjecture that, in future, 

some or possibly all major financial markets will be implemented as e-marketplaces 

populated by autonomous software-agent traders. In such an agent-dominated future, 

market mechanisms originally designed for human traders may not be the most efficient; 

and the results of this paper demonstrate that new hybrid mechanisms can be evolved that 

are more efficient than traditional human-designed markets. 

 

Even if such hybrids are only a few percentage points more efficient than conventional 

human-designed mechanisms, it seems perfectly plausible that the results of using these 

artificially-evolved auction-mechanism designs in major financial markets (populated by 

artificial trading agents) will be savings or profits measured in billions of dollars.  
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Figure 1: Supply and demand schedules for markets M1 (top left), M2 (top right), M3 

(bottom left) and M4 (bottom right). In all three figures, the horizontal axis is quantity 

(from 0 to 12) and the vertical axis is price (from 0.00 to 4.00). The upward-sloping 

supply curve is shown by the solid line, and the downward-sloping demand curve is 

shown by the broken line.   
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Figure 2a (upper graph): fitness scores of all 30 members of the population for each 

generation. Horizontal axis is generation number (0 to 500); vertical axis is fitness score 

(0 to 20). Figure 2b (lower graph): Fitness score of the elite individual (i.e., the best 

genotype, with the lowest score) in each generation for the experiment shown in Figure 2a. 

Horizontal axis is generation number (0 to 500); vertical axis is fitness score (3.5 to 5.0).
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Figure 3: Evolutionary trajectory of mean (plus and minus one s.d.; n=36) value of Qs in 

the best elite mode of the 50 experiments shown in Figure 3. Mean Qs settles to ~0.23

 

Figure 4:  Average elite fitnesses from 50 EM and 50 FM(Qs=0.5) M1-2 experiments; 

data is plotted for mean fitness, plus and minus one s.d.: best EM fitness mode settles to a 

mean of approx 3.85 with a s.d. of approx 0.06 (n=36); FM values settle to a mean of 

around 4.05 with a s.d. of approx. 0.1 (n=49). 
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Schedule EM:µ EM:σ EM:n FM:µ FM:σ FM:n 1%? Qs:µ Qs:σ 

M1 3.22 0.024 5 4.45 0.155 48 Y 0.000 0.0002

M2 2.16 0.103 45 3.13 0.141 50 Y 0.069 0.0426

M3 5.19 0.127 50 5.52 0.168 50 Y 0.158 0.0312

M4 0.60 0.045 50 0.72 0.045 50 Y 0.686 0.0433

 

Table 1: Summary of results from dual-schedule (single-shock) experiments. The column 

labelling is explained in the text.   

 

Schedule EM:µ EM:σ EM:n FM:µ FM:σ FM:n 1%? Qs:µ Qs:σ 

M1-2 3.85 0.058 36 4.04 0.078 49 Y 0.226 0.0309

M2-1 4.18 0.102 46 4.18 0.092 50 N 0.456 0.0312

M2-3 3.94 0.138 49 3.98 0.128 48 N 0.561 0.0264

M3-2 3.05 0.056 49 3.46 0.082 50 Y 0.137 0.0254

M1-4 2.78 0.061 36 3.08 0.069 50 Y 0.211 0.0263

M4-1 2.79 0.094 50 2.97 0.093 50 Y 0.380 0.0237

M4-3 3.01 0.131 50 3.25 0.118 50 Y 0.364 0.0184

M3-4 3.17 0.078 50 3.47 0.083 50 Y 0.212 0.0294

M2-4 3.57 0.128 49 3.59 0.117 49 N 0.405 0.0394

M4-2 2.69 0.079 50 2.76 0.075 50 Y 0.276 0.0754

 

Table 2: Summary of results from dual-schedule (single-shock) experiments. The column 

labelling and formatting is the same as for Table 1.   
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Schedule EM:µ EM:σ EM:n FM:µ FM:σ FM:n 1%? Qs:µ Qs:σ 

M1-2-1 4.35 0.084 46 4.32 0.076 49 N 0.509 0.0231 

M2-1-2 3.92 0.073 50 3.91 0.076 49 N 0.497 0.0263 

M2-3-2 2.99 0.075 49 3.00 0.097 49 N 0.584 0.0266 

M3-2-3 3.87 0.070 50 3.86 0.087 50 N 0.528 0.0200 

M1-2-3 4.24 0.066 50 4.28 0.076 50 Y 0.564 0.0238 

M3-2-1 3.98 0.050 50 3.98 0.067 50 N 0.473 0.0218 

 

Table 3: Summary of results from dual-shock experiments where each shock involves a 

major change only to the demand curve. The column labelling and formatting is the same 

as for Table 1.  

 

Schedule EM:µ EM:σ EM:n FM:µ FM:σ FM:n 1%? Qs:µ Qs:σ 

M1-4-1 3.25 0.083 40 3.75 0.083 50 Y 0.187 0.0225 

M4-1-4 2.30 0.077 50 2.49 0.052 50 Y 0.368 0.0205 

M4-3-4 2.83 0.056 50 2.85 0.057 50 N 0.448 0.0181 

M3-4-3 3.52 0.083 50 4.21 0.083 50 Y 0.146 0.0213 

M1-4-3 3.25 0.101 39 3.90 0.084 50 Y 0.165 0.0199 

M3-4-1 3.56 0.082 49 4.07 0.086 50 Y 0.173 0.0230 

 

Table 4: Summary of results from dual-shock experiments where each shock involves a 

major change only to the supply curve. The column labelling and formatting is the same 

as for Table 1.  
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Schedule EM:µ EM:σ EM:n FM:µ FM:σ FM:n 1%? Qs:µ Qs:σ 

M4-3-2 2.25 0.096 50 2.53 0.091 50 Y 0.348 0.0226 

M2-3-4 3.00 0.087 49 3.09 0.098 50 Y 0.575 0.0238 

M4-1-2 2.97 0.078 50 3.11 0.067 50 Y 0.379 0.0188 

M2-1-4 3.29 0.082 48 3.31 0.074 50 N 0.492 0.0300 

 

Table 5: Summary of results from dual-shock experiments where one shock involves a 

major change only to the demand curve and the other involves a major change only to the 

supply curve. The column labelling and formatting is the same as for Table 1.  

 

Schedule EM:µ EM:σ EM:n FM:µ FM:σ FM:n 1%? Qs:µ Qs:σ 

M2-4-2 3.83 0.088 50 3.95 0.096 50 Y 0.332 0.0276 

M4-2-4 3.14 0.068 50 3.14 0.084 50 N 0.496 0.0271 

 

Table 6: Summary of results from dual-shock experiments where each shock involves 

major changes to both the supply curve and the demand curve. The column labelling and 

formatting is the same as for Table 1.  
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