

Structured Scalable Meta-formats (SSM)
Version 2.0 for Content Agnostic Digital
Item Adaptation − Principles and Complete
Syntax

Debargha Mukherjee, Geraldine Kuo, Amir Said
Imaging Systems Laboratory
HP Laboratories Palo Alto
HPL-2003-71
April 7th , 2003*

E-mail: {debargha, gkuo, said} @hpl.hp.com

scalable bit-
stream,
format-agnostic,
content-agnostic,
adaptation engine

This paper develops an end-to-end methodology for representation and
adaptation of arbitrary scalable content in a fully content non-specific
manner. Scalable bit-streams are naturally organized in a symmetric
multi-dimensional logical structure, and any adaptation is essentially a
downward manipulation of the structure. Higher logical constructs are
defined on top of this multi-tier structure to make the model more
generally applicable to a variety of bit-streams involving rich media. The
resultant composite model is referred to as the Structured Scalable Meta-
format (SSM). Apart from the implicit bit-stream constraints that must be
satisfied to make a scalable bit-stream SSM-compliant, two other
elements that need to be standardized to build a complete adaptation and
delivery infrastructure based on SSM are: (1) a binary or XML description
of the structure of the bit-stream resource and how it is to be manipulated
to obtain various adapted versions; and (2) a XML specification of
outbound constraints derived from capabilities and preferences of
receiving terminals. By interpreting the descriptor and the constraints a
universal adaptation engine can adapt the content appropriately to suit the
specified needs and preferences of recipients, without knowledge of the
specifics of the content, its encoding and/or encryption. With universal
adaptation engines, different adaptation infrastructures are no longer
needed for different types of scalable media.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2003

3

Table of Contents

Abstract.. 5
1. Introduction... 5

1.1 Multiple versions... 5
1.2 Scalable Bit-streams.. 6
1.3 Scalable Content Adaptation and Delivery Infrastructures................................. 7
1.4 Need for Media-type agnostic Adaptation Infrastructures.................................. 7
1.5 Security.. 8
1.6 Motivation for this work ... 8

2. Digital Item Adaptation with SSM..................... 9
2.1 SSM based Delivery Model .. 9
2.2 Isolated Transcoder Model.. 10
2.3 Relation to Network Packetization.. 11

3. Modeling scalable bit-streams....................... 12
3.1 Symmetric Nested Scalability Structure ... 12
3.2 Notation and Data cube representation ... 13
3.3 Models and Adaptation ... 14
3.4 Causality Requirement .. 17
3.5 Parcels and components .. 17
3.6 Bit-stream layout ... 18

4. Adaptation variables................................ 18
4.1 General .. 18
4.2 Feature variables ... 19

4.2.1 Definition .. 19
4.2.2 Identification ... 20
4.2.3 Values and Distribution... 20

4.3 Component variables... 22
4.3.1 Definition .. 22
4.3.2 Indicators and Values .. 22

4.4 Combination variables... 23
4.4.1 Definition .. 23
4.4.2 Identification ... 23
4.4.3 Expression specification and evaluation ... 23

4.5 Look up table variables ... 24
4.6 Reserved adaptation variables... 25

5. The XML contents.................................... 26
5.1 Resource Description XML .. 26

5.1.1 Scalability structure... 26
5.1.2 Limit constraints from content creator .. 26
5.1.3 Resource edit information ... 26
5.1.4 Codec offset information... 27
5.1.5 Sequence data information .. 28

5.2 Outbound constraints XML and decision making .. 29
5.2.1 Parcel mapping for multiple recipient profiles.. 29
5.2.2 Adaptation constraints... 31

4

5.2.3 Adapatation decisions made on constraints .. 31
5.2.4 Unstructured and SSM type requests .. 32

6. Mid-stream Adaptation for multiple recipient profiles
 33
7. Schemas and semantics (Version 2.0)................. 34

7.1 Common XML Schema .. 34
7.2 Resource description XML Schema.. 44
7.3 Outbound constraints XML schema.. 72

8. Conclusion.. 77
9. References.. 78
Appendix A. Complete XML Schemas 81

A.1. Common XML Schema - SSMCommon.xsd.. 81
A.2. Resource Description XML Schema - SSMDescription.xsd 84
A.3. Outbound Constraints XML Schema - SSMAdaptReq.xsd.............................. 90

Appendix B. Sample XML files 91
B.1. Resource Description XML - SSMDescription_ex.xml 92
B.2. Outbound Constraints XML - SSMAdaptReq_ex.xml 99
B.3. Adapted Resource Description XML – SSMDescription_ex2.xml 100

5

Abstract
This paper develops an end-to-end methodology for representation and adaptation of

arbitrary scalable content in a fully content non-specific manner. Scalable bit-streams
are naturally organized in a symmetric multi-dimensional logical structure, and any
adaptation is essentially a downward manipulation of the structure. Higher logical
constructs are defined on top of this multi-tier structure to make the model more
generally applicable to a variety of bit-streams involving rich media. The resultant
composite model is referred to as the Structured Scalable Meta-format (SSM). Apart from
the implicit bit-stream constraints that must be satisfied to make a scalable bit-stream
SSM-compliant, two other elements that need to be standardized to build a complete
adaptation and delivery infrastructure based on SSM are: (1) a binary or XML
description of the structure of the bit-stream resource and how it is to be manipulated to
obtain various adapted versions; and (2) a XML specification of outbound constraints
derived from capabilities and preferences of receiving terminals. By interpreting the
descriptor and the constraints a universal adaptation engine can adapt the content
appropriately to suit the specified needs and preferences of recipients, without knowledge
of the specifics of the content, its encoding and/or encryption. With universal adaptation
engines, different adaptation infrastructures are no longer needed for different types of
scalable media.

1. Introduction
Users access the Internet today using devices ranging from puny handhelds to

powerful workstations, over connections ranging from 56 Kbps modems to high speed
100 Mb/s Ethernet. Even though the available bandwidth, display and processing
capabilities may continue to grow following Moore’s law, the heterogeneity and the
diversity of capabilities at any point in time is here to stay. On the other hand, as
bandwidth and other factors grow, so will the richness of media that would need to be
delivered to users. Under these circumstances, a rigid media representation format,
producing content only at a fixed resolution and quality is clearly inappropriate. A
delivery system based on such a compression scheme can only deliver content
satisfactorily to a small subset of users interested in the content. The rest, either does not
receive anything at all, or receives poor quality and/or resolution relative to the
capabilities of their network connections and /or accessing devices. The inability to cater
to this diversity has been a determining factor that stunted growth of new rich media,
because static rich content would cater only to power users comprising a small fraction of
the whole. The bottom line is, without adequate focus on seamless content adaptation,
accessibility and usability of media content will always remain limited.

1.1 Multiple versions
A practical approach to catering to heterogeneity is one where multiple versions of

any piece of media, suiting a variety of capabilities and preferences, are maintained
simultaneously. While this approach works well with delivery models where the recipient
directly connects to a media originator, for any other multi-hop, multi-recipient delivery
scenario, there is inevitable redundancy leading to wastage of bandwidth and storage.
This is especially so, when the media creator intends to provide a wide range of choices

6

for adaptation catering to a large consumer base, and therefore needs to maintain a large
number of versions differing in a variety of ways. In other words, this approach does not
scale well with the amount of flexibility a media creator would like to provide.

Note however, that since the multi-version case is a fully redundant special case of
true scalability to be described next, the framework proposed here still applies. This is
also true for hybrid bit-streams that combine multiple versions with true scalability. In all
cases, we still need protocols to describe content adaptation choices and request
adaptations in a flexible way that from the receiving terminal.

1.2 Scalable Bit-streams
In order to provide a solution more elegant than maintaining multiple versions to

cater to diversity, scalable compression formats have been proposed. In a scalable bit-
stream, smaller subsets of the whole produce representations at lower resolution, quality,
etc. Different subset bit-streams extracted from the full parent bit-stream, can readily
accommodate a variety of users by automatically maximizing multimedia experience for
a given user’s computing power, connection bandwidth, and so on. By adapting rich
media content written for high-end machines to less powerful machines in various ways,
the overheads involved in producing different versions for different scenarios can be
virtually eliminated. Furthermore, content created today at the highest possible quality,
remains ‘timeless’ when represented in a scalable format, and the experience it provides
gradually increases, as the power of machines, connection speeds, etc. improve.

There are various types of bit-stream scalability that can be designed, depending on
the type of media. For example, SNR (quality) scalability refers to progressively
increasing quality as more and more of the bit-stream is included, and applies to most
types of media. Resolution scalability refers to fineness of spatial data sampling, and
applies to visual media such as images, video, 3D etc. Temporal scalability refers to
fineness of sampling in the time-domain, and applies to video and other image sequences.
There are several types of scalability pertaining to audio, such as number of channels,
width of the frequency band. In the future, with the evolution of newer, richer and more
interactive types of media, there will be newer types of scalability, for e.g. different kinds
of interactivity scalability, which we do not even know yet.

In recent years, there has been a great deal of interest in the research community on
scalable compression of various types of digital media. Here the challenge is to obtain a
scalable representation without sacrificing compression efficiency. So far however, it is
only in the area of still image compression that it has been possible to obtain efficient
scalable coders that even improve compression performance (Ex. EBCOT [4], SPIHT [5],
VSPIHT [6], EZW [7]). EBCOT [4] led to the evolution of the new JPEG2000 [8]
standard for contone images. The JBIG and JBIG-2 standards for binary images are also
scalable. Besides images, there has been considerable effort to obtain efficient and
compact scalable representations of video, audio, and other types of media. In fact, most
existing media encoding standards today, [9], [10], [11], [12], [13], [14] incorporate
various scalability modes, although generally there is a loss in compression efficiency to
use them, and they are not fully scalable. It is only recently that new fully scalable video
codecs, such as 3D-ESCOT [15] and MC-EZBC [16], [17], [18], have been shown to be
viable. Fully scalable video coding is currently under exploration in MPEG [19], [20],
[21], [22]. Also, there is ongoing activity in MPEG-21 DIA related to delivery of scalable

7

bit-streams [23], [24], [25], [26], [27]. With evolution of new types of media, it is
conceivable that there will be emphasis on scalable representations for them as well,
although not every type of content can be standardized.

A scalable bit-stream does not always have a single type of scalability. In fact,
different types of scalability may co-exist in a multi-dimensional structure, so as to
provide a wide range of adaptation choices. For example, while SPIHT [5], its
predecessor EZW [7], and several of their derivatives [6] only support SNR scalability,
EBCOT [4] endeavors to combine quality scalability and resolution scalability in a
common format, to enable distribution and viewing over a wider variety of connections
and devices.

Furthermore, in new rich media, different media elements are often clubbed together
to provide a composite media experience. For example, an image with audio annotation
and some animation provides a composite experience of a presentation using three
elemental media elements (an image, an audio clip, some animation data). The composite
rich media leads to newer types of scalability specific to the media, because certain non-
critical elements may be dropped to accommodate other more critical ones within the
limited resources of the network and a recipient.

1.3 Scalable Content Adaptation and Delivery Infrastructures
In order to unlock the full potential of a scalable bit-stream, the format alone is

insufficient. It is necessary to develop and deploy complete infrastructures that support
appropriate adaptation and delivery of such content, so that a diverse recipient base can
experience it with a seamless ease of use.

For example, even though the JPEG2000 [8] format itself is very powerful, the lack
of a complete infrastructure that supports appropriate transcoding of JPEG2000 content
and delivery to a heterogeneous recipient base has severely restricted the usability of its
scalable features. In recent years, a great deal of attention has been focused on delivering
streaming video over the Internet or wireless [28], [29], [30]. In order to reach
heterogeneous recipients in a dynamic transmission environment, video standards of
MPEG-X (mostly MPEG-4) [9], [10], [11], [12] and H.26X [13], [14] families
incorporate various forms of scalability. Although rudimentary in scope, functionality
and efficiency, as compared to JPEG2000, they hold considerable promise for supporting
diversity. Nevertheless, scalable video over the Internet has been limited to maintaining
multiple versions for a few different types of connections, because complete
infrastructures that support transcoding and transport of scalable video formats are non-
existent. It is very recently that a new standardization effort has started in MPEG on fully
scalable video coding. However, without adequate focus on content adaptation in the
network, its scalability features would remain unexploited.

1.4 Need for Media-type agnostic Adaptation Infrastructures
Any infrastructure, is expensive to deploy, and requires significant financial

commitments from patron companies or patron consortia. Under these circumstances, use
of a standardized format for the content is desirable in order to guarantee constancy. On
the other hand, standards evolve all the time. There are often extensions added to existing
standards to support better and enhanced features, and it is conceivable that as new types
of media beyond traditional images, video and audio evolve it would be necessary to

8

create new standards for their representation. It can also be argued that since standards
take several years to come into effect, typically much longer than is commensurate with
the normal pace of change in the multimedia industry, it would become more and more
difficult to expect standards to support the representation and delivery of new types of
content.

Even if compact scalable formats evolve for every new type of media, the inevitable
difference in the structure of the content would necessitate use of different infrastructures
or components thereof for scalable delivery of different types of media. The expenses
involved present a very formidable obstacle in adoption of such new media and
supportability of its scalability features.

The only way out is to develop infrastructures for content adaptation that are media-
type agnostic. Such universal adaptation infrastructures only need to be deployed once to
support adaptation and delivery of all types of scalable media, as long as they conform to
certain loose restrictions on the encoding structure. Use of universal infrastructures that
support delivery and transcoding of a wide variety of media types in a convenient manner
is the key to successful adoption of new scalable media.

1.5 Security
The need for secure communication of media content is already being felt, and in the

future will be the order of the day. In order of guarantee full end-to-end security, it will
be necessary to use delivery architectures where no codec-specific elements are used in
the entire path from the content server and perhaps including it, to the receiving terminal.
Anywhere in the network that a codec-specific element is used, is potentially a security
breach point.

Even in such a secure transmission scenario, midstream content adaptation to cater to
diversity would be a necessity. Secure end-to-end streaming using scalable packets has
been demonstrated earlier [28], [29]. However, to enable secure content adaptation in a
content-agnostic manner, it is necessary to empower network adaptation engines to make
decisions about possible adaptations, even when they do not understand the semantics of
their decision. The only way to do this is to provide information needed to make
decisions in a compact way using a mathematical abstraction that is content-agnostic, and
incorporate them into generic descriptors that an adaptation engine can process.

1.6 Motivation for this work
In order to enable universal media-type agnostic adaptation infrastructures for

scalable media, we propose a framework for scalable media representation that
formalizes a loosely defined model or meta-format for all scalable media types rather
than a single format for a specific media type (such as JPEG2000 for images). The model
is called Structured Scalable Meta-format (SSM). Although the meta-format needs to be
standardized, it operates at a more abstract level than traditional standards, and requires
only format compliance in a loose manner. All compressed scalable bit-streams that need
be adapted using the universal adaptation infrastructure must be SSM-compliant, i.e. must
conform to the meta-format. Besides the bit-stream constraints imposed by SSM-
compliance, in order to enable end-to-end adaptation and delivery of SSM compliant
media, it is also necessary to standardize the languages for conveyance of information,
both between an adaptation engine and the media server, as well as between the

9

adaptation engine and the media receiver. Adaptation engines in the delivery chain need
to be able to interpret this communication for adaptation purposes.

Media adaptation and delivery infrastructures based on SSM and standardized
communication with adaptation engines would be truly media-type- and content-
independent, in that they can adapt different types of content, both that are currently
available (images, video, audio) as well as those that would evolve in the future (different
types of new 3D media, composite media etc), in a secure manner, as long as they
comply with the model.

2. Digital Item Adaptation with SSM

2.1 SSM based Delivery Model
Consider Figure 1, which shows a generic media delivery model, where media data

created by the originator is routed through an arbitrarily long chain of adaptation engines
before reaching an eventual recipient. It is assumed that both the originator of the media
as well as the software or hardware system used to experience it at the recipient end
understand the actual media-encoding format. It is likely that either the same company
created both the media content and the experiencing system, or the creator opened up its
technology for vendors to develop the experiencing system, or the media format is an
SSM-compliant open standard.

Irrespective of the actual content-type and its encoding however, the scalable resource
bit-stream is conformant with SSM, which all intermediate adaptation engines can
interpret and manipulate. These engines receive SSM compliant scalable content, and
deliver adapted content over multiple outbound streams. All content after adaptation is
also SSM meta-format compliant so that it can be re-adapted at a subsequent stage of
delivery.

Along with the SSM-compliant media bit-stream an adaptation engine also processes
a description meta-data (shown in thin white arrows in Figure 1) that contains vital
information for the adaptation engine about all possible adaptations. The SSM model
restricts the possible adaptation choices and allows a compact representation of this
description. The adaptation engine not only adapts the media bit-stream but also the
description meta-data, so that a subsequent stage of adaptation can be applied. There are a

Adaptation
Engine

Recipient

Recipient

Adaptation Engines do not understand the specifics of the data, only the
meta-format. They process information about all outbound connection(s).

Originator
Adaptation

Engine

SSM-compliant scalable media bit-stream

Resource description meta-data (XML)

Outbound Constraints from recipients (XML)

Recipient

Figure 1. Media-Type-Independent Adaptation and Delivery Chain

10

variety of possibilities for representing and conveying this information to adaptation
engines. While in MPEG-21 DIA the trend is to use XML, it is to be noted that
representing this information in binary form as part of the media bit-stream itself is a
straightforward extension, and may even be preferred based on considerations of
compactness and manageability. This information is referred to as resource description
metadata.

It is also assumed that each adaptation engine has knowledge of the aggregated
capabilities and preferences of all eventual recipients connected to each of its outbound
streams. This information mostly originates from the recipients (shown in thin black
arrows in Figure 1), but parts may be sensed by transcoders themselves, as it is
aggregated up the adaptation chain by the delivery infrastructure involved. For a
particular engine for a particular outbound connection at adaptation time, this information
is referred to as its outbound constraints, which in general may change dynamically.

Note that while the originator/creator of the media as well as the recipients/consumers
of the media must have specific knowledge about the encoding in order to provide an
experience for the end-user, the intermediate infrastructure does not need to know what
the content is and how it has been encoded in order to adapt appropriately. The adaptation
operation is based purely on an interpretation of the resource descriptor metadata and the
outbound constraints, and does not depend on the specifics of the actual content.
Furthermore, the content itself can be encrypted, and transcoding can still proceed as
before in the encrypted domain.

While adaptation engines in Figure 1 are solely functional blocks, in reality they can
be part of media servers from where offline or online content originates; midstream
routing servers through which scalable content is transcoded and routed; or edge servers
that connect directly to eventual recipients. Also, the generic delivery model considered
can collapse to as simple as a client-server delivery system where a client requests
content from a media server with specified capabilities and preferences, and gets
appropriately adapted content directly from it. In this case, the functional adaptation
engine would be part of the media server itself.

2.2 Isolated Transcoder Model
In order to understand the scope of the technology, we isolate a single input single

output functional transcoder from the end-to-end delivery model, and show its external
model in Figure 2. As discussed above, the adaptation engine receives a SSM compliant
piece of scalable media, which it must adapt appropriately and forward in a SSM
compliant manner to an eventual consumer or another adaptation engine. Along with the

Input SSM
Adaptation

Engine

Outbound
Constraints XML

Input resource
description XML

Adapted resource
description XML

Adapted SSM

Figure 2. Adaptation Engine external model

11

media bit-stream it also receives a media description XML providing the specifics of how
the bit-stream is to be adapted for various adaptation options, as well as an outbound
constraints XML providing a specification of the capabilities and preferences of its output
connection. Based on the information contained in the two XMLs, an adaptation engine
makes certain adaptation decisions, performs the adaptation operation based on the
decisions to the input SSM-compliant stream to deliver SSM-compliant adapted content
to its outbound connection, and updates the media description XML for use in a
subsequent adaptation stage.

The internal model for the adaptation engine is shown in Figure 3. In particular, it
consists of the following functional blocks: 1) a parser for the resource description meta-
data; 2) a parser for the outbound constraints specification, 3) an optimizer to decide on
transcoding options, 4) a SSM resource adaptation engine to adapt the resource based on
adaptation decisions made by the optimizer, and 5) a resource description metadata
adaptation engine to modify the resource description based on decisions made.

It is to be noted that the SSM framework does not determine the operation of the
optimizer module in the adaptation engine. The way the adaptation engine arrives at the
optimal adaptation decisions based on the resource description and outbound constraints
XMLs is open to implementation. However, everything else in the adaptation engine is
more or less determined by the proposed adaptation framework. Schemas and other
semantics to be described later standardize the two XMLs used. Furthermore, once the
decisions have been made, the resource and description adaptation is also deterministic.

2.3 Relation to Network Packetization
It is important to realize that while SSM is about formats for generic scalable content

and meta-data describing how format-compliant scalable content is to be adapted, in an
actual delivery scenario the content would probably need to be packetized and
transmitted. In this regard, among various design choices, there are two that are of
particular interest, one based on interpretation of SSM as a file-format, and another based
on interpretation as a packet-format.

In the file-format usage case, the scalable resource is actually much larger than a
typical network packet. Either the adaptation engine adapts an entire SSM file in one shot

Input resource
description XML

Resource
description

parser

Outbound
constraints parser

Outbound
Constraints XML

SSM resource
adaptation

Input SSM resource

Adapted resource
description XML

Adapted SSM resource

Optimizer

Adaptation
Decisions

Resource
description
adaptation

Figure 3. Adaptation Engine Internal model

12

before network packetization and transmission, or the adaptation is conducted down-
stream possibly in multiple stages. In the latter case however, it is important to realize
that it is not necessary that the entire SSM compliant resource be available at the
adaptation engine before the adaptation operation can commence. In fact, the resource
description and the outbound constraint specifications are all that are needed for an
adaptation engine to decide how to adapt the media content. As long as the meta-data has
been received in full, the scalable bit-stream resource in Figure 3 may come in stages in
multiple network packets, and either forwarded or dropped or partially dropped by the
engine as they arrive, based on the adaptation decisions already made. Thus, the same
adaptation model applies both to files transcoded in one shot as well as to a streamed file.

In the packet-format case, the entire SSM compliant content comprises one packet,
which can be adapted by a mid-stream adaptation engine and transmitted. Packet based
scalable adaptation based on truncation has been considered before [28], [29]. In this
scenario, it may make more sense to include the resource description as part of the
packet, using a form of binary encoding rather than XML.

In the rest of this document, we will describe the specifics of the SSM framework:
how a generic scalable bit-stream is modeled and what the required constraints are, what
information is contained in the resource description metadata (XML) that goes with the
resource, and how the capabilities and preferences are conveyed in the outbound
constraints specifications (XML). We will also describe how the adaptation decisions are
made at a network adaptation engine.

3. Modeling scalable bit-streams
A scalable bit-stream is one where smaller subsets of the whole produce

representations at lower quality, resolution etc. Different types of scalability (e.g. SNR,
Resolution, Temporal, Interactivity, etc.) apply to different types of media, and often
more than one kind is combined. Furthermore, in rich media content several independent
elements can be combined, (e.g. video, audio). From an understanding of how a generic
scalable bit-stream is naturally organized, we propose a logical model for all scalable bit-
streams, referred to as the SSM model.

3.1 Symmetric Nested Scalability Structure
The proposed SSM framework is based on the assumption that any scalable bit-

stream component inherently contains logical nested tiers of scalability based on possible
adaptations that can be performed on the bit-stream, as shown in Figure 4. Using zero-
based indexing, the bit-stream is first divided logically into multiple layers of tier 0
scalability. Here tier 0 is an abstraction, and depending on the actual content it may mean
any one of resolution, temporal, SNR and so on. Data segments in tier 0 layers, are
further divided into layers of tier 1 scalability, and so on. Again, tier 1 is an abstraction,
and may mean different things based on the actual media content. And so on. In addition,
it is to be noted that in most useful scalable bit-streams the scalability structure is
symmetric. That is, the number of tier 1 layers in each tier 0 layer is the same, and so on.

As an example, consider a JPEG2000 bit-stream, which can be readily cast into this
logical-bit-stream-format. In one of the scalability progression modes in JPEG2000 –
RLCP – the highest tier is resolution scalability, and within the resolution scalable layers
there are nested SNR scalable layers, followed by color layers and precinct layers. In an

13

alternative scalability progression mode – LRCP – the highest tier is SNR, and within
SNR layers there are nested resolution layers, followed by color layers and precinct
layers. However, the multi-tier nested scalability structure is common in both.

The above-described logical meta-format is analogous to that of a book, where there
are nested layers for chapters, sections, sub-sections and so on. It is conceivable that the
book-format be common across all books irrespective of content. Likewise, all scalable
bit-stream representations can be cast into a common nested scalability structure that can
be standardized into a bit-stream model, irrespective of content.

Note that the above nested structure is merely logical, in the sense that in the actual
bit-stream there is more freedom in where the data segments lie. The layers at the deepest
tier are called atoms. They consist of an arbitrary number of contiguous segments of the
bit-stream that can be dropped as part of an adaptation process. There can also be
arbitrary filler code in between the atoms, which are always included and never dropped
as part of any adaptation.

3.2 Notation and Data cube representation
Formalizing the notation for the bit-stream, if the data has L nested tiers of scalability,

and the ith tier contains li layers, we can say that the data consists of a concatenation of
l0×l1×…×lL–1 data chunks B(j0, j1, …, jL-1), where j0=0,1,…, l0–1; j1=0,1,…, l1–1; …;
ji=0,1,…, li–1;…; jL–1=0,1,…, lL–1–1. A way to visualize this data is to consider a L-
dimensional data cube of size l0×l1×…×lL-1, the (j0, j1, …, jL–1)

th element of which is the
logical data chunk B(j0, j1, …, jL–1), called the atom. The full bit-stream is essentially a
concatenation of these atoms in any order. Note that in the data cube representation, there
is an assumption of symmetry in the nested scalability, but considering that an
asymmetric structure can be converted into a symmetric one by inclusion of empty atoms,
this is not a restriction by any means.

Using an example of the first two tiers of JPEG2000 RLCP progression mode, we can
visualize the data as organized in a 2-dim cube (L = 2) as shown in Figure 5. The bulk of
the bit-stream apart from any filler code can be visualized as being obtained by scanning
the atoms in the data cube in some order. The same concept generalizes readily to more

 Layer 1 (Tier 0) Layer 0 (Tier 0)

Layer 1 (Tier 1) Layer 0 (Tier 1) Layer 1 (Tier 1) Layer 0 (Tier 1)

Layer 1 (Tier 2) Layer 0 (Tier 2)

Layer 1 (Tier 2) Layer 0 (Tier 2) Layer 1 (Tier 2) Layer 0 (Tier 2)

Layer 1 (Tier 2) Layer 0 (Tier 2)

Figure 4. Meta-formats with nested scalability

14

than two dimensions or nested tiers. An example of a three-dimensional data cube is
shown in Figure 6.

3.3 Model based Adaptation

3.3.1 Models
The data cube representation defined above applies both to true scalable bit-streams

where successive layers in each tier are handled incrementally by a decoder, or to the
case when one or more tiers are handled exclusively. The latter is essentially equivalent
to multi-version scalability, where multiple independent versions are maintained
simultaneously in the layers of these tiers, but an eventual recipient would use only one
of them. Generalizing, each tier in the meta-bit-stream format can be either incremental
or exclusive in terms of scalability. The descriptor contains a flag for each tier to denote
whether the tier is multi-version or incremental. If all tiers are exclusive, the bit-stream is
fully multi-version with each atom being an independent version. If all tiers are
incremental, the bit-stream is truly scalable (Eg. JPEG2000). In the most general case,
tiers could be mixed between incremental and exclusive scalability.

Furthermore, in order to cater to certain situations related to multiple description

Spatial layer 1 Spatial layer 2

SNR layer 1 SNR layer 2 SNR layer 1 SNR layer 2

B(0,0) B(0,1) B(1,0) B(1,1)

B(0,0) B(0,1)

B(1,0) B(1,1)

SNR
(Tier 2) scalability

Spatial resolution
(Tier 1) scalability

Atoms

Figure 5. JPEG2000 example bit-stream

B(0,0,0) B(0,1,0) B(0,2,0) B(0,3,0) B(0,4,0)

B(1,0,0) B(1,1,0) B(1,2,0) B(1,3,0) B(1,4,0)

B(2,0,0) B(2,1,0) B(2,2,0) B(2,3,0) B(2,4,0)

B(3,0,0) B(3,1,0) B(3,2,0) B(3,3,0) B(3,4,0)

B(4,0,0) B(4,1,0) B(4,2,0) B(4,3,0) B(4,4,0)

B(5,0,0) B(5,1,0) B(5,2,0) B(5,3,0) B(5,4,0)

B(5,0,1)

B(5,0,2)

B(5,1,1)

B(5,1,2)

B(5,2,1)

B(5,2,2)

B(5,3,1)

B(5,3,2)

B(5,4,1)

B(5,4,2)

Tier 2

Tier 1 Tier 3

Atoms

Figure 6. Data cube representation of multi-tier scalable media

15

coding, we allow the descriptor to specify some variations of exclusive tiers. Specifically,
an exclusive tier may be one of types: single, firstAlways, lastAll, firstAlwayslastAll. For
an exlcusive tier of type single, any one layer in the tier is required for any adapted
version. For exclusive tier type firstAlways, the first layer in the tier is always needed in
additon to one other layer. For type lastAll, the last layer if included requires inclusion of
all other lower layers, but all other adaptations behave as type single. Finally, for exlusive
tier type firstAlwayslastAll, the firstAlways and lastAll behaviors are combined.

3.3.2 Adaptation
We next define formally adaptation operations on the multi-tier scalable bit-stream as

defined above. The multi-tier data cube representation not only allows multiple
dimensions of scalability to co-exist in a bit-stream, but also enables a simplified form of
representation of adaptation based on the models mentioned above. Generally, with a
scalable bit-stream conformant with SSM, any adaptation is simply implemented as
dropping atoms, repacking the bit-stream, updating any TOCs appropriately, and doing
other minor editing operations, while preserving the generic multi-tier structure so that it
can be re-transcoded. For incremental tiers, layers can only be dropped from the outer
end whereas for exclusive tiers, a specific subset of layers as given by the exclusive type,
is dropped.

In SSM modeling, there are as many adaptation possibilities as there are coordinates
in the data cube representation. Each set of coordinates maps to a specific adaptation. In
addition, there is one adaptation possibility corresponding to null adaptation. Using our
previous notation, if there are L tiers in an SSM component with the number of layers is
tier i being li, then an adaptation point is denoted by the L-tuple (d0, d1,…, dL–1), where 1
��di ��li. In addition, there is a null adaptation point (0, 0,…, 0), to make the total number
of adaptation possibilities 1+ l0×l1×…×lL–1.

The ith component di of the adaptation point, correspond to tier i, i = 0,1,…, L–1, and
indicates to an adaptation engine one of the following: (1) If the ith tier is incremental, di
layers from the beginning are included; (2) If the ith tier is exclusive single only the di

th
layer is included in the ith tier; (3) If the ith tier is exclusive firstAlways, the first and the
di

th layers are included in the ith tier; (4) If the ith tier is exclusive lastAll, then if the tier
has exactly di layers, all of them are included but if it has more than di layers then only
the di

th layer is included in the ith tier; (5) If the ith tier is exclusive firstAlwaysLastAll,
then if the tier has exactly di layers all of them are included but if it has more than di

layers then the first and the di
th layers are included in the ith tier. (6) If di=0 for all i (null

adaptation point) then all layers are dropped from all tiers.
The adapted subset bit stream that reaches the decoder would then be given by some

form of concatenation of the atoms B(j0, j1,…, jL–1), where for each tier i = 0,1,…, L–1,
one of the following are included: (1) If the ith tier is incremental, ji = 0,1,…, di–1; (2) If
the ith tier is exclusive single ji=di–1; (3) If the ith tier is exclusive firstAlways, ji=0, di–1;
(4) If the ith tier is exclusive lastAll, ji = 0,1,…, di–1 if the tier has exactly di layers, and
ji=di–1 if the tier has more than di layers; (5) If the ith tier is exclusive
firstAlwaysLastAll, ji = 0,1,…, di–1 if the tier has exactly di layers, and ji=0, di–1 if the
tier has more than di layers. (6) If di=0 for all i (null adaptation point) then all atoms are
dropped in the adapted version.

16

Note that if the transmitted data-stream has to be a non-null adaptation, in all tiers at
least one layer must be transmitted. For null adaptation corresponding to adaptation point
(0,0,…,0), none of the atoms are included.

Using the data cube visualization, dropping layers from the end in an incremental tier
is equivalent to chopping off the ends of the data cube in units of layers. Selecting
particular layers from an exclusive tier is equivalent to extracting slices from the data
cube. In general, a reduced cube from the original is transmitted after adaptation. Some
examples for the case of 2 nested tiers are shown in Figure 7.

3.3.3 Satellite Atoms
Regular atoms in the data cube representation are identified by coordinates, as in B(j0,

j1, …, jL-1), where 0 ��ji ��li–1. In addition, it is possible to allow one or more coordinates
of an atom to be designated as don’t cares, such as by making these coordinates –1. Such

 Tier 1
scalability (Inc)

Tier 2
scalability (Inc) B(0,3) B(0,0)

B(1,0)

B(2,0)

B(3,0)

B(5,0)

B(4,0)

B(5,3)

B(4,3)

B(0,2)

B(1,2)

B(2,2)

B(3,2)

B(1,0)

B(1,0)

B(1,3)

B(2,3)

B(3,3)

B(0,1)

B(1,1)

B(2,1)

B(3,1)

B(5,1)

B(4,1)

Original bit-stream contained 6
layers of tier 1 incremental
scalability nested with 4 layers of
tier 2 incremental scalability.
Adaptation drops one tier 2 layer
and two tier 1 layers. The shaded
atoms comprise the adapted bit-
stream.

Atoms

Tier 1
scalability (Exc single)

Tier 2
scalability (Inc) B(0,3) B(0,0)

B(1,0)

B(2,0)

B(3,0)

B(5,0)

B(4,0)

B(5,3)

B(4,3)

B(0,2)

B(1,2)

B(2,2)

B(3,2)

B(1,0)

B(1,0)

B(1,3)

B(2,3)

B(3,3)

B(0,1)

B(1,1)

B(2,1)

B(3,1)

B(5,1)

B(4,1)

Original bit-stream contained 6
layers of tier 1 exclusive single
scalability nested with 4 layers of
tier 2 incremental scalability.
Adaptation drops one tier 2 layer
and selects the 4th tier 1 layer. The
shaded atoms comprise the
adapted bit-stream.

Atoms

Tier 1
scalability (Exc firstAlways)

Tier 2
scalability (Inc) B(0,3) B(0,0)

B(1,0)

B(2,0)

B(3,0)

B(5,0)

B(4,0)

B(5,3)

B(4,3)

B(0,2)

B(1,2)

B(2,2)

B(3,2)

B(1,0)

B(1,0)

B(1,3)

B(2,3)

B(3,3)

B(0,1)

B(1,1)

B(2,1)

B(3,1)

B(5,1)

B(4,1)

Original bit-stream contained 6
layers of tier 1 exclusive
firstAlways scalability nested with
4 layers of tier 2 incremental
scalability. Adaptation drops one
tier 2 layer and selects the 1st and
4th tier 1 layers. The shaded atoms
comprise the adapted bit-stream.

Atoms

Figure 7. Visualization of layer drops for 2-tier examples.

17

atoms are called satellite atoms. In any adaptation, if atom B(j0, j1, …, jL-1) is to be
included in the adapted version, all its satellite atoms, formed by replacing one or more
coordinates ji by –1, are also included bvy default. This explains the name satellite. Note
however, that from the nature of the definition, each satellite atom is invariably a satellite
of many regular atoms.

The purpose of satellite atoms is to allow convenient inclusion of common bit-stream
segments in several possible adaptations, without needing to expand the number of layers
in a tier, or the number of adaptation possibilities.

3.4 Causality Requirement
Because adaptation can be implemented as simple dropping of layers, an adaptation

engine does not need to decode or decrypt content in order to perform adaptation.
However, an encoder or an encrypter must maintain causality of the data atoms, so that a
decoder or decrypter can still handle adapted content. In general, it is necessary to ensure
that there are no dependencies across layers beyond that imposed by the adaptation
model. Thus, the dependency across layers in incremental tiers is limited to being causal.
For exclusive tiers, the dependency is still causal, but must be limited to those atoms that
would be included in an adaptation, based on the specific exclusive type.

Specifically, the causality constraint for encoding ensures that for encoding data atom
B(j0, j1, …, jL–1), the encoder only uses information from atoms B(k0, k1, …, kL–1), within
the usual limits 0 ��ji , ki ��li – 1 with at least one ki ��ji, such that for incremental tiers i,
ki ��ji, and for exclusive tiers i, ki=ji and/or ki=0 and/or ki�ji depending on the model and
number of layers in the tiers. This ensures that for any usable adaptation based on the
models, the decoder at the receiving end can decode the content unambiguously.

The causality constraint for encryption is that the starting state of the encryption
engine for atom B(j0, j1, …, jL–1), is derived from the ending states of the encrypter for
adjacent causal atoms B(k0, k1, …, kL–1), within the usual limits 0 ��ji , ki ��li – 1 with at
least one ki ��ji, such that for incremental tiers i, 0 ��ji – ki ���������	
���
��������������i,
either 0 �� ji – ki ����
��ki=0, depending on the model and number of layers in the tiers.
Progressive encryption enabling adaptation without decryption has been considered in
[28], [29].

3.5 Parcels and components
The discussion so far essentially pertained to a single coded scalable component. A

component is a coded unit of data that may be represented in a scalable logical bit-
stream-format represented by a data cube. However, in a composite bit-stream, multiple
coded components can co-exist. For example, one component may be an image and a
second component may be audio annotation that goes with it; both components may be
packaged together in the bit-stream to provide an experience of image viewing with audio
annotation. Such a combination of components is called a parcel.

Generally, a parcel is a super construct of components that essentially define
adaptation boundaries. It may be comprised by multiple independent scalable
components to provide a composite experience. The overall bit-stream consists of
multiple parcels, often all of the same type. Parcels are adapted almost independently and
often sequentially in an adaptation engine, with limited dependency between successive
parcel adaptations. The size of a parcel is really a design choice, and may range from an

18

entire scalable compressed file to a network transmission packet. Continuing with our
previous example of image with audio annotation, both the image and audio components
may constitute a parcel, but there may be multiple parcels in a composite bit-stream to
produce a slide show with audio. An alternative example arises in scalable video coding
where each Group of Pictures (GOP) is represented independently as a scalable
component. If GOPs are to be adapted independently, then the parcel is the GOP, and
contains a single component.

It is typical for different parcels in the same bit-stream to be comprised by the same
components. However, the encoding structure for each component may vary from parcel
to parcel, depending on characteristics for the specific content.

Finally we note although the parcel construct in SSM denotes a unit of adaptation, its
significance goes beyond that. The entire adaptation framework built around the parcel is
designed to fit a variety of delivery models with little or no adjustments. For example,
SSM accommodates the typical streaming scenario where information for each parcel
from both the descriptor side as well as the recipient side, along with the parcel bit-
stream, comes into an adaptation engine sequentially. Alternatively in an interactive
application, parcels may be adapted and delivered randomly based on user interaction.

3.6 Bit-stream layout
Parcels, components and atoms within a component are essentially logical constructs

that may exist anywhere in the bit-stream. While to make SSM adaptation viable for a
given bit-stream, these constructs must exist and be defined, it is not necessary to impose
syntactic restrictions on the bit-stream based on this hierarchy. An example of a bit-
stream segment with two parcels, each consisting of two components is shown in Figure
8.

4. Adaptation variables

4.1 General
Having have seen how a generic scalable bit-stream looks like, and what an

adaptation operation on it involves, we next need to talk about ways an adaptation engine
can decide on an appropriate adaptation point, without knowledge of the specifics of the
media and the coding. An adaptation engine is expected to have knowledge of certain
relevant scalability properties of a SSM resource through the resource description XML.
At the same time it expected to know the capabilities and preferences of its outbound
connection through the outbound constraints XML specifications. The bridge between
the two on the media creator/originator side and the receiver side of the adaptation engine
is established through adaptation variables. The resource description and the outbound
constraints speak the same language through these variables, so that an adaptation engine
can decide how to drop layers to match the two sides.

If a receiver knew exactly the structure of the content it expects to receive through an
adaptation engine, it could exactly specify the requested adaptation point in the engine’s
outbound constraints specifications. However, to assume that to be always the case is too
restrictive. For example, if a receiver is expecting JPEG2000 images, but does not know
what the dimensions and encoding parameters are for a particular image, it is not possible
for it to request a specific adaptation point based on considerations of display resolution,

19

quality, and so on. That is why, it is important to dissociate the resource description and
the outbound constraints from the structure as much as possible, and adaptation
variables allow us to achieve that.

The most important property of all adaptation variables is that they are expressed
quantitatively in terms of non-negative (floating) numbers, referred to as variable values,
defined over the discrete space of all possible adaptation choices. Whatever method is
used to quantify the variables must be communicated to the developer of the media
experiencing system. However, an adaptation engine itself does not need to know what
they mean. Values have different interpretations for the media creator, the consumer, and
the adaptation engines in between. To the media creator/originator, they are quantified
properties based on which a content may be adapted. To a media consumer they are
quantified properties to indicate its limitations and preferences. To an adaptation engine,
they are simply numbers based on which it must decide how to drop layers and adapt an
input bit-stream.

4.2 Feature variables

4.2.1 Definition
Feature variables are certain quantifiable properties relevant to the experience of a

single media component or jointly for a set of media components. Features defined for a

B1(0,0) B1(0,1)

B1(1,0) B1(1,1)

B2(0,0) B2(0,1)

Tier 0

Tier 0

Tier 1

B1(0,1)

B1(1,1)

B1(1,0)

B1(0,0)

B2(0,0)

B2(0,1)

A parcel with two
components

Bit-stream
part showing
two parcels

B1(0,1)

B1(1,1)

B1(0,0)

B1(0,0)

B2(0,0)

B2(0,1)

B1(0,0) B1(0,1)

B1(1,0) B1(1,1)

B2(0,0) B2(0,1)

Tier 0

Tier 0

Tier 1

Next parcel with
two components

B2(0,2)

B2(0,2)

B1(0,0)

B1(0,1)

B1(1,1)

Figure 8. Bit-stream layout example for two parcels each containing two components

20

single component are called elemental features, while those defined over more than one
component are called product features. Some examples of elemental feature variables
are: Codesize, MeanSquaredError, SpatialResolution, TemporalResolution etc. One
example of a product feature variable is: PerceptualRichness which is a product feature
of the adaptation points of audio and image components of a parcel, but which cannot be
expressed as a function of individual features from the two components.

4.2.2 Identification
Each feature is associated with a name that uniquely identifies the feature. The

uniqueness is within the context of the media parcel being adapted/delivered. Thus, the
feature names used in the resource description XML and the outbound constraints XML
for the same parcel of media must be consistent, but across different media-types or
parcels there is no restriction on the names used because when the names are resolved at
the adaptation engine there is no scope of a conflict.

The media creator, who provides the resource description XML, defines features
relevant to the media the way he/she chooses, and communicates their unique names,
meanings, and value spaces to the media experiencing system developer so that the latter
can generate meaningful outbound constraints.

4.2.3 Values and Distribution
The resource description XML conveys for each feature the quantitative values the

feature would have for all possible adaptation points of the SSM components over which
it is defined. This set of values is referred to as the feature distribution. We first consider
elemental features, and next consider product features.

4.2.3.1 Elemental Features
If there are L nested tiers in a component with li layers in the ith tier, it is necessary to

provide a L-dimensional matrix of size l0×l1×…×lL-1, whose (j0, j1, …, jL–1)
th element

denoted C(j0, j1, …, jL–1), for j0 = 0,1,…, l0–1; j1 = 0,1,…, l1–1; …; ji = 0,1,…, li–1;…; jL–1

= 0,1,…, lL–1–1, is a non-negative number specifying the value of the feature if (j0, j1, …,
jL–1) is the adaptation point, along with an empty feature value C specifying the feature
value the component would have when the entire component is dropped, i.e. none of the
layers are transmitted. The total number of values that need to be sent is therefore 1 +
l0×l1×…×lL–1. In practice, all these values are specified with respect to a reference feature
value for convenience. In this case, the elements C(j0, j1, …, jL–1) multiplied by the
reference value provides the true feature value for adaptation point (j0, j1, …, jL–1). In any
case, the reference multiplied by the last fraction C(l0–1, l1–1, …, lL–1–1) yields the full
feature value, or the value the feature would have if the content were transmitted without
any layer-dropping adaptation for incremental tiers and with the highest layer versions
included for exclusive tiers. The same principle of multiplying with the reference applies
to the empty feature value C .

From the nature of features that may typically be defined, it is often the case that the
distribution is either monotonic non-increasing or monotonic non-decreasing. For
example, Codesize (rate) is a feature that is always monotonic non-decreasing. For a
monotonic non-decreasing type feature, the values C(j0, j1, …, jL–1) would be analogous
to the cumulative distribution of a multi-dimensional discrete random vector, if the

21

reference multiplier value is the same as the full feature value. This explains the use of
the term distribution.

For example, considering the first two tiers of JPEG2000 RLCP progression mode,
the distribution specifications for features Codesize and DisplayResolution may look as in
Figure 9. Both are non-decreasing monotonic. Here we have four spatial scalability layers
nested with three SNR scalable layers each. Note that in Figure 9(b), the
DisplayResolution attribute does not change with SNR scalable layers. As a result of
transcoding, if a SNR layer and two spatial layers are dropped, the Codesize attribute of
the transcoded bit-stream shown shaded in Figure 9 would be 0.18 times the reference
Codesize value, while the DisplayResolution attribute would be 0.25 times the reference
DisplayResolution value.

Oftentimes, it is be more convenient and less expensive in terms of overheads to
express the cumulative distributions only approximately using products of one or more
individual lower-dimensional marginal distributions. In this case, the element C(j0, j1, …,
jL–1) is obtained approximately as �j0, j1, …, jL–1) using a product combination of
marginal distributions. That is, the specification involves P lower dimensional cumulative
distributions Ci(.) that cover L dimensions together: �j0, j1, …, jL–1) = C0()×C1(
)×…×CP–1(). The empty feature C is transmitted separately.

For the JPEG2000 example of Figure 10 the approximate specifications using two
one-dimensional marginals and the eventual approximate distributions generated are
shown in Figure 10. As seen in Figure 10 (b), the DisplayResolution feature has been
represented exactly using the approximate approach, while the Codesize feature in Figure
10(a) is represented only approximately.

4.2.3.2 Product features
The resource description XML conveys for each product feature the quantitative

values the product feature would have for all possible joint adaptation points of the SSM
components involved in the product feature. This set of non-negative values is the
product feature distribution. If there are C components involved in the product feature,
with Lc nested tiers in the cth component (c = 0,1,…,C-1) it is necessary to provide 2C-1
non-empty distributions corresponding to the case where at least one component is non-
empty (included), along with an all empty feature value C

�

corresponding to the case

SNR Scalability

Spatial Scalability

0.02 0.06 0.12

0.06 0.18 0.35

0.12

0.20

0.34

0.54

0.63

1.00

(a) Feature: Codesize

0.125 0.125 0.125

SNR Scalability

Spatial Scalability

0.25 0.25 0.25

0.50

1.00

0.50

1.00

0.50

1.00

(b) Feature: DisplayResolution

C(j0, j1) C(j0, j1)

Figure 9. Exact Distribution Specification for JPEG2000 example

22

when all components are empty. Among the non-empty distributions there is one
corresponding to the case where all components are included. In this case, the distribution
specifies a (L0+L1+…+LC-1)-dimensional matrix with number of elements equal to the
product �� �lc

i) over c = 0,1,…,C–1 and i = 0, 1, …, Lc–1, where lc
i is the number of

layers in tier i of component c. There are other 2C-2 non-empty distributions
corresponding to the cases when one or more components but not all are empty. Any such
partial empty distribution is specified as a reduced dimensional distribution over the non-
empty components. The total number of values that need to be sent comprising all the
non-empty distributions and the empty value is the product ��1 + lc

0×lc
1×…×lc

Lc–1) over
all c.

Each non-empty distribution can be individually specified using a product of
marginals as in the elemental feature case.

4.3 Component variables

4.3.1 Definition
Just as features have unique names so do components within the context of a parcel.

The media creator not only conveys feature variables, their meanings and value spaces to
the experiencing system developer but also the names of components. Based on the
component name, certain variables are defined by default. These are called component
variables.

4.3.2 Indicators and Values
The first variable family defined by default is the inclusion indicator. This variable

has a value of 1 for all non-empty adaptation points, and zero only if all the atoms are
dropped. A component is assumed to be included if at least one of its atoms is included.
This variable can be used to specify complex constraints based on inclusion or exclusion
of whole components, for e.g. if a certain component is included another one must be
included, and so on.

The second family of indicators is called layers in tier indicators, which convey the
number of layers in the adaptation point for a specified tier index parameter. Thus if the

(a) Feature: Codesize

0.125 0.125 0.125
SNR

Scalability

Spatial Scalability

0.25 0.25 0.25

0.50

1.00

0.50

1.00

0.50

1.00

(b) Feature: DisplayResolution

0.125

0.25

0.50

1.00

1.0 1.0 1.0 C0(j0)

C1(j1)

0.02 0.05 0.10
SNR

Scalability

Spatial Scalability

0.06 0.15 0.30

0.12

0.20

0.30

0.50

0.60

1.00

0.10

0.30

0.60

1.00

0.20 0.50 1.00 C0(j0)

C1(j1) C(j0, j1) C(j0, j1)

Figure 10. Approximate Distribution Specification for JPEG2000 example

23

adaptation point is (j0, j1, …, jL–1), then the value of this variable corresponding to tier i is
ji.

The third family of indicators is called the current number of layers in tier indicators,
which conveys a constant whose value is the total number of layers currently in the bit-
stream for a specified tier index parameter.

The fourth family called the original number of layers in tier indicators, which
conveys a constant whose value is the original number of layers in the bit-stream for a
specified tier index parameter, before any adaptation step.

4.4 Combination variables

4.4.1 Definition
Sometimes the media creator can define combination variables in the resource

description XML, which are essentially mathematical real and/or Boolean expressions
and functions involving feature variables, component variables or other combination
variables from a variety of components. The combination variables are conveyed to the
experiencing system developer in the same way as feature variables, and serve as a short
cut for the outbound constraints XML.

Each combination variable may be associated with a certain number of arguments
during specification so that the variable can be used as a function rather than as a static
expression.

One example of combination variables is TotalCodesize, which may be defined as the
sum of the Codesize features for individual components in a parcel. Another example,
involving the component inclusion indicator variables is a Boolean expression that
indicates if component1 is included, component2 must be included (x=> y is equivalent to
x �� ���� �� ������ �
������� ������
��� �� ������� ���� �
������� ��polynomial at the value
given by the argument.

4.4.2 Identification
Combination variable are identified in the same way as feature variables, i.e. with a

unique name. The resource description XML provides a name for each combination
variable as they are defined.

4.4.3 Expression specification and evaluation
The mathematical expression for each combination variable is specified in the

resource description XML by means of an ordered list of numeric constants, adaptation
variables, arguments and operators that must be pushed into an expression stack for
evaluation of the expression. Variables pushed into the stack can be feature variables,
component variables or previously defined combination variables, each identified by its
unique name. Operators pushed into the stack can take any number of operands. When a
combination variable takes arguments, the definition of the combination incorporates a
means to reference the arguments of the combination function in order. This is the only
situation where arguments can be pushed, i.e. during specification of a combination
variable that takes arguments.

Evaluation of an expression at an adaptation engine for a given set of adaptation
points corresponding to components of a parcel is done as follows. When a constant is
pushed its numeric value is pushed into the stack as a real numeric element. When a

24

variable is pushed, the numeric value of the variable for the given set of adaptation points
is evaluated, and pushed into the stack as a numeric element. When a unary operator is
pushed into the stack, the current top operator element as well as the next top stack
element, which must be a numeric one, are popped out immediately. The operator
operates on the numeric operand, and the result is pushed back into the stack as a numeric
element. When a binary operand is pushed into the stack, the current top operator element
and the two next top stack elements, both of which must be numeric, are popped out
immediately. The binary operator operates on the numeric operands, and the result is
pushed back into the stack as a numeric element. The same methodology is used for n-ary
operators.

When a combination variable taking arguments is called, a certain number of
elements equal to the number of arguments taken by the function, are popped from the
stack in order, and the combination is evaluated based on the definition.

When all the elements in the expression ordered list has been processed, the topmost
stack element yields the value of the expression.

A small set of useful real and Boolean operators is allowed for forming expressions.
When real and Boolean operators and operands are mixed, the following conventions are
used to make the necessary transformations between the two domains: a Boolean 0 has
real value 0.0, a Boolean 1 has real value 1.0, any real non-zero value has Boolean value
1, and a real zero 0.0 has Boolean value 0.

4.5 Look up table variables
While in most cases it is sufficient to work with feature variables that are tied to the

structure of the content, in some cases, it may be necessary to map arbitrary recipient
inputs into appropriate quantities related to structure, so that an optimum decision can be
made. In many sitiations it may be reasonable to assume that the mapping from an
arbitrary input space to a quantity related to the structure is already known by the
receiving terminal. However, in some cases, the content creator may want to control this
mapping. Look up table variables provide a tool in the descriptor XML to allow
specification of an arbitrary scalar function f(x0, x1,…). Note that the same purpose can be
served by combination variables used as functions (see Section 4.4), if is possible to find
a good enough mathematical model for the function.

A look up table presents a set of values of a function, at points on a possibly non-
uniform grid in a multi-dimensional input space. The values of the function at points not
on the grid are interpolated using multi-dimensional linear interpolation. Consider a N-
dimensional function f(x0, x1,…,xN-1), where the grid on the ith dimension has m(i) points
in ascending order: {gi,0, gi,1,…, gi,m(i)-1}. Then the look-up-table is specified using a set
of �� �m(i)+2) values over all i, obtained by extending the grid on each dimension in
lower and upper directions yielding two virtual grid points. Grid extension allows
convenient specification of values of the underlying function at values outside the support
region given by the grid. Any input that is outside the support region in any dimension
given by the real grid points, snap to the virtual grid on the low or high side, before
interpolation is invoked. Note that in this technique it does not really matter where the
virtual grid points are actually located, of a look-up-table in two dimensions is shown in
Figure 11.

25

When a look-up-table variable is called, it takes as many arguments as there are
dimensions in the table, with the arguments corresponding to the co-ordinates of the point
at which the underlying function is to be evaluated. The arguments are popped from the
stack in order, and the look-up-table is evaluated by either multi-dimensional linear
interpolation, or by one of the methods: rounding to nearest grid point, ceiling of grid
cell, and floor of grid cell, where each co-ordinate is respectively rounded, ceiling-ed or
floor-ed with respect to the grid points.

4.6 Reserved adaptation variables
In the discussion so far, we have been talking about so called custom or content

specific adaptation variables that can be defined and named at will by content creators so
that the experiencing system at the receiving end can issue appropriate outbound
constraints based on them. It is worth mentioning however that there is value in
standardizing the identifying names and the quantification method for certain variables
with universal meaning across different types of content. These variables are called
reserved adaptation variables, because their identifying names are effectively reserved
and disallowed for use as custom adaptation variables. Examples of adaptation variables
that could be standardized in name and quantification method are: Bandwidth,
NumerOfSpeakers, DisplayResolution, ProcessorSpeed etc. Use of reserved variables
enable creation of content independent profiles for terminals, that allow adaptation say at
an edge server, without an explicit request from a receiving terminal in the form of
outbound constraints, for every type of content that is received. In other words, it enables
passive reception of various types of content by uploading a stationary content-
independent profile involving reserved variables to an adaptation engine once and for all.

Function value provided
in look up table

Input co-ordinates

True region of support

Virtual (extended) grid

Input outside region of
support snaps to virtual
grid before interpolation

True grid

(-Inf, Inf)

(-Inf, -Inf)

(Inf, Inf)

(Inf, -Inf)

Figure 11. Look-up-table example in two dimensions

26

Reserved adaptation variables may be either feature variables or combination
variables defined differently for different types of content. But the eventual meaning and
the value space of the adaptation should be the same for different content types.

Note that since the SSM framework per se does not change depending on whether an
adaptation variable is custom or reserved, we do not dwell on this issue further.

5. The XML contents

5.1 Resource Description XML
Because the resource description XML has mostly been covered already in the

discussion so far, here we summarize the key points, and mention the additional features.
This metadata originates from the media creator and contains a full description of the bit-
stream that enables an adaptation engine to decide how to drop layers.

5.1.1 Scalability structure
The metadata specifies the complete hierarchical model of the bit-stream with parcels,

components, and atoms, and where the atoms lie in the bit-stream. For each parcel it
defines a set of elemental and product feature variables and specifies their distributions,
as well as a set of combination variables that apply locally within the parcel. It also
defines global combination variables that apply to all parcels.

5.1.2 Limit constraints from content creator
Besides, defining adaptation variables, the metadata also includes constraints that are

to be enforced by an adaptation engine. These are directives from the content creator to
restrain the adaptation choices, and apply either locally to a parcel or globally to all
parcels. The type of constraints specified here is referred to as limit constraints, and
would be elaborated in the next section. The adaptation engine combines the constraints
specified by the content creator in the resource description metadata with those specified
by the receiver in the outbound constraints specifications to obtain the full set of
constraints that need to be satisfied by an adaptation point.

5.1.3 Resource edit information
The resource description metadata contains information pertaining to editing of the

resource bit-stream based on adaptation decisions made for each parcel. For example, it
may often be necessary to modify information such as number of layers included and so
on in the bit-stream, after adaptation. The metadata specifies for each parcel exactly
where in the bit-stream a certain number of bits have to be replaced after the decisions
have been made and the adaptation has been conducted, how many bits the replaced
value spans and what its endian order is, as well as what the modified value is. The
modified value is given by a stack expression as in Section 4.4.3. The output length in
bits can be specified through a constant or through a feature variable. Note that this
protocol actually allows a wide range of bit-stream modifications based on adaptation
decisions. Even when it is not possible to have expressions to evaluate the modified
value, the content creator can always define feature variables, one for the content and
another for the length to denote what the correct bit-stream should be for each adaptation
possibility.

27

5.1.4 Codec offset information
Sometimes in a compressed bit-stream there may be pointers that specify locations of

other parts of the bit-stream or lengths of certain bit-stream segments. When SSM atoms
are dropped as part of the adaptation process it is likely that this location/length
information will become invalid. Therefore, in order to keep the adapted bit-stream
consistent and decodable it is necessary to modify the relevant fields in the bit-stream as
and when atoms are dropped. Because it is the adaptation engine that must modify the
bit-stream, it is necessary to provide this offset/location information in the resource
description metadata. The resource descriptor allows specifying locations in the bit-
stream where offsets occur.

Both locations and lengths can be conveniently expressed as offsets from a given
reference point. As shown in Figure 12, the resource descriptor specifies a reference point
in the bit-stream (R), the exact location in bit-stream, the length in bits and endian type of
where the value of an offset field is stored in the bit-stream, along with the actual
numeric value (V) stored in this field. The numeric value is redundant, but has been
included in the descriptor for convenience of implementation. The values R and V
together provide the location of another point P in the bit-stream, where P=R+V.
Alternatively, the value V provides the length of a bit-stream segment from R through P
including R but excluding P, or excluding R but including P.

Based on the above description conveying reference R, the location of an
offset/length field in the bit-stream, and the value V stored therein, an adaptation engine
can modify the field as and when bit-stream segments are dropped to update the value of
the difference P-R. In this regard, certain situations may arise, which are worth noting
since they should be explicitly handled in the right way for a given bit-stream. First, if the
field where an offset is stored or a part thereof (since it can span multiple bytes) is
dropped as part of adaptation, the entire entry corresponding to the field can be removed
from the descriptor, because it does not need to be handled anymore. Next, consider the
situation when either the byte at location R or the bytes at location P or both are removed
as part of adaptation, but the field where the offset is stored still remains valid. For these
situations, the descriptor should explicitly mention how the pointers are to be updated
before the new value of V the offset could be computed and updated in the resource. The
invalid pointers R or P could be either moved up to the next valid byte, or moved down to
the previous valid byte, and the result of the updated value V would be different based on
which one is done. There is also a third option that zeroes out the value V stored in the

Reference (R)
in descriptor

Offset value in
bit-stream (V)

also in descriptor
Pointer P=(R+V)

Reference (R)
in descriptor

Offset value in
bit-stream (V)

also in descriptor
Pointer P=(R+V)

Byte

Figure 12. Codec offset data

28

field when either R or P becomes invalid. The semantics of the offset field in a given bit-
stream determines the most appropriate way to handle invalid pointers, but the descriptor
should clearly mention the handling technique to be used.

As an example, consider a length field in the bitstream. If the offset field indicates the
length of R through P including R but excluding P with R<P, then both R and P should be
moved up when invalid. Alternatively, if the offset field indicates the length of R through
P excluding R but including P with R<P, then both R and P should be moved down when
invalid.

5.1.5 Sequence data information
 Sometimes in the compressed bit-stream, there may be fields representing monotonic

sequences. For example, there may be bit-stream fields containing sequential counters,
such as packet number fields in data packets or frame number (temporal reference) fields
associated with compressed video frames. When bit-stream segments are dropped as part
of a format agnostic adaptation process, these counters need to be updated accordingly
for consistency. The sequence data descriptor element as part of the resource description
metadata, allows a compact specification of where the counter fields are and how they
should be updated so that a format agnostic processing engine can process the metadata
and update the counter fields correctly. While such update operations could be
accomplished also by using resource edit information as described in 5.1.3, in order to
improve the resource description compactness, operation efficiency, and ease of
specification of this descriptor it is appropriate to introduce a specific tool for sequence
data information in the resource description metadata.

The descriptor allows defining an arbitrary number of sequences. Each sequence has
an arbitrary number of elements included within it. A sequence is also associated with a
sequence value, that is incremented/decremented for each countable element included.
The starting value and the step value for increment/decrement is specified for each
sequence in the resource description metadata. Optionally a modulo value could also be
specified. If the sequence value equals to or exceeds the modulo value, the remainder
(modulus) obtained by dividing the sequence value by the modulo value, is used as the
new sequence value. For example, if the starting value of the sequence is s, and the step
value of the sequence is p, the modulo value is m, and there are n countable elements in
the sequence, then after i countable elements (i = 0,…, n), the sequence value is (s+i×p)
mod m.

The elements within a sequence, can be countFields, sub-sequences, countOnly
elements, or writeFields, as described below.

CountFields are associated with a location in the bit-stream and length in bits, both of
which are specified in the descriptor. A sequence can have sub-sequences embedded
recursively within. The starting value of a sub-sequence could be absolute or relatively
derived from the sequence value of the parent sequence. For example, if a sub-sequence
has its starting value start_val, and the sub-sequence gets sequence value seq_val from
the parent sequence, the actual starting value for the sub-sequence will be
seq_val+start_val for relative start, and just start_val for absolute start. There can also be
countOnly elements, that are dummy countable elements that are not associated with any
bit-stream location. All countFields, conuntOnly elements, and non-empty sub-sequences
in the sequence effect an increment/decrement in the sequence by the step value, starting
from the start value of the sequence. In addition to countable elements, there can be

29

writeFields that can occur at any position in the sequence, and writes either the current
sequence value or the number of elements till the current position in the sequence. The
writeField, however, is not counted, that is, the sequence value is not updated at the end
of a writeField.

After an adaptation involving bit-stream segment drops, the countFields in the
sequence may point to dropped data. When a countField points to a valid bit-stream
location after adaptation, the current sequence value is written at the location associated
with the countField, and the sequence value is updated at the end of the countField.
Optionally, it is it is possible to only update the sequence value but not update the bit-
stream field associated with it countField element. When the bit-stream location (or part
thereof) associated with a countField is dropped during adaptation, the handling depends
on whether the sequence has been designated packable or non-packable. Genrally
speaking, in a packable sequence individual elements can be removed independently, but
in a non-packable sequence only the sequence as a whole can be removed from the parent
sequence. Thus, for an invalid countField after adaptation, if the sequence is packable,
the countField is simply removed from the sequence; but if the sequence is non-packable,
the countField is replaced with a countOnly element. That means, the sequence value will
still be incremented for the dropped field. Only when all the elements in a non-packable
sequence become countOnly, the sequence can be disposed off. It can be removed if the
parent sequence is marked as packable, and replaced with a countOnly field if the parent
sequence is non-packable. That means, the sequence value will still be incremented.

The above metadata allows a very flexible means for specification of various kinds of
sequences that may be encountered in a scalable bit-stream, allowing convenient updates
once atoms have been dropped by adaptation.

5.2 Outbound constraints XML and decision making

5.2.1 Parcel mapping for multiple recipient profiles
The outbound constraints XML provides a specific request to an adaptation engine to

adapt the content before delivery. In general, the outbound constraints XML can have
multiple profiles, one for each downstream recipient, each associated with an optional
profile name. For each recipient profile, a set of constraints can be specified
corresponding to each parcel.

In order to make decisions and adapt a bit-stream, an adaptation engine needs to have
an outbound constraints specification for every parcel. Recall that a parcel is a unit of
adaptation. In many situations however, it is unnecessary to provide a new set of
constraints for every parcel. Constraints tend to remain the same for a large number of
parcels, and only needs intermittent updates. In other words, the number of parcel
constraints specified can be less than the number of parcels in the content bit-stream. The
constraints are updated intermittently, and resource parcels are always adapted using the
most current constraint specification.

Specifically, each parcel in the descriptor is associated with a parcelID that increases
sequentially. Likewise, in the outbound constraints for each profile, there is a parcelID
associated with each parcel, to indicate the resource and descriptor parcel to which the
constraints apply. The parcelIDs for successive parcels in the outbound constraints for
every profile must be in ascending order, but there can be arbitrary skips in between. The
skipped parcels are assumed to have the same constraints as the preceding parcel.

30

Furthermore, there is a provision to stop a profile at a given parceled by using a special
termination code. A profile is assumed to commence at the parcelID corresponding to the
first parcel specified within the outbound constraints XML for the profile, and terminate
at the parcel with parcelID just less than the one that has a terminate profile code. Note
that this framework allows recipients to sort of ‘tune in’ or ‘tune out’ of an ongoing
broadcast at will.

This principle is shown by means of an example in Figure 13. As shown in the figure,
the outbound constraints XML has multiple receiver profiles defined. The parcel-
mapping rule applies individually to each profile. We will cover multiple profiles for end-
to-end redundancy minimization in the next section.

It is to be noted that our goal is to provide a generic framework supporting all the
basic functionality for adapting an SSM-compliant resource. The parcel-mapping rule
presented here is a generic way in which a resource can be adapted and packaged so that
different recipients (profiles) requiring possibly different subsets of parcels at different
renditions based on their capabilities and preferences can extract suitable versions from
the adapted bit-stream. However, depending on the complexity of the use case in which
this may be used, it may be more convenient to add a layer on SSM that collects parcels
in the descriptor, resource and outbound constraints, and controls invocation of the SSM
adaptation engine.

<parcel parcelID=”0”>
 …
</parcel>
<parcel parcelID=”1”>
 …
</parcel>
<parcel parcelID=”2”>
 …
</parcel>
<parcel parcelID=”3”>
 …
</parcel>
<parcel parcelID=”4”>
 …
</parcel>

Resource description

<profile profileID=”term-1”>
 <parcel parcelID=”0”>
 …
 </parcel>
 <parcel parcelID=”1”>
 …
 </parcel>
</profile>
<profile profileID=”term-2”>
 <parcel parcelID=”1”>
 …
 </parcel>
 <parcel parcelID=”2”>
 …
 </parcel>
 <parcel parcelID=”4”>
 …
 </parcel>
 <parcel parcelID=”5”
 requestType=”stopProfile”/>
</profile>

Outbound constraints This example shows two
profiles in the outbound
constraints XML.

For profile “term-1”
there are two parcels,
one for parcel 0, and the
other applying ot the
rest.

For profile “term-2”
there are three parcels
with constraints. The
profile starts from parcel
1 and is stopped at
parcel 5. Therefore, the
parcels transmitted in
the profile are 1-4. The
mapping for these
parcels is shown with
arrows.

Figure 13. Parcel mapping between resource description and outbound constraints

31

5.2.2 Adaptation constraints
The adaptation constraint specification for each parcel in a profile can be either

driven by adaptation variables or by the structure. The former, which is based on defined
adaptation variables, is a more interesting case because it keeps the content creator and
the receiver sides more independent of each other, and integrates decision making within
an adaptation engine. However, if the receiver knew exactly the structure of the content,
it could specify the adaptation points exactly in its constraint specification. This is called
structure driven adaptation, and in this case, there is no decision making involved on part
of the adaptation engine.

Adaptation variable driven constraints, consist of a set of limit constraints, followed
by an optional optimization constraint. Each constraint, limit or optimization, is specified
in terms of definable functions of adaptation variables, called an adaptation metric. The
metric is defined using a stack expression involving adaptation variables corresponding
to the parcel, as defined in the resource description metadata. The stack expression
methodology used is the same as the one described in Section 4.4.3.

Limit constraints are specified as lower and/or upper limits of supportable value(s)
for outbound connections for a defined metric. When both are specified we have
effectively provided a range, and when both limits are the same, we have imposed an
equality constraint. An example of a limit constraint is: Codesize/latency < 300 KB/s.
Here Codesize is a feature variable, but 1/latency is specified in outbound constraints as a
multiplier. Overall, this indicates a bandwidth restriction on received media. Another
example is: display_resolution<800 diagonal pixels.

An optimization constraint specifies a requested minimization or maximization of a
defined metric. An example of such a constraint is in rate-distortion optimization, where
a metric such as MeanSquaredError + λ.Codesize is minimized. Here the Codesize
variable corresponds to rate (R), while the MeanSquaredError variable corresponds to
distortion (D). Encrypted domain transcoding based on packet truncation minimizing
D+λ.R has been covered in prior art [28], [29].

Sometimes it may be necessary to maintain consistency of adaptation across parcels.
For example, if each parcel is a GOP from a video sequence, we do not want to have
different spatial resolutions for each of them. The outbound constraints XML
incorporates a method to preserve limited dependencies across parcels by allowing
references to adaptation variables from the previous parcel for the particular decision
made for the previous parcel. However, because the outbound constraint part for the next
parcel may not be known at the adaptation time for the current parcel, it is necessary to
specify explicitly a list of adaptation variables to be remembered by the engine for use in
adaptation of the next parcel. The values of these variables are computed based on the
adaptation points decided for the current parcel. It is up to the resource description
generator to provide relevant information to the outbound constraints generator to make
sure that all previous references are correctly resolved.

5.2.3 Adapatation decisions made on constraints
The information contained in the resource descriptor XML and the outbound

constraints XML specification is all that an adaptation engine needs to decide how to
adapt each parcel. For adaptation variable driven adaptation request, when both a set of
limit constraints and an optimization constraint are specified, the adaptation engine seeks

32

the minimum or the maximum of the optimization metric, within the allowable adaptation
point space carved by the limit constraints. For each parcel, the engine can in principle
perform an exhaustive search over the joint space of all possible adaptation choices for all
the constituent components. For each candidate decision point, the engine first evaluates
the limit constraint metrics to see if they are satisfied. Limit constraints in both the
outbound constraints specification (from the receiver side) as well as the resource
descriptor (from the content creator side) are considered. If all limit constraints are
satisfied, the single optimization metric is evaluated. The optimum decision point is one
that not only satisfies all the limit constraints but also maximizes or minimizes the
optimization metric over all cases also satisfying the limit constraints.

When only limit constraints are specified but no optimization constraint, there is no
unique solution. Normally, the adaptation engine assumes a default optimization
constraint. Note however, that the actual decision making algorithm is not a part of the
proposed framework. The SSM framework involves ways to convey all the information
needed to make decisions, and how the adaptation is to be conducted once decisions have
been made. However, there is no restriction on the decision making process.

5.2.4 Unstructured and SSM type requests
While our primary motivation is to cater to SSM-model compliant content that

maintains dependencies between atoms as discussed in Section 3.4, the methodology for
specification of adaptation requests has been extended to cater to unstructured content
too. Specifically, the adaptation request for each parcel in a profile can be either SSM
type or unstructured type. In an unstructured type request, arbitrary adaptations not
limited by the dependency structure imposed by the SSM model are allowed. Each atom
is handled independently while ignoring the model dependencies. That is, an arbitrary
subset of atoms from the data cube can be selected and included in the adapted resource
bit-stream. In a SSM model based request, the atoms included for the parcel in the profile
must conform to the dependency structure imposed by the SSM model, and a single
adaptation point essentially determines the subset of atoms to be included, based on the
exclusive/incremental information for each tier.

For a SSM type adaptation variable driven request, the combination of the limit
constraints and an optional optimization constraint yields a single adaptation point that
essentially determines the atoms to be included in each component, based on their model
dependencies. On the contrary, for an unstructured type adaptation varable driven
request, all dependency information is ignored. If only limit constraints are specified and
no optimization constraint, the adapted resource for each component consists of all atoms
that satisfy the limit constraints. If there exists an optimization constraint, then there is
only one solution yielding the maximum and the minimum, and therefore, only the atoms
corresponding to the final solution in all components are included in the adapted
resource.

For structure driven requests, the interpretation of certain XML elements that indicate
a bounding box to include, depends on whether the request type is SSM or unstructured.
For these elements, a point is specified to indicate a group of atoms to be included. For a
SSM type structure driven request, the specified bounding box point is interpreted as a
SSM decision point, and all atoms based on the exclusive/incremental information for
tiers are included. On the contrary, for unstructured type structure driven requests, all

33

atoms in the bounding box, irrespective of exclusive/incremental information for tiers are
included.

6. Mid-stream Adaptation for multiple recipient profiles
If the outbound constraints XML contains exactly one receiver profile, a single

adapted version of each SSM component allowing unambiguous decryption/decoding is
generated and transmitted. This is typically the case when an adaptation engine directly
connects to the eventual recipient.

There is however another scenario where an adaptation engine must adapt and deliver
a bit-stream containing a combination of several profiles for several recipients, to be
eventually extracted by other downstream adaptation engines. In this situation, the former
adaptation engine could send the bounding box containing the different versions for
different receiver profiles, for both exclusive and incremental tiers, which allows re-
adaptation to lower terminal versions downstream. If all atoms within the bounding box
including those that are not used by any of the profiles are sent, it is referred to as mid-
stream adaptation type. Alternatively, atoms unused by all profiles may be dropped from
the bit-stream, thereby saving bandwidth. This type of adaptation is referred to as
terminal. The outbound constraints specification also conveys the type of adaptation
desired. Further, when atoms within the bounding box of profiles are dropped as a
consequence of terminal adaptation, this information is conveyed in the adapted resource
description metadata for use by subsequent adaptation engines.

Consider Figure 14 that shows a delivery chain to two recipients through two
adaptation engines, along with the example of a SSM component. Both recipients convey

Adaptation
Engine B

Recipient 1

Originator
Adaptation
Engine A

SSM-compliant scalable resource bit-stream

Resource description meta-data (XML)

Outbound Constraints from recipients (XML)

Recipient 2

Profile 1

Profile 2

Profile 1+ 2

Terminal
adaptation

Terminal
adaptation

Mid-stream
adaptation

Atom included in bit-stream

Atom outside bounding box of profiles,
excluded from bit-stream in terminal
and mid-stream adaptation types.

Atom inside bounding box of profiles,
excluded from bit-stream in terminal
adaptation type

Adaptation point
 Profile 2

Adaptation point
 Profile 1

Terminal
adaptation

Figure 14. Multi-stage multi-profile adaptation example

34

their profiles in their respective outbound constraints specifications to adaptation engine
B. Engine B aggregates the two profiles into single outbound constraints specification
and forwards it upstream to adaptation engine A, requesting either mid-stream or
terminal adaptation types. The engine A actually decides on the adaptation points for
each profile, and packs the bit-stream using either mid-stream or terminal adaptation type
as requested by engine B, and forwards it to B. On receipt of the bit-stream, B applies the
same profiles to the input stream but individually for each of the two output streams for
the two recipients, performing terminal type adaptation in this case. Since the bit-stream
transmitted by A already contains the optimal decisions for both recipients, the same
optimization over a reduced set of possibilities would yield the same solutions
individually. Hence, engine B is able to extract the bit-stream needed for each recipient,
irrespective of the adaptation type mid-stream or terminal, from its input bit-stream, and
deliver to the recipients. The only difference between the two adaptation types used by
engine A is that the mid-stream type leaves more flexibility for engine B to create further
versions other than those needed by the two recipients, while the terminal type attempts
to minimize the end-to-end redundancy of transmission bandwidth.

An alternative architecture is based on the assumption that the resource descriptor is
available at both adaptation engines before the resource is transmitted through either
engine. In this case, the engine B could do the decision making itself for the two
recipients, and send only a structure-driven adaptation request to engine A. The required
bit-streams are packaged in the same way as in the previous case by engine A and sent
back to B, which then uses single-profile structure-driven terminal adaptations to extract
the appropriate bit-stream for each for delivery to each recipient.

Note that the SSM-enabled multi-step multi-profile architecture above, supports end-
to-end adaptation and delivery of scalable content in a fully codec non-specific manner,
while minimizing overall redundancy in bandwidth.

7. Schemas and semantics (Version 2.0)
In this section we describe the details of version 2.0 of the schemas.

7.1 Common XML Schema
Common XML schema includes the common XML schema data types and structures

that are used by both the resource description XML schema and the outbound constraints
XML schema.

Wrapper of the common XML schema
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="SSMCommon" targetNamespace="SSMCommon"
elementFormDefault="qualified" attributeFormDefault="unqualified">

Adaptation Variable Name Type
<xs:simpleType name="avarType">

<xs:restriction base="xs:Name">
 <xs:pattern value="ssm:avar:\c+" />
</xs:restriction>

</xs:simpleType>

35

Name Explanation
avarType All the adaptation variable names have to start with “ssm:avar:”.

For example, the following are some valid names:
ssm:avar:imageResolution, ssm:avar:codesize.

Component Name Type
<xs:simpleType name="compType">

<xs:restriction base="xs:Name">
 <xs:pattern value="ssm:comp:\c+" />
</xs:restriction>

</xs:simpleType>

Name Explanation
compType All the component names have to start with “ssm:comp:”. For

example, the following are some valid component names:
ssm:comp:myImage, ssm:comp:myAudio

Misc. Data Types
<xs:simpleType name="nonNegativeFloatType">

<xs:restriction base="xs:float">
 <xs:minInclusive value="0" />
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="nonNegativeIntegerListType">

<xs:list itemType="xs:nonNegativeInteger" />
</xs:simpleType>

<xs:simpleType name="indexIntegerListType">

 <xs:list>
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="-1" />
 </xs:restriction>
 </xs:simpleType>
 </xs:list>

 </xs:simpleType>

<xs:simpleType name="positiveIntegerListType">

<xs:list itemType="xs:positiveInteger" />
</xs:simpleType>

<xs:simpleType name="nonNegativeFloatListType">

<xs:list itemType="nonNegativeFloatType" />
</xs:simpleType>

<xs:simpleType name="floatListType">

<xs:list itemType="xs:float" />

36

</xs:simpleType>

Name Explanation
nonNegativeFloatType Floating number type with value greater or equal

to zero
nonNegativeIntegerListType List of integer numbers with values greater or

equal to zero
indexIntegerListType List of integer numbers with values greater or

equal to -1
positiveIntegerListType List of integer numbers with values greater than

zero
nonNegativeFloatListType List of floating numbers with values greater or

equals to zero
floatListType List of floating numbers

Address Types
<xs:simpleType name="addressTypeEnum">
 <xs:restriction base="xs:token">
 <xs:enumeration value="relative" />
 <xs:enumeration value="absolute" />
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="endianTypeEnum">
 <xs:restriction base="xs:token">
 <xs:enumeration value="big" />
 <xs:enumeration value="small" />
 </xs:restriction>
</xs:simpleType>

<xs:attributeGroup name="attrGroupPosAdd">
 <xs:attribute name="start" type="xs:long" use="required" />
 <xs:attribute name="addressType" type="addressTypeEnum" default="absolute" />
</xs:attributeGroup>

<xs:attributeGroup name="attrGroupPosAddLen">
 <xs:attributeGroup ref="attrGroupPosAdd" />
 <xs:attribute name="length" type="xs:unsignedLong" use="required" />
</xs:attributeGroup>

<xs:attributeGroup name="attrGroupPosAddLenBit">
 <xs:attributeGroup ref="attrGroupPosAddLen" />
 <xs:attribute name="bitPos" type="xs:unsignedByte" default="0" />
 <xs:attribute name="signed" type="xs:boolean" default="true" />
 <xs:attribute name="endian" type="endianTypeEnum" default="big" />
</xs:attributeGroup>

Name Explanation
addressTypeEnum Type used to indicate the address type. Possible values

37

are: relative and absolute
endianTypeEnum Type used to indicate the endian type for the value.

Possible values are: big and small. big means big endian,
and small means small endian.

attrGroupPosAdd This attribute group includes two attributes:
start: Mandatory attribute. Long integer indicates the
starting address.
addressType: Optional attribute with default value
absolute. Use type addressTypeEnum described
above. If the value is absolute, it indicates that the start
address is absolute address. If the value is relative, it
indicates that the start address is relative address.

attrGroupPosAddLen This attribute group includes the attribute group
attrGroupPosAdd described above, and plus one
additional mandatory attribute:
length: Unsigned long integer indicates the length of
the segment in bits or bytes depending on the context.

attrGroupPosAddLenBit This attribute group includes the attribute group
attrGroupPosAddLen described above, and plus the
following additional optional attributes:
bitPos: Unsigned byte integer indicates the starting bit
position of the address. Default value is 0. If the value is
n, it indicates that the address starts at the n-th bit of the
starting address specified by the start attribute and the
address spans the number of bits specified by the
length attribute. It is assumed that the MSB (most
significant bit) of a byte is bit 0 (n = 0), while the LSB
(least significant bit) is bit 7 (n = 7).
signed: Boolean type to indicate if the value that is
stored at the address in the resource is a signed value or
an unsigned value. Default value is true. If the value is a
signed value and is less than 0, the value will be stored
using 2’s compliment.
endian: Use type endianTypeEnum described
earlier. If the attribute value is big, we will use big
endian method for the value stored on the resource. If the
attribute value is small, we will use small endian method
for the value stored on the resource. Default is big.

Operation Types
<xs:simpleType name="operationType">
 <xs:restriction base="xs:token">
 <xs:enumeration value="inverse" />
 <xs:enumeration value="negative" />

38

 <xs:enumeration value="magnitude" />
 <xs:enumeration value="log" />
 <xs:enumeration value="log10" />
 <xs:enumeration value="exp" />
 <xs:enumeration value="power10" />
 <xs:enumeration value="sqr" />
 <xs:enumeration value="sqrt" />
 <xs:enumeration value="clampZ" />
 <xs:enumeration value="boolIsNZ" />
 <xs:enumeration value="boolIsLEZ" />
 <xs:enumeration value="boolIsGEZ" />
 <xs:enumeration value="boolNOT" />
 <xs:enumeration value="add" />
 <xs:enumeration value="subtract" />
 <xs:enumeration value="absdiff" />
 <xs:enumeration value="multiply" />
 <xs:enumeration value="divide" />
 <xs:enumeration value="maximum" />
 <xs:enumeration value="minimum" />
 <xs:enumeration value="average" />
 <xs:enumeration value="boolOR" />
 <xs:enumeration value="boolAND" />
 <xs:enumeration value="boolXOR" />
 <xs:enumeration value="selector" />
 </xs:restriction>
</xs:simpleType>

Name Explanation
operationType All the operations that are supported. The operands are

taken by popping elements from an expression stack.

The following operators take one operand v, obtained by
popping the stack:
inverse: for value v, the result is 1/v
negative: for value v, the result is –v.
magnitude: for a positive value v, v will be returned; for a
negative value v, –v will be returned.
log: for a value v, the result is the natural logarithm of v
log10: for a value v, the result is the base-10 logarithm of v
exp: for a value v, the result is the exponential value ev.
power10: for a value v, the result is10 raised to the power of
v,10v.
sqr: for a value v, the result is v2
sqrt: for a value v, the result is the square root of v.
clampZ: for a positive value v, v will be returned; for a
negative value v, 0 will be returned.
boolIsNZ: for a value v, when v is not zero, the result is 1,
otherwise the result is 0.
boolIsLEZ: for a value v, when v is less than or equal to
zero, the result is 1, otherwise the result is 0.

39

boolIsGEZ: for a value v, when v is greater than or equal to
zero, the result is 1, otherwise the result is 0.
boolNOT: for a value v, when v is zero, the result is 1,
otherwise, the result is 0.

The following operators take two operands v0 and v1,
obtained by popping the stack in order:
add: for values v0 and v1, the result is v0+v1
subtract: for values v0 and v1, the result is v0-v1
absdiff: for values v0 and v1, the result is the absolute
difference between v0 and v1.
multiply: for values v0 and v1, the result is v0*v1
divide: for values v0 and v1, the result is v0/v1
maximum: for values v0 and v1, the result is the bigger one
from v0 and v1.
minimum: for values v0 and v1, the result is the smaller one
from v0 and v1.
average: for values v0 and v1, the result is the average
between v0 and v1.
boolOR: for values v0 and v1, the result is the logical OR of
v0 and v1
boolAND: : for values v0 and v1, the result is the logical
AND of v0 and v1
boolXOR: : for values v0 and v1, the result is the logical
exclusive OR of v0 and v1

The following operators take three operands v0, v1, and v2,
obtained by popping the stack in order:
selector: for values, v0, v1, and v2, if v0 is not zero, the
result is v1, otherwise, the result is v2

Adaptation/Component Variable And Stack Expression Types
<xs:complexType name="adapVarType">

<xs:attribute name="avar" type="avarType" />
<xs:attribute name="previous" type="xs:boolean" default="false" />

</xs:complexType>

<xs:complexType name="compVarType">

<xs:attribute name="compID" type="compType" />
<xs:attribute name="indType">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="inclusionInd" />
 <xs:enumeration value="layerInd" />
 <xs:enumeration value="origLayersInd" />
 <xs:enumeration value="curLayersInd" />
 </xs:restriction>
 </xs:simpleType>

40

</xs:attribute>
<xs:attribute name="param" type="xs:nonNegativeInteger" />
<xs:attribute name="previous" type="xs:boolean" default="false" />

</xs:complexType>

<xs:complexType name="stackExpnType">

<xs:sequence maxOccurs="unbounded">
 <xs:choice>
 <xs:element name="adapVar" type="adapVarType" />

 <xs:element name="compVar" type="compVarType" />
 <xs:element name="constant">
 <xs:complexType>
 <xs:attribute name="value" type="xs:float" />
 </xs:complexType>
 </xs:element>

 <xs:element name="argument">
 <xs:complexType>
 <xs:attribute name="number" type="xs:nonNegativeInteger" />
 </xs:complexType>
 </xs:element>

 <xs:element name="operation">
 <xs:complexType>
 <xs:attribute name="operator" type="operationType" />
 </xs:complexType>
 </xs:element>
 </xs:choice>
</xs:sequence>

</xs:complexType>

Name Explanation
adapVarType Adaptation variable type used in stack expressions. It includes the

following attributes:
avar: Mandatory attribute indicates the adaptation variable name. It
uses avarType described earlier.
previous: Optional boolean type attribute with default value
equals to false. If the previous attribute is set to be true, it
indicates that we would like to use the adaptation variable value
from the previous parcel.

compVarType Component derived variable type used in stack expressions. It has
the following attributes:
compID: Mandatory attribute indicates the component name. It
uses compType described earlier.
indType: Mandatory attribute has the following possible values:
inclusionInd, layerInd, origLayersInd, and curLayersInd. When
indType is set to be inclusionInd, attribute param is not used. If
the component specified by compID is included in the outbound
adapted resource (i.e. at least one of its atoms is included), the return
value is 1; otherwise it returns 0. If the indType is set to be
layerInd, attribute param is used to indicate the tier index. It will
return the number of layers in this tier that are within the bounding

41

box for an adaptation decision. If the indType is set to be
origLayersInd, attribute param is used to indicate the tier index. It
will return a constant that is equal to the original number of layers in
this tier from the resource prior to all adaptation steps. If the
indType is set to be curLayersInd, attribute param is used to
indicate the tier index. It will return a constant that is equal to the
current number of layers in this tier from the resource prior to the
current adaptation step.
previous: Optional boolean attribute with default value equals to
false. If the previous attribute is set to be true, it indicates that we
would like to use the component derived variable value from the
previous parcel.

stackExpnType Stack expression type could include unlimited number of the
following elements:
adapVar: Use type adapVarType described earlier, and it is the
name of the adaptation variable.
compVar: Use type compVarType described earlier, and it is the
name of the component derived variable.
constant: attribute value indicates a constant floating number
argument: attribute number indicates the argument index
number. Element argument is allowed in the stack expressions
only while defining combination variables.
operation: attribute operator uses type operationType
and indicates the operation we want to perform.
All the child elements of a stack expression will be processed
sequentially from top to bottom. If the child is adapVar or
compVar, the value of the variable will be calculated and pushed to
a value stack. If the child element is constant, the value of the
constant will be push to the value stack. If the child element is
argument, the value of argument n indicated by the number
attribute will be pushed to the value stack. If the child element is
operation, depending on the value of the attribute operator, 1,
2, or 3 values will be popped from the value stack, and used as the
operands with the operator, and the result value will be pushed to the
value stack again. After all the child elements of a stack expression
are processed, there should be one and only one value left in the
value stack, and it would be the final value of the stack expression.

Limit Constraint Types
<xs:attributeGroup name="attrGroupLimits">
 <xs:attribute name="lowLimit" type="xs:float" default="1" />
 <xs:attribute name="highLimit" type="xs:float" default="1" />
</xs:attributeGroup>

<xs:complexType name="limitConstraintType">

42

 <xs:complexContent>
 <xs:extension base="stackExpnType">
 <xs:attributeGroup ref="attrGroupLimits" />
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

Name Explanation
attrGroupLimits Attribute group used to define limit values. It includes the

following optional attributes:
lowerLimit: one floating number is used to define the
lower limit. Default value is 1.
upperLimit: one floating number is used to define the
upper limit. Default value is 1.

limitConstraintType Limit constraint type uses stackExpnType described
earlier with additional attribute group
attrGroupLimits. If the result value from the stack
expression is v, then v has to be equal or greater than the
value of the attribute lowLImit, and also v has to be equal
or less than the value of the attribute highLimit.

Example 1
<limitConstraint lowLimit="400" highLimit="960">
 <ssm:adapVar avar="ssm:avar:imageResolution" />
</limitConstraint>

The above example shows a limit constraint that uses the value of adaptation variable
ssm:avar:imageResolution. If the final value for a particular adaptation point is within the
range of 400 and 960, the limit constraint will be satisfied, otherwise the adaptation point
could not satisfy the limit constraint.

Example 2
<limitConstraint lowLimit="0" highLimit="0">
 <ssm:adapVar avar="ssm:avar:imageResolution" />
 <ssm:adapVar avar="ssm:avar:imageResolution" previous="true" />
 <ssm:operation operator="subtract" />
</limitConstraint>

The above example shows a limit constraint that ensures the value of adaptation variable
ssm:avar:imageResolution for this parcel is the same as the value for the previous parcel.

Optimization Constraint Types
<xs:simpleType name="optimizeType">
 <xs:restriction base="xs:token">
 <xs:enumeration value="maximize" />
 <xs:enumeration value="minimize" />
 </xs:restriction>

43

</xs:simpleType>
<xs:complexType name="optimizationConstraintType">
 <xs:complexContent>
 <xs:extension base="stackExpnType">
 <xs:attribute name="optimize" type="optimizeType" use="required" />
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

Name Explanation
optimizeType There are two possible values for the type:

maximize and minimize
optimizationConstraintType Optimization constraint type uses

stackExpnType described earlier with one
additional mandatory attribute optimize of
type optimizeType to indicate if we want to
maximize or minimize the value of the stack
expression.

Example
<optimizationConstraint optimize="maximize">
 <ssm:constant value="-0.1" />
 <ssm:adapVar avar="ssm:avar:codesize" />
 <ssm:operation operator="multiply" />
 <ssm:adapVar avar="ssm:avar:perceptualRichness" />
 <ssm:operation operator="add" />
</optimizationConstraint>

The above example shows that we would like to maximize the value from the expression:
ssm:avar:perceptualRichness + (ssm:avar:codesize * -0.1)

Adaptation Variable Store Type
<xs:complexType name="adapVarStoreType">
 <xs:sequence maxOccurs="unbounded">
 <xs:choice>
 <xs:element name="storedAdapVar" type="adapVarType" />
 <xs:element name="storedCompVar" type="compVarType" />
 </xs:choice>
 </xs:sequence>
</xs:complexType>

Name Explanation
adapVarStoreType This type is used to specify the adaptation variables or

component derived variables that we would like to store their
values for the next parcel. In other words, these variable values
could be used when evaluating the constraints for the next
parcel. It could have unlimited number of child elements. The
possible child elements include:

44

storedAdapVar: Adaptation variable that we would like to
store its value for the next parcel. Use type adapVarType
described earlier.
storedCompVar: Component derived variable that we would
like to store its value for the next parcel. Use type
compVarType described earlier.

Example
<adapVarStore>
 <ssm:storedAdapVar avar="ssm:avar:imageResolution" />
</adapVarStore>

The above example shows that we would like to store the value of ssm:avar:
imageResolution variable from this parcel, and the value could be used when we evaluate
some expressions in the next parcel.

7.2 Resource description XML Schema

Wrapper of the resource description XML schema
<xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema

xmlns:ssm="SSMCommon" xmlns="SSMDescription"
targetNamespace="SSMDescription" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:import namespace="SSMCommon" schemaLocation="SSMCommon.xsd"/>��

Tier and Tier Element Information Types
<xs:simpleType name="exclusiveModelType">
 <xs:restriction base="xs:token">
 <xs:enumeration value="single" />
 <xs:enumeration value="firstAlways" />
 <xs:enumeration value="lastAll" />
 <xs:enumeration value="firstAlwaysLastAll" />
 </xs:restriction>
</xs:simpleType>

<xs:complexType name="tierElemInfoType">
 <xs:attribute name="exclusiveFlag" type="xs:boolean" default="false" />
 <xs:attribute name="exclusiveModel" type="exclusiveModelType" default="single" />
 <xs:attribute name="numLayers" type="xs:positiveInteger" use="required" />
 <xs:attribute name="origLayers" type="xs:positiveInteger" use="required" />
 <xs:attribute name="tier" type="xs:nonNegativeInteger" use="required" />
</xs:complexType>

<xs:complexType name="compDescriptionDataType">
 <xs:sequence>
 …
 <xs:element name="tierInfo">
 <xs:complexType>
 <xs:sequence>

45

 <xs:element name="tierElemInfo" type="tierElemInfoType" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="numTiers" type="xs:positiveInteger" />
 </xs:complexType>
 </xs:element>
 …
 </xs:sequence>
 …
</xs:complexType>

Name Explanation
exclusiveModelType Type used to describe the behavior model of an exclusive

tier. It has the following possible values:
single: All layers in the exclusive tier will be treated
independently. When a layer is included in the adapted
outbound resource, no other layers need to be included.
firstAlways: The first layer in the exclusive tier is always
included in the adapted outbound resource when any layer is
included.
lastAll: If the last layer of the exclusive tier is included in the
adapted outbound resource, all layers in the tier will be
included.
firstAlwaysLastAll: This model includes the models
firstAlways and lastAll described above.

tierElemInfoType Tier element information type is used to describe the
information in one tier element. It has the following
attributes:
exclusiveFlag: optional. Default value is false. If the
value is true, this tier is exclusive; if the value is false, this
tier is incremental.
exclusiveModel: optional attribute of type
exclusiveModelType described above. Default value is
single. This attribute is only used when the value of the
attribute exclusiveFlag equals to true.
numLayers: mandatory positive integer to indicate the
number of layers in this tier in the current version.
origLayers: mandatory positive integer to indicate the
number of layers in this tier in the original unadapted version.
tier: mandatory non-negative integer to indicate the tier
index.

tierInfo Element in the component to describe the tier information. It
may have unlimited number of tierElemInfo elements
with type tierElemInfoType. It also has a positive
integer attribute numTiers to indicate the total number of
tiers. The value of numTiers should be the same of the
total number of tierElemInfo elements.

46

Example
<tierInfo numTiers="2">
 <tierElemInfo numLayers="4" origLayers="4" exclusiveFlag="false" tier="0" />
 <tierElemInfo numLayers="5" origLayers="5" exclusiveFlag="false" tier="1" />
</tierInfo>

The above example shows there are two tiers in the component, and the first tier has 4
layers, and the second tier has 5 layers. Both tiers have incremental layers.

Component Table of Content Types
<xs:complexType name="atomTocType">
 <xs:sequence>
 <xs:element name="atomTocEntry" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attributeGroup ref="ssm:attrGroupPosAddLen">
 <xs:attribute name="indices" type="ssm:indexIntegerListType" use="required" />
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="atomRemovedFromBBox" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="indices" type="ssm:indexIntegerListType" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attributeGroup ref="ssm:attrGroupPosAdd" />
</xs:complexType>

<xs:complexType name="compDescriptionDataType">
 <xs:sequence>
 …
 <xs:element name="atomToc" type="atomTocType" />
 …
 </xs:sequence>
 …
</xs:complexType>

Name Explanation
atomTocType Component table of content type. It includes the attribute group

ssm:attrGroupPosAdd to indicate the address of a reference for
the table of content in the start attribute and its address type in the
addressType attribute. If the address type is relative, the reference
address of the table of content is relative to the reference address of the
table of content in the previous component. If the component is the
first one in the parcel, then its reference address is relative to that of
the last component in the previous parcel. If the component is the first
one in the parcel, and the parcel is the first one in the resource, then
the reference address is relative to 0.
atomTocType may have unlimited number (including zero) of child

47

elements atomTocEntry. Each atomTocEntry describes one
entry in the table of content and it includes the attribute group
ssm:attrGroupPosAddLen and one additional mandatory
attribute indices. If the address type of atomTocEntry is
relative, it means that the starting address of the atomTocEntry is
relative to the reference address of the table of content. The sole
purpose of the reference address in atomTOCType is to provide the
location of its constituent atomTOCEntry elements relative to it.
Attribute indices is used to indicate the indices for the table of
content entry and is a list of integers with values greater or equal to -1.
The number of values in the list should be the same as the number of
dimensions(tiers) in the component. It is possible that multiple
atomTocEntry elements have the same indices, or some indices do
not have any corresponding atomTocEntry element defined. When
–1 is used as one or more of the indices in the indices integer list, it
means that these coordinates are regarded as don’t cares. The atom
needs to be included in the adapted outbound resource when a regular
atom with the same coordinates for the non-don’t care coordinates, are
included. For example, atom (i,j,–1) is included whenever atom (i,j,n)
is included for all n>=0.
AtomTocType may also have any number (including zero) of child
element atomRemovedFromBBox, which has one mandatory
attribute indices. The attribute is used to indicate the indices for the
atom within the bounding box that is removed from the outbound
adapted resource and is a list of integers with values greater or equal to
–1.

 atomToc Element in the component of type atomTocType to describe the
table of content. Each component has one such element.

Example
<atomToc start="0" addressType="absolute">
 <atomTocEntry indices="0 0" start="15000" addressType="relative" length="512" />
 <atomTocEntry indices="0 1" start="15600" addressType="relative" length="360" />
 <atomTocEntry indices="0 2" start="16347" addressType="relative" length="2000" />
 <atomTocEntry indices="0 3" start="18400" addressType="relative" length="2536" />
 <atomTocEntry indices="0 4" start="21506" addressType="relative" length="3078" />
 <atomTocEntry indices="1 0" start="25000" addressType="relative" length="1006" />
 <atomTocEntry indices="1 1" start="26120" addressType="relative" length="1878" />
 <atomTocEntry indices="1 2" start="27303" addressType="relative" length="2663" />
 <atomTocEntry indices="1 3" start="30000" addressType="relative" length="3549" />
 <atomTocEntry indices="1 4" start="36000" addressType="relative" length="4812" />
 <atomTocEntry indices="2 0" start="40904" addressType="relative" length="1470" />
 <atomTocEntry indices="2 1" start="42655" addressType="relative" length="2351" />
 <atomTocEntry indices="2 2" start="45101" addressType="relative" length="3534" />
 <atomTocEntry indices="2 3" start="48709" addressType="relative" length="4915" />
 <atomTocEntry indices="2 4" start="53810" addressType="relative" length="6002" />
 <atomTocEntry indices="3 0" start="60000" addressType="relative" length="2029" />
 <atomTocEntry indices="3 1" start="62029" addressType="relative" length="3147" />

48

 <atomTocEntry indices="3 2" start="65200" addressType="relative" length="4258" />
 <atomTocEntry indices="3 3" start="69458" addressType="relative" length="5307" />
 <atomTocEntry indices="3 4" start="74819" addressType="relative" length="7003" />
</atomToc>

The above example shows that the reference address of the table of content uses absolute
address type. All the entries in the table of content use relative address type. The resource
data chunk B(2,3) starts at 48709+0 = 48709 and has length of 4915 bytes. There is no
atom that is removed within the bounding box.

Component Description Data Type
<xs:complexType name="compDescriptionDataType">
 <xs:sequence>
 <xs:element name="tierInfo">
 …
 </xs:element>
 <xs:element name="atomToc" type="atomTocType" />
 </xs:sequence>
 <xs:attribute name="compID" type="ssm:compType" use="required" />
</xs:complexType>

Name Explanation
compDescriptionDataType Component description data type. It has one

mandatory attribute compID to indicate the
component name. It has the following elements:
tierInfo: Tier information described earlier.
atomToc: Table of content information described
earlier.

Example
<component compID="ssm:comp:myAudio">
 <tierInfo numTiers="1">
 <tierElemInfo numLayers="6" origLayers="6" exclusiveFlag="false" tier="0" />
 </tierInfo>
 <atomToc start="90000" addressType="relative">
 <atomTocEntry indices="0" start="1178" addressType="relative" length="789" />
 <atomTocEntry indices="1" start="1967" addressType="relative" length="1745" />
 <atomTocEntry indices="2" start="3825" addressType="relative" length="2840" />
 <atomTocEntry indices="3" start="6778" addressType="relative" length="4173" />
 <atomTocEntry indices="4" start="10951" addressType="relative" length="5281" />
 <atomTocEntry indices="5" start="16378" addressType="relative" length="6989" />
 </atomToc>
</component>

The above example shows the information of the component ssm:comp:myAudio. The
component has one tier and the tier has 6 incremental layers. Its table of content reference
is at address (90000 + the starting reference address of the table of content in the previous
component). The table of content has 6 entries. For example, the atom B(4) starts at (

49

10951 + the reference address of the table of content of this component) and is 5281
bytes long.

Feature and Feature Distribution Types
<xs:complexType name="marginalDistType">
 <xs:simpleContent>
 <xs:extension base="ssm:nonNegativeFloatListType">
 <xs:attribute name="dims" type="xs:positiveInteger" />
 <xs:attribute name="dimToTierMap" type="ssm:nonNegativeIntegerListType" use="required"
/>
 <xs:attribute name="distType">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="nonDecreasing" />
 <xs:enumeration value="nonIncreasing" />
 <xs:enumeration value="nonMonotonic" />
 <xs:enumeration value="constant" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

<xs:complexType name="featureDistType">
 <xs:sequence>
 <xs:element name="marginalDist" type="marginalDistType" maxOccurs="unbounded" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="featureDataType">
 <xs:sequence>
 <xs:element name="components">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="component" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="compID" type="ssm:compType" />
 <xs:attribute name="numLayers" type="ssm:positiveIntegerListType" use="optional"
/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="refFeatureValue" type="ssm:nonNegativeFloatType" />
 <xs:element name="emptyFeatureDist" type="ssm:nonNegativeFloatType" />
 <xs:element name="featureDist" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="featureDistType">
 <xs:attribute name="emptyComponentTiers" type="ssm:nonNegativeIntegerListType"
default="" />
 </xs:extension>
 </xs:complexContent>

50

 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="avar" type="ssm:avarType" use="required" />
</xs:complexType>

Name Explanation
marginalDistType Marginal distribution type has its content of type

nonNegativeFloatListType with the following
additional attributes:
dims: positive integer to indicate the number of dimensions in
the marginal distribution.
dimToTierMap: Non-negative integer list to indicate the tier
indices that are included in the marginal distribution. The
number of non-negative integers in the list should be the same
as the value for the attribute dims.
distType: distribution type with the following possible
values: nonDecreasing, nonIncreasing, nonMonotonic, constant.
For a constant type distribution, it indicates that the marginal
distribution will always contain a single constant floating
number. The number of values in the floating-point list should
be the same as the product of the dimensions in the included
tiers, unless distType equals to constant, in which case there
is only one. Further the scan order for the values assume that the
last tier specified in the dimToTierMap attribute is traversed
first (i.e. constitutes the innermost loop), and then the second
last, and so on.

featureDistType Feature distribution type could include unlimited
marginalDist elements. marginalDist uses
marginalDistType. Together however, they should cover all the
tiers. That is, the sum of the values of the attribute dims in all
marginalDist should be the same as the number of the total
tiers from all the components used in the feature.

components Element components could have unlimited number of child
element component. Each component has the following
attributes:
compID: Used to specify the component name. The specified
components are those over which the feature distribution is
defined jointly.
numLayers: Optional attribute. The value of the attribute is a
list of positive integers to indicate the number of layers in the
tiers of the component. For a global feature, if the attribute
numLayers is not specified, the value of the attribute
origLayers in the tierElemInfo element in the
component is used to determine the number of layers in the
compoent. For a feature within a parcel, if the attribute

51

numLayers is not specified, the value of the attribute
numLayers in the tierElemInfo element in the
component is used to determine the number of layers in the
component. For a feature within a parcel, if the numLayers
attribute is specified, these values take precedence over those
provided in the attribute numLayers in the tierElemInfo
element in the component, and the interpretation of the
distribution is based on the former. In this case however, the
values in attribute numLayers should be at least as big as
the values in attribute numLayers in the tierElemInfo
element.

featureDataType This type is used to specify feature adaptation variables that
involve one or more than one components (product features). It
has the following child elements:
components: described above. The specified components are
those over which the feature distribution is defined jointly.
refFeatureValue: non-negative floating number to indicate
the reference feature value. The feature distribution value will
be multiplied by the reference feature value to become the final
feature value.
emptyFeatureDist: non-negative floating number to
indicate the feature distribution value when none of the
components is included in the outbound adapted resource, i.e. all
atoms are dropped from all components.
featureDist: An unlimited number of children elements
featureDist could be specified. Each is of type
featureDistType with one additional attribute
emptyComponentTiers of type non-negative integer list
attribute. The list indicates the tiers for components that are not
included in the outbound adapted resource, and has a default
value of “”.
The semantics is that if the feature has N components specified
under components element, the number of featureDist
elements should be exactly 2N-1, to cover all the cases where at
least one component is included. The case when all components
are excluded has been covered by the emptyFeatureDist
element. The tier mapping for the product distribution is zero-
based and obtained by concatenating the tiers for the
components in the order in which they are specified. The tiers
specified in the emptyComponentTiers attribute of each
featureDist are based on this mapping, and should include
all tiers of all the components that are considered empty for that
distribution. The marginalDist elements used to specify
each featureDist must together cover all its non-empty
tiers.

52

Element featureDataType also has the following
mandatory attribute:
avar: adaptation variable name

Example 1
<feature avar="ssm:avar:imageResolution">
 <components>
 <component compID="ssm:comp:myImage" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>0.0</emptyFeatureDist>
 <featureDist>
 <marginalDist dims="1" dimToTierMap="0" distType="nonDecreasing">100 200 400
800</marginalDist>
 <marginalDist dims="1" dimToTierMap="1" distType="constant">1.0</marginalDist>
 </featureDist>
</feature>

The above example specifies an adaptation feature ssm:avar:imageResolution. The
feature uses the component ssm:comp:myImage. The reference feature value is 1.0, and
the all-empty feature distribution value is 0.0. If the component is not included in the
outbound adapted resource, the final feature value will be 1.0 * 0.0 = 0. If the component
originally has two tiers, and there are 4 layers in the first tier and there are 5 layers in the
second tier, and if we use (2,3) as the adaptation point, the feature will return 1.0 * 400 *
1.0 = 400 as the feature value.

Example 2
<feature avar="ssm:avar:imageCodesize">
 <components>
 <component compID="ssm:comp:myImage" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>0.0</emptyFeatureDist>
 <featureDist>
 <marginalDist dims="2" dimToTierMap="0 1" distType="nonDecreasing">120 240 350 400 580
240 300 420 510 625 315 456 600 720 800 378 526 720 823 999</marginalDist>
 </featureDist>
</feature>

The above example specifies an adaptation feature ssm:avar:imageCodesize. The feature
uses the component ssm:comp:myImage. The reference feature value is 1.0, and the all-
empty feature distribution value is 0.0. If the component is not included in the outbound
adapted resource, the final feature value will be 1.0 * 0.0 = 0. If the component originally
has two tiers, with 4 layers in the first tier (tier 0) and 5 layers in the second tier (tier 1),
and if we use (2,3) as the adaptation point, the feature will return 1.0 * 720 = 720 as the
feature value. If we use (3,4) as the adaptation point, the feature will return 1.0 * 999 =
999 as the feature value.

Example 3

53

<feature avar="ssm:avar:perceptualRichness">
 <components>
 <component compID="ssm:comp:myImage" />
 <component compID="ssm:comp:myAudio" />
 </components>
 <refFeatureValue>10.0</refFeatureValue>
 <emptyFeatureDist>0.0</emptyFeatureDist>
 <featureDist emptyComponentTiers="0 1">
 <marginalDist dims="1" dimToTierMap="2">1 2 3 5 8 10</marginalDist>
 </featureDist>
 <featureDist emptyComponentTiers="2">
 <marginalDist dims="1" dimToTierMap="0">1 1.2 1.5 2</marginalDist>
 <marginalDist dims="1" dimToTierMap="1">1 2 3 4 4.5</marginalDist>
 </featureDist>
 <featureDist>
 <marginalDist dims="3" dimToTierMap="0 1 2">1 2 3 4 4 5 2 3 3 4 5 5 2 3 3 4 5 6 3 3 4 4 5 6 3 3 4 5
6 6 3 4 5 6 6 7 4 5 5 6 7 7 4 5 5 6 7 8 5 5 6 6 7 8 5 5 6 7 8 8 6 7 8 9 9 10 7 8 8 9 10 10 7 8 8 9 10 11 8 8 9 9
10 11 8 8 9 10 11 11 11 12 13 14 14 15 12 13 13 14 15 15 12 13 13 14 15 16 13 13 14 14 15 16 13 13 14
15 16 16</marginalDist>
 </featureDist>
</feature>

The above example specifies an adaptation feature ssm:avar:perceptualRichness. The
product feature involves two components, ssm:comp:myImage and ssm:comp:myAudio.
The reference feature value is 10.0, and the all-empty feature distribution value is 0.0. If
neither one of the two components is included in the outbound adapted resource, the final
feature value will be 10.0 * 0.0 = 0. Let’s assume that the component ssm:comp:myImage
has two tiers, and originally there are 4 layers in the first tier and there are 5 layers in the
second tier, and the component ssm:comp:myAudio has one tier, and there are originally
6 layers in that tier. If component ssm:comp:myImage is not included in the outbound
adapted resource, we will use the first featureDist to calculate the feature value. If
component ssm:comp:myAudio is not included in the outbound adapted resource, we will
use the second featureDist to calculate the feature value. If both of them are included, we
use the third featureDist to calculate the feature value.

Combination Adaptation Variable Type
<xs:complexType name="combAvarType">
 <xs:complexContent>
 <xs:extension base="ssm:stackExpnType">
 <xs:attribute name="avar" type="ssm:avarType" use="required" />
 <xs:attribute name="numArguments" type="xs:nonNegativeInteger" default="0" />
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

Name Explanation
combAvarType Combination adaptation variable type is based on type

ssm:stackExpnType with the following attributes:
avar: Mandatory attribute used to indicate the name of the

54

combination adaptation variable.
numArguments: optional attribute. The non-negative number
indicates the total number of arguments the combination adaptation
variable uses. Default value is 0. The combination adaptation
variables used as the stored variables should take zero arguments.

Example 1
<globalCombAvar avar="ssm:avar:myImageImpliesAudio">
 <ssm:compVar compID="ssm:comp:myAudio" indType="inclusionInd" />
 <ssm:compVar compID="ssmc:comp:myImage" indType="inclusionInd" />
 <ssm:operation operator="boolNOT" />
 <ssm:operation operator="boolOR" />
</globalCombAvar>

The above example shows that the combination adaptation feature ssm:avar:
myImageImpliesAudio has 4 child elements. This combination feature indicates that if
component ssm:comp:myImage is included in the outbound adapted resource, component
ssm:comp:myAudio has to be also included in the outbound adapted resource. If both
component ssm:comp:myAudio and ssm:comp:myImage are included in the outbound
adapted resource, the feature will return ((NOT true) OR (true) = true as the final feature
value. If neither one of them is included, it will return ((NOT false) OR (false)) = true as
the final return value. If ssm:comp:myAudio is included, but not ssm:comp:myImage, it
will return ((NOT false) OR (true)) = true as the final return value. If
ssm:comp:myImage is included, but not ssm:comp:myAudio, it will return ((NOT true)
OR (false)) = false as the final return value.

Example 2
<globalCombAvar avar="ssm:avar:lagrangian" numArguments="2">
 <ssm:adapVar avar="ssm:avar:audioDistortion" />
 <ssm:adapVar avar="ssm:avar:imageDistortion" />
 <ssm:argument number="0" />
 <ssm:operation operator="multiply" />
 <ssm:operation operator="add" />
 <ssm:adapVar avar="ssm:avar:codesize" />
 <ssm:argument number="1" />
 <ssm:operation operator="multiply" />
 <ssm:operation operator="add" />
</globalCombAvar>

The above example shows that the combination adaptation variable ssm:avar: lagrangian
uses 2 arguments. This combination adaptation variable will return the value from the
following statement:
(argument1*ssm:avar:codesize) + {(argument0*ssm:avar:imageDistortion) +
ssm:avar:audioDistortion)}

55

LUT (Look Up Table) Adaptation Variable Type
<xs:complexType name="LUTAvarType">
 <xs:sequence>
 <xs:element name="axisValues" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="grid" type="ssm:floatListType" use="required" />
 <xs:attribute name="axis" type="xs:nonNegativeInteger" use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element name="content">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="marginalDist" type="marginalDistType" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="numAxes" type="xs:positiveInteger" default="1" />
 <xs:attribute name="avar" type="ssm:avarType" use="required" />
 <xs:attribute name="interpolationMethod" default="linear">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="linear" />
 <xs:enumeration value="round" />
 <xs:enumeration value="ceil" />
 <xs:enumeration value="floor" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
</xs:complexType>

Name Explanation
axisValues axisValues element is used to describe the axis values in the

lookup table (LUT). It has the following mandatory attributes:
grid: The values of the attribute is a list of floating numbers to
indicate the grid values for the axis. The values in the list are in strictly
ascending order. The total number of values in the list plus 2
determines the dimension of the grid. The dimension will be used to
interpret the list in the LUT content.
axis: Non-negative number to indicate the index of the axis.

content Content in the LUT has unlimited number of child element
margianlDist of type marginalDistType described earlier.

LUTAvarType Lookup table adaptation variable type. It has any number of child
element axisValues described earlier, and one child element
content described earlier. It also has the following attributes:
numAxes: positive integer to indicate the total number of axes in the
LUT. Default value is 1. The number should be the same as the total
number of child element axisValues.
avar: Adaptation variable name.
interpolationMethod: interpolation method that will be used when the

56

input values fall between the grid values. Possible values are: linear,
round, ceil, and floor. Default value is linear.

Example
<globalLUTAvar avar="ssm:avar:lagrangianLUT" numAxes="2">
 <axisValues axis="0" grid="25 50 100" />
 <axisValues axis="1" grid="10 30 100 300" />
 <content>
 <marginalDist dims="2" dimToTierMap="0 1">0.9 0.8 0.7 0.6 0.5 0.4 0.8 0.7 0.6 0.5 0.4 0.3 0.7 0.6 0.5
0.4 0.3 0.2 0.6 0.5 0.4 0.3 0.2 0.1 0.5 0.4 0.3 0.2 0.1 0.1</marginalDist>
 </content>
</globalLUTAvar>

The above example shows that the LUT adaptation variable ssm:avar:lagrangianLUT
uses 2 axes. The first axis has 3 grid values and the dimension for it is 3+2=5. The second
axis has 4 grid values and the dimension for it is 4+2=6. In the marginal distribution,
there should be 5*6=30 values in the list. If the input arguments for the LUT adaptation
variable are 25 and 10, the adaptation variable will return 0.7 as the value

Resoruce Edit Type
<xs:complexType name="resourceEditType">
 <xs:complexContent>
 <xs:extension base="ssm:stackExpnType">
 <xs:attributeGroup ref="ssm:attrGroupPosAddLenBit" />
 <xs:attribute name="outLength" use="optional">
 <xs:simpleType>
 <xs:union memberTypes="ssm:avarType xs:nonNegativeInteger" />
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

Name Explanation
resourceEditType Resource edit type is used to specify how we would like to edit

the resource. It is based on type ssm:stackExpnType
explained earlier. The value of the stack expression will be used
to update the resource. The value of the stack expression will be
performed against the final adapted bounding box for the
resource. The adaptation variables or the component variables in
the stack expression should not have attribute previous set to
true. It means that we can only use the adaptation variable
values for this parcel to undate the resource, not the adaptation
variable values from the previous parcel.
resourceEditType has the following attribute group and
attribute:
ssm:attrGroupPosAddLenBit: This attribute group was
explained earlier. It includes the starting address, address type,

57

starting bit position, the total length in bits, its endian type, and
whether it is signed or unsigned. If the address type is relative, it
indicates that the starting address of the location where we
would like to edit the resource is relative to the previous
resourceEdit entry. If the entry is the first one in the parcel,
then it’s relative to the last resourceEdit in the previous
parcel. If this is the first parcel, then it’s relative to 0.
outLength: optional attribute. If the attribute is not specified,
it means that the length after editing the resource is the same as
the length before the editing. The value of the outLength
could be specified in two ways. One way is to use a non-
negative integer to indicate the number of bits after the editing.
If the value is set to 0, it means we would like to remove the
resourceEdit entry from the resource. The other way is to use an
adaptation variable to specify the attribute value. However, the
stack expression in the adaptation variable should not have
attribute previous set to true.

Example
<resourceEdit start="10000" addressType="absolute" length="8">
 <ssm:compVar compID="ssm:comp:myImage" indType="layerInd" param="0" />
</resourceEdit>

The above example shows that we would like to store the component variable layerInd
for tier 0 of component ssm:comp:myImage in the resource starting at address 10000 and
the total length spanning 8 bits.

Offset Reference Data Type
<xs:simpleType name="invalidPointerHandlingType">
 <xs:restriction base="xs:token">
 <xs:enumeration value="moveUp" />
 <xs:enumeration value="moveDown" />
 <xs:enumeration value="zeroOut" />
 </xs:restriction>
</xs:simpleType>

<xs:complexType name="offsetReferenceDataType">
 <xs:sequence>
 <xs:element name="offsetEntry" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="value" type="xs:long" use="required" />
 <xs:attributeGroup ref="ssm:attrGroupPosAddLenBit" />
 <xs:attribute name="invalidPointerHandling" type="invalidPointerHandlingType"
default="moveUp" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attributeGroup ref="ssm:attrGroupPosAdd" />

58

 <xs:attribute name="invalidPointerHandling" type="invalidPointerHandlingType" default="moveUp"
/>
</xs:complexType>

<xs:element name="SSMDescription">
 …
 <xs:element name="codecOffsetData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="offsetReference" type="offsetReferenceDataType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 …
</xs:element>

Name Explanation
invalidPointerHandlingType Type used to indicate how to handle a pointer

that points to a dropped byte. There are three
possible values: moveUp, moveDown, and
zeroOut. moveUp means we will move the
pointer to point to the next valid byte. moveDown
means we will move the pointer to the previous
valid byte. zeroOut means we will set the pointer
to zero.

offsetEntry Element used to describe one offset entry. Each
offsetEntry uses attribute group
ssm:attrGroupPosAddLenBit to specify
the location and length in bits, the starting bit
position of the entry, its endian type and its
signed/unsigned type. If the value of attribute
addressType in the attribute group is relative,
it means that the starting address of the entry is
relative to the starting address of the parent offset
reference element. The offset value stored in the
resource is always relative to the starting address
of the starting address of the parent offset
reference element.
Each offsetEntry also has the following
additional attributes:
value: This attribute value will be the same
value on the resource pointed by the
offsetEntry.
invalidPointerHandling. The attribute is
used to specify how we would like to handle
when the value points to a dropped byte. It uses
type invalidPointerHandlingType

59

described earlier. Default value is moveUp.
offsetReferenceDataType Type used to describe the offset reference. Each

may have any number of child element
offsetEntry described earlier.
Each offsetReference element uses
attribute group ssm:attrGroupPosAdd to
indicate the starting address of the
offsetReference, and its address type using
attributes start and addressType in the
attribute group respectively. If the value of
attribute addressType in the attribute group is
relative, the starting address is relative to the
starting address of the previous offset reference;
if the offset reference is the first one, it is relative
to 0.
invalidPointerHandling: uses type
invalidPointerHandlingType described
earlier. If the offset reference points to a dropped
byte, the attribute value will determine how we
handle the invalid pointer. Default value is
moveUp.

codecOffsetData Used in resource description to describe codec
offset data. It may have any number (including
zero) of child element offsetReference
with type offsetReferenceDataType
described earlier. If there are no codec offset data
to specify, the codecOffsetData element
could be dropped.

Example
<codecOffsetData>
 <offsetReference start="85000" addressType="relative">
 <offsetEntry value="10000" start="2" length="16" addressType="relative"
invalidPointerHandling="moveUp" />
 <offsetEntry value="20000" start="4" length="16" addressType="relative"
invalidPointerHandling="moveUp" />
 </offsetReference>
 <offsetReference start="3000" addressType="relative">
 <offsetEntry value="-8000" start="2" length="20" addressType="relative"
invalidPointerHandling="moveUp" />
 <offsetEntry value="30000" start="4" bitPos="4" length="20" addressType="relative"
invalidPointerHandling="moveUp" />
 <offsetEntry value="50000" start="7" length="20" addressType="relative"
invalidPointerHandling="moveUp" />
 </offsetReference>
</codecOffsetData>

The codec offset data has two offset references and the first one has two entries and the
second one has three entries. The first offset reference starts at address 85000+0=85000,

60

and the second offset reference starts at address 3000+85000=88000. The last offset entry
in the second offset reference starts at address 7+88000=88007, and lasts for 20 bits. The
value stored at address 88007 will be the relative address to 88000, and is treated as
signed value.

Sequence Data Type
<xs:complexType name="sequenceDataType">
 <xs:sequence>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="writeField" minOccurs="0">
 <xs:complexType>
 <xs:attributeGroup ref="ssm:attrGroupPosAddLenBit" />
 <xs:attribute name="type" default="count">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="count" />
 <xs:enumeration value="seqValue" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="countField">
 <xs:complexType>
 <xs:attributeGroup ref="ssm:attrGroupPosAddLenBit" />
 <xs:attribute name="write" type="xs:boolean" default="true" />
 </xs:complexType>
 </xs:element>
 <xs:element name="subSequence" type="sequenceDataType" />
 <xs:element name="countOnly">
 <xs:complexType />
 </xs:element>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="startValue" type="xs:long" use="optional" default="0" />
 <xs:attribute name="stepValue" type="xs:long" use="optional" default="1" />
 <xs:attribute name="modulo" type="xs:long" use="optional"/>
 <xs:attribute name="pack" type="xs:boolean" use="optional" default="true" />
 <xs:attribute name="relativeStart" type="xs:boolean" use="optional" default="true" />
</xs:complexType>

<xs:element name="SSMDescription">
 …
 <xs:element name="sequencetData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="sequence" type="sequenceDataType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 …
</xs:element>

61

Name Explanation
sequenceDataType Type used to describe the sequence data. It can

have the following attributes:
startValue: Optional long integer with
default value to be 0. The start value of the
sequence data.
stepValue: Optional long integer with default
value to be 1. The step value of the sequence
data. The sequence value will be incremented by
the step value for each child element including
countField, subSequence, and
countOnly elements.
modulo: Optional long integer to indicate the
modulo value of the sequence. If the sequence
value equals to or exceeds the modulo value, we
will use the remainder (modulus) obtained by
dividing the sequence value into the modulo
value as the new sequence value.
pack: Optional boolean attribute with default
value to be true. If the value is true, when the
child element (countField or
subSequence) of the sequence data pointing to
dropped field on the resource, the child element
would be removed from the sequence data. If the
value is false, when the child element
(countField or subSequence) of the
sequence data pointing to dropped field on the
resource, the child element would be changed to
countOnly element.
relativeStart: Optional boolean attribute
with default value to be true. The attribute is used
when the sequenceDataType is used as a
sub-sequence within a parent sequence data. If
the value of the attribute relativeStart is
true, the start value of the sequence data would
be (the value of attribute startValue + the
last sequence data of the parent sequence + the
step value of the parent sequence). If the value of
the attribute relativeStart is false, the start value
of the sequence data would be the value of the
attribute startValue.

sequenceDataType can have unlimited
number of the following child elements:

62

writeField:It is used to store the current
count of the sequence or the current sequence
value to the specific location on the resource.
writeField uses attribute group
attrGroupPosAddLenBit to indicate the
location, length, and address type of the field
where we would like to write the value to. If the
address type is relative, it means the starting
address is relative to the previous countField
or writeField element or the last element in
the previous subSequence element. If the
writeField is the first one in the sequence, it
means that the starting address of the field is
relative to the last field in the parent sequence. If
there is no parent sequence, it means that the
starting address is relative to 0. The attribute
type is an optional attribute with default value
to be count. If the value of the attribute type is
count, we would write the current count of child
elements up till this writeField including
countField, subSequence, and
countOnly elements. If the value of the
attribute type is seqValue, we will write the
current sequence value up till this writeField
to the resource. However, the sequence value will
not be incremented for this writeField.

countField: Indicate a count field in the
sequence. It uses attribute group
attrGroupPosAddLenBit to indicate the
location, length, and the address type of the field
where we would like to write the sequence data
to. If the address type is relative, it means the
starting address is relative to the previous
countField or writeField element or the
last element in the previous subSequence
element. If the countField is the first one in
the sequence, it means that the starting address of
the field is relative to the last field in the parent
sequence. If there is no parent sequence, it means
that the starting address is relative to 0. The
attribute write is an optional boolean attribute
with default value to be true. If the value of
attribute write is false, we would not write the

63

sequence data to the resource, we will still
increment the sequence data by the step value for
this countField element.

subSequence: Indicate a sub-sequence within
the sequence data. Uses type
sequenceDataType. We will increment the
sequence data by the step value for this
subSequence element.

countOnly: Indicate a count only field. It
could be the result of a dropped field. No
sequence data will be written to the resource; we
will still increment the sequence data by the step
value for this countOnly element.

sequenceData Used in resource description to describe sequence
data. It may have any number (including zero) of
child element sequence with type
sequenceDataType described earlier. If there
are no sequence data to specify, the
sequenceData element could be dropped.

Example1
<sequence startValue="10" stepValue="2">
 <countField start="10000" length="16" addressType="absolute" />
 <countField start="5000" length="16" addressType="relative" />
 <countField start="1000" length="16" addressType="relative" />
 <countField start="2000" length="16" addressType="relative" />
</sequence>

This example will write value 10 to address 10000, value 12 to address 15000, value 14
to address 16000, and value 16 to address 18000. All fields are two bytes long in the
resource.

Example2
<sequence startValue="0" stepValue="1">
 <countField start="20000" length="8" addressType="absolute" write="false" />
 <countField start="6000" length="8" addressType="relative" write="false" />
 <countField start="4000" length="8" addressType="relative" write="false" />
 <countField start="3000" length="8" addressType="relative" write="false" />
 <writeField start="2000" length="8" addressType="relative" />
 <countField start="4000" length="8" addressType="relative" write="false" />
 <countField start="8000" length="8" addressType="relative" write="false" />
</sequence>

This example will write value 4 to address 35000 for the writeField element, since
there are 4 countField elements in the sequence till this writeField element. The

64

field is one byte long. No other fields will be updated since all the countField
elements have “write” attribute value to be false.

Example3
<sequence startValue="0" stepValue="6">
 <writeField start="60000" length="8" addressType="absolute" type="seqValue" />
 <subSequence startValue="0" stepValue="1" pack="false">
 <countField start="1000" length="8" addressType="relative" write="true" />
 <countField start="1000" length="8" addressType="relative" write="true" />
 <countField start="1000" length="8" addressType="relative" write="true" />
 <countField start="1000" length="8" addressType="relative" write="true" />
 <countField start="1000" length="8" addressType="relative" write="true" />
 <countField start="1000" length="8" addressType="relative" write="true" />
 </subSequence>
 <subSequence startValue="0" stepValue="1" pack="false" relativeStart="false">
 <countField start="1000" length="8" addressType="relative" write="true" />
 <countOnly />
 <countOnly />
 <countField start="1000" length="8" addressType="relative" write="true" />
 <countOnly />
 <countOnly />
 </subSequence>
 <subSequence startValue="0" stepValue="1" pack="false" modulo="8">
 <countField start="60000" length="8" addressType="relative" write="true" />
 <countField start="1000" length="8" addressType="relative" write="true" />
 <countField start="1000" length="8" addressType="relative" write="true" />
 <countOnly />
 <countOnly />
 <countOnly />
 <writeField start="4000" length="8" addressType="relative" type="count" />
 </subSequence>
</sequence>

In this example, we will write value 0 to address 60000 for the writeField element.
The field is one byte long.

For the first sub-sequence, we will write value 0+0=0 to address 61000, value 1 to
address 62000, value 2 to address 63000, …, value 5 to address 66000. All fields are one
byte long.

For the second sub-sequence, since the relativeStart attribute value is false, we
will write value 0 to address 67000, and value 3 to address 68000. All fields are one byte
long.

For the third sub-sequence, since the relativeStart attribute value uses the default
value true, we will write value (12+0) mod 8 = 4 to address 128000, value 5 to address
129000, and value 6 to address 130000. All fields are one byte long. For the writeField
element, since there are 6 child elements including countField and countOnly
elements up till this writeField, we will write value 6 to address 134000.

65

For all three sub-sequences, since the pack attribute values are all false, if any
countField is dropped from adaptation in the sub-sequence, the countField will
be changed to countOnly field. However, since the parent sequence uses pack
attribute default value true, if all countField elements are dropped in the sub-
sequence, the sub-sequence will be removed from the sequence.

SSMDescription
<xs:element name="SSMDescription">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="parcelData">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="parcel" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="componentData">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="component" type="compDescriptionDataType"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 <xs:unique name="compID">
 <xs:selector xpath="component" />
 <xs:field xpath="@compID" />
 </xs:unique>
 </xs:element>

 <xs:element name="featureData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="feature" type="featureDataType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="combAvarData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="combAvar" type="combAvarType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="LUTAvarData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="LUTAvar" type="LUTAvarType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>

66

 </xs:complexType>
 </xs:element>

 <xs:element name="creatorLimitConstraints" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="limitConstraint" type="ssm:limitConstraintType"
minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="adapVarStore" type="ssm:adapVarStoreType"
minOccurs="0" maxOccurs="1" />

 <xs:element name="resourceEditData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="resourceEdit" type="resourceEditType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="parcelID" type="xs:unsignedLong" use="optional" />
 </xs:complexType>
 <xs:unique name="avar">
 <xs:selector
xpath="componentData/component/featureData/feature|combAvarData/combAvar|featureData/featu
re|LUTAvarData/LUTAvar" />
 <xs:field xpath="@avar" />
 </xs:unique>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:unique name="parcelID">
 <xs:selector xpath="parcel" />
 <xs:field xpath="@parcelID" />
 </xs:unique>
 </xs:element>

 <xs:element name="globalFeatureData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="globalFeature" type="featureDataType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="globalCombAvarData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="globalCombAvar" type="combAvarType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>

67

 </xs:complexType>
 </xs:element>

 <xs:element name="globalLUTAvarData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="globalLUTAvar" type="LUTAvarType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="globalCreatorLimitConstraints" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="globalLimitConstraint" type="ssm:limitConstraintType"
minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="codecOffsetData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="offsetReference" type="offsetReferenceDataType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="sequencetData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="sequence" type="sequenceDataType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 </xs:sequence>
 </xs:complexType>
</xs:element>

Name Explanation
parcel Parcel element defines one parcel. A parcel

has the following elements:
componentData: This element my have
unlimited number of child element
component, and each component is of
type compDescriptionDataType
described earlier. All the component names
within one parcel have to be unique.
featureData: This element may have any

68

number (including zero) of child element
feature, and each feature is of type
featureDataType described earlier. The
feature info adaptation variables defined here
apply to this parcel only. If there are no
features to specify, the featureData
element can be dropped.
combAvarData: This element may have
any number (including zero) of child
element combAvar, and each combAvar
is of type combAvarType described
earlier. The combination adaptation variables
defined here apply to this parcel only. If
there are no combination adaptation
variables to specify, the combAvarData
element can be dropped.
LUTAvarData: This element may have any
number (including zero) of child element
LUTAvar, and each LUTAvar is of type
LUTAvarType described earlier. The LUT
adaptation variables defined here apply to
this parcel only. If there are no LUT
adaptation variables to specify, the
LUTAvarData element can be dropped.
All the adaptation variable names in one
parcel including component feature
adaptation variables, product component
feature adaptation variables, combination
adaptation variables, and LUT aadaptation
variables have to be unique.
creatorLimitConstraints: This
element may have any number (including
zero) of child element
limitConstraint, and each
limitConstraint is of type
limitConstraintType described
earlier. All the limit constraints specified
here need to be satisfied for this parcel when
trying to find the optimized bounding box
for the resource. If there is no creator limit
constraint to specify, the
creatorLimitConstraints element
can be dropped.
adapVarStore: Each parcel can have at
most one adapvarStore child element.

69

adapVarStore is of type
adapVarStoreType described earlier.
The values of the adaptation variables or
component variables will be sotred for
possible later use by the next parcel.
resourceEditData: This element may
have any number (including zero) of child
element resourceEdit, and each
resourceEdit is of type
resourceEditType described earlier. If
there are no resourceEdit to specify
here, the resourceEditData element
can be dropped. The element specifies the
resource modification we would like to
perform for this parcel.
Parcel element also has one optional
unsigned long attribute parcelID. All the
parcels in the description xml file must have
unique parcelID values that increase
sequentially. When a parcel does not have a
parcelID attribute, it is assigned a default
parcelID value equal to one greater than
that of the previous parcel. If the first parcel
in a profile does not have a parcelID
attribute, it is assumed to have a default
value of 0.

parcelData parcelData may have unlimited number
of child elements parcel described earlier.

globalFeatureData Global feature adaptation variable data may
have any number (including zero) of child
element globalFeature, and each
globalFeature is of type
featuerInfoType described earlier.
These global feature info adaptation
variables defined here apply to all parcels. If
there are no global features to specify the
globalFeatureData element could be
dropped. Since the global features apply to
all parcels, the numbers of dimensions in the
components as well as the numbers of tiers
in the original resource have to be the same
in all the parcels. The marginal distribution
data in the global feature will not change
after the adaptation. The distribution data
maps to the number of tiers in the original

70

resource.
globalCombAvarData Global combination adaptation variable data

may have any number (including zero) of
child element globalCombAvar, and each
globalCombAvar is of type
combAvarType described earlier. These
global combination adaptation variables
defined here apply to all parcels. If there are
no global combination adaptation variables
to specify the globalCombAvarData
element could be dropped

globalLUTAvarData Global LUT adaptation variable data may
have any number (including zero) of child
element globalLUTAvar, and each
globalLUTAvar is of type
LUTAvarType described earlier. These
global LUT adaptation variables defined
here apply to all parcels. If there are no
global LUT adaptation variables to specify
the globalLUTAvarData element could
be dropped

globalCreatorLimitConstraints Global creator limit constraints may have
any number (including zero) of child
element limitConstraint, and each
limitConstraint is of type
limitConstraintType described
earlier. All the limit constraints specified
here need to be satisfied for all parcels when
trying to find the optimized bounding bo for
the resource. If there is no globl creator limit
constraint to specify, the
creatorLimitConstraints element
can be dropped. Since global limit
constraints apply to all parcels including the
first parcel, we cannot set attribute
previous to true in the stack expression of
the limit constraints.

SSMDescription Root element for the resource description
XML. It has the following child elements
described earlier: parcelData,
globalFeatureData,
globalCombFeatureData,
globalCreatorLimitConstraints,
codecOffsetData, and
sequenceData.

71

Example
<SSMDescription xsi:schemaLocation="SSMDescription SSMDescription.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="SSMDescription"
xmlns:ssm="SSMCommon">
 <parcelData>
 <parcel parcelID="0">
 <componentData>
 <component compID="ssm:comp:myImage">
 …
 </component>
 <component compID="ssm:comp:myAudio">
 …
 </component>
 </componentData>
 <featureData>
 …
 </featureData>
 <combAvarData />
 <resourceEditData>
 …
 </resourceEditData>
 </parcel>
 <parcel parcelID="1">
 <componentData>
 <component compID="ssm:comp:myImage">
 …
 </component>
 <component compID="ssm:comp:myAudio">
 …
 </component>
 </componentData>
 <featureData>
 …
 </featureData>
 <combAvarData />
 <resourceEditData>
 …
 </resourceEditData>
 </parcel>
 </parcelData>
 <globalCombAvarData>
 …
 </globalCombAvarData>
 <globalLUTAvarData>
 …
 </globalLUTAvarData>
 <globalCreatorLimitConstraints>
 <globalLimitConstraint lowLimit="1" highLimit="1">
 <ssm:adapVar avar="ssm:avar:myImageImpliesAudio" />
 </globalLimitConstraint>
 </globalCreatorLimitConstraints>
 <codecOffsetData>
 …
 </codecOffsetData>
 <sequenceData>

72

 …
 </sequenceData>
</SSMDescription>

The above example shows that the resource description includes two parcels, and each
parcel has two components. There is one global creator limit constraint define, and it
requires that the feature value of ssm:avar:myImageImpliesAudio equals 1 for all parcels.

7.3 Outbound constraints XML schema

Wrapper of the outbound constraints XML schema
<xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema

xmlns:ssm="SSMCommon" xmlns="SSMAdapReq"
targetNamespace="SSMAdapReq" elementFormDefault="qualified"
attributeFormDefault="unqualified">

 <xs:import namespace="SSMCommon" schemaLocation="SSMCommon.xsd"/>��

Adaptation Variable Name Type
<xs:simpleType name="profileType">
 <xs:restriction base="xs:Name">
 <xs:pattern value="ssm:prof:\c+" />
 </xs:restriction>
</xs:simpleType>

Name Explanation
profileType All the profilee names have to start with “ssm:prof:”. For example,

the following are some valid names: ssm:prof:terminal-1,
ssm:prof:terminal-2.

Adaptation Types
<xs:complexType name="adapVarDrivenAdaptType">
 <xs:sequence>
 <xs:element name="limitConstraint" type="ssm:limitConstraintType" minOccurs="0"
maxOccurs="unbounded" />
 <xs:element name="optimizationConstraint" type="ssm:optimizationConstraintType"
minOccurs="0" maxOccurs="1" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="structureDrivenAdaptType">
 <xs:sequence>
 <xs:element name="adaptationPoint" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="layers" type="ssm:nonNegativeIntegerListType" use="required" />
 <xs:attribute name="compID" type="ssm:compType" use="required" />
 <xs:attribute name="incType" default="bboxInc">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="bboxDrop" />

73

 <xs:enumeration value="bboxInc" />
 <xs:enumeration value="atomInc" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

Name Explanation
adapVarDrivenAdapType Feature driven adaptation type may have any number

(including zero) of child element
limitConstraint with type
limitConstraintType described earlier. It may
also have zero or one child element
optimizationConstraint with type
optimizationConstratintType described
earlier.

structureDrivenAdapType Structure driven adaptation type may have unlimited
child elements adaptationPoint. Each
adaptationPoint has the following attributes:
layers: Non-negative integer list. The number of
values in the list should be the same as the number of
dimensions (tiers) in the component specified by the
attribute compID.
compID: Mandatory attribute to indicate the
component name which this adaptation point is for.
incType: optional attribute with possible value:
bboxDrop, bboxInc, and atomInc. Default value is
bboxInc. If the value is bboxInc, the values of the
attribute layers are the numbers of layers we would
like to keep in all the tiers. If the value is bboxDrop,
the values of the attribute layers are the numbers of
layers we would like to drop in all the tiers starting
from the original number of layers. If the value is
atomInc, we will include the one atom specified by
the values of the attribute layers.

Example 1
<adapVarDriven>
 <limitConstraint>
 …
 </limitConstraint>
 <limitConstraint>
 …
 </limitConstraint>
 <optimizationConstraint optimize="minimize">

74

 …
 </optimizationConstraint>
</adapVarDriven>

The above example shows that the feature driven adaptation has two limit constraints and
one optimization constraint.

Example 2
<structureDriven>
 <adaptationPoint compID="ssm:comp:myImage" layers="2 2" incType="bboxDrop" />
 <adaptationPoint compID="ssm:comp:myAudio" layers="5" incType="bboxInc" />
</structureDriven>

The above example shows that the structure driven adaptation has two adaptation points.
The first one is for component ssm:comp:myImage, and we want to drop 2 layers in the
first tier and 2 layers from the second tier. The second one is for component
ssm:comp:myAudio, and we want to keep 5 layers in the first tier.

SSMAdapReq
<xs:element name="SSMAdaptReq">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="profile" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="parcel" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:choice>
 <xs:element name="adapVarDriven" type="adapVarDrivenAdaptType" />
 <xs:element name="structureDriven" type="structureDrivenAdaptType" />
 </xs:choice>
 <xs:element name="adapVarStore" type="ssm:adapVarStoreType"
minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 <xs:attribute name="parcelID" type="xs:unsignedLong" use="optional" />
 <xs:attribute name="requestType" default="SSM">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="SSM" />
 <xs:enumeration value="unstructured" />
 <xs:enumeration value="stopProfile" />
 <xs:enumeration value="asIs" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="profileID" type="profileType" />
 </xs:complexType>
 <xs:unique name="parcelID">

75

 <xs:selector xpath="parcel" />
 <xs:field xpath="@parcelID" />
 </xs:unique>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="adaptType" default="terminal">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="terminal" />
 <xs:enumeration value="midstream" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 <xs:unique name="profileID">
 <xs:selector xpath="profile" />
 <xs:field xpath="@profileID" />
 </xs:unique>
</xs:element>

Name Explanation
parcel Parcel may have one child element of either adapVarDriven or

structureDriven. adapVarDriven is of type
adapVarDrivenType described earlier, and structureDriven
is of type structureDrivenType described earlier. Parcel also
has either zero or one child element adapVarStore with type
adapVarStoreType described earlier. It is used to specify the
values of the adaptation variables or component variables we would
like to store for possible future use in the next parcel.
Parcel has an optional attribute requestType with the following
possible values: SSM, unstructured, stopProfile, and asIs. The default
value is SSM. When the parcel constraints are specified as adaptation
variable driven, and requestType is SSM, one optimal bounding
box will be chosen using the optimization constraint. If there is no
optimization constraint specified, an implicit optimization constraint
will be used to find the optimal bounding box. The implicit
optimization will try to include as many layers as possible in each tier.
When the parcel constraints are specified as adaptation variable driven,
and requestType is unstructured; if there is an optimization
constaint, only one optimal atom will be chosen. If there is no
optimization constraint specified, all the atoms that fulfill the limit
constraints will be chosen. Attribute value stopProfile means that the
parcel will not be included in the adapted resource. Attribute value
asIs means that the parcel will be included in the adapted resource as
is. If the attribute value is stopProfile or asIs, the parcel cannot have
adapVarDriven or structureDriven child element in it.
Each parcel has one optional unsigned long attribute parcelID. All
the values of parcelID in one profile have to be unique. When a

76

parcel does not have a parcelID attribute, it is assigned a default
parcelID value equal to one greater than that of the previous parcel.
If the first parcel in a profile does not have a parcelID attribute, it is
assumed to have a default value of 0.

profile Profile may have unlimited child element parcel described earlier.
Profile has an optional attribute profileID with type
profileType to indicate the name of the profile. All the profile
names have to be unique in the outbound constraints file.

SSMAdapReq Root element for the outbound constraint XML. It has one optional
attribute adapType. The possible values for adapType are
terminal, and midstream. When the adapType is terminal, the atoms
within the bounding box could be dropped if they are not needed for
any of the profile. The default value is terminal. SSMAdapReq may
have unlimited number of child element profile described earlier.

Example
<SSMAdaptReq adaptType="terminal" xsi:schemaLocation="SSMAdaptReq
SSMAdaptReq.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="SSMAdaptReq" xmlns:ssm="SSMCommon">
 <profile profileID="ssm:prof:terminal-1">
 <parcel parcelID="0">
 <adapVarDriven>
 …
 </adapVarDriven>
 <adapVarStore>
 <ssm:storedAdapVar avar="ssm:avar:imageResolution" />
 </adapVarStore>
 </parcel>
 <parcel parcelID="1">
 <adapVarDriven>
 …
 </adapVarDriven>
 <adapVarStore>
 <ssm:storedAdapVar avar="ssm:avar:imageResolution" />
 </adapVarStore>
 </parcel>
 </profile>
 <profile profileID="ssm:prof:terminal-2">
 <parcel parcelID="0">
 <structureDriven>
 …
 </structureDriven>
 </parcel>
 <parcel parcelID="1">
 <structureDriven>
 …
 </structureDriven>
 </parcel>
 </profile>
</SSMAdaptReq>

77

The above example shows an outbound constraints XML with adaptation type
terminal, and it includes two profiles. The first profile has two parcels. Both of the
parcels use adaptation variable driven adaptation, and store the value for one adaptation
variable ssm:avar:imageResolution for the next parcel. The second profile has two
parcels and the parcels use structure driven adaptation, and stores no features. All the
parcels use the default value SSM for requestType.

8. Conclusion
Use of scalable media for content-agnostic adaptation is well known in the literature.

These adaptation engines do not need to decrypt or decode compressed content in order
to adapt it into a form appropriate for lower bandwidth/resolution etc. The underlying
assumption behind the adaptation operation is that an engine understands the format in
which the data is represented in, even though it does not need to know what the data
actually is. However, the requirement on the structure of the content is still rigid in these
approaches, because codec specific components are still needed for different types of
media content. That is, an adaptation engine for images compressed in a particular way,
say JPEG2000, would still be different from an adaptation engine for a certain kind of
interactive content encoded in an entirely different way.

The SSM framework, which is also a proposal for MPEG-21 DIA, advances the level
of abstraction to develop a flexible methodology for universal adaptation of scalable
content, where the adaptation operation is generic enough to be applicable to any type of
media having any type of encoding, and does not use any codec-specific code or
stylesheets at the adaptation engine. The adaptation engine just needs to be told what the
structure of the particular content that goes through it is, and how this content is to be
adapted to achieve the desired transcoding operation. This meta-data information is
conveyed by the media creator/originator to the engine in XML form. The specific
requirements for a recipient are conveyed to the adaptation engine through the outbound
constraints specification, also in XML form. With this framework, different adaptation
infrastructures are no longer needed for different types of scalable media. For media that
is non-standard or for media that do not exist today but would evolve in the future, as
long as they conform to the lose bit-stream restrictions that the universal adaptation
engine understands, it still becomes possible to adapt it appropriately using SSM
adaptation engines.

The main features of the SSM framework are:
��Modeling of scalability in a very generic way that is not too restrictive, yet not so

unrestrictive that the number of adaptation choices becomes unacceptably large
from the perspective of metadata compactness. (Note that unrestricted adaptation
is still supported by structure driven adaptation).

��Fully content independent operation, making it easy for new content providers to
use. The adaptation infrastructure does not need to change in any way.

��Provides a complete end-to-end delivery solution to multiple recipients
minimizing end-to-end redundancy.

��Allows fully secure delivery with encryption since the specifics of the content do
not need to be compromised at any point in the delivery chain, either to make
adaptation decisions or to do the adpatation.

78

��Extensible to new types of content with new types of scalability.
��Provides enormous flexibility for adaptation both from the recipient and content

creator points of view, for a variety of delivery scenarios.
��Caters to both incremental scalable, exclusive scalable as well as hybrid scalable

bit-streams under a common framework.

9. References
[1] Final Call for Proposals for Digital Item Adaptation, ISO/IEC

JTC1/SC29/WG11/N4683.

[2] MPEG-21 Digital Item Adaptation AM (v1.0), ISO/IEC JTC1/SC29/WG11/N4820.

[3] MPEG-21 Requirements on Digital Item Adaptation, ISO/IEC
JTC1/SC29/WG11/N4684.

[4] David Taubman, “High Performance scalable image compression with EBCOT,”
IEEE Transactions on Image Processing, vol. 9, no. 7, July 2000, pp. 1158-70.

[5] Amir Said and William A. Pearlman, “A New Fast and Efficient Image Codec
Based on Set Partitioning in Hierarchical Trees”, IEEE Transactions on Circuits and
Systems for Video Technology, vol. 6, pp. 243-250, June 1996.

[6] Debargha Mukherjee, “Vector set partitioning and successive refinement VQ for
wavelet image and video compression,” PhD thesis, University of California, Santa
Barbara, Aug 1999.

[7] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,”
IEEE Trans. Signal Processing, vol. 41, no. 12, Dec. 1993.

[8] David S. Taubman and M. W. Marcellin, “JPEG2000: Image Compression
Fundamentals, Standards and Practice,” Kluwer Academic Publishers, 2002.

[9] B. G. Haskell, A. Puri, A. N. Netravali, “Digital Video: An Introduction to MPEG-
2,” New York: Chapman & Hall, Sept 1996.

[10] Weiping Li, “Overview of Fine Granularity Scalability in MPEG-4 Video
Standard,” IEEE Trans. Circuits and Systems for Video Technology, March 2001,
vol. 11, No. 3, pp. 301-317.

[11] (MPEG-4) Information technology – Coding of audio-visual objects – Part 2:
Visual, ISO/IEC 14496-2-2001.

[12] (MPEG-4) Information technology – Coding of audio-visual objects – Part 3: Audio,
ISO/IEC 14496-3-2001.

[13] Video Coding for Low Bitrate Communication, ITU-T Recommendation H.263,
Nov. 1995.

[14] Video Coding for Low Bitrate Communication, ITU-T SG16/Q.15 H.26L Project,
Feb. 2000.

[15] J. Xu, Z. Xiong, S. Li, and Y.-Q. Zhang, “3-D embedded subband coding with
optimal truncation (3-D ESCOT),” J. Applied and Computational Harmonic
Analysis: Special Issue on Wavelet Applications in Engineering, vol. 10, pp. 290-

79

315, May 2001.

[16] Shih-Ta Hsiang and John W. Woods, "Embedded video coding using motion
compensated 3-D subband/wavelet filter bank", Packet Video Workshop, Sardinia,
Italy, May 2000.

[17] Shih-Ta Hsiang and John W. Woods, "Embedded video coding using invertible
motion compensated 3-D subband/wavelet filter bank," Signal Processing: Image
Communications, vol, pp. 705-724, May 2001.

[18] Shih-Ta Hsiang, “Highly Scalable Subband/Wavelet Image and Video Coding,”
Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, New York, May 2002.

[19] J. W. Woods and Peisong Chen, “Improved MC-EZBC with quarter-pixel motion
vectors,” ISO/IEC JTC1/SC29/WG11, MPEG2002/M8366.

[20] J. W. Woods, Peisong Chen, and Shih-Ta Hsiang, “Exploration experimental results
and software,” ISO/IEC JTC1/SC29/WG11, MPEG2002/M8524.

[21] Draft testing procedures for evidence on scalable coding, ISO/IEC
JTC1/SC29/WG11, MPEG2002/N4927.

[22] Draft applications and requirements for scalable coding, ISO/IEC
JTC1/SC29/WG11, MPEG2002/N4984.

[23] Sylvain Devillers, Myriam Amielh, Thierry Planterose, “Bitstream Syntax
Description Language (BSDL), Response to the Call for Proposals on MPEG-21
DIA”, ISO/IEC JTC1/SC29/WG11, MPEG2002/M8273.

[24] Sylvain Devillers, “BSDL architecture for multi-step adaptation”, ISO/IEC
JTC1/SC29/WG11, MPEG2002/M8523.

[25] Jörg Heuer, Andreas Hutter, Gabriel Panis, Hermann Hellwagner, Harald Kosch,
Christian Timmerer (Univ. Klagenfurt), Proposal of a Generic Bitstream Syntax
Description Language (g-BSDL), ISO/IEC JTC1/SC29/WG11, MPEG2002/M8291.

[26] Debargha Mukherjee, Amir Said, “Structured Content Independent Scalable Meta-
formats (SCISM) for Media Type Agnostic Transcoding: Response to CfP on DIA /
MPEG-21,” ISO/IEC JTC1/SC29/WG11, MPEG2002/M8689.

[27] Hermann Hellwagner, Jörg Heuer, Andreas Hutter, Harald Kosch,
Gabriel Panis, Christian Timmerer, “Report on Core Experiment on MPEG-21 DIA
BSDL focussing on the Generic BSDL (gBSDL),” ISO/IEC JTC1/SC29/WG11,
MPEG2002/M8677.

[28] S. J. Wee and J. G. Apostolopoulos, “Secure scalable streaming enabling
transcoding without decryption,” Proc. IEEE Int. Conference on Image Processing,
Thessaloniki, Greece, October 2001, vol. 1, pp. 437-40.

[29] S. J. Wee and J. G. Apostolopoulos, “Secure scalable video streaming for wireless
networks,” Proc. IEEE Int. Conference on Acoustics, Speech and Signal Processing,
Salt Lake City, Utah, May 2001.

[30] D. Wu, Y. T. Hou, W. Zhu, Y.-Q. Zhang, J. M. Peha, “Streaming Media over the
Internet: Approaches and Directions,” IEEE Trans. Circuits and Systems for Video

80

Technology, March 2001, vol. 11, No. 3, pp. 282-300.

81

Appendix A. Complete XML Schemas
This appendix lists the full XML schemas for SSM 2.0.

A.1. Common XML Schema - SSMCommon.xsd

<?xml version="1.0" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="SSMCommon"
targetNamespace="SSMCommon" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:simpleType name="avarType">
 <xs:restriction base="xs:Name">
 <xs:pattern value="ssm:avar:\c+" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="compType">
 <xs:restriction base="xs:Name">
 <xs:pattern value="ssm:comp:\c+" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="nonNegativeFloatType">
 <xs:restriction base="xs:float">
 <xs:minInclusive value="0" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="nonNegativeIntegerListType">
 <xs:list itemType="xs:nonNegativeInteger" />
 </xs:simpleType>
 <xs:simpleType name="positiveIntegerListType">
 <xs:list itemType="xs:positiveInteger" />
 </xs:simpleType>
 <xs:simpleType name="nonNegativeFloatListType">
 <xs:list itemType="nonNegativeFloatType" />
 </xs:simpleType>
 <xs:simpleType name="floatListType">
 <xs:list itemType="xs:float" />
 </xs:simpleType>
 <xs:simpleType name="addressTypeEnum">
 <xs:restriction base="xs:token">
 <xs:enumeration value="relative" />
 <xs:enumeration value="absolute" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="endianTypeEnum">
 <xs:restriction base="xs:token">
 <xs:enumeration value="big" />
 <xs:enumeration value="small" />
 </xs:restriction>
 </xs:simpleType>
 <xs:attributeGroup name="attrGroupPosAdd">
 <xs:attribute name="start" type="xs:long" use="required" />
 <xs:attribute name="addressType" type="addressTypeEnum" default="absolute" />
 </xs:attributeGroup>
 <xs:attributeGroup name="attrGroupPosAddLen">
 <xs:attributeGroup ref="attrGroupPosAdd" />

82

 <xs:attribute name="length" type="xs:unsignedLong" use="required" />
 </xs:attributeGroup>
 <xs:attributeGroup name="attrGroupPosAddLenBit">
 <xs:attributeGroup ref="attrGroupPosAddLen" />
 <xs:attribute name="bitPos" type="xs:unsignedByte" default="0" />
 <xs:attribute name="signed" type="xs:boolean" default="true" />
 <xs:attribute name="endian" type="endianTypeEnum" default="big" />
 </xs:attributeGroup>
 <xs:simpleType name="operationType">
 <xs:restriction base="xs:token">
 <xs:enumeration value="inverse" />
 <xs:enumeration value="negative" />
 <xs:enumeration value="magnitude" />
 <xs:enumeration value="log" />
 <xs:enumeration value="log10" />
 <xs:enumeration value="exp" />
 <xs:enumeration value="power10" />
 <xs:enumeration value="sqr" />
 <xs:enumeration value="sqrt" />
 <xs:enumeration value="clampZ" />
 <xs:enumeration value="boolIsNZ" />
 <xs:enumeration value="boolIsLEZ" />
 <xs:enumeration value="boolIsGEZ" />
 <xs:enumeration value="boolNOT" />
 <xs:enumeration value="add" />
 <xs:enumeration value="subtract" />
 <xs:enumeration value="absdiff" />
 <xs:enumeration value="multiply" />
 <xs:enumeration value="divide" />
 <xs:enumeration value="maximum" />
 <xs:enumeration value="minimum" />
 <xs:enumeration value="average" />
 <xs:enumeration value="boolOR" />
 <xs:enumeration value="boolAND" />
 <xs:enumeration value="boolXOR" />
 <xs:enumeration value="selector" />
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="adapVarType">
 <xs:attribute name="avar" type="avarType" />
 <xs:attribute name="previous" type="xs:boolean" default="false" />
 </xs:complexType>
 <xs:complexType name="compVarType">
 <xs:attribute name="compID" type="compType" />
 <xs:attribute name="indType">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="inclusionInd" />
 <xs:enumeration value="layerInd" />
 <xs:enumeration value="origLayersInd" />
 <xs:enumeration value="curLayersInd" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="param" type="xs:nonNegativeInteger" />
 <xs:attribute name="previous" type="xs:boolean" default="false" />

83

 </xs:complexType>
 <xs:complexType name="stackExpnType">
 <xs:sequence maxOccurs="unbounded">
 <xs:choice>
 <xs:element name="adapVar" type="adapVarType" />
 <xs:element name="compVar" type="compVarType" />
 <xs:element name="constant">
 <xs:complexType>
 <xs:attribute name="value" type="xs:float" />
 </xs:complexType>
 </xs:element>
 <xs:element name="argument">
 <xs:complexType>
 <xs:attribute name="number" type="xs:nonNegativeInteger" />
 </xs:complexType>
 </xs:element>
 <xs:element name="operation">
 <xs:complexType>
 <xs:attribute name="operator" type="operationType" />
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
 <xs:attributeGroup name="attrGroupLimits">
 <xs:attribute name="lowLimit" type="xs:float" default="1" />
 <xs:attribute name="highLimit" type="xs:float" default="1" />
 </xs:attributeGroup>
 <xs:complexType name="limitConstraintType">
 <xs:complexContent>
 <xs:extension base="stackExpnType">
 <xs:attributeGroup ref="attrGroupLimits" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:simpleType name="optimizeType">
 <xs:restriction base="xs:token">
 <xs:enumeration value="maximize" />
 <xs:enumeration value="minimize" />
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="optimizationConstraintType">
 <xs:complexContent>
 <xs:extension base="stackExpnType">
 <xs:attribute name="optimize" type="optimizeType" use="required" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="adapVarStoreType">
 <xs:sequence maxOccurs="unbounded">
 <xs:choice>
 <xs:element name="storedAdapVar" type="adapVarType" />
 <xs:element name="storedCompVar" type="compVarType" />
 </xs:choice>
 </xs:sequence>
 </xs:complexType>

84

</xs:schema>

A.2. Resource Description XML Schema - SSMDescription.xsd

<?xml version="1.0" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ssm="SSMCommon"
xmlns="SSMDescription" targetNamespace="SSMDescription" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:import namespace="SSMCommon" schemaLocation="SSMCommon.xsd" />
 <xs:simpleType name="exclusiveModelType">
 <xs:restriction base="xs:token">
 <xs:enumeration value="single" />
 <xs:enumeration value="firstAlways" />
 <xs:enumeration value="lastAll" />
 <xs:enumeration value="firstAlwaysLastAll" />
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="tierElemInfoType">
 <xs:attribute name="exclusiveFlag" type="xs:boolean" default="false" />
 <xs:attribute name="exclusiveModel" type="exclusiveModelType" default="single" />
 <xs:attribute name="numLayers" type="xs:positiveInteger" use="required" />
 <xs:attribute name="origLayers" type="xs:positiveInteger" use="required" />
 <xs:attribute name="tier" type="xs:nonNegativeInteger" use="required" />
 </xs:complexType>
 <xs:complexType name="atomTocType">
 <xs:sequence>
 <xs:element name="atomTocEntry" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attributeGroup ref="ssm:attrGroupPosAddLen" />
 <xs:attribute name="indices" type="ssm:indexIntegerListType" use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element name="atomRemovedFromBBox" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="indices" type="ssm:indexIntegerListType" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attributeGroup ref="ssm:attrGroupPosAdd" />
 </xs:complexType>
 <xs:complexType name="compDescriptionDataType">
 <xs:sequence>
 <xs:element name="tierInfo">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="tierElemInfo" type="tierElemInfoType" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="numTiers" type="xs:positiveInteger" />
 </xs:complexType>
 </xs:element>
 <xs:element name="atomToc" type="atomTocType" />
 </xs:sequence>
 <xs:attribute name="compID" type="ssm:compType" use="required" />
 </xs:complexType>

85

 <xs:complexType name="marginalDistType">
 <xs:simpleContent>
 <xs:extension base="ssm:nonNegativeFloatListType">
 <xs:attribute name="dims" type="xs:positiveInteger" />
 <xs:attribute name="dimToTierMap" type="ssm:nonNegativeIntegerListType" use="required" />
 <xs:attribute name="distType">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="nonDecreasing" />
 <xs:enumeration value="nonIncreasing" />
 <xs:enumeration value="nonMonotonic" />
 <xs:enumeration value="constant" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="featureDistType">
 <xs:sequence>
 <xs:element name="marginalDist" type="marginalDistType" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="featureDataType">
 <xs:sequence>
 <xs:element name="components">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="component" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="compID" type="ssm:compType" />
 <xs:attribute name="numLayers" type="ssm:positiveIntegerListType" use="optional" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="refFeatureValue" type="ssm:nonNegativeFloatType" />
 <xs:element name="emptyFeatureDist" type="ssm:nonNegativeFloatType" />
 <xs:element name="featureDist" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="featureDistType">
 <xs:attribute name="emptyComponentTiers" type="ssm:nonNegativeIntegerListType"
default="" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="avar" type="ssm:avarType" use="required" />
 </xs:complexType>
 <xs:complexType name="combAvarType">
 <xs:complexContent>
 <xs:extension base="ssm:stackExpnType">
 <xs:attribute name="avar" type="ssm:avarType" use="required" />

86

 <xs:attribute name="numArguments" type="xs:nonNegativeInteger" default="0" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="LUTAvarType">
 <xs:sequence>
 <xs:element name="axisValues" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="grid" type="ssm:floatListType" use="required" />
 <xs:attribute name="axis" type="xs:nonNegativeInteger" use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element name="content">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="marginalDist" type="marginalDistType" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="numAxes" type="xs:positiveInteger" default="1" />
 <xs:attribute name="avar" type="ssm:avarType" use="required" />
 <xs:attribute name="interpolationMethod" default="linear">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="linear" />
 <xs:enumeration value="round" />
 <xs:enumeration value="ceil" />
 <xs:enumeration value="floor" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 <xs:complexType name="resourceEditType">
 <xs:complexContent>
 <xs:extension base="ssm:stackExpnType">
 <xs:attributeGroup ref="ssm:attrGroupPosAddLenBit" />
 <xs:attribute name="outLength" use="optional">
 <xs:simpleType>
 <xs:union memberTypes="ssm:avarType xs:nonNegativeInteger" />
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:simpleType name="invalidPointerHandlingType">
 <xs:restriction base="xs:token">
 <xs:enumeration value="moveUp" />
 <xs:enumeration value="moveDown" />
 <xs:enumeration value="zeroOut" />
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="offsetReferenceDataType">
 <xs:sequence>
 <xs:element name="offsetEntry" maxOccurs="unbounded">
 <xs:complexType>

87

 <xs:attribute name="value" type="xs:long" use="required" />
 <xs:attributeGroup ref="ssm:attrGroupPosAddLenBit" />
 <xs:attribute name="invalidPointerHandling" type="invalidPointerHandlingType"
default="moveUp" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attributeGroup ref="ssm:attrGroupPosAdd" />
 <xs:attribute name="invalidPointerHandling" type="invalidPointerHandlingType"
default="moveUp" />
 </xs:complexType>
 <xs:complexType name="sequenceDataType">
 <xs:sequence>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="writeField" minOccurs="0">
 <xs:complexType>
 <xs:attributeGroup ref="ssm:attrGroupPosAddLenBit" />
 <xs:attribute name="type" default="count">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="count" />
 <xs:enumeration value="seqValue" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="countField">
 <xs:complexType>
 <xs:attributeGroup ref="ssm:attrGroupPosAddLenBit" />
 <xs:attribute name="write" type="xs:boolean" default="true" />
 </xs:complexType>
 </xs:element>
 <xs:element name="subSequence" type="sequenceDataType" />
 <xs:element name="countOnly">
 <xs:complexType />
 </xs:element>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="startValue" type="xs:long" use="optional" default="0" />
 <xs:attribute name="stepValue" type="xs:long" use="optional" default="1" />
 <xs:attribute name="modulo" type="xs:long" use="optional"/>
 <xs:attribute name="pack" type="xs:boolean" use="optional" default="true" />
 <xs:attribute name="relativeStart" type="xs:boolean" use="optional" default="true" />
 </xs:complexType>
 <xs:element name="SSMDescription">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="parcelData">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="parcel" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="componentData">
 <xs:complexType>

88

 <xs:sequence>
 <xs:element name="component" type="compDescriptionDataType"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 <xs:unique name="compID">
 <xs:selector xpath="component" />
 <xs:field xpath="@compID" />
 </xs:unique>
 </xs:element>
 <xs:element name="featureData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="feature" type="featureDataType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="combAvarData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="combAvar" type="combAvarType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="LUTAvarData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="LUTAvar" type="LUTAvarType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="creatorLimitConstraints" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="limitConstraint" type="ssm:limitConstraintType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="adapVarStore" type="ssm:adapVarStoreType" minOccurs="0"
maxOccurs="1" />
 <xs:element name="resourceEditData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="resourceEdit" type="resourceEditType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="parcelID" type="xs:unsignedLong" use="optional" />
 </xs:complexType>
 <xs:unique name="avar">

89

 <xs:selector
xpath="componentData/component/featureData/feature|combAvarData/combAvar|featureData/featu
re|LUTAvarData/LUTAvar" />
 <xs:field xpath="@avar" />
 </xs:unique>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:unique name="parcelID">
 <xs:selector xpath="parcel" />
 <xs:field xpath="@parcelID" />
 </xs:unique>
 </xs:element>
 <xs:element name="globalFeatureData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="globalFeature" type="featureDataType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="globalCombAvarData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="globalCombAvar" type="combAvarType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="globalLUTAvarData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="globalLUTAvar" type="LUTAvarType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="globalCreatorLimitConstraints" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="globalLimitConstraint" type="ssm:limitConstraintType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="codecOffsetData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="offsetReference" type="offsetReferenceDataType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="sequenceData" minOccurs="0">
 <xs:complexType>
 <xs:sequence>

90

 <xs:element name="sequence" type="sequenceDataType" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

A.3. Outbound Constraints XML Schema - SSMAdaptReq.xsd

<?xml version="1.0" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ssm="SSMCommon"
xmlns="SSMAdaptReq" targetNamespace="SSMAdaptReq" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:import namespace="SSMCommon" schemaLocation="SSMCommon.xsd" />
 <xs:simpleType name="profileType">
 <xs:restriction base="xs:Name">
 <xs:pattern value="ssm:prof:\c+" />
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="adapVarDrivenAdaptType">
 <xs:sequence>
 <xs:element name="limitConstraint" type="ssm:limitConstraintType" minOccurs="0"
maxOccurs="unbounded" />
 <xs:element name="optimizationConstraint" type="ssm:optimizationConstraintType"
minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="structureDrivenAdaptType">
 <xs:sequence>
 <xs:element name="adaptationPoint" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="layers" type="ssm:nonNegativeIntegerListType" use="required" />
 <xs:attribute name="compID" type="ssm:compType" use="required" />
 <xs:attribute name="incType" default="bboxInc">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="bboxDrop" />
 <xs:enumeration value="bboxInc" />
 <xs:enumeration value="atomInc" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="SSMAdaptReq">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="profile" maxOccurs="unbounded">
 <xs:complexType>

91

 <xs:sequence>
 <xs:element name="parcel" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:choice>
 <xs:element name="adapVarDriven" type="adapVarDrivenAdaptType" />
 <xs:element name="structureDriven" type="structureDrivenAdaptType" />
 </xs:choice>
 <xs:element name="adapVarStore" type="ssm:adapVarStoreType" minOccurs="0"
maxOccurs="1" />
 </xs:sequence>
 <xs:attribute name="parcelID" type="xs:unsignedLong" use="optional" />
 <xs:attribute name="requestType" default="SSM">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="SSM" />
 <xs:enumeration value="unstructured" />
 <xs:enumeration value="stopProfile" />
 <xs:enumeration value="asIs" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
��������<xs:attribute name="profileID" type="profileType" />
 </xs:complexType>
 <xs:unique name="parcelID">
 <xs:selector xpath="parcel" />
 <xs:field xpath="@parcelID" />
 </xs:unique>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="adaptType" default="terminal">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="terminal" />
 <xs:enumeration value="midstream" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 <xs:unique name="profileID">
 <xs:selector xpath="profile" />
 <xs:field xpath="@profileID" />
 </xs:unique>
 </xs:element>
</xs:schema>

Appendix B. Sample XML files
In this appendix, we present two sample XML files, one for the resource description,

and the other for the outbound constraints, along with an adapted resource description
XML generated by applying adaptation based on the outbound constraints XML to the

92

original resource description XML, using an early version of the SSM adaptation engine
software that we are developing.

B.1. Resource Description XML - SSMDescription_ex.xml
The resource description XML below describes a bit-stream with two parcels. Each

parcel has two components ssm:comp:myImage and ssm:comp:myAudio.
ssm:comp:myImage is a two-tier scalable component with 4x5 layers in both parcels,
while ssm:comp:myAudio is a single tier scalable component with 6 layers in the first
parcel, and 5 layers in the second. Elemental features defined for the image component
are ssm:avar:imageCodesize, ssm:avar:imageDistortion, and ssm:avar:imageResolution,
while those defined for the audio component are ssm:avar:audioCodesize and
ssm:avar:audioDistortion. In addition, a product feature ssm:avar:perceptualRichness is
defined jointly over the image and audio components. Based on the elemental features,
the global combination variable ssm:avar:codesize is defined as the sum of
ssm:avar:imageCodesize and ssm:avar:audioCodesize. Another global combination
variable ssm:avar:lagrangian that takes two arguments, is defined as:
(argument0×ssm:avar:imageDistortion+ssm:avar:audioDistortion)+argument1×ssm:avar
:codesize�� !���� ��� ������������ �� "� �#� ����� ������� $����� "� ��� �� $�� ����� ����
���
��
measure of the image and audio components, with the weight and the lagrangian
parameter being the two arguments. There is also a global LUT variable
ssm:avar:lagrangianLUT�� ����� ������� ��� ����
������� �� ��� ���� ���������� � 	�
�� �$
�
inputs related to total desired transmission time and bandwidth. A fourth global
combination variable ssm:avar:myImageImpliesAudio, which is Boolean, is defined
based on component inclusion indicator variables for the two components to indicate
whether audio component inclusion implies that the image component is also included. A
global creator enforced limit constraint ssm:avar:myImageImpliesAudio = 1 is defined
based on this combination variable to enforce that if the image component is included
the audio component must be included too.

<?xml version="1.0" ?>
<SSMDescription xsi:schemaLocation="SSMDescription SSMDescription.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="SSMDescription"
xmlns:ssm="SSMCommon">
 <parcelData>
 <parcel parcelID="0">
 <componentData>
 <component compID="ssm:comp:myImage">
 <tierInfo numTiers="2">
 <tierElemInfo numLayers="4" origLayers="4" exclusiveFlag="false" tier="0" />
 <tierElemInfo numLayers="5" origLayers="5" exclusiveFlag="false" tier="1" />
 </tierInfo>
 <atomToc start="0" addressType="absolute">
 <atomTocEntry indices="0 0" start="15000" addressType="relative" length="512" />
 <atomTocEntry indices="0 1" start="15600" addressType="relative" length="360" />
 <atomTocEntry indices="0 2" start="16347" addressType="relative" length="2000" />
 <atomTocEntry indices="0 3" start="18400" addressType="relative" length="2536" />
 <atomTocEntry indices="0 4" start="21506" addressType="relative" length="3078" />
 <atomTocEntry indices="1 0" start="25000" addressType="relative" length="1006" />
 <atomTocEntry indices="1 1" start="26120" addressType="relative" length="1878" />
 <atomTocEntry indices="1 2" start="27303" addressType="relative" length="2663" />

93

 <atomTocEntry indices="1 3" start="30000" addressType="relative" length="3549" />
 <atomTocEntry indices="1 4" start="36000" addressType="relative" length="4812" />
 <atomTocEntry indices="2 0" start="40904" addressType="relative" length="1470" />
 <atomTocEntry indices="2 1" start="42655" addressType="relative" length="2351" />
 <atomTocEntry indices="2 2" start="45101" addressType="relative" length="3534" />
 <atomTocEntry indices="2 3" start="48709" addressType="relative" length="4915" />
 <atomTocEntry indices="2 4" start="53810" addressType="relative" length="6002" />
 <atomTocEntry indices="3 0" start="60000" addressType="relative" length="2029" />
 <atomTocEntry indices="3 1" start="62029" addressType="relative" length="3147" />
 <atomTocEntry indices="3 2" start="65200" addressType="relative" length="4258" />
 <atomTocEntry indices="3 3" start="69458" addressType="relative" length="5307" />
 <atomTocEntry indices="3 4" start="74819" addressType="relative" length="7003" />
 </atomToc>
 </component>
 <component compID="ssm:comp:myAudio">
 <tierInfo numTiers="1">
 <tierElemInfo numLayers="6" origLayers="6" exclusiveFlag="false" tier="0" />
 </tierInfo>
 <atomToc start="90000" addressType="relative">
 <atomTocEntry indices="0" start="1178" addressType="relative" length="789" />
 <atomTocEntry indices="1" start="1967" addressType="relative" length="1745" />
 <atomTocEntry indices="2" start="3825" addressType="relative" length="2840" />
 <atomTocEntry indices="3" start="6778" addressType="relative" length="4173" />
 <atomTocEntry indices="4" start="10951" addressType="relative" length="5281" />
 <atomTocEntry indices="5" start="16378" addressType="relative" length="6989" />
 </atomToc>
 </component>
 </componentData>
 <featureData>
 <feature avar="ssm:avar:imageCodesize">
 <components>
 <component compID="ssm:comp:myImage" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>0.0</emptyFeatureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dims="2" dimToTierMap="0 1" distType="nonDecreasing">180 260 390 470 680
310 390 480 590 715 405 539 676 799 883 478 626 797 899 1067</marginalDist>
 </featureDist>
 </feature>
 <feature avar="ssm:avar:imageDistortion">
 <components>
 <component compID="ssm:comp:myImage" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>2000.0</emptyFeatureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dims="2" dimToTierMap="0 1" distType="nonIncreasing">800 600 513 321 198
750 553 420 314 154 679 521 390 247 113 537 472 355 206 84</marginalDist>
 </featureDist>
 </feature>
 <feature avar="ssm:avar:audioCodesize">
 <components>
 <component compID="ssm:comp:myAudio" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>

94

 <emptyFeatureDist>0</emptyFeatureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dims="1" dimToTierMap="0" distType="nonDecreasing">155 231 367 449 673
757</marginalDist>
 </featureDist>
 </feature>
 <feature avar="ssm:avar:audioDistortion">
 <components>
 <component compID="ssm:comp:myAudio" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>600</emptyFeatureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dims="1" dimToTierMap="0" distType="nonIncreasing">400 356 267 100 50
22</marginalDist>
 </featureDist>
 </feature>
 <feature avar="ssm:avar:perceptualRichness">
 <components>
 <component compID="ssm:comp:myImage" />
 <component compID="ssm:comp:myAudio" />
 </components>
 <refFeatureValue>10.0</refFeatureValue>
 <emptyFeatureDist>0.0</emptyFeatureDist>
 <featureDist emptyComponentTiers="0 1">
 <marginalDist dims="1" dimToTierMap="2">1 2 3 5 8 10</marginalDist>
 </featureDist>
 <featureDist emptyComponentTiers="2">
 <marginalDist dims="1" dimToTierMap="0">1 1.2 1.5 2</marginalDist>
 <marginalDist dims="1" dimToTierMap="1">1 2 3 4 4.5</marginalDist>
 </featureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dims="3" dimToTierMap="0 1 2">1 2 3 4 4 5 2 3 3 4 5 5 2 3 3 4 5 6 3 3 4 4 5 6 3 3
4 5 6 6 3 4 5 6 6 7 4 5 5 6 7 7 4 5 5 6 7 8 5 5 6 6 7 8 5 5 6 7 8 8 6 7 8 9 9 10 7 8 8 9 10 10 7 8 8 9 10 11 8 8
9 9 10 11 8 8 9 10 11 11 11 12 13 14 14 15 12 13 13 14 15 15 12 13 13 14 15 16 13 13 14 14 15 16 13 13
14 15 16 16</marginalDist>
 </featureDist>
 </feature>
 </featureData>
 <combAvarData />
 <resourceEditData>
 <resourceEdit start="10000" addressType="absolute" length="8">
 <ssm:compVar compID="ssm:comp:myImage" indType="layerInd" param="0" />
 </resourceEdit>
 <resourceEdit start="2" addressType="relative" length="8">
 <ssm:compVar compID="ssm:comp:myImage" indType="layerInd" param="1" />
 </resourceEdit>
 <resourceEdit start="4" addressType="relative" length="8">
 <ssm:compVar compID="ssm:comp:myAudio" indType="layerInd" param="0" />
 </resourceEdit>
 </resourceEditData>
 </parcel>
 <parcel parcelID="1">
 <componentData>
 <component compID="ssm:comp:myImage">
 <tierInfo numTiers="2">

95

 <tierElemInfo numLayers="4" origLayers="4" exclusiveFlag="false" tier="0" />
 <tierElemInfo numLayers="5" origLayers="5" exclusiveFlag="false" tier="1" />
 </tierInfo>
 <atomToc start="30000" addressType="relative">
 <atomTocEntry indices="0 0" start="1000" addressType="relative" length="512" />
 <atomTocEntry indices="0 1" start="1600" addressType="relative" length="360" />
 <atomTocEntry indices="0 2" start="2347" addressType="relative" length="2000" />
 <atomTocEntry indices="0 3" start="4400" addressType="relative" length="2536" />
 <atomTocEntry indices="0 4" start="7506" addressType="relative" length="3078" />
 <atomTocEntry indices="1 0" start="11000" addressType="relative" length="1006" />
 <atomTocEntry indices="1 1" start="12120" addressType="relative" length="1878" />
 <atomTocEntry indices="1 2" start="13303" addressType="relative" length="2663" />
 <atomTocEntry indices="1 3" start="16000" addressType="relative" length="3549" />
 <atomTocEntry indices="1 4" start="22000" addressType="relative" length="4812" />
 <atomTocEntry indices="2 0" start="26904" addressType="relative" length="1470" />
 <atomTocEntry indices="2 1" start="28655" addressType="relative" length="2351" />
 <atomTocEntry indices="2 2" start="31101" addressType="relative" length="3534" />
 <atomTocEntry indices="2 3" start="34709" addressType="relative" length="4915" />
 <atomTocEntry indices="2 4" start="39810" addressType="relative" length="6002" />
 <atomTocEntry indices="3 0" start="46000" addressType="relative" length="2029" />
 <atomTocEntry indices="3 1" start="48029" addressType="relative" length="3147" />
 <atomTocEntry indices="3 2" start="51200" addressType="relative" length="4258" />
 <atomTocEntry indices="3 3" start="55458" addressType="relative" length="5307" />
 <atomTocEntry indices="3 4" start="60819" addressType="relative" length="7003" />
 </atomToc>
 </component>
 <component compID="ssm:comp:myAudio">
 <tierInfo numTiers="1">
 <tierElemInfo numLayers="5" origLayers="5" exclusiveFlag="false" tier="0" />
 </tierInfo>
 <atomToc start="70000" addressType="relative">
 <atomTocEntry indices="0" start="1178" addressType="relative" length="789" />
 <atomTocEntry indices="1" start="1967" addressType="relative" length="1745" />
 <atomTocEntry indices="2" start="3825" addressType="relative" length="2840" />
 <atomTocEntry indices="3" start="6778" addressType="relative" length="4173" />
 <atomTocEntry indices="4" start="10951" addressType="relative" length="5281" />
 </atomToc>
 </component>
 </componentData>
 <featureData>
 <feature avar="ssm:avar:imageResolution">
 <components>
 <component compID="ssm:comp:myImage" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>0.0</emptyFeatureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dims="1" dimToTierMap="0" distType="nonDecreasing">100 200 400
800</marginalDist>
 <marginalDist dims="1" dimToTierMap="1" distType="constant">1.0</marginalDist>
 </featureDist>
 </feature>
 <feature avar="ssm:avar:imageCodesize">
 <components>
 <component compID="ssm:comp:myImage" />
 </components>

96

 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>0.0</emptyFeatureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dims="2" dimToTierMap="0 1" distType="nonDecreasing">120 240 350 400 580
240 300 420 510 625 315 456 600 720 800 378 526 720 823 999</marginalDist>
 </featureDist>
 </feature>
 <feature avar="ssm:avar:imageDistortion">
 <components>
 <component compID="ssm:comp:myImage" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>2000.0</emptyFeatureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dims="2" dimToTierMap="0 1" distType="nonIncreasing">1400 1000 813 621
428 1200 803 647 531 272 1000 671 436 317 183 699 475 355 206 137</marginalDist>
 </featureDist>
 </feature>
 <feature avar="ssm:avar:audioCodesize">
 <components>
 <component compID="ssm:comp:myAudio" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>0</emptyFeatureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dims="1" dimToTierMap="0" distType="nonDecreasing">105 211 323 456
641</marginalDist>
 </featureDist>
 </feature>
 <feature avar="ssm:avar:audioDistortion">
 <components>
 <component compID="ssm:comp:myAudio" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>600</emptyFeatureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dims="1" dimToTierMap="0" distType="nonIncreasing">400 356 237 160
90</marginalDist>
 </featureDist>
 </feature>
 <feature avar="ssm:avar:perceptualRichness">
 <components>
 <component compID="ssm:comp:myImage" />
 <component compID="ssm:comp:myAudio" />
 </components>
 <refFeatureValue>10.0</refFeatureValue>
 <emptyFeatureDist>0.0</emptyFeatureDist>
 <featureDist emptyComponentTiers="0 1">
 <marginalDist dims="1" dimToTierMap="2">2 3 5 8 10</marginalDist>
 </featureDist>
 <featureDist emptyComponentTiers="2">
 <marginalDist dims="1" dimToTierMap="0">1 1.2 1.5 2</marginalDist>
 <marginalDist dims="1" dimToTierMap="1">1 2 3 4 4.5</marginalDist>
 </featureDist>
 <featureDist emptyComponentTiers="">

97

 <marginalDist dims="3" dimToTierMap="0 1 2">2 3 4 4 5 3 3 4 5 5 3 3 4 5 6 3 4 4 5 6 3 4 5 6 6 4
5 6 6 7 5 5 6 7 7 5 5 6 7 8 5 6 6 7 8 5 6 7 8 8 7 8 9 9 10 8 8 9 10 10 8 8 9 10 11 8 9 9 10 11 8 9 10 11 11 12
13 14 14 15 13 13 14 15 15 13 13 14 15 16 13 14 14 15 16 13 14 15 16 16</marginalDist>
 </featureDist>
 </feature>
 </featureData>
 <combAvarData />
 <resourceEditData>
 <resourceEdit start="120050" addressType="absolute" length="8">
 <ssm:compVar compID="ssm:comp:myImage" indType="layerInd" param="0" />
 </resourceEdit>
 <resourceEdit start="2" addressType="relative" length="8">
 <ssm:compVar compID="ssm:comp:myImage" indType="layerInd" param="1" />
 </resourceEdit>
 <resourceEdit start="10" addressType="relative" length="8">
 <ssm:compVar compID="ssm:comp:myAudio" indType="layerInd" param="0" />
 </resourceEdit>
 </resourceEditData>
 </parcel>
 </parcelData>
 <globalFeatureData>
 <globalFeature avar="ssm:avar:imageResolution">
 <components>
 <component compID="ssm:comp:myImage" numLayers="5 5" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>0.0</emptyFeatureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dims="1" dimToTierMap="0" distType="nonDecreasing">100 200 400 800
1600</marginalDist>
 <marginalDist dims="1" dimToTierMap="1" distType="constant">1.0</marginalDist>
 </featureDist>
 </globalFeature>
 </globalFeatureData>
 <globalCombAvarData>
 <globalCombAvar avar="ssm:avar:codesize">
 <ssm:adapVar avar="ssm:avar:audioCodesize" />
 <ssm:adapVar avar="ssm:avar:imageCodesize" />
 <ssm:operation operator="add" />
 </globalCombAvar>
 <globalCombAvar avar="ssm:avar:lagrangian" numArguments="2">
 <ssm:adapVar avar="ssm:avar:audioDistortion" />
 <ssm:adapVar avar="ssm:avar:imageDistortion" />
 <ssm:argument number="0" />
 <ssm:operation operator="multiply" />
 <ssm:operation operator="add" />
 <ssm:adapVar avar="ssm:avar:codesize" />
 <ssm:argument number="1" />
 <ssm:operation operator="multiply" />
 <ssm:operation operator="add" />
 </globalCombAvar>
 <globalCombAvar avar="ssm:avar:myImageImpliesAudio">
 <ssm:compVar compID="ssm:comp:myAudio" indType="inclusionInd" />
 <ssm:compVar compID="ssm:comp:myImage" indType="inclusionInd" />
 <ssm:operation operator="boolNOT" />
 <ssm:operation operator="boolOR" />

98

 </globalCombAvar>
 </globalCombAvarData>
 <globalLUTAvarData>
 <globalLUTAvar avar="ssm:avar:lagrangianLUT" numAxes="2">
 <axisValues axis="0" grid="25 50 100" />
 <axisValues axis="1" grid="10 30 100 300" />
 <content>
 <marginalDist dims="2" dimToTierMap="0 1">0.9 0.8 0.7 0.6 0.5 0.4 0.8 0.7 0.6 0.5 0.4 0.3 0.7 0.6
0.5 0.4 0.3 0.2 0.6 0.5 0.4 0.3 0.2 0.1 0.5 0.4 0.3 0.2 0.1 0.1</marginalDist>
 </content>
 </globalLUTAvar>
 </globalLUTAvarData>
 <globalCreatorLimitConstraints>
 <globalLimitConstraint lowLimit="1" highLimit="1">
 <ssm:adapVar avar="ssm:avar:myImageImpliesAudio" />
 </globalLimitConstraint>
 </globalCreatorLimitConstraints>
 <codecOffsetData>
 <offsetReference start="85000" addressType="relative">
 <offsetEntry value="10000" start="2" length="16" addressType="relative"
invalidPointerHandling="moveUp" />
 <offsetEntry value="20000" start="4" length="16" addressType="relative"
invalidPointerHandling="moveUp" />
 </offsetReference>
 <offsetReference start="3000" addressType="relative">
 <offsetEntry value="-8000" start="2" length="20" addressType="relative"
invalidPointerHandling="moveUp" />
 <offsetEntry value="30000" start="4" bitPos="4" length="20" addressType="relative"
invalidPointerHandling="moveUp" />
 <offsetEntry value="50000" start="7" length="20" addressType="relative"
invalidPointerHandling="moveUp" />
 </offsetReference>
 </codecOffsetData>
 <sequenceData>
 <sequence startValue="10" stepValue="2">
 <countField start="10000" length="16" addressType="absolute" />
 <countField start="5000" length="16" addressType="relative" />
 <countField start="1000" length="16" addressType="relative" />
 <countField start="2000" length="16" addressType="relative" />
 </sequence>
 <sequence startValue="0" stepValue="1">
 <countField start="20000" length="8" addressType="absolute" write="false" />
 <countField start="6000" length="8" addressType="relative" write="false" />
 <countField start="4000" length="8" addressType="relative" write="false" />
 <countField start="3000" length="8" addressType="relative" write="false" />
 <writeField start="2000" length="8" addressType="relative" />
 <countField start="4000" length="8" addressType="relative" write="false" />
 <countField start="8000" length="8" addressType="relative" write="false" />
 </sequence>
 <sequence startValue="0" stepValue="6">
 <writeField start="60000" length="8" addressType="absolute" type="seqValue" />
 <subSequence startValue="0" stepValue="1" pack="false">
 <countField start="1000" length="8" addressType="relative" write="true" />
 <countField start="1000" length="8" addressType="relative" write="true" />
 <countField start="1000" length="8" addressType="relative" write="true" />
 <countField start="1000" length="8" addressType="relative" write="true" />

99

 <countField start="1000" length="8" addressType="relative" write="true" />
 <countField start="1000" length="8" addressType="relative" write="true" />
 </subSequence>
 <subSequence startValue="0" stepValue="1" pack="false" relativeStart="false">
 <countField start="1000" length="8" addressType="relative" write="true" />
 <countOnly />
 <countOnly />
 <countField start="1000" length="8" addressType="relative" write="true" />
 <countOnly />
 <countOnly />
 </subSequence>
 <subSequence startValue="0" stepValue="1" pack="false" modulo="8">
 <countField start="60000" length="8" addressType="relative" write="true" />
 <countField start="1000" length="8" addressType="relative" write="true" />
 <countField start="1000" length="8" addressType="relative" write="true" />
 <countOnly />
 <countOnly />
 <countOnly />
 <writeField start="4000" length="8" addressType="relative" type="count" />
 </subSequence>
 </sequence>
 </sequenceData>
</SSMDescription>

B.2. Outbound Constraints XML - SSMAdaptReq_ex.xml
The outbound constraints XML that operates on the above resource description file

includes two profiles to be packaged as a single bit-stream using terminal adaptation type.
The first profile uses adaptation variable based adaptation requests, while the second uses
structure-driven adaptation. The first parcel of the first profile uses a limit constraint that
the ssm:avar:imageResolution feature must be in the range 400-960. The optimization
constraint attempts to maximize ssm:avar:perceptualRichness + . ssm:avar:codesize for
a given �= –0.1. For the second and all subsequent parcels, the limit constraint based on
ssm:avar:imageResolution changes to that the feature ssm:avar:imageResolution must be
exactly equal to the ssm:avar:imageResolution variable for the previous parcel. Further,
the optimization constraint attempts to minimize ssm:avar:lagrangian with two
parameters, the weight for the weighted distortion measure (1.5), and the lagrangian
parameter. The latter in turn is obtained from a LUT in the description XML that takes
two inputs: total desired transmission time (25) and bandwidth (10). Thus, from the
second parcel onwards, the image resolution of the adapted version remains the same,
while a weighted rate-distortion optimization is performed. For the second profile, all
parcels use the structure driven adaptation, where the adaptation point is specified
explicitly.

<?xml version="1.0" ?>
<SSMAdaptReq adaptType="terminal" xsi:schemaLocation="SSMAdaptReq SSMAdaptReq.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="SSMAdaptReq"
xmlns:ssm="SSMCommon">
 <profile profileID="ssm:prof:terminal-1">
 <parcel parcelID="0">
 <adapVarDriven>

100

 <limitConstraint lowLimit="400" highLimit="960">
 <ssm:adapVar avar="ssm:avar:imageResolution" />
 </limitConstraint>
 <optimizationConstraint optimize="maximize">
 <ssm:constant value="-0.1" />
 <ssm:adapVar avar="ssm:avar:codesize" />
 <ssm:operation operator="multiply" />
 <ssm:adapVar avar="ssm:avar:perceptualRichness" />
 <ssm:boperation operator="add" />
 </optimizationConstraint>
 </adapVarDriven>
 <adapVarStore>
 <ssm:storedAdapVar avar="ssm:avar:imageResolution" />
 </adapVarStore>
 </parcel>
 <parcel parcelID="1">
 <adapVarDriven>
 <limitConstraint lowLimit="0" highLimit="0">
 <ssm:adapVar avar="ssm:avar:imageResolution" />
 <ssm:adapVar avar="ssm:avar:imageResolution" previous="true" />
 <ssm:operation operator="subtract" />
 </limitConstraint>
 <optimizationConstraint optimize="minimize">
 <ssm:constant value="10" />
 <ssm:constant value="25" />
 <ssm:adapVar avar="ssm:avar:lagrangianLUT" />
 <ssm:constant value="1.50" />
 <ssm:adapVar avar="ssm:avar:lagrangian" />
 </optimizationConstraint>
 </adapVarDriven>
 <adapVarStore>
 <ssm:storedAdapVar avar="ssm:avar:imageResolution" />
 </adapVarStore>
 </parcel>
 </profile>
 <profile profileID="ssm:prof:terminal-2">
 <parcel parcelID="0">
 <structureDriven>
 <adaptationPoint compID="ssm:comp:myImage" layers="2 2" incType="bboxDrop" />
 <adaptationPoint compID="ssm:comp:myAudio" layers="5" incType="bboxInc" />
 </structureDriven>
 </parcel>
 <parcel parcelID="1">
 <structureDriven>
 <adaptationPoint compID="ssm:comp:myImage" layers="2 3" incType="bboxDrop" />
 <adaptationPoint compID="ssm:comp:myAudio" layers="4" incType="bboxInc" />
 </structureDriven>
 </parcel>
 </profile>
</SSMAdaptReq>

B.3. Adapted Resource Description XML – SSMDescription_ex2.xml
When the SSM adaptation engine software is applied to the resource description

XML and the outbound constraints XML, the decisions are made, and the following

101

adapted resource description is generated. For the first parcel, the two profiles generate
adaptation points (4,1) and (2,3) for the image component. While the bounding box is
(4,3), because the adaptation type is terminal the atoms with indices (2,1), (2,2), (3,1) and
(3,2) are actually removed from the bounding box, and is shown in the
<atomRemovedFromBBox> elements of <atomToc>. For the audio component, the two
profiles yield 2 and 5 layers respectively, and so in the packaged bit-stream all 5 layers
are kept. For the second parcel, the adaptation points for the two profiles for the image
component are (4,4) and (2,2) respectively. The bounding box transmitted is (4,4). For
the audio component, the two profiles yield 3 and 4 layers respectively, and so 4 layers
are kept in the adapted bit-stream.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<SSMDescription xmlns="SSMDescription" xmlns:ssm="SSMCommon"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="SSMDescription
SSMDescription.xsd">
 <parcelData>
 <parcel parcelID="0">
 <componentData>
 <component compID="ssm:comp:myImage">
 <tierInfo numTiers="2">
 <tierElemInfo exclusiveFlag="false" numLayers="4" origLayers="4" tier="0" />
 <tierElemInfo exclusiveFlag="false" numLayers="3" origLayers="5" tier="1" />
 </tierInfo>
 <atomToc addressType="absolute" start="0">
 <atomTocEntry addressType="relative" indices="0 0" length="512" start="15000" />
 <atomTocEntry addressType="relative" indices="0 1" length="360" start="15600" />
 <atomTocEntry addressType="relative" indices="0 2" length="2000" start="16347" />
 <atomTocEntry addressType="relative" indices="1 0" length="1006" start="19386" />
 <atomTocEntry addressType="relative" indices="1 1" length="1878" start="20506" />
 <atomTocEntry addressType="relative" indices="1 2" length="2663" start="21689" />
 <atomTocEntry addressType="relative" indices="2 0" length="1470" start="26929" />
 <atomTocEntry addressType="relative" indices="3 0" length="2029" start="29223" />
 <atomRemovedFromBBox indices="2 1" />
 <atomRemovedFromBBox indices="2 2" />
 <atomRemovedFromBBox indices="3 1" />
 <atomRemovedFromBBox indices="3 2" />
 </atomToc>
 </component>
 <component compID="ssm:comp:myAudio">
 <tierInfo numTiers="1">
 <tierElemInfo exclusiveFlag="false" numLayers="5" origLayers="6" tier="0" />
 </tierInfo>
 <atomToc addressType="relative" start="39508">
 <atomTocEntry addressType="relative" indices="0" length="789" start="1178" />
 <atomTocEntry addressType="relative" indices="1" length="1745" start="1967" />
 <atomTocEntry addressType="relative" indices="2" length="2840" start="3825" />
 <atomTocEntry addressType="relative" indices="3" length="4173" start="6778" />
 <atomTocEntry addressType="relative" indices="4" length="5281" start="10951" />
 </atomToc>
 </component>
 </componentData>
 <featureData>
 <feature avar="ssm:avar:imageCodesize">
 <components>

102

 <component compID="ssm:comp:myImage" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>0.0</emptyFeatureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dimToTierMap="0 1" dims="2" distType="nonDecreasing">180 260 390 310 390
480 405 539 676 478 626 797</marginalDist>
 </featureDist>
 </feature>
 <feature avar="ssm:avar:imageDistortion">
 <components>
 <component compID="ssm:comp:myImage" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>2000.0</emptyFeatureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dimToTierMap="0 1" dims="2" distType="nonIncreasing">800 600 513 750 553
420 679 521 390 537 472 355</marginalDist>
 </featureDist>
 </feature>
 <feature avar="ssm:avar:audioCodesize">
 <components>
 <component compID="ssm:comp:myAudio" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>0</emptyFeatureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dimToTierMap="0" dims="1" distType="nonDecreasing">155 231 367 449
673</marginalDist>
 </featureDist>
 </feature>
 <feature avar="ssm:avar:audioDistortion">
 <components>
 <component compID="ssm:comp:myAudio" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>600</emptyFeatureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dimToTierMap="0" dims="1" distType="nonIncreasing">400 356 267 100
50</marginalDist>
 </featureDist>
 </feature>
 <feature avar="ssm:avar:perceptualRichness">
 <components>
 <component compID="ssm:comp:myImage" />
 <component compID="ssm:comp:myAudio" />
 </components>
 <refFeatureValue>10.0</refFeatureValue>
 <emptyFeatureDist>0.0</emptyFeatureDist>
 <featureDist emptyComponentTiers="0 1">
 <marginalDist dimToTierMap="2" dims="1">1 2 3 5 8</marginalDist>
 </featureDist>
 <featureDist emptyComponentTiers="2">
 <marginalDist dimToTierMap="0" dims="1">1 1.2 1.5 2</marginalDist>
 <marginalDist dimToTierMap="1" dims="1">1 2 3</marginalDist>
 </featureDist>

103

 <featureDist emptyComponentTiers="">
 <marginalDist dimToTierMap="0 1 2" dims="3">1 2 3 4 4 2 3 3 4 5 2 3 3 4 5 3 4 5 6 6 4 5 5 6 7 4
5 5 6 7 6 7 8 9 9 7 8 8 9 10 7 8 8 9 10 11 12 13 14 14 12 13 13 14 15 12 13 13 14 15</marginalDist>
 </featureDist>
 </feature>
 </featureData>
 <combAvarData />
 <resourceEditData>
 <resourceEdit addressType="absolute" length="8" start="10000">
 <ssm:compVar compID="ssm:comp:myImage" indType="layerInd" param="0" />
 </resourceEdit>
 <resourceEdit addressType="relative" length="8" start="2">
 <ssm:compVar compID="ssm:comp:myImage" indType="layerInd" param="1" />
 </resourceEdit>
 <resourceEdit addressType="relative" length="8" start="4">
 <ssm:compVar compID="ssm:comp:myAudio" indType="layerInd" param="0" />
 </resourceEdit>
 </resourceEditData>
 </parcel>
 <parcel parcelID="1">>
 <componentData>
 <component compID="ssm:comp:myImage">
 <tierInfo numTiers="2">
 <tierElemInfo exclusiveFlag="false" numLayers="4" origLayers="4" tier="0" />
 <tierElemInfo exclusiveFlag="false" numLayers="4" origLayers="5" tier="1" />
 </tierInfo>
 <atomToc addressType="relative" start="23011">
 <atomTocEntry addressType="relative" indices="0 0" length="512" start="1000" />
 <atomTocEntry addressType="relative" indices="0 1" length="360" start="1600" />
 <atomTocEntry addressType="relative" indices="0 2" length="2000" start="2347" />
 <atomTocEntry addressType="relative" indices="0 3" length="2536" start="4400" />
 <atomTocEntry addressType="relative" indices="1 0" length="1006" start="7922" />
 <atomTocEntry addressType="relative" indices="1 1" length="1878" start="9042" />
 <atomTocEntry addressType="relative" indices="1 2" length="2663" start="10225" />
 <atomTocEntry addressType="relative" indices="1 3" length="3549" start="12922" />
 <atomTocEntry addressType="relative" indices="2 0" length="1470" start="19014" />
 <atomTocEntry addressType="relative" indices="2 1" length="2351" start="20765" />
 <atomTocEntry addressType="relative" indices="2 2" length="3534" start="23211" />
 <atomTocEntry addressType="relative" indices="2 3" length="4915" start="26819" />
 <atomTocEntry addressType="relative" indices="3 0" length="2029" start="32108" />
 <atomTocEntry addressType="relative" indices="3 1" length="3147" start="34137" />
 <atomTocEntry addressType="relative" indices="3 2" length="4258" start="37308" />
 <atomTocEntry addressType="relative" indices="3 3" length="5307" start="41566" />
 </atomToc>
 </component>
 <component compID="ssm:comp:myAudio">
 <tierInfo numTiers="1">
 <tierElemInfo exclusiveFlag="false" numLayers="4" origLayers="5" tier="0" />
 </tierInfo>
 <atomToc addressType="relative" start="49105">
 <atomTocEntry addressType="relative" indices="0" length="789" start="1178" />
 <atomTocEntry addressType="relative" indices="1" length="1745" start="1967" />
 <atomTocEntry addressType="relative" indices="2" length="2840" start="3825" />
 <atomTocEntry addressType="relative" indices="3" length="4173" start="6778" />
 </atomToc>
 </component>

104

 </componentData>
 <featureData>
 <feature avar="ssm:avar:imageResolution">
 <components>
 <component compID="ssm:comp:myImage" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>0.0</emptyFeatureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dimToTierMap="0" dims="1" distType="nonDecreasing">100 200 400
800</marginalDist>
 <marginalDist dimToTierMap="1" dims="1" distType="constant">1.0</marginalDist>
 </featureDist>
 </feature>
 <feature avar="ssm:avar:imageCodesize">
 <components>
 <component compID="ssm:comp:myImage" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>0.0</emptyFeatureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dimToTierMap="0 1" dims="2" distType="nonDecreasing">120 240 350 400 240
300 420 510 315 456 600 720 378 526 720 823</marginalDist>
 </featureDist>
 </feature>
 <feature avar="ssm:avar:imageDistortion">
 <components>
 <component compID="ssm:comp:myImage" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>2000.0</emptyFeatureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dimToTierMap="0 1" dims="2" distType="nonIncreasing">1400 1000 813 621
1200 803 647 531 1000 671 436 317 699 475 355 206</marginalDist>
 </featureDist>
 </feature>
 <feature avar="ssm:avar:audioCodesize">
 <components>
 <component compID="ssm:comp:myAudio" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>0</emptyFeatureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dimToTierMap="0" dims="1" distType="nonDecreasing">105 211 323
456</marginalDist>
 </featureDist>
 </feature>
 <feature avar="ssm:avar:audioDistortion">
 <components>
 <component compID="ssm:comp:myAudio" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>600</emptyFeatureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dimToTierMap="0" dims="1" distType="nonIncreasing">400 326 237
160</marginalDist>

105

 </featureDist>
 </feature>
 <feature avar="ssm:avar:perceptualRichness">
 <components>
 <component compID="ssm:comp:myImage" />
 <component compID="ssm:comp:myAudio" />
 </components>
 <refFeatureValue>10.0</refFeatureValue>
 <emptyFeatureDist>0.0</emptyFeatureDist>
 <featureDist emptyComponentTiers="0 1">
 <marginalDist dimToTierMap="2" dims="1">2 3 5 8</marginalDist>
 </featureDist>
 <featureDist emptyComponentTiers="2">
 <marginalDist dimToTierMap="0" dims="1">1 1.2 1.5 2</marginalDist>
 <marginalDist dimToTierMap="1" dims="1">1 2 3 4 4.</marginalDist>
 </featureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dimToTierMap="0 1 2" dims="3">2 3 4 4 3 3 4 5 3 3 4 5 3 4 4 5 4 5 6 6 5 5 6 7 5 5
6 7 5 6 6 7 7 8 9 9 8 8 9 10 8 8 9 10 8 9 9 10 12 13 14 14 13 13 14 15 13 13 14 15 13 14 14
15</marginalDist>
 </featureDist>
 </feature>
 </featureData>
 <combAvarData />
 <resourceEditData>
 <resourceEdit addressType="absolute" length="8" start="62569">
 <ssm:compVar compID="ssm:comp:myImage" indType="layerInd" param="0" />
 </resourceEdit>
 <resourceEdit addressType="relative" length="8" start="2">
 <ssm:compVar compID="ssm:comp:myImage" indType="layerInd" param="1" />
 </resourceEdit>
 <resourceEdit addressType="relative" length="8" start="10">
 <ssm:compVar compID="ssm:comp:myAudio" indType="layerInd" param="0" />
 </resourceEdit>
 </resourceEditData>
 </parcel>
 </parcelData>
 <globalFeatureData>
 <globalFeature avar="ssm:avar:imageResolution">
 <components>
 <component compID="ssm:comp:myImage" numLayers="5 5" />
 </components>
 <refFeatureValue>1.0</refFeatureValue>
 <emptyFeatureDist>0.0</emptyFeatureDist>
 <featureDist emptyComponentTiers="">
 <marginalDist dims="1" dimToTierMap="0" distType="nonDecreasing">100 200 400 800
1600</marginalDist>
 <marginalDist dims="1" dimToTierMap="1" distType="constant">1.0</marginalDist>
 </featureDist>
 </globalFeature>
 </globalFeatureData>
 <globalCombAvarData>
 <globalCombAvar avar="ssm:avar:codesize">
 <ssm:adapVar avar="ssm:avar:audioCodesize" />
 <ssm:adapVar avar="ssm:avar:imageCodesize" />
 <ssm:operation operator="add" />

106

 </globalCombAvar>
 <globalCombAvar avar="ssm:avar:lagrangian" numArguments="2">
 <ssm:adapVar avar="ssm:avar:audioDistortion" />
 <ssm:adapVar avar="ssm:avar:imageDistortion" />
 <ssm:argument number="0" />
 <ssm:operation operator="multiply" />
 <ssm:operation operator="add" />
 <ssm:adapVar avar="ssm:avar:codesize" />
 <ssm:argument number="1" />
 <ssm:operation operator="multiply" />
 <ssm:operation operator="add" />
 </globalCombAvar>
 <globalCombAvar avar="ssm:avar:myImageImpliesAudio">
 <ssm:compVar compID="ssm:comp:myAudio" indType="inclusionInd" />
 <ssm:compVar compID="ssm:comp:myImage" indType="inclusionInd" />
 <ssm:operation operator="boolNOT" />
 <ssm:operation operator="boolOR" />
 </globalCombAvar>
 </globalCombAvarData>
 <globalLUTAvarData>
 <globalLUTAvar avar="ssm:avar:lagrangianLUT " numAxes="2">
 <axisValues axis="0" grid="25 50 100" />
 <axisValues axis="1" grid="10 30 100 300" />
 <content>
 <marginalDist dims="2" dimToTierMap="0 1">0.9 0.8 0.7 0.6 0.5 0.4 0.8 0.7 0.6 0.5 0.4 0.3 0.7 0.6
0.5 0.4 0.3 0.2 0.6 0.5 0.4 0.3 0.2 0.1 0.5 0.4 0.3 0.2 0.1 0.1</marginalDist>
 </content>
 </globalLUTAvar>
 </globalLUTAvarData>
 <globalCreatorLimitConstraints>
 <globalLimitConstraint highLimit="1" lowLimit="1">
 <ssm:adapVar avar="ssm:avar:myImageImpliesAudio" />
 </globalLimitConstraint>
 </globalCreatorLimitConstraints>
 <codecOffsetData>
 <offsetReference addressType="relative" start="34508">
 <offsetEntry addressType="relative" invalidPointerHandling="moveUp" length="16" start="2"
value="10000" />
 <offsetEntry addressType="relative" invalidPointerHandling="moveUp" length="16" start="4"
value="20000" />
 </offsetReference>
 <offsetReference addressType="relative" start="3000">
 <offsetEntry addressType="relative" invalidPointerHandling="moveUp" length="20" start="2"
value="-6178" />
 <offsetEntry addressType="relative" bitPos="4" invalidPointerHandling="moveUp" length="20"
start="4" value="23011" />
 <offsetEntry addressType="relative" invalidPointerHandling="moveUp" length="20" start="7"
value="39933" />
 </offsetReference>
 </codecOffsetData>
 <sequenceData>
 <sequence startValue="10" stepValue="2">
 <countField addressType="absolute" length="16" start="10000" />
 <countField addressType="relative" length="16" start="5000" />
 <countField addressType="relative" length="16" start="1000" />
 <countField addressType="relative" length="16" start="2000" />

107

 </sequence>
 <sequence startValue="0" stepValue="1">
 <countField addressType="absolute" length="8" start="20386" write="false" />
 <writeField addressType="absolute" length="8" start="25837" />
 </sequence>
 <sequence startValue="0" stepValue="6">
 <writeField addressType="absolute" length="8" start="29223" type="seqValue" />
 <subSequence pack="false" startValue="0" stepValue="1">
 <countField addressType="relative" length="8" start="1000" write="true" />
 <countField addressType="relative" length="8" start="1000" write="true" />
 <countOnly />
 <countOnly />
 <countOnly />
 <countOnly />
 </subSequence>
 <subSequence modulo="8" pack="false" startValue="0" stepValue="1">
 <writeField addressType="absolute" length="8" start="73441" type="count" />
 </subSequence>
 </sequence>
 </sequenceData>
</SSMDescription>

