8 + VIRUS BULLETIN MARCH 2003

RESEARCH FEATURE 1

Virus Throttling

Matthew M. Williamson, Jamie Twycross,
Jonathan Griffin and Andy Norman
Hewlett Packard Labs, UK

Virus throttling is a new technique to contain the damage
caused by fast-spreading worms and viruses. Rather than
attempting to prevent a machine from becoming infected,
throttling prevents the virus spreading from an infected
machine. This reduces damage because the virus is able
to spread less quickly, and produces less network traffic.

Throttling is particularly effective against fast-spreading
viruses, where signature-based approaches are weak. A
signature-based anti-virus approach is really a race between
the virus and the signature: a vulnerable machine will be
infected if a virus reaches it before the signature does, but
not if the signature gets there first.

Unfortunately, not only do modern viruses spread quickly,
they also have a head start in the race as the result of any
delay in generating the virus signature. In the case of
these viruses, it is not just the infected machines that are
a problem, the network loading caused by the additional
traffic generated by the virus can cause problems for all
users, not just those unfortunate enough to be infected.

Virus throttling is based on controlling an infected
machine’s network behaviour, and so does not rely on
details of the specific virus — it does not need a signature.
It restricts the virus spread, which is not as effective as
preventing infection in the first place.

However, if it is impossible to prevent infection (i.e. the
virus has reached the machine first), then restricting the
spread of the virus will help contain the damage. The
outbreak will grow less rapidly, because there will be fewer
machines actively spreading the virus, and the network
loading will be reduced.

By damping down the spread of the virus, throttling buys
time for signature-based approaches, which are slower but
more effective. Throttling makes the race more even.

How Does it Work?

Throttling relies on the difference between the network
behaviour of a normal (uninfected) machine, and one that is
infected by a virus. The fundamental behaviour of a virus is
to replicate and spread itself to as many different machines
as possible. For example, Nimda makes about 300-400
connections per second (cps) and SQLSlammenyBee

this issue p.6) sends 850 packets per second, both probing
for vulnerable machines. Many email viruses send mail to
all the addresses they can find.

Our machines do not normally do this! They tend to contact
machines at a much lower rate, and also contact the same
machines repeatedly. The rate of connection®eto

machines is more in the order of one connection per second
for TCP/UDP and once every ten minutes for email.

A virus throttle is a rate-limiter on interactions with new
machines, where ‘interactions’ could be the initiation of a
TCP connection, or the sending of a UDP packet or email,
and ‘new’ is defined as the interaction having a different
destination address from anywhere the machine has
contacted recently. The throttle delays (as opposed to drops)
connections that occur at a higher rate than that allowed.

If a virus attempts to scan for vulnerable machines at a high
rate (e.g. 400 cps), the throttle will limit this to something
much smaller (e.g. 1 cps). This will slow down the rate at
which the virus can spread. If the virus is attempting 400
connections every second, and only one is being allowed,
the backlog of delayed connections will grow rapidly. The
length of this backlog is a reliable indicator that a virus has
infected the system, and more drastic action can be taken.
This involves preventing any further propagation e.g.
stopping networking, and alerting IT staff.

The throttle thus slows down viruses until they are detected,
at which point any further propagation can be stopped. For
fast-spreading viruses, this whole process can take less than
a second.

The rest of this article describes the throttling algorithm in
more detail, discusses which protocols are suitable for
throttling and presents some results from a user trial. The
following sections then show how quickly the throttle can
prevent onward propagation of the virus, as well as some
experiments on how using throttles can affect the extent of a
virus outbreak.

Throttle Algorithm

The throttle is a rate limiter on connectibtsnew

machines, and is shown schematically in Figure 1. When-
ever a request is made, the throttle checks to see whether
the request is to a new host, by comparing the destination
of the request with a short list of recent connections. The
length of this list, or ‘working set’, can be varied — thus
altering the sensitivity of the system. For example, if the
length of the working set is 1, all requests other than
consecutive connections to the same host will be ‘new’.

If the host is not new, the request is processed as normal,
but if it is new it is added to a ‘delay queue’ to await
processing. Every time a timeout expires (indicated by
‘clock’ in Fig 1), the rate limiter process pops one request
off the delay queue and processes it, thus ensuring that only
one connection is made to a new host per timeout period.

VIRUS BULLETIN ©2003 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555132003/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the gniopevritission of thpublishers.

VIRUS BULLETIN MARCH 2003 « 9

at a low rate, contacting the same machine repeatedly. The
traffic for some protocols is nearly always to the same
machine. For example SMTP (port 25), IMAP (143), web
proxy (8088). Throttling on these protocols could be very
tight since the destinations change so rarely. The behaviour
for other protocols where the destination address changes is
shown in Figure 2.

request
delay
working set queue
not-ne n=4 new| [9] |1 IQue:Jhe
dd f = eng
@ @ @ & detector
update
rate limiter clock
process

Figure 1: Virus throttling. When a request is made the destination is
compared against a ‘working set’ of recently contacted hosts, tg
determine whether it is new or not. If new (e.g. the request is to|host
‘h’, which is not in the working set), then the connection is queuged in
the delay queue. If not new, the request is processed as usual. The
requests in the delay queue are popped off and processed at regular
intervals, guaranteeing that no more than one connection per time
interval is made to a ‘new’ host. Potential viral activity can be
detected by monitoring the length of the delay queue.

The rate limiter processing involves releasing the request at
the head of the queue and releasing any others to the same
destination, as well as updating the working set with the
new destination (removing a host from the working set and
replacing it with the new destination).

Since the throttle implements a rate limit, and delays
connections made at a higher rate rather than dropping
them, if a process makes many connections they will mount
up quickly in the delay queue. Therefore, monitoring the
length of that queue gives a good indication of whether a
process is acting like a virus. If the length of the queue
reaches a threshold, the offending process can be halted
either by stopping networking or by suspending the process
itself. A user or administrator can then be contacted.

The allowed rate of connections to new machines is set to
enable normal traffic to pass with minimal delay. If there
are occasional periods when connections are made at a
higher rate, these will be put on the queue, but the queue
will not grow large, and so the delays will be small.

Since different protocols have different characteristics, it is
possible to have a throttle per application, per protocol etc.
The throttle itself could be implemented in a variety of
places. On the host it could be inserted into the network
stack e.g. as part of a software firewall, ethernet driver, etc.,
although being on the host makes it vulnerable to being
switched off by a virus. It could also be implemented at
various locations in the network. For protocols that use
proxies e.g. email, web, etc. the throttling could be carried
out at the server.

What Protocols can be Throttled?

In order for a machine to be ‘throttled’, its normal traffic
must not look like a virus spreading i.e. connections made

Normal network traffic was collected and the effect of
the throttle was simulated for a range of working set

sizes and allowed rates of connection. The average delay for
each connection/interaction was then calculated. Figure 2

shows the different values of working set size and rate

that give a constant average delay, for different protocols.
The average delay for the TCP/UDP data is 0.3 ms, corre-
sponding to three connections in every 1000 being delayed

by one second.

The graph (Figure 2) shows thdicrosoftfile sharing

(139), http (80), ssl (443) and dns (53) all look conducive

to throttling, with a reasonable selection of working set
sizes and allowed rates. The best settings are with a
small working set and a low allowed rate, on the ‘knee’
the curve.

of

Good values for http are thus a working set of 5, allowed
rate 1 etc. Data for email (not shown) suggests that email
can also be throttled, but the working set should be larger

(around 20) and the allowed rate much lower (say one
email address every ten minutes).

Protocols that were found to be difficult to throttle were
Microsoftnaming (137) and another port used for file
sharing (138 udp). The UDP traffic on both of these

new

ports is to many different hosts at high rates, albeit in a

bursty manner.

9l “\‘139 (tcp) B

137 (udp)

Allowed rate (cpp
o
T
I

6 7 8 9 10
Working set sie

Figure 2: Throttle parameter settings for different protocols. The
shows the settings for allowed rate and working set size that giv
constant average delay per connection. The different lines corre

traffic on port 137, the other traffic is suitable for throttling, with
different protocols requiring different parameter settings. The be
parameter settings are with the smallest working set, and lowes|
allowed rate.

plot
es a
spond

to traffic with different destination ports. With the exception of UDP

st
t

VIRUS BULLETIN ©2003 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. http://www.virusbtn.com/.2003/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the pnopevrtission of thpublishers.

10 « VIRUS BULLETIN MARCH 2003

This data was collected for desktop machines, but one
would expect similar patterns for servers (which primarily
handle incoming connections and make outgoing connec-
tions to a limited number of machines).

There are notable exceptions: machines running scanners,
web crawlers or notification services or, for UDP, a dns
server. These would all look like machines infected with
viruses (they have many interactions with different ma-
chines at a high rate).

It would thus be difficult to throttle such machines. How-
ever this is not the end of the world, it just means that,
should a machine running one of these applications become
infected with a virus spreading over the same protocol, then
the spread from that machine could not be limited.

While the average delay gives some idea of what effect
throttling would have on normal usage, the best test is
whether those delays cause difficulties for users. One trial
we have run involved throttling all TCP connections for
three users over a two-month period. The working set size
was five, and the allowed rate 1 cps.

Table 1 shows the results of the trial. 98% of connections
occurred without delay, and the maximum delay was five
seconds, occurring only once in over 80,000 connections.
Anecdotally, the users did not notice any of these delays —
the most likely explanation being that networks are full of
delays of this sort of size.

Delay (s) No. of requests Percentage
0 80641 97.8%

1 1428 1.73%

2 300 0.36%

3 29 0.03%

4 2 0.02%

5 1 0.01%

Table 1: Details of the user trial. For each delay (in seconds), the
table shows the number and percentage of connections that were
delayed.

To summarise, the analysis suggests that the majority of
common protocols have normal traffic patterns that make
them suitable for throttling. In addition, the sorts of delays
that throttling creates in normal usage are small and not
noticeable.

How Quickly does it Stop Onward Propagation?

As mentioned previously, the length of the delay queue can
be monitored to detect if a machine is making many
connections to many different machines and is thus likely to
be infected by a virus. If the queue goes over a defined
threshold, further propagation can be stopped.

Setting the delay queue threshold to 100 (fairly high, given
that the queue never went above 5 in our user trial), Table 2
shows the time taken to stop virus propagation and the
number of connections made for Nimda, and a number of
different conditions for a hand-crafted ‘test worm’.

Virus Connections Stopping No. of connections
per second time (s) allowed

Nimda 120 0.2 1

Test worm 2 106.1 104

Test worm 5 26.5 25

Test worm 10 11.2 11

Test worm 20 5.4 5

Test worm 40 2.3 2

Test worm 60 1.4 1

Test worm 80 1.0 1

Test worm 100 0.9 1

Test worm 150 0.2 0

Test worm 200 0.0 0

Table 2 — Showing time to stop and number of connections before
stopping for a throttle with an allowed rate of 1 cps. Fast viruses are
stopped very quickly (Nimda in 0.25 seconds), while slow ones are
stopped fairly promptly (1.5 minutes for 2 cps). The virus is not able
to make many connections before it is stopped.

The table shows some encouraging results, indicating that
the faster the virus, the more quickly it is stopped, the time
being less than a second for rates higher than 100 cps. Even
viruses with a relatively slow connection rate are stopped
quickly (just over 100 seconds for 2 cps). The number of
connections that the virus is able to make is fairly small in

all cases. The throttle is effectively preventing the onward
propagation of the virus from the infected machine.

The fact that the throttle can detect the presence of a virus
very quickly might make it useful as a monitoring device to
provide early warning of viruses and collect data on their
behaviour to enable quicker virus signatures.

Effect on Global Spread

A virus throttle is an altruistic idea — a throttled machine
may still become infected, but it will not pass the infection
on to others. Like most altruistic ideas, throttling will be
most effective when it is widely used! Obviously throttling
every machine is impossible in practice, so the question is:
what is the effect on virus outbreaks if a smaller proportion
of machines have the throttle?

That question is difficult to answer. There are many factors
that make it hard to predict virus spread, let alone with
throttling in the picture too. Virus spread depends on the
propagation strategy of the virus, the density of vulnerable
machines, the topology of the network, user behaviour, and
so on. It also depends to a large extent on the whole process
of fighting the virus: how quickly signatures are created and
distributed, the vigilance of IT staff and so on.

To assess the impact of throttling, we tested the throttle
against real viruses and measured spreading rates. Figure 3
shows the propagation of Nimda against time for an

isolated subnet of 16 machines. When all the machines

are throttled, Nimda does not spread at all. When no
machines are throttled, Nimda takes about 20 minutes to
infect all the machines. The other lines show that it is only
when more than half of the machines are throttled that the
infection is slowed, to about an hour when 75% of the
machines have throttles.

VIRUS BULLETIN ©2003 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555132003/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the gniopevritission of thpublishers.

VIRUS BULLETIN MARCH 2003 « I |

16

P —o0
P -4
14 12
— 16

= =
o ~

Number of infected machines
®

I I I I
0 10 20 30 40 50 60 70
Time (minutes)

Figure 3: Number of infected machines plotted against time for the
Nimda virus, varying the number of machines with throttles. Each
line is the average of 10 runs. With no throttles, the virus infects all
machines in about 20 minutes, but if all the machines use throttles,
the virus does not spread at all. More than half of the machines|need
to have throttles in order to slow the virus significantly.

While the virus was slowed by a factor of three, it still
spread through all the machines in one hour. This is quite a
harsh test however, as Nimda’s spreading strategy targets
the local subnet, and so would be expected to spread most
quickly there. However, the number of infected machines is
not the only problem, the traffic they produce is important
too. For the run with 12 of the 16 machines throttled, the
traffic loading would be around one quarter of that in the
unthrottled case, ignoring any saturation effects.

Part of the problem is that, because Nimda is a scanning
virus, a single unthrottled machine can continue infecting
others for as long as it is allowed to run. Other viruses do
not scan (e.g. email viruses), and the throttle is likely to be
more effective against those, mainly because the damage
from an unthrottled machine will be much smaller.

We have also used modelling to look at throttling in the
context of signature-based approaches, with a model of
virus spread and clean up. The results from that model
suggest that if 50-60% of machines (or more) have throt-
tles, the impact of virus outbreaks can be much reduced

Conclusion

Virus throttling is a new approach to containing the damage
caused by fast-spreading worms and viruses. It targets the
propagation of viruses from infected machines, slowing and
stopping it. This reduces the number of machines actively
spreading the virus, which in turn means that the outbreak
grows more slowly, and the amount of traffic (and therefore
disruption) is reduced.

Analysis of normal network traffic shows that the majority

of protocols are suitable for throttling without interfering

with normal usage, and that virus outbreaks can be reduced
if a reasonable proportion (more than 60%) of machines
are throttled.

Computer security is an arms race, with the attacking and
defending technologies changing to exploit each other’s
weaknesses. Throttling is, in principle, quite hard to beat,
because it targets a fundamental characteristic of a virus: its
replication. It is not possible to replicate as a computer
virus without contacting different machines!

On the other hand, one way to defeat the throttling tech-
nigue would be to design slow viruses that pass through the
limiter without delay. However, while the throttle would not
stop such viruses, there are many other mechanisms already
in place to deal with such slow threats.

A simpler way to defeat the throttle would be if malicious
code were able to switch it off, as recent viruses (e.g.
Bugbear) have begun to do with software firewalls and
anti-virus software.

A virus switching off the throttle is worrying, because the
throttle is designed to work after infection. There are two
solutions for this, one is to hide and obfuscate the software
on machines to make it more difficult to disable, and the
alternative is to move the throttle into the network. Cur-
rently we are researching a variety of ways to do this. The
throttle might already be implemented in the network;, for
example the logical place for an email throttle is at the
outgoing mail server.

In conclusion, throttling looks like a promising technique.
The idea of concentrating on the possible harm that a
machine can do, rather than on harm that could be done
to it is a general and powerful one. If our machines were
made so that they could cause less harm to one another,
using throttling and other similar technolodietten our
computer systems would be much more resilient when
under attack.

Footnotes

1 The term ‘connections’ is meant to apply not just to TCP

connections, but also to UDP packets and emails. The word
should really be ‘interactions’, but that is clumsy and does notifi
any of the protocols.

2 See ‘An epidemiological model of virus spread and cleanup’
M. M. Williamson and J. Leveille (2003), Submitted to USENIX
Security Symposium 2003. This paper is available from
http://www.hpl.hp.com/research/bicas.

3 See ‘AngelL: a tool to disarm computer systems’, D. Bruschi
and E. RostiProceedings of the New Security Paradigms
Workshop 2002pp.63—69.

Further Reading

M. M. Williamson (2002), ‘Throttling Viruses: Restricting
propagation to defeat malicious mobile cod&'oceedings of
ACSAC Security Conference 20@p.61—-68, available from
http://www.hpl.hp.com/techreports/2002/HPL-2002-172.html.

J. Twycross and M. M. Williamson (2003), ‘Implementing and
testing a virus throttle’, Submitted to USENIX Security
Symposium 2003, available from http://www.hpl.hp.com/
research/bicas.

M. M. Williamson (2002), ‘Resilient Infrastructure for Network
Security’, Submitted to “Complexity”, available from
http://www.hpl.hp.com/techreports/2002/HPL-2002-273.html.

t

VIRUS BULLETIN ©2003 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. http://www.virusbtn.com/.2003/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the pnopevrtission of thpublishers.

