

On matching nodes between trees

Li Zhang
Systems Research Center Laboratory
HP Laboratories Palo Alto
HPL-2003-67
April 2nd , 2003*

E-mail: l.zhang@hp.com

phylogenetic tree
comparison, lower
envelope

Consider two rooted leaf- labeled trees T1, T2. Define the similarity
between two internal nodes, one from each tree, to be |A∩B|/|A∪B|,
where A, B are the sets of the leaves under the two nodes,
respectively. In this paper, we consider the problem of computing
for every node in T1, the best matching node in T2 under the above
similarity measure. Such problem arises in applications such as
comparing phylogenetic trees. In this paper, we present an O((n log
n)1.5) time algorithm for the problem. The major difficulty in
solving this problem is that the above similarity measure is non-
linear while the traditional algorithms normally deal with linear
weights. To overcome the difficulty, one novelty in our solution is
to reduce the problem to computing the upper-envelope of pseudo-
planes and then apply the results from Computational Geometry to
obtain an efficient algorithm.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2003

On matching nodes between trees

Li Zhang

Systems Research Center
Hewlett-Packard Labs
1501 Page Mill Road
Palo Alto, CA 94304

l.zhang@hp.com

Abstract

Consider two rooted leaf-labeled trees T1, T2. Define the similarity
between two internal nodes, one from each tree, to be |A∩B|

|A∪B| , where
A,B are the sets of the leaves under the two nodes, respectively. In
this paper, we consider the problem of computing for every node in
T1, the best matching node in T2 under the above similarity measure.
Such problem arises in applications such as comparing phylogenetic
trees. In this paper, we present an O((n log n)1.5) time algorithm for
the problem. The major difficulty in solving this problem is that
the above similarity measure is non-linear while the traditional algo-
rithms normally deal with linear weights. To overcome the difficulty,
one novelty in our solution is to reduce the problem to computing
the upper-envelope of pseudo-planes and then apply the results from
Computational Geometry to obtain an efficient algorithm.

1 Introduction

Representing an object in a tree-like structure is ubiquitous in many areas.
For examples, a phylogenetic (evolutionary) tree represents the evolution
history of organisms; a DOM tree represents an XML document. In all
such areas, it is important to be able to compare trees. One way for tree
comparison is to define a distance function in the tree space to measure how
different two trees are. In a more refined comparison, one usually establishes

1

a mapping between similar nodes in two trees according to certain similarity
measure. The mapping tells us more about where two trees are similar. In
this paper, we study the problem of mapping nodes between two leaf-labeled
trees. A tree is leaf-labeled if its leaves are labeled but the internal nodes
are not. Such trees arise in the areas such as Classification, Biology. For
example, a phylogenetic tree is a leaf-labeled tree.

In a leaf-labeled tree, the mapping between leaf nodes is immediate ac-
cording to their labels. However, the mapping between internal nodes is not
obvious. Intuitively, an internal node represents the cluster of its leaf set, the
set of leaves under it. Therefore, one natural choice is to establish the map-
ping according to the similarity between the leaf sets. Indeed, the popular
consensus tree approach [1, 10, 6, 14] computes the mapping from the node u
in T1 to the node v in T2 if v has the same leaf set as u. One problem with
the consensus method is that it only correlates two perfectly matching nodes,
the pair of nodes with the identical leaf sets. For nodes which do not have
perfectly matching nodes, the mapping is undefined even if two nodes have
99% overlap in their leaf sets. Stinebrickner [11, 12] proposed s-consensus
trees to deal with this problem. In an s-consensus tree, the mapping is based
on the best matching node instead of the perfectly matching node. The par-
ticular similarity measure proposed by Stinebrickner is induced from the set

similarity measure: the similarity S(A, B) between two sets A, B is defined

to be |A∩B|
|A∪B|

. One nice property of this measure is that the function defined

by d(A, B) = 1−S(A, B) is a metric. This measure is also used for detecting
similar documents in Stanford SCAM project [8] and by Broder et al. [3, 2].

As shown in [4], all the perfectly matching node pairs can be computed
in the optimal linear time in terms of the number of tree nodes. It is easy
to show that the best matching node of a single node can be computed
in linear time, and therefore the mapping can be computed in quadratic
time. In [3], an efficient algorithm is proposed to compute the highly similar
document according to the set similarity measure. However, the algorithm
is probabilistic and only works for finding out documents (or nodes) with
high similarity score. In this paper, we show a deterministic algorithm that
computes for every node in T1, the best matching node in T2 in roughly
O(n1.5) time where n denotes the number of leaves in T1 and T2. One difficulty
in solving this problem is that the set similarity measure is non-linear. If we
had defined the similarity as the size of intersection between two sets, then by
taking advantage of the linearity, namely |A∩(B∪C)| = |A∩B|+|A∩C| when

2

B∩C = ∅, we would be able to compute all the best matching nodes in about
linear time by using the classical link-cut tree [9, 13]. Unfortunately, the set
similarity measure does not possess the same nice property. To overcome
the difficulty, we reduce the problem to computing the maximum map of
a set of function of the form fa,b(x, y) = a+x

b+y
. While those functions are

non-linear, they behave similar to linear functions: the images of two such
functions intersect at a simple open curve, and the images of three such
functions intersect at a single point. The images of such functions are known
as pseudo-planes in Computational Geometry [7]. By applying the techniques
for computing the upper-envelope of pseudo-planes and combining with a
structural property of trees, we are able to achieve an O((n log n)1.5) time
algorithm.

The paper is organized as follows. In Section 2, we introduce some nota-
tions and useful properties. An immediate consequence of those properties
is a simple algorithm for the best match problem that runs in quadratic time
in the worst case and roughly linear time for balanced trees. In Section 3,
we define a sub-problem called the ancestor match problem and show a so-
lution for it. Then in Section 4 we present the O((n log n)1.5) algorithm for
the best match problem by using the algorithm developed for the ancestor
match problem.

2 Preliminaries

In what follows, we only consider binary trees. Extension of our algorithms
to arbitrary trees is straightforward. Suppose that T is a rooted tree. We
assume that T does not have any degree two nodes other than the root node.
Let U be the universe of labels. T is leaf-labeled if every leaf of T is assigned
a distinct label from U . For any node u in T , define its leaf set L(u) to be
the set of labels of the leaves in the subtree rooted at u. Denote by L(T)
the set of leaf labels in T . For two leaf-labeled trees T1 and T2, we define the
similarity S(u1, u2) between a node u1 ∈ T1 and a node u2 ∈ T2 as follows:

S(u1, u2) =
|L(u1) ∩ L(u2)|

|L(u1) ∪ L(u2)|
.

For the node u1 ∈ T1, the best match M(u1) ∈ T2 is the node that
maximizes the similarity between u1 and any node in T2, i.e.

M(u1) = arg maxu2∈T S(u1, u2) .

3

862 4

.

Figure 1. The spanning tree and simplified spanning tree of the set {2, 4, 6, 8}. In the
right figure, all the nodes on the thickened path are in the spanning tree but only those
vertices drawn as hollowed dots are the internal nodes in the simplified spanning tree.

Notice that M(u1) may not be unique in which case we can pick any one
that maximizes the similarity measure.

For a tree T , we define a partial order � on its nodes: for two nodes u, v,
u � v if u = v or u is a descendant of v. For a set R of nodes in T , if there
exists a node u ∈ R so that for any r ∈ R, r � u (u � r), then we let max R
(min R) be u; otherwise max R (min R) is not defined. Denote by lca(u, v)
the lowest common ancestor(LCA) of u and v, i.e. lca(u, v) = min{w|u �
w, v � w}. For any two nodes u, v in a tree, denote P (u, v) the unique path
connecting u and v and P (u) the path from u to the root. The size of a path
is defined to be the number of nodes on the path. Two paths are disjoint if
they do not share interior nodes. For a subset L ⊂ U , the spanning tree of
L is defined as the minimum set of edges that connect all the leaves whose
labels are in L∩L(T). Clearly, if two nodes u, v are in the spanning tree of L,
so is lca(u, v). A spanning tree may contain degree two vertices. A maximal
degree two path in a spanning tree is a maximal path between two nodes
u, v for u � v where all the internal nodes in the path are of degree two in
the spanning tree. The simplified spanning tree T (L) of L is the rooted tree
obtained from the spanning tree of S by replacing each maximal degree two
path with an edge between the two ending nodes (Figure 1). T (L) can be
computed easily.

Lemma 1. For any tree T with n leaves, we can preprocess it in O(n) time

so that for any L ⊂ U , T (L) can be computed in time O(|L| logn).

Proof: In the preprocessing, we sort all the leaves in T according to the
in-order traversal. We also construct a data structure for answering lowest

4

a3

si−1 si sms1

a1

a2

Figure 2. Search a bay.

common ancestor query in O(1) time. The preprocessing can be done in O(n)
time [5]. For any L ⊂ U , we first find the leaves with labels in L. Suppose that
they are s1, s2, · · · , sm in the order, where m = L∩L(T). This can be done in
O(|L| logn) time. We query the LCA data structure to compute lca(s1, sm).
We then insert s2, · · · , sm−1 one by one and construct T (L) incrementally.
When inserting si, we consider the path (or the bay) between si−1 and sm on
the already constructed piece of T (L) (Figure 2). Suppose that the nodes on
the bay are si−1 = a0, a1, · · · , ak = lca(si−1, sm). We perform a binary search
to locate the edge ajaj+1 so that aj � lca(si−1, si) � aj+1. If such an edge
does not exist, we insert si to the edge aksm at the node lca(si, sm). Each
insertion takes O(log m) time as each LCA query takes O(1) time. Therefore,
T (L) can be constructed in O(|L| logn) time.

�

For any node u ∈ T , let D(u, L) = {v|v � u and v ∈ T (L)} be all the
nodes in T (L) that are under u. The following is useful.

Lemma 2. If D(u, L) 6= ∅, then max D(u, L) is defined. Further, given

T (L), we can preprocess it into a data structure in O(|L|) time so that

D(u, L) can be computed in O(log |L|) time for any u ∈ T .

Proof: Consider the subtrees T1, T2 rooted at u’s two children, respectively.
If none of T1, T2 contains any node in T (L), then D(u, L) = ∅. If exactly
one of T1, T2, say T1, contains node in T (L), then max D(u, L) is the highest
node in T (L)∩ T1. If both of T1, T2 contain node in T (L), then u must be in
T (L), i.e. max D(u, L) = u.

Given T (L), we can sort all the leaves in T (L) according to the in-order
traversal. Suppose that they are s1, s2, · · · , sm. For each i, we also store in

5

an array all the nodes on the path between si and si+1 in T (L) in the order
they appear on the path. For any given node u, we can first perform a binary
search to find i so that u is between si and si+1 in the in-order traversal (if
such i does not exist, then either D(u, L) = ∅ or D(u, L) = lca(s1, sm).).
We then perform a binary search on the path between si and si+1 to find
max D(u, L). Both binary searches take O(log |L|) time.

�

When computing the best match of a node u, we just need to consider
all the nodes in the simplified spanning tree of L(u) in the tree T2 according
to the following lemma.

Lemma 3. For two trees T1 and T2 and a node u in T1, the best matching

node of u must be a node in the tree T2(L(u))) if L(T2) ∩ L(u) 6= ∅.

Proof: Consider a node v /∈ T2(L(u)). If D(v, L) = ∅, then S(u, v) = 0.
Otherwise, consider w = max D(v, L). By Lemma 2, w is well defined.
Further S(u, w) > S(u, v) because L(w) ⊂ L(v) and L(w) ∩ L(u) = L(v) ∩
L(u). Therefore, v cannot be the best match of u if L(T2) ∩ L(u) 6= ∅.

�

By Lemma 1 and 3, we immediately have that

Theorem 4. For any two trees T1, T2, with n leaves each, one can compute

the best match for all the nodes in T1 in O(n) space and O(
∑

u∈T1
|L(u)| logn)

time. The running time is O(n2 log n) in the worst case and O(n log2 n) when

T1 is balanced.

Proof: We first traverse T1, T2 and store at each node the number of leaves
under it. For any node u ∈ T1, we compute T2(L(u)). Then, we traverse
T2(L(u)) and compute for each node v in T2(L(u)) the number of leaves
under v in T2(L(u)), i.e. |L(u) ∩ L(v)|. For each v ∈ T2(L(u)), we compute

S(u, v) =
|L(u) ∩ L(v)|

|L(u) ∪ L(v)|
=

|L(u) ∩ L(v)|

|L(u)| + |L(v)| − |L(u) ∩ L(v)|
.

We then simply pick the node that maximizes S(u, v). By Lemma 3, it
is the best match of u. By Lemma 1, the above can be done in O(n) space
and in O(

∑

u∈T1
|L(u)| logn) time.

�

The main result of the paper is to show how to improve the worst case
quadratic bound by combining a technique from Computational Geometry
and a path decomposition of trees.

6

Theorem 5. For any two trees T1 and T2 with n leaves each, the best match

for all the nodes in T1 can be computed in time O((n logn)1.5).

In the following, we first specify a sub-problem and an algorithm for it.
We then show how to use it as a subroutine to solve the matching problem.

3 Ancestor match problem

Consider the following problem: given two trees T1, T2 and a node u ∈ T1,
compute the best matching nodes for all the ancestors of u. We call this
problem ancestor match problem. In this section, we describe an algorithm
for this problem. In the next section, we show how to use the algorithm
developed in this section to solve the best match problem.

For the ancestor match problem, we show the following result.

Theorem 6. Given two trees T1, T2 and a node u in T1, we can preprocess

it into a data structure in O(|L(u)| logn) time and space so that for any

ancestor w of u, M(w) can be computed in time O((|L(w)| − |L(u)|) log2 n).

Set L2 = L(w) \ L(u) and m = |L2|. According to Lemma 3, to be the
best match of w, a node has to be in the tree T2(L(w)). For a node v in
T2(L(w)), we distinguish three cases (Figure 3):

• Type 1. v ∈ T2(L(u)),

• Type 2. v ∈ T2(L2), and

• Type 3. v /∈ T2(L(u)) and v /∈ T2(L2).

Note that a node can be of both Type 1 and Type 2. Clearly, there are at
most O(m) Type 2 nodes. For any Type 3 node v, consider its children s1, s2

in T2(L(w)). Because v is not in T2(L(u)), one of s1, s2 must be in T2(L2).
Therefore, the number of Type 3 nodes is bounded by the number of Type 2
nodes and is O(m) as well. In the following, we show that given T2(L(u)),
after O(|L(u)|) time preprocessing, we can compute S(w, v) in O(m logn)
time for all the v’s of Type 2 and 3.

We preprocess T2(L(u)) as in Lemma 2. With each node in T2(L(u)),
we also store the number of leaves under it in T2(L(u)). Then, we compute
T2(L2) and store with each node in T2(L2) the number of leaves under it in

7

u

w

T1
T2

s2

v1

v2

v3

s1

Figure 3. Computing M(w). The black and shaded dots represent leaves in L(u) and
L2 = L(w) \ L(u), respectively. The hollowed dots are leaves not in L(w). v1, v2, v3

are examples of nodes of Type 1, 2, and 3, respectively. In the right figure, T2(L(u))
is shown in thickened edges; and T2(L2) in shaded edges. s1 = maxD(v3, L(u)) and
s2 = maxD(v3, L2).

T2(L2). To discover Type 3 nodes, we compute for each node v in T2(L2), the
node at which v is attached to T2(L(u)). This can be done by a binary search
similar to Lemma 2. For any node v in T2, we can find s1 = max D(v, L(u))
and s2 = max D(v, L2) in O(logn) time after appropriate preprocessing as
in Lemma 2 (Figure 3). Then, we have that |L(w)∩L(v)| = |L(u)∩L(v)|+
|L2∩L(v)| = |L(u)∩L(s1)|+ |L2∩L(s2)|. Since s1 ∈ T2(L(u)), |L(u)∩L(s1)|
is the number of leaves under s1 in T2(L(u)). Similarly, |L2 ∩ L(s2)| is the
number of leaves under s2 in T2(L2). Therefore, S(w, v) can be computed in
O(log n) time for each v ∈ T2. Since there are O(m) Type 2 and 3 nodes, we
can process them in O(m logn) time.

Now, we focus on those Type 1 nodes, the nodes in T2(L(u)). For a node
v ∈ T2(L(u)), we define a function fv : IR2 → IR where

fv(x, y) =
|L(u) ∩ L(v)| + x

|L(u) ∪ L(v)| + y
.

Recall that L2 = L(w) \ L(u) and m = |L2|. Set α(v) = L(v) ∩ L2. We

8

make the following observation.

S(w, v) = |L(w)∩L(v)|
|L(w)∪L(v)|

= |L(u)∩L(v)|+|L2∩L(v)|
|L(u)∪L(v)|+|L(w)\(L(u)∪L(v))|

= |L(u)∩L(v)|+|L2∩L(v)|
|L(u)∪L(v)|+|L2|−|L2∩L(v)|

= fv(|L2 ∩ L(v)|, m − |L2 ∩ L(v)|)
= fv(α(v), m − α(v))

Consider D(v, L2), the set of T2(L2) nodes under v. If D(v, L2) = ∅
then α(v) = 0, and therefore S(w, v) = fv(0, m). Otherwise, suppose that
v1 = max D(v, L2). As shown before, α(v) = α(v1). Then, we have that
S(w, v) = fv(α(v1), m−α(v1)). For any p ∈ D(v, L2), since p is a descendant
of v1, α(p) ≤ α(v1), i.e. fv(α(v1), m − α(v1)) ≥ fv(α(p), m − α(p)). Since
fv(0, m) ≤ fv(α(p), m− α(p)) for any p ∈ D(v, L2), we can combine the two
cases into one formula:

S(w, v) = max(max
p∈D(v,L2)

fv(α(p), m − α(p)), fv(0, m)) . (1)

For any set of nodes R, we define the maximum map FR(x, y) as

FR(x, y) = max
v∈R

fv(x, y) .

Further, for any node p ∈ T2(L2), let Gp(x, y) = FP (p)∩T2(L2)(x, y), the max-
imum map of fv’s where v is in the simplified spanning tree of L2 and is
an ancestor of p. Alternatively, Gp(x, y) = F{v∈T2(L(u))|p∈D(v,L2)}(x, y). Let
H(x, y) = FT2(L(u))(x, y). From the previous formula, we can derive the fol-
lowing by exchanging the order of maximization:

Lemma 7.

max
v∈T2(L(u))

S(w, v) = max(max
p∈T2(L2)

Gp(α(p), m − α(p)), H(0, m)) . (2)

Proof:

max
v∈T2(L(u))

S(w, v)

= max
v∈T2(L(u))

(max(max
p∈D(v,L2)

fv(α(p), m − α(p)), fv(0, m)))

= max(max
v∈T2(L(u))

(max
p∈D(v,L2)

fv(α(p), m − α(p))), max
p∈T2(L(u))

fv(0, m))

9

Since p ∈ D(v, L2) is equivalent to v ∈ P (p), we have that

max
v∈T2(L(u))

max
p∈D(v,L2)

fv(x, y) = max
p∈T2(L2)

max
v∈P (p)∩T2(L(u))

fv(x, y) .

Thus,

max
v∈T2(L(u))

S(w, v)

= max(max
p∈T2(L2)

(max
v∈P (p)∩T2(L2)

fv(α(p), m − α(p))), max
v∈T2(L(u))

fv(0, m))

= max(max
p∈T2(L2)

Gp(α(p), m − α(p)), H(0, m))

�

By the above lemma, the problem reduces to computing Gp, H. We now
exploit the geometry of the function FR and the combinatorial structure of
trees to show that after O(|L(u)| logn) preprocessing, for any p ∈ T2 and any
x, y, we can compute Gp(x, y) and H(x, y) in O(log2 n) time and therefore
complete the proof of Theorem 6.

For any function f : IR2 → IR, we can alternatively consider its image
(x, y, f(x, y)) in three dimensions. In Computational Geometry, the maxi-
mum map FR(x, y) is also called the upper envelope of the surfaces defined
by fv’s for v ∈ R. The combinatorial complexity of the upper envelope of
surfaces has been a well studied subject in geometry. It is well known that for
n surfaces defined by constant degree algebraic or rational functions, their
upper envelope can have combinatorial complexity of Θ(n2). Luckily, the
function fv(x, y) we study here satisfies special properties so that FR(x, y)
has linear complexity in terms of the size of R. By definition, each function
fv has the form a+x

b+y
. For any two such surfaces defined by z = a1+x

b1+y
and

z = a2+x
b2+y

, their intersection, when projected to the xy plane, is a straight

line defined by (b1 − b2)x− (a1 − a2)y + a2b1 − a1b2 = 0. Therefore, two such
surfaces intersect at a topological line in the space, and three such surfaces
intersect at at most one point. Algebraic surfaces with such properties are
called pseudo planes as the arrangement of such surfaces has similar structure
to the arrangement of planes. In particular, the combinatorial complexity of
the upper-envelope of n pseudo planes is O(n) and can be computed in time
O(n logn) [7]. To summarize,

10

Lemma 8. For a set of functions {fi|1 ≤ i ≤ k} where fi(x, y) = ai+x
bi+y

,

we can preprocess it into a data structure with storage O(k) in O(k log k)
time so that for any (x, y), F (x, y) = maxi fi(x, y) can be computed in time

O(log k).

By Lemma 8, we can compute H(x, y) in O(log n) time after preprocessing
that takes O(|L(u)|) space and O(|L(u)| logn) time. But we cannot afford to
compute Gp for all possible p’s because that would require quadratic space
and time. To reduce the preprocessing complexity, we need a tool called
canonical path representations of T2(L2). For any tree T with n nodes, a set
P(T) of paths in T is a canonical path representation of T if it satisfies the
following properties:

• |P| = O(n);

•
∑

P∈P |P | = O(n log n); and

• any path P in T can be represented as the union of O(logn) paths in
P, which are called the canonical representation of P .

It is known that there always exists a canonical path representation for
any tree. It can be achieved by decomposing the tree into paths as in Sleator
and Tarjan’s link-cut tree, computing a weighted balanced binary on top of
each solid path where the weight of each node is the number of nodes in the
subtree incident to the dashed edge, and creating a piece for each node in
that tree [13, 9]. To summarize, we have that

Lemma 9. For any tree T , P(T) can be computed in O(n log n) time and

space. Further, for any path P in T , its canonical representation can be

computed in time O(logn).

Now, we can compute a canonical path representation P for T2(L(u)). For
each P ∈ P, we construct a data structure for efficient computation of FP as
in Lemma 8. Then, for any path P ′ in T2(L(u)), we can compute a canonical
representation of P ′. Suppose it is P1, P2, · · · , Pk where k = O(log |L(u)|).
Clearly, FP ′(x, y) = maxk

i=1 FPi
(x, y). Therefore, we can compute FP ′(x, y)

in O(log2 |L(u)|) time as k = O(log |L(u)|), and computing FPi
(x, y) takes

O(log |L(u)|) time by the data structure in Lemma 8. As for the preprocess-
ing time, if we construct the upper-envelope for each path in P separately,
then it will be

∑

Pi∈P
|Pi| log |Pi| = O(|L(u)| log2 n). But if we use a divide

11

and conquer method to construct the upper envelope, it is easy to show that
the preprocessing only takes O(|L(u)| logn) time as the intermediate results
in the divide and conquer construction correspond to the upper envelope of
the pieces on a solid path in the link-cut tree. The details are omitted in this
abstract.

This completes the proof of Theorem 6.

4 The O((n log n)1.5) algorithm

In this section, we shall show how to use the algorithm for the ancestor match
problem as a subroutine to solve the best match problem.

The algorithm works recursively. For the tree T1, we find a node u as
follows. We first find a node u′ in the tree so that n/3 ≤ |L(u′)| ≤ 2n/3.
This is always possible for a binary tree. Consider the path P (u′), the path
from u′ to the root. If the length of the path is shorter than δ(n), where
δ(n) will be chosen later, we simply set u to be u′. Otherwise, we choose u
to be the node on P (u′) which is δ(n) away from the root. Now, we build a
data structure for the ancestor match problem for u according to Theorem 6.
Suppose that the nodes on P (u) are u = u1, u2, · · · , uδ(n) in the ascending
order. We compute the best match for ui’s, where 2 ≤ i ≤ k, by querying the
precomputed data structure. We then delete the nodes u2, u3, · · · , uδ(n) (and
the incident edges) and recursively solve the best match problem for each of
δ(n) subtrees. Notice that we only need to preprocess T2 as in Lemma 1 so
that T2(L) can be computed efficiently for any L. This precomputation is
done only once.

As for the space used by the algorithm, it is clearly O(n log n) as the top
level recursion dominates. As for the running time, we consider the time used
for preprocessing and query separately. Let t1(n), t2(n) denote the total time
spent for preprocessing and query, respectively, for trees with n leaves. Let
m1 = |L(u)| and mi = |L(ui)| − |L(ui−1)| for 2 ≤ i ≤ k. For preprocessing,
we have the recurrence:

t1(n) ≤
k

∑

i=1

t1(mi) + m1 log n ,

where
∑k

i=1 mi = n and n/3 ≤ m1 ≤ n − δ(n). It is easy to see that
t1(n) = O(n2 log n/δ(n)) for δ(n) = O(nc1) for any constant c1 < 1.

12

According to Theorem 6, the cost of computing the best match of ui,
where 2 ≤ i ≤ k, is O((|L(ui)| − m1) log2 n). We can charge the query cost
O(log2 n) to each leaf node in L(ui) \ L(u1). Since the length of P (u) is at
most δ(n), the total charge a node may receive is O(δ(n) log2 n) in one level
of recursion. If we denote t3(n) the maximum total charge a node may get
during the entire algorithm, we then have that t3(n) ≤ t3(2n/3)+ δ(n) log2 n
since mi ≤ 2n/3 for 2 ≤ i ≤ k. Thus, t3(n) = O(δ(n) log2 n) if δ(n) = Ω(nc2)
for any constant c2 > 0. Therefore , the total running time of the algorithm
is O(n2 log n/δ(n) + nδ(n) log2 n). By setting δ(n) =

√

n/ log n, we obtain
the running time of O((n log n)1.5) and thus prove Theorem 5.

5 Conclusion

In this paper, we consider the problem of computing best matching nodes
between two trees according to the set similarity measure. We first show a
simple algorithm that runs in quadratic time in the worst case but in roughly
linear time for balanced trees. That algorithm has been implemented in
the phylogenetic tree visualization project ongoing in HP(formerly Compaq)
Systems Research Center and has proven to be quite efficient in practice.

Next, we present an algorithm that computes the best matching nodes
between two trees in sub-quadratic time in the worst case. We achieve the
bound by reducing the problem to computing the maximum map (upper-
envelope) of a set of pseudo-planes and by applying the results for the upper-
envelope of pseudo-planes. It is interesting to know whether our technique
can be extended to solving other problems. Of course, the major question
left open is whether we can solve the best match problem in roughly linear
time.

Acknowledgment

The work is motivated by the phylogenetic tree visualization project at Sys-
tems Research Center. The author wishes to thank the other project team
members, Valerie King, Tamara Munzner, Serdar Tasiran, and Yunhong
Zhou, for their useful discussion.

13

References

[1] E. N. Adams. Consensus techniques and the comparison of taxonomic
trees. Systematic Zoology, 21:390–397, 1972.

[2] A. Z. Broder. On the resemblance and containment of documents. In
SEQS: Sequences, pages 21–29, 1998.

[3] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic
clustering of the Web. In Proceedings of the Sixth International World

Wide Web Conference, pages 391–404, 1997.

[4] W. H. E. Day. Optimal algorithms for comparing trees with labeled
leaves. Journal of Classification, 2:7–28, 1985.

[5] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common
ancestors. SIAM Journal of Computing, 13:338–355, 1984.

[6] T. Margush and F. R. McMorris. Consensus n-trees. Bulletin of Math-

ematical Biology, 3:239–244, 1981.

[7] M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their

Geometric Applications. Cambridge University Press, 1995.

[8] N. Shivakumar and H. Garćıa-Molina. SCAM: A copy detection mech-
anism for digital documents. In Proceedings of the Second Annual Con-

ference on the Theory and Practice of Digital Libraries, 1995.

[9] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
Journal of Computer and System Sciences, 26(3):362–391, 1983.

[10] R. R. Sokal and F. J. Rohlf. Taxonomic congruence in the Lep-
topodomorpha re-examined. Systematic Zoology, 30:309–325, 1981.

[11] R. Stinebrickner. s-Consensus trees and indices. Bulletin of Mathemat-

ical Biology, 46:923–935, 1984.

[12] R. Stinebrickner. s-Consensu index method: an additional axiom. Jour-

nal of Classification, 3:319–327, 1986.

[13] R. E. Tarjan. Data Structures and Network Algorithms. Society for
Industrial and Applied Mathematics, 1983.

14

[14] E. O. Wiley, D. Siegel-Causey, D. r. Brooks, and V. A. Funk. The Com-

pleat Cladist. Museum of Natural History, The University of Kansas,
1991.

15

