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Abstract
In this paper, we review the spatial and spectral characteristics of blue and green-

noise halftoning models. In the case of blue-noise, dispersed-dot dither patterns are
constructed by isolating minority pixels as homogeneously as possible and by doing
so, a pattern composed exclusively of high frequency spectral components is produced.
Blue-noise halftoning is preferred for display devices that can accommodate isolated
dots such as various video displays and some print technologies such as ink-jet. For
print marking engines that cannot support isolated pixels dispersed-dot halftoning is
inappropriate. For such cases, clustered-dot halftoning is used to avoid dot-gain in-
stability. Green-noise halftones are clustered-dot blue noise patterns. Such patterns
enjoy the blue-noise properties of homogeneity and lack of low frequency texture, but
have clusters of minority pixels on blue-noise centers. Green noise is composed ex-
clusively of mid-frequency spectral components. In addition to the basic spatial and
spectral characteristics of the halftoning models, this paper also reviews some of the
earlier work done to improve error diffusion as a noise generator. Also reviewed are
processes to generate threshold arrays to achieve blue noise and green noise with the
computationally efficient process of ordered dither.
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Figure 1: The image Adrian halftoned using the various combinations of aperiodic versus
periodic and clustered versus dispersed-dot halftoning.

1 Introduction

In halftoning, blue-noise is the statistical model describing the ideal spatial and spectral

characteristics of aperiodic dispersed-dot dither patterns [1], and in essence, the ideal blue-

noise halftoning scheme produces stochastic dither patterns of same sized dots distributed as

homogeneously as possible. By doing so, the spectral content of these patterns are composed

entirely of high frequency spectral components. And as blue is the high frequency component

to visible white light, blue-noise is the high frequency component to white-noise. Given the

low-pass nature of the human visual system [2], blue-noise creates patterns visually appealing
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simply because the spectral components of the pattern lie in the regions least visible to the

human viewer; furthermore, the stochastic distribution of dots creates a grid-defiance illusion

where the structure of the underlying grid on that pixels are aligned is no longer apparent

to the viewer.

In comparison to periodic clustered-dot halftoning schemes, blue-noise maximizes the

apparent resolution of printed images, creating an image that lacks the visually disturbing

texture created by large clusters arranged along a regular grid. In locally periodic clustered-

dot halftoning, not only are the clusters more visible than the isolated dots of aperiodic

dispersed-dot halftoning, but the regular grid used to align clusters are particularly appar-

ent to the human visual system. Now while blue-noise has become the standard approach

to halftoning in ink-jet printing, it has made little headway in electrophotographic (laser)

printers or commercial lithographic presses (although several exceptions exist), and the rea-

son that blue-noise has been avoided in these devices has to do with printer distortion and

the inability of these devices to reproduce dots consistently from dot to dot. As a conse-

quence, unreliable devices have relied on locally periodic clustered-dot halftoning and the

visual detriment that regular patterns pose to the human visual system.

As a way of providing the benefits of random dot distributions while maintaining the

consistency of clustered dots, Levien [3] introduced error diffusion with output-dependent

feedback where a weighted sum of previous output pixels is used to modulate the quantiza-

tion threshold with resulting patterns composed of a random arrangement of randomly sized

and shaped printed dot clusters. As was the case for error diffusion in 1985, error diffusion

with output-dependent feedback lacked a defining model that characterized the spatial and

spectral characteristics of the resulting aperiodic clustered-dot patterns. And in order to pro-

vide such a model, Lau et al [4] introduced the green-noise model where the ideal patterns

are composed of homogeneously distributed pixel clusters that vary in both their size and

spacing for varying shades of gray. In the Fourier domain, green-noise patterns are com-

posed almost exclusively with mid-frequency components, and as green is the mid-frequency

component to white, green-noise is the mid-frequency component to white-noise.

Since their introduction, both blue and green-noise models have lead to major break-

throughs of innovation in halftoning with improvements in both the efficiency at which
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halftoning is performed and the visual fidelity of the resulting patterns. The most notewor-

thy of these innovations are blue and green-noise dithering arrays where a continuous-tone

original is converted to a binary image using a point-process that compares the intensity of

a given pixel with a threshold stored in the array. And given the significance of the roles

that both blue and green-noise have played in halftoning research, we devote the remainder

of this paper to detailing the blue and green-noise halftoning models as well as describing

the spatial and spectral metrics introduced by Ulichney and Lau et al that serve as the

basis for these models. While this material offers historical perspective, today it is being

realized that the fundamental properties of the various dot distributions play a fundamental

role in the visual pleasantness of color halftones where the monochrome halftones of cyan,

magenta, yellow, and black inks are superimposed. So for the reader interested in these color

applications, it is advised that a basic fundamental understanding of the principal halftoning

models will serve you well in developing and understanding future algorithms.

2 Spatial and Spectral Halftone Statistics

In order to differentiate between the various schemes, a halftoning algorithm is classified

according to the statistical relationship between minority pixels in the resulting dither pat-

tern produced by halftoning images of constant intensity or gray level. The rendition of

edges and other high-frequency details depend primarily on how sharp the image is or to

what extent high-pass filtering is performed on the image prior to halftoning [1]. By treating

the resulting dither pattern as a set of points where an event or point is said to occur at

the location of a minority pixel, Lau et al [4] propose using the spatial statistics commonly

employed in stochastic geometry to study point processes.

In the point process framework for continuous spaces, a point process Φ is defined as a

stochastic model governing the location of events, or points xi, within the 2-D real space

<2 [5]. We further define φ as a sample of Φ written as a set of randomly arranged points

such that φ = {xi ∈ <2 : i = 1, . . . , N}, and we define φ(B) as a scalar quantity defined as

the number of xis in the subset B in <2. We assume that the point process Φ is simple such
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Figure 2: The (left) binary dither pattern exhibiting clusters and the corresponding (center)
reduced second moment measure, K[n; m], and (right) pair correlation, R(r), derived from
K[n; m] by dividing the spatial domain into annular rings.

that for i 6= j implies xi 6= xj, which further implies that:

lim
dVx→0

φ(dVx) =

{
1 for x ∈ φ
0 else

, (1)

where dVx is the infinitesimally small area around x. In terms of a discrete dither pattern,

φ represents the set of minority pixels where φ[n] = 1 indicates that the pixel with index n

is a minority pixel in the subject dither pattern.

Having Φ for a discrete-space halftoning process, a commonly used statistic for charac-

terizing the point process is the quantity K[n; m] defined as:

K[n; m] =
Pr{φ[n] = 1|φ[m] = 1}

Pr{φ[n] = 1}
, (2)

the ratio of the conditional probability that a minority pixel exists at n given that a minority

pixel exists at m to the unconditional probability that a minority pixel exists at n. Referred

to as the reduced second moment measure, K[n; m] may be thought of as the influence at

location n of the minority pixel at m. That is, is a minority pixel at n more or less likely to

occur because a minority pixel exists at m?

From K[n; m], we can derive a 1-D spatial domain statistic by partitioning the spatial

domain into a series of annular rings Ry(r)with center radius r, width ∆r, and centered

around location m. This statistic for stationary and isotropic Φ is the pair correlation R(r),

defined as the expected or mean value of K[n; m] within the ring. The usefulness of R(r)

can be seen in the interpretation that maxima of R(r) indicate frequent occurrences of the

inter-point distance r while minima of R(r) indicate an inhibition of points at r [6]. To see

this behavior, Fig. 2 (right) shows the resulting pair correlation for the clustering process of
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Fig. 2 (left), using annular rings Ry(r) such that {x : r−∆r/2 < |x− y| ≤ r + ∆r/2} where

∆r = 1/2, with an increased likelihood of minority pixels occurring near r = 0 and r = 8

pixels and a decreased likelihood in between 0 and 8. Because K[n; m] = 1 for all m and

n in a white-noise (uncorrelated) dither pattern, if at any time that R(r) = 1 for a given

point process, then points that are r distance apart are considered statistically uncorrelated

even if they are not physically. Returning to Fig. 2 (right) as r continues to increase beyond

12 pixels, points become less and less correlated as demonstrated by the fact that R(r)

approaches 1 with greater r.

In the Fourier domain, the power spectrum of a given dither pattern can be derived by

means of spectral estimation. One technique for spectral estimation is Bartletts method of

averaging periodograms [7, 8] where a periodogram is the magnitude squared of the Fourier

transform of a sample output divided by the sample size. It can be shown [9] that a spectral

estimate, P̂ (f), formed by averaging K periodograms has an expectation equal to P (f)

smoothed by convolution with the Fourier transform of a triangle function with a span equal

to the size of the sample segments and variance:

var{P̂ (f)} ≈ 1

K
P 2(f). (3)

Since P̂ (f) is a function of two dimensions and although anisotropies in the sample dither

pattern can be qualitatively observed by studying 3-D plots of P̂ (f), a more quantitative

metric of spectral content is derived by partitioning the spectral domain into annular rings

of width ∆f with a central radius fρ, the radial frequency, and Nρ(fρ) frequency samples.

By taking the average value of the frequency samples within an annular ring and plotting

this average versus the radial frequency, Ulichney [1] defines the radially averaged power

spectral density (RAPSD), Pρ(fρ), such that:

Pρ(fρ) =
1

Nρ(fρ)

Nρ(fρ)∑
i=1

P̂ (f). (4)

Because of the manner in which sampling along a rectangular grid leads to tiling of the base-

band frequency on the spectral plane, rings with radial frequencies beyond 1
2
D−1, where

D is the minimum distance between samples on the display, are cropped into the corners

of the spectral tile leading to fewer spectral samples in these rings. In all plots of Pρ(fρ),
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Figure 3: The (left) binary dither pattern and the corresponding (center) power spectrum,
P̂ (f), produced using Bartlett’s method of averaging periodograms and (right) radially av-
eraged power spectral density, Pρ(fρ), derived from P̂ (f) by dividing the spectral domain
into annular rings.

these regions of cropping will be indicated along the horizontal axis, and as a demonstration,

Fig. 3 (right) shows the RAPSD for the dither pattern illustrated in Fig. 3 (left) with an

increasingly chaotic behavior in the cropped rings near fρ = 1√
2
. Here as in the rest of this

paper, the power spectral estimate is divided into annular rings of radial width ∆f such that

exactly one sample along each frequency axis falls into each ring.

3 Blue-Noise Halftoning

Common practice for characterizing observed noise models is to assign a name based on

color where the most well known example is “white noise,” so named because its power

spectrum is flat across all frequencies, much like the visible frequencies of light. “Pink noise”

is used to describe low frequency white noise, the power spectrum of which is flat out to

some finite high frequency limit. The spectrum associated with Brownian motion is (perhaps

whimsically) referred to as “brown noise” [10]. Blue-noise is the high frequency compliment

of pink noise that, due to the low-pass nature of the human visual system, posses very

advantageous properties for creating the illusion of continuous-tone in binary halftones.

Blue-noise halftoningis characterized by a distribution of binary pixels where the minority

pixels are spread as homogeneously as possible [1] such that when applied to an image of

constant gray level g, minority pixels are separated by an average distance λb where:

λb =

{
D/

√
g , for 0 < g ≤ 1/2

D/
√

1− g , for 1/2 < g ≤ 1
(5)

and D is the minimum distance between addressable points on the display [1, 11]. The
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Figure 4: The (left) pair correlation and (right) radially averaged power spectrum for a
blue-noise process.

parameter λb is referred to as the principle wavelength of blue-noise, with its relationship to

g justified by several intuitive properties:

1. As the gray value approaches perfect white (g = 0) or perfect black (g = 1), the

principle wavelength approaches infinity.

2. Wavelength decreases symmetrically with equal deviations from black and white toward

middle gray (g = 1/2).

3. The square of the wavelength is inversely proportional to the number of minority pixels

per unit area.

In terms of point processes, ΦB is an inhibitive or soft-core point process that minimizes

the occurrence of any two points falling within some distance λb of each other. These types

of point processes are most commonly thought of as Poisson point processes where all points

are approximately equally distant apart, and as a Poisson point process, we can characterize

blue-noise halftones in terms of the pair correlation, R(r), by noting that:

1. Few or no neighboring pixels lie within a radius of r < λb.

2. For r > λb, the expected number of minority pixels per unit area approaches g for

0 ≤ g ≤ 1
2

or 1− g for 1
2

< g ≤ 1 with increasing r.

3. The average number of minority pixels within the radius r increases sharply near

r = λb.

The resulting pair correlation for blue-noise is therefore of the form in Fig. 4 (left) where

R(r) shows: (a) a strong inhibition of minority pixels near r = 0, (b) a decreasing correlation
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Figure 5: The (left) error diffusion algorithm and (right) four-weight error filter first intro-
duced by Floyd and Steinberg.

of minority pixels with increasing r, and (c) a frequent occurrence of the inter-point distance

λb, the principle wavelength, indicated by a series of peaks at integer multiples of λb. In

Fig. 4 (left), the principle wavelength is indicated by a small diamond located along the

horizontal axis.

Turning to the spectral domain, the spectral characteristics of blue-noise in terms of

Pρ(fρ) are shown in Fig. 4 (right) and can be described by three unique features: (a) little or

no low frequency spectral components, (b) a flat, high frequency (blue-noise) spectral region

and (c) a spectral peak at cutoff frequency fb, the blue-noise principle frequency, such that:

fb =

{ √
g/D , for 0 < g ≤ 1/2√

1− g/D , for 1/2 < g ≤ 1
. (6)

Indicated in Fig. 4 (right) by a diamond located along the horizontal axis is the principle

frequency, and please note that P (fρ) is plotted in units of σ2
g = g(1− g), the variance of an

individual pixel in the subject dither pattern.

3.1 Error Diffusion

Error-diffusion is depicted in Fig. 5 (left) and is a neighborhood operation that quantizes

the current input pixel and then transfers the quantization error onto future input pixels.

Formally, Floyd and Steinberg [12] define the output pixel y[n] by adjusting and thresholding

the input pixel x[n] such that:

y[n] =

{
1 , if (x[n] + xe[n]) ≥ 0
0 , else

(7)

where xe[n] is the diffused quantization error accumulated during previous iterations as:

xe[n] =
M∑
i=1

bi · ye[n− i] (8)
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Figure 6: Gray-scale images halftoned using (left) Floyd and Steinberg’s original error dif-
fusion algorithm and (right) Ulichney’s perturbed filter weight scheme.

with ye[n] = y[n] − (x[n] + xe[n]) and
∑M

i=1 bi = 1. Shown in Fig. 5 (right) is the original

four weight error filter specified by Floyd and Steinberg, which was selected because of the

checker board pattern it created at gray level g = 1
2
.

Looking at the spatial and spectral characteristics of the resulting dither patterns shown

in Figs. 6 (left), Ulichney noted that patterns exhibited (i) correlated artifacts most notice-

able at intensity levels I = 1
4
, 1

3
, and 1

2
, (ii) directional hysteresis due to the order in which

pixels were processes (raster order), and (iii) transient behavior near edges or boundaries. In

order to improve the visual quality of dither patterns produced by error diffusion, Ulichney

experimented with modifications to the algorithm that included changing the raster order,

using different error filters, adding a white-noise component to the quantization threshold,

and perturbing the error filter coefficients at each pixel.

With regards to the order that pixels are processed, Ulichney introduced the idea that
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Figure 7: The (left) Jarvis et al and (right) Stucki 12-weight error filters.

a serpentine left-to-right and then right-to-left raster scan was far superior to the originally

prescribed left-to-right raster. In other works, Witten and Neal [13] and Velho and Gomes

[14] even employed chaotic space-filling curves. With regards to the error filter selection,

Ulichney concluded that the 12 weight error filters of Jarvis et al [15] and of Stucki [16],

Fig. 7 (left) and (right), improved some shortcomings of the original 4 weight filter of Floyd

and Steinberg but still showed some disturbing or noticeable artifacts at intensity levels

1
4

and 1
2

resulting in significant energy below fb. With regards to threshold modulation,

Ulichney experimented with varying the quantization threshold at each pixel by low-variance

white-noise and found that while this tended to relax disturbing patterns it did so at the

expense of added low frequency textures. Beyond that SNR, dither patterns became too

uncorrelated and grainy (white). As a side note, Eschbach and Knox [17] later determined

that perturbing the quantization threshold as equivalent to adding low-variance white-noise

to the input image prior to halftoning.

For perturbing error filter weights, Ulichney proposed pairing filter weights of similar

magnitude with a noise component proportional to a percentage of the smaller weight added

to one weight and subtracted from the other within the pair. This guaranteed that the

sum of error weights would always be equal to 1, and it was this scheme of perturbing

filter weights that lead to arguably the best error diffusion scheme where Ulichney added

50% noise to Floyd and Steinberg’s original 4 weight error filter and a serpentine raster

as demonstrated in Fig. 6 (right). Figure 8 shows the corresponding spatial and spectral

characteristics of resulting dither patterns with all metrics exhibited improved blue-noise

characteristics relative to those produced by Floyd and Steinberg’s error diffusion.
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Figure 8: The spatial and spectral statistics for Ulichney’s perturbed filter weight scheme at
intensity levels I = 1
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3.2 Blue-Noise Dither Arrays

Blue-noise dithering can also be achieved with the point process of ordered dither. The trick

of course is using an appropriate dither array. Because of the implementation advantages

of ordered dither over neighborhood processes, this has become an active area of research.

In the printing industry, ordered dither arrays used for this purpose are often referred to as

“stochastic screens.” An overview of approaches to generating blue-noise dither templates
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Figure 9: Two-dimensional periodicity of ordered dither pattern, and wrap-around property
of void-and-cluster-finding filters.

is presented in [18]. One approach would be to build a template by directly shaping the

spectrum of binary patterns by an iterative process so as to force blue-noise characteristics

[11]. Mitsa and Parker [11] introduced the BInary Pattern Spectral density Manipulation

Algorithm (BIPPSMA) as a process that builds an ordered dither threshold array by directly

manipulating the frequency domain shape of the candidate binary pattern. They referred to

the resulting ordered dither array as a “Blue Noise Mask.”

A very straightforward and effective approach to generating relatively small dither tem-

plates of this type is the Void-and-Cluster algorithm [19], and will be outlined here. As with

all ordered dither, the array and resulting binary patterns are periodic. Figure 9 illustrates

this periodicity. This algorithm looks for voids and clusters in prototype binary patterns

by applying a void- or cluster-finding filter at the area under consideration. Because of this

implied periodicity, a filter extent will effectively wrap around as shown.

A void-finding filter considers the neighborhood around every majority pixel in a pro-

totype binary pattern, and a cluster-finding filter considers the neighborhood around every

minority pixel. The algorithm uses these filters to identify the biggest void or tightest cluster

in the pattern. We start by relaxing an arbitrary initial pattern to form one that is homoge-

neously distributed. In Fig. 10 (a) a 16× 16 binary pattern is shown with 26 minority pixels

randomly positioned. The purpose of the algorithm is to move minority pixels form tight

clusters into large voids. With each iteration the voids should be smaller and the clusters

looser. This is done one pixel move at a time until both the voids and stop getting smaller,

and the clusters stop getting looser. It turns out that the condition of convergence is quite

simple; processing is complete when removing the pixel from the tightest cluster creates the

largest void.

13



(b) 1st Swap

Location of 
tightest cluster

Location of 
largest void

(c) 2nd Swap

New location of 
tightest cluster

New location of 
largest void

(a) Original Pattern (d) Relaxed Pattern

Figure 10: The Void-and-Cluster algorithm showing (a) four periods of an initial 16 × 16
pattern with 26 minority pixels, (b and c) the first two iterations of the initial binary pattern
generator, and (d) four periods of the resulting rearranged, or relaxed, pattern after 12
iterations.

The minority pixel in the tightest cluster, and the majority pixel in the largest void are

identified in Fig. 10 (b). After the first iteration, the minority pixel in the tightest cluster

is moved to the largest void, resulting in the pattern shown in Fig. 10 (c). Once again, the

locations of the new tightest cluster and new largest void are identified. It should be noted

that it is entirely possible for minority pixels to be moved more than once; the search for

voids and clusters at each iteration is independent of past moves.

The results of this example are summarized in Fig. 10 (d) where 12 iterations were needed

before convergence. Four periods are shown of both the (a) input pattern, and (d) the relaxed

or rearranged pattern to illustrate the wrap-around or edge-abutting consequences of tiling

twospace with such patterns. Note how homogeneously distributed the resulting pattern is.

Next, starting with this relaxed pattern as a starting point, a dither template is ordered in

parallel. Elements of increasing value in the dither template are entered as minority pixels

are inserted into the voids. Then returning to this starting pattern, elements of decreasing

value are entered as minority pixels are removed from the tightest clusters.

Figure 11 shows the result of dithering an image with a 64×64 void-and-cluster generated

dither array. It should be noted that the image does not appear as sharp as those produced

by error diffusion. As mentioned earlier, the added run-time complexity of error diffusion

does afford the side benefit of serving as a sharpening filter, even if uncontrollable. As will

be shown in the next section, a prefilter as part of a rendering system can make up for this.
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Figure 11: Dithering with a 64× 64 void-and-cluster array.

It is interesting to note that if a completely empty (all white) pattern is used as a starting

point, this algorithm will generate recursive tessellation dither templates. This will in fact

also result if the starting point is any of the recursive tessellation patterns.

4 Green-Noise Halftoning

Just as blue-noise is the high frequency component of white-noise, green-noiseis the mid-

frequency component that, like blue, benefits from aperiodic, uncorrelated structure without

low frequency graininess. But unlike blue, green-noise patterns exhibit clustering (a collection

of consecutive four-neighborhood pixels all of the same value). The result is a frequency

content that lacks the high frequency component characteristic of blue-noise. Hence the

term “green”. Furthermore, green-noise forms aperiodic patterns that are not necessarily

radially symmetric. Since the contrast sensitivity function of the human visual system is not

radially symmetric, we allow green-noise to have asymmetric characteristics. The objective

is to combine the maximum dispersion attributes of blue-noise with that of clustering of

periodic clustered-dot halftone patterns.

Point process statisticians have long described cluster processes such as those seen in

green-noise by examining the cluster process in terms of two separate processes: (i) the

parent process that describes the location (centroid) of clusters, and (ii) the daughter process

that describes the shape of clusters. In periodic clustered-dot halftoning, clusters are placed
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along a regular lattice, and therefore, variations in periodic clustered-dot patterns occur in

the cluster shape. In FM halftoning, cluster shape is deterministic, a single pixel. It is the

location of clusters that is of interest in characterizing FM patterns. Green-noise patterns,

having variation in both cluster shape and cluster location, require an analysis that looks at

both the parent and daughter processes.

Looking first at the parent process Φp, φp represents a single sample such that φp = {xi :

i = 1, . . . , Nc} where Nc is the total number of clusters. For the daughter process Φd, φd

represents a single sample cluster of Φd such that φd = {yj : j = 1, . . . ,M} where M is the

number of minority pixels in cluster φd. By first defining the translation or shift in space

Tx(B) of a set B = {yi : i = 1, 2, . . .} by x, relative to the origin, as:

Tx(B) = {yi − x : i = 1, 2, . . .} (9)

and then defining φdi
as the ith sample cluster for i = 1, . . . , Nc, a sample φG of the green-

noise halftone process ΦG is defined as:

φG =
∑

xi∈φp

Txi
(φdi

) =
∑

xi∈φp

{yji − xi : j = 1, . . . ,Mi}, (10)

the sum of Nc translated clusters. The overall operation is to replace each point of the parent

sample φp, of process Φp, with its own cluster φdi
, of process Φd.

In order to derive a relationship between the total number of clusters, the size of clusters,

and the gray level of a binary dither pattern, Ig is defined as the binary dither pattern

resulting from halftoning a continuous-tone discrete-space monochrome image of constant

gray level g, and Ig[n] is defined as the binary pixel of Ig with pixel index n. From the

definition of φ(B) as the total number of points of φ in B, φG(Ig) is the scalar quantity

representing the total number of minority pixels in Ig, and φp(Ig) is the total number of

clusters in Ig with φp(Ig) = Nc. The intensity, I, being the expected number of minority

pixels per unit area can, now, be written as:

I =
φG(Ig)

N(Ig)
=

{
g , for 0 < g ≤ 1/2

1− g , for 1/2 < g ≤ 1
, (11)

the ratio of the total number of minority pixels in Ig to N(Ig), the total number of pixels

composing Ig. Given (11), M̄ , the average number of minority pixels per cluster in Ig, is:

M̄ =
φG(Ig)

φp(Ig)
=
I ·N(Ig)

φp(Ig)
, (12)
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the total number of minority pixels in Ig divided by the total number of clusters in Ig.

Although obvious, (12) shows the very important relationship between the total number

of clusters, the average size of clusters and the intensity for Ig. Periodic clustered-dot halfton-

ing is the limiting case where φp(Ig) is held constant for varying I, while FM halftoning is

the limiting case where M̄ is held constant for varying I. In addition, (12) says that the

total number of clusters per unit area is proportional to I/M̄ . For isolated minority pixels

(blue-noise), the square of the average separation between minority pixels (λb) is inversely

proportional to I, the average number of minority pixels per unit area [1]. By determining

the proportionality constant using λb =
√

2 for I = 1
2
, the relationship between λb and I is

determined as λb = D/
√
I.

In green-noise, it is the minority pixel clusters that are distributed as homogeneously

as possible, leading to an average separation (center-to-center) between clusters (λg) whose

square is inversely proportional to the average number of minority pixel clusters per unit area,

I/M̄ . Using the fact that limM→1 λg = λb, the proportionality constant can be determined

such that λg is defined as:

λg =

 D/
√

(g)/M̄ , for 0 < g ≤ 1/2

D/
√

(1− g)/M̄ , for 1/2 < g ≤ 1
, (13)

the green-noise principle wavelength. This implies that the parent process, φp, is itself a

blue-noise point process with intensity I/M̄ .

If we assume a stationary and isotropic green-noise pattern, the pair correlation will have

the form of Fig. 12 (left) given that:

1. Daughter pixels, on average, will fall within a circle of radius rc centered around a

parent point such that πr2
c = M̄ (the area of the circle with radius rc is equal to the

average number of pixels forming a cluster).

2. Neighboring clusters are located at an average distance of λg apart.

3. As r increases, the influence that clusters have on neighboring clusters decreases.

The result is a pair correlation that has: (a) a non-zero component for 0 ≤ r < rc due to

clustering, (b) a decreasing influence as r increases, and (c) peaks at integer multiples of

17



   0  0.7017
0

1

fgR
A

PS
D

 (
σ

g2 )

RADIAL FREQUENCY

(a) (b)

(c)

0
0

1

r
c

λg

PA
IR

 C
O

R
R

E
L

A
T

IO
N

RADIAL DISTANCE

(a) (b)
(c)

Figure 12: The (left) pair correlation and (right) radially averaged power spectrum for a
green-noise process.

λg indicating the average separation of pixel clusters. Note that the parameter rc is also

indicated by a diamond placed along the horizontal axis in Fig. 12 (left).

In the case of stationary and anisotropic green-noise patterns, the pair correlation will

also be of the form of Fig. 12 (left), but because clusters are not radially symmetric, blurring

occurs in R(r) near the cluster radius rc. In a similar fashion because the separation between

clusters will also vary with direction, blurring will occur at each peak in R(r) located at

integer multiples of λg. Assuming that the variation in cluster size is small for a given Ig,

this placement of clusters λg apart leads to a strong spectral peak in P (fρ) at fρ = fg, the

green-noise principle frequency:

fg =


√

(g)/M̄/D , for 0 < g ≤ 1/2√
(1− g)/M̄/D , for 1/2 < g ≤ 1

. (14)

From (14) we make several intuitive observations: (i) as the average size of clusters increases,

fg approaches DC, and (ii) as the size of clusters decreases, fg approaches fb. Figure 12 (right)

illustrates the desired characteristics of P (fρ) for φG showing three distinct features: (a)

little or no low frequency spectral components, (b) high-frequency spectral components that

diminish with increased clustering, and (c) a spectral peak at fρ = fg.

The sharpness of the spectral peak in P (fρ) at the green-noise principle frequency is

affected by several factors. Consider first blue-noise where the separation between minority

pixels should have some variation. The wavelengths of this variation, in blue-noise, should

not be significantly longer than λb as this adds low-frequency spectral components to the

corresponding dither pattern Ig [1], causing Ig to appear more white than blue. The same

holds true for green-noise with large variations in cluster separation leading to a spectral

peak at fρ = fg that is not sharp but blurred as the variation in separation adds new
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Figure 13: The (left) error diffusion with output-dependent feedback algorithm and (right)
two-error and two-feedback coefficient filter first introduced by Levien.

spectral components to Ig. This whitening effect on Ig is also created by increased variation

in the size of clusters with excessively large clusters leading to low-frequency components

and excessively small clusters leading to high. In summary, the sharpest spectral peak at fg

will be created when Ig is composed of round (isotropic) clusters whose variation in size is

small and whose separation between nearest clusters is also isotropic with small variation.

4.1 Error Diffusion with Output-Dependent Feedback

Like Floyd and Steinberg’s error-diffusion, Levien’s error-diffusion with output-dependent

feedback (EDODF), shown in Fig. 13 (left), pre-dates the stochastic model describing the

halftones that it creates. Here, the weighted sum of previous output pixels is added back to

the accumulated pixel value, xa[n], such that:

y[n] =

{
1 , (xa[n] = x[n] + xe[n] + xh[n]) ≥ 0
0 , else

(15)

where xh[n] is the hysteresis or feedback term defined as:

xh[n] = h
N∑

i=1

ai · y[n− i] (16)

with
∑N

i=0 ai = 1 and h is an arbitrary constant. Referred to as the hysteresis constant, h

acts as a tuning parameter with larger h leading to coarser output textures [3] as h increases

(h > 0) or decreases (h < 0) the likelihood of a minority pixel if the previous outputs were

also minority pixels. The result is a pattern with clustered 1s and 0s with larger hysteresis

constants leading to coarser halftones as in Fig. 14 where the error/feedback coefficients are

as shown in Fig. 13 (right) for h = 0.5, 1.0, 2.0, and 3.0.
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h=0.5 h=1.0

h=2.0 h=3.0

Figure 14: The image Adrian halftoned using Levien’s error-diffusion with output-dependent
feedback for hysteresis values h = 0.5, 1.0, 2.0, and 3.0.

Looking at the dither patterns created at extreme values of h near 0 and 3.0, Lau et al

noted that patterns exhibited strong anisotropic features with clusters become too elongated

along either the vertical (h = 0) or horizontal axis (h = 3.0). In responses to these artifacts,

Lau et al looked at applying the various modifications first proposed by Ulichney and found

that combining Floyd and Steinberg’s 4 weight filter for feedback and Stucki’s 12 weight filter

for error with 30% perturbation on each filter gave acceptable results that broke up the long

clusters formed at extreme values of h above 2.0. But in a later paper, Lau and Arce [20]

looked at changing the proportion of feedback from the horizontal and vertical feedback

weights such that they could improve the radial symmetry of patterns at the various values
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h=0.5 h=1.0

h=2.0 h=3.0

Figure 15: The image Adrian halftoned using Levien’s error-diffusion with output-dependent
feedback for hysteresis values h = 0.5, 1.0, 2.0, and 3.0 using balanced weights.

of h, and in so doing, they specified the optimal values of a1 and a2 versus h. Shown in Fig. 15

are the halftone images produced using these balanced weights for h = 0.5, 1.0, 2.0, and 3.0,

and shown in Fig. 16 are the spatial and spectral statistics for h = 2.5. As illustrated,

optimizing a1 and a2 to h greatly improves the radial symmetry of resulting pattern. As

such, Lau and Arce even suggested employing an adaptive hysteresis/feedback parameter

that changes either according to the gray level of the current input pixel (tone dependent

hysteresis) or according to the local frequency content (frequency dependent hysteresis).

In the case of tone dependent hysteresis, Lau et al note that optimizing EDODF for a

given printing process is achieved by specifying the parameter h according to the desired
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Figure 16: The spatial and spectral statistics for Levien’s error-diffusion with output-
dependent feedback using balanced weights with h = 2.5 at intensity levels I = 1
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robustness, but as a constant, EDODF may, like periodic clustered-dot halftoning, sacrifice

spatial resolution at certain gray-levels for pattern robustness at other levels. And it may,

therefore, by advantageous to employ an adaptive hysteresis parameter that varies according

to the input gray-level where, for each gray-level, h is the minimum value such that the

output tone is within a pre-specified tolerance of the input. Further improvements in spatial

resolution may be gained by varying h according to the frequency content of the input
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image. In this scheme, the resulting halftoned image will be composed of large clusters in

DC regions where distortions are most noticeable to the human eye and small clusters near

edges where distortions are least noticeable and spatial details require small clusters in order

to be preserved.

4.2 Green-Noise Dither Arrays

Having a statistical model describing the spatial and spectral properties of visually pleasing

dither patterns that cluster minority pixels, Lau et al [21] introduced the BInary Pattern

Pair Correlation Construction Algorithm (BIPPCCA) as an iterative process for construct-

ing dither patterns that mimic green-noise. By specifying a pair correlation shaping filter,

BIPPCCA can construct dither patterns with arbitrary pair correlations and, in the case of

green-noise, with varying coarseness. Like BIPPSMA for blue-noise, BIPPCCA also repre-

sented a major milestone for the green-noise model because it was the first direct application

of the ideal spatial characteristics of green-noise as BIPPCCA iterative adds points to a

dither pattern such that the resulting pattern has a pair correlation matching that of the

ideal green-noise pattern.

Techniques that indirectly constructed green-noise patterns include Velho and Gomes’

digital halftoning along space filling curves (SFC) [14] and Scheermesser and Bryngdahl’s

digital halftoning with texture control [22]. SFC is a technique where a two-dimensional

image is halftoned using a one-dimensional clustered-dot dithering approach that traverses

the image along a space filling curve such as the Peano, Hilbert or Sierpinsky curves. By

manipulating the maximum number of pixels that can form a cluster, the SFC technique

can control the amount of coarseness in resulting images, and unlike periodic clustered-dot

halftoning where the maximum number of pixels that can form a cluster limits the number of

gray levels that the pattern can represent, SFC diffuses quantization error from one cluster

to the next. The result is a technique that combines the benefits of aperiodic structure with

those of clustered dots.

Scheermesser and Bryngdahl’s technique attempts to minimize the cost associated with

a particular arrangement of dots by iteratively turning pixels “on” and “off”. The cost as-

sociated with a particular arrangement of dots is determined by two factors. The first is
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Figure 17: The binary halftones produced using (left) blue-noise for I = 1
64

and the (right)
corresponding green-noise pattern created by replacing each point of the blue-noise pattern
with a round disk cluster.

an image metric that measures the difference between the perceived images of the binary

halftone pattern and the continuous tone original. The second cost is a numerical texture

metric that measures the relative orientation of minority pixels. Scheermesser’s and Bryn-

gdahl’s technique is able to produce adjustable coarseness by adjusting the weight of the

cost of the texture metric versus the perceived image metric. But neither this or SFC try to

address the specific characteristics defined by Lau et al for visually pleasing green-noise.

In the case of Velho and Gomes, patterns exhibit an unreasonable amount of white-

noise content that imparts a distracting texture onto the image, while patterns constructed

by Scheermesser and Bryngdahl show too little variation in cluster size/shape as patterns

adopt an artificial texture created by the texture metric. In the green-noise model, there

exists an inherent relationship between the cluster and the arrangement of clusters such

that the shape of clusters varies according to the arrangement of nearest neighbors to fill

in those regions where clusters are far apart. Clusters should appear more like pieces of

a puzzle. If, instead, minority pixels of a blue-noise pattern were simply replaced with a

single pre-determined cluster, visually pleasant textures would only result from well formed

blue-noise patterns. Any imperfections in the blue-noise pattern such as a smaller average

spacing between points along the horizontal axis would become obvious if the cluster shape

was not similarly shaped to be narrower along the horizontal. Figure 17 demonstrates the

phenomenon where an otherwise well formed blue-noise pattern shows its disparities when

convolved with a round disk cluster. While Fig. 17 (left) has it’s problems with hysteresis,

these defects are only amplified in appearance in Fig. 17 (right) after replacing each minority

pixel with its own cluster. A good green-noise process would change the shape of clusters to

fit between neighboring clusters and would, hence, compensate for any defects in the parent
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Figure 18: A (top-left) 128 × 128 green-noise dither array along with (bottom-left) the
corresponding power spectrum showing the predominantly mid-frequency content (DC point
at the center of the figure) and (right) the corresponding halftone image.

process.

From BIPPCCA, Lau et al [21, 23] constructed the first green-noise dither arrays that,

like blue-noise dither arrays, convert a continuous-tone image to binary using a pixelwise

thresholding operation between a pixel in the original image and the corresponding pixel

within the array. In [23], multiple dither arrays were constructed in a correlated fashion

to regulate the amount of dot overlap in color halftones. Shown in Fig. 18 are several

example monochrome green-noise dither arrays along with the power spectrums produced

using each that show the predominantly mid-frequency (green) spectral content. In the case

of Fig. 18 (right most), this dither array was constructed to be asymmetric such that the

average size of clusters for black clusters on a white background is smaller than for white

clusters on a black background. Such a dither array addresses the varying behavior of printed

dots on either side of g = 1
2

and, in the power spectrum, results in two separate principle

frequencies as illustrated.

5 Conclusions: Blue versus Green-Noise

In devices that can robustly accommodate isolated pixels, such as various video displays

and many ink-jet printers, blue noise is the preferred halftoning technique. However, for
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the many print marking engines that cannot robustly accommodate isolated pixels various

factors must be taken into account including the visual pleasantness and edge detail of the

halftone, the variation in the printed dot and the distortion introduced by the printing device,

and in the case of color the interaction of the overlapping patterns/ink. It is also important

to remember that we need not consider the decision as choosing between blue or green-noise,

but we should, instead, focus on the tunability of green-noise to range from a fine blue-noise

to a coarse pattern closer to locally periodic clustered-dot and to optimize the coarseness of

green-noise to a specific printing device.

5.1 Visual Pleasantness

Shown in Fig. 19 is a diagram illustrating the relationships between perceived resolution, a

measure of visual pleasantness, and halftone robustness (resistance to printer distortion) for

the three halftoning models of AM (a term sometimes used to for locally periodic classical

screen halftoning), blue-noise, and green-noise halftoning. Given that the purpose of a binary

dither pattern is to represent a continuous-tone level, a dither pattern should not have any

form or structure of its own, and a pattern succeeds when it is innocuous. Blue-noise is

visually pleasant because it does not clash with the structure of an image by adding one

of its own or degrade it by being too “noisy” or uncorrelated. Blue-noise even defies the

structure of the underlying grid such that even though the dots are perfect squares with each

precisely aligned to a given position on a rectangular grid, the collective ensemble tends to

destroy this rigorous alignment creating what can be called a grid defiance illusion [1].

In instances where because of printer distortion minority pixels must be clustered, the

green-noise model has many benefits for printer distortion such as minimizing the perimeter-

to-area ratio (see Sec.5.2), but primarily, it describes the spatial and spectral properties of

the optimal halftones in terms of visual pleasantness. In its essence, the green-noise model

describes the halftone pattern most like blue-noise under the constraint that minority pixels

must be clustered with an average cluster size greater than one pixel. At one pixel, the green-

noise model is equivalent to blue, and it is, therefore, said that green-noise has blue-noise as

a limiting case. On the opposite end of the coarseness spectrum, green-noise benefits from

its stochastic arrangement of clusters, and because the eye is less sensitive to the artifacts
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Figure 19: The relationships between spatial resolution and halftone robustness for the
various halftoning paradigms for a fixed print resolution.

created by stochastic halftones, green-noise has better visual fidelity than periodic clustered-

dot halftones with the same average cluster size. Green-noise maintains the grid defiance

illusion, and so in Fig. 19, the line representing green-noise is shown as always having a

visual fidelity higher than AM at the same measure of robustness.

5.2 Printer Distortion

Due to various distortions to the printed dot, the gray level produced by a printed halftone

does not equal the ratio of black to white pixels in the dither pattern. As a means of

correcting this disparity in gray level, a means of tone correction is applied such that each

pixel of the input image with gray level g is replaced by a pixel with some gray level g′ [14]

where the mapping of gray levels from g to g′ is determined by direct measurement of the

input versus output reflectance curve for a given printer [24] or is estimated using a printed

dot model [25]. The underlying assumption is that when trying to reproduce gray level

g′, the printer will consistently produce the apparent gray level g. The problem for tone

correction occurs when the printer does not produce dot distortions consistently.

Instead of applying tone correction to correct for printer distortions, model based halfton-

ing algorithms have been proposed that take into account a model of the printed dot to decide

when and when not to print a dot in the halftone. Roetling and Holiday [26] offered one of the

first examples of model based halftoning when they adjusted the thresholds of ordered dither
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arrays based on the dot overlap created by the hard circular dot model. Pappas [27] also used

the hard circular dot when he first included a dot model into error diffusion by introduced

modified error diffusion. But the problem with many model based techniques is that they

assume that dots are printed consistently by relying on an average dot size/shape, and by

assuming reliability in the printing device, resulting patterns are typically computationally

expensive tone-corrected blue-noise patterns [28]. The patterns are, therefore, inappropriate

in devices that do not produce isolated pixels reliably such as in laser printers [29].

When looking at the problem of producing consistent and accurate tone, printer distortion

is not, in general, considered a “bad” thing, and its occurrence, either high or low, does not

limit the choice in halftoning techniques for a given printing process [30]. So blue-noise may

be just as applicable as periodic clustered-dot halftoning for a given printer. Dot-loss can

be bad if it limits the extent to that perfect black can be produced, but in many instances

though, dot-loss only occurs for small, isolated black dots, and therefore, does not limit

the choice in halftoning techniques either. What does limit the choice, in halftoning, is

the repeatability of dot-gain/loss where if a printer consistently reproduces dots with little

variation, accurate tone reproduction can be achieved through tone correction [31]. But in a

printing process that is not repeatable, compensating for distortion is much more complicated

as isolated dots are more sensitive to process variation [32]. This is clearly evident in laser

printers, and hence the reason that these devices have relied upon periodic clustered-dot

halftoning for so long.

Noting that periodic clustered-dot halftoning produces patterns with far less noticeable

variation in tone in laser printers, it is far more advantageous, in unreliable printing devices,

to use a halftoning scheme that resists distortion, making the output more robust to varia-

tions in the printing process [4]. How robustness is achieved is through clustering [33] as it is

the perimeter-to-area ratio of printed dot clusters that is the most tell-tale characteristic to

the impact of printer distortion on the halftone [31,32], and a technique like green-noise will

always be more robust than blue with greater robustness achieved through increased clus-

tering. Increased robustness is, therefore, indicated in Fig. 19 with AM halftoning providing

the most robust patterns with green-noise bridge the gap with blue-noise.
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5.3 Rectangular Versus Hexagonal Display Grids

This paper has, so far, assumed a symmetric rectangular (square) display grid, but examples

do exist where the display device aligns pixels on a hexagonal sampling grid. In direct

comparison, hexagonal sampling grids have the distinct advantage of being able to preserve

a circular band-limited signal with 13.4% fewer samples per unit area than square grids

[34, 35], and hexagonal sampling grids have been shown to produce samples with greater

intersample dependency that allows “lost” samples to be more accurately recovered from

its neighbors [36]. And in a binary display device such as an ink-jet printer that prints

round dots that overlapping neighboring dots, Ulichney [24] showed that hexagonal girds

have better covering efficiency (ratio of pixel area to printed dot area) that results in: (i)

a more linear tone scale rendition, (ii) more similarly sized isolated black and white pixels,

and (iii) less spectral overlap (aliasing) for circularly bandlimited images.

Hexagonal grids are also preferred over rectangular when halftoning is done using an order

dither array since hexagonal grids can be arranged such that the maximum frequencies along

the horizontal and vertical axes are greater than that of rectangular grids. Given the human

visual system’s increased sensitivity along the horizontal and vertical axes, this increase

leads to less sensitivity to the regular patterns that ordered dithering produces. But when

halftoning is done using blue-noise, hexagonal display grids have the distinct disadvantage of

introducing aliasing artifacts for gray levels
√

1/3 < g <
√

2/3 when the principal frequency

exceeds 1/
√

3, Fig. 20. While some level of relief from aliasing can be achieved by adding

correlation along the symmetry axes in the spectral plane, aliasing is unavoidable above 1
3
.

In a binary halftone, aliasing results in clustering and on a hexagonal sampling grid, some

level of clustering must occur beyond g = 1
3

as illustrating in Fig. 20 (right).

On a rectangular display grid, aliasing first occurs at intensity level I = 1
4
, but by adding

diagonal correlation between minority pixels, it is possible to move the spectral energy of

a dither pattern into the corners of the spectral tile avoiding any overlap with neighboring

tiles and thereby avoiding any clustering in the dither pattern, Fig. 21. So a technique like

Floyd and Steinberg’s original error diffusion scheme avoids clustering at gray level g = 1
2

simply because the inventors specifically selected their error weights to create the regular
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= ALIASING

Figure 20: Diagram showing the introduction of aliasing artifacts in blue-noise halftones on
a hexagonal display where (left) shows the power spectrum prior to aliasing, (center-left)

shows the power spectrum at intensity level
√

1/3 where aliasing first occurs, (center-right)

shows full aliasing at I ≥ 1
3
, and (right) shows the dither pattern at g = 1

3
where no space

exists such that white pixels can be added without introducing clusters.

checkerboard pattern. In contrast, Jarvis et al used a filter that created patterns that were

much more radially symmetric, and this symmetry created the overlapping with neighboring

spectral tiles that lead to the aliasing/clustering of minority pixels at gray levels near g = 1
2
.

In summary, all blue-noise halftoning leads to aliasing unless rectangular sampling grids

are employed and the halftoning algorithm introduces enough diagonal correlation as to push

power into the diagonals of the spectral plane. But by clustering minority pixels with suf-

ficient coarseness, green-noise eliminates spectral overlap while also containing the spectral

content of dither patterns to a narrow band of radial frequencies. Corresponding green-noise

patterns will then appear less noisy than blue-noise patterns containing aliasing artifacts

would appear. On hexagonal grids, the denser packing of the base band frequency in the

spectral domain increases the amount of overlap for the rings formed by blue-noise halfton-

ing algorithms. Blue-noise patterns will, therefore, suffer from greater degrees of aliasing

on hexagonal displays. Aliasing that cannot be avoided by adding directional correlation.

By employing green-noise, though, aliasing concerns are abated with green-noise patterns

profiting from the advantages already associated with hexagonal grids over rectangular.

As already mentioned, many printing devices are unable to produce blue-noise dither

patterns without introducing severe tonal distortion and without introducing strong spatial

variations in DC regions. These devices are, therefore, incapable of attaining the high spatial

frequencies found only in rectangular sampling grids, not hexagonal. So the argument that

rectangular sampling grids are preferable to hexagonal because only they support blue-noise
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= ALIASING

Figure 21: Diagram showing the introduction of aliasing artifacts in blue-noise halftones on
a rectangular display where (left) shows the power spectrum prior to aliasing, (center-left)
shows the power spectrum at intensity level 1

4
where aliasing first occurs, (center-right) shows

full aliasing at I = 1
2
, and (right) shows the impact of adding diagonal correlation between

minority pixels such that aliasing is avoided.

is invalid for many printing devices anyway. And the overall conclusion is that since green-

noise halftoning algorithms may, in many cases, be the only way to produce reliably printed,

stochastic dither patterns, there is no conclusive reason for using rectangular sampling grids

instead of hexagonal.

5.4 Color Halftoning: Stochastic Moiré

In traditional color halftoning devices, the binary halftones of cyan, magenta, yellow, and

black are superimposed [37], and in the case of periodic clustered-dot halftoning, the regular

grids of the halftone screens interact to form periodic moiré patterns whose visibility are

minimized by aligning the CMYK halftones to screen angles 15o, 75o, 0o, and 45o respectively

[38, 39]. Because it is commonly believed that moiré is a result of superimposing regular

patterns, stochastic halftones such as those produced by blue-noise are also believed to avoid

the moiré phenomenon allowing for the introduction of low-cost color ink-jet printers [30].

But superimposing uncorrelated dispersed-dot patterns does lead to low-frequency graininess

commonly referred to in halftoning literature as color-noise [40].

The low-frequency graininess created by superimposing dispersed-dot halftones is, in

fact, a product of the same moiré phenomenon found in periodic clustered-dot halftones,

but because the component colors are stochastic, the resulting moiré is an aperiodic texture

referred to as stochastic moiré [41]. And the visibility of this moiré is its worst when over-

lapping halftones are uncorrelated and have the same principal wavelength. As a response
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to stochastic moiré, considerable effort is being made to correlate the CMYK halftones such

that patterns form either perfectly overlapping or perfectly inter-locking screens [39, 42]. A

major problem that these overlapping and interlocking screens create is that they require

a very high degree of control over the alignment of screens in the final print as even slight

mis-registration can lead to dramatic shifts in color/texture.

When looking at the superposition of green-noise halftones, the visibility of stochastic

moiré is increased by the lower frequency of the resulting moiré textures. While interlocking

the CMYK screens minimizes the visibility of the extraneous textures, Lau et al [41,43] write

that the visibility of stochastic moiré is minimized in uncorrelated screens by varying the

coarseness between colors such that the probability of overlapping screens having the same

principal wavelength is minimized, Fig. 22. Lau et al argue that the optimal coarseness of

screens is ordered according to the luminance of each colorant such that, for a given printer,

black has the smallest average cluster size followed by magenta, cyan, and then yellow

with the largest. Because these overlapping green-noise screens minimize stochastic moiré

visibility without correlation, the constraints regarding registration are greatly alleviated,

and Lau et al further argue that, in cases where perfect registration cannot be guaranteed,

green-noise halftoning is the preferred technique even in an ideal printing device where

traditionally blue-noise would otherwise be considered optimal.
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