

Conceptual Modeling of
Web Service Conversations

Boualem Benatallah1, Fabio Casasti, Farouk Toumani2,
Rachid Hamadi1

Intelligent Enterprise Technologies Laboratory
HP Laboratories Palo Alto
HPL-2003-60
March 27th , 2003*

E-mail: {boualem, rhamadi}@cse.unsw.edu.au, casati@hpl.hp.com, ftoumani@isima.fr

web services

Web services are emerging as a promising technology for the
effective automation of inter-organizational interactions. Several
standards that aim at providing infrastructure to support Web
services description, discovery, and composition have recently
emerged including WSDL, UDDI, and BPEL4WS. Indeed,
advances in this area promise to take cross-organizational
application integration a step further by facilitating the automatic
discovery and invocation of relevant services. However, despite the
growing interest in Web services, several issues still need to be
addressed to provide similar benefits to what traditional middleware
brings to intra-organizational application integration (e.g.,
transaction support). In this paper, we identify a framework for
defining extended service models to enable the definition of richer
Web service abstractions. We also identify and define specific
abstractions based on an analysis of existing e-commerce Web
portals. Finally, we show how the model and the abstractions are
supported by a conversation manager implemented on top of the
SELF-SERV platform.

* Internal Accession Date Only Approved for External Publication
. To be published in CAiSE '03, 16-20 June 2003, Klagenfurt, Austria
1 School of Computer Science and Engineering, The University of New South Wales, Sydney NSW 2052, Australia
2 Laboratoire LIMOS, ISIMA, Campus des Cezeaux, BP 125, 63173 Aubiere Cedex, France
 Copyright Springer-Verlag

Conceptual Modeling of Web Service

Conversations

Boualem Benatallah1, Fabio Casati2, Farouk Toumani3, and Rachid Hamadi1

1 School of Computer Science and Engineering
The University of New South Wales, Sydney NSW 2052, Australia

{boualem,rhamadi}@cse.unsw.edu.au
2 Hewlett-Packard Laboratories

Palo Alto, CA, 94304 USA
casati@hpl.hp.com

3 Laboratoire LIMOS, ISIMA, Campus des Cezeaux
BP 125, 63173 Aubiere Cedex, France

ftoumani@isima.fr

Abstract. Web services are emerging as a promising technology for the
effective automation of inter-organizational interactions. Several stan-
dards that aim at providing infrastructure to support Web services de-
scription, discovery, and composition have recently emerged including
WSDL, UDDI, and BPEL4WS. Indeed, advances in this area promise
to take cross-organizational application integration a step further by fa-
cilitating the automatic discovery and invocation of relevant services.
However, despite the growing interest in Web services, several issues
still need to be addressed to provide similar benefits to what traditional
middleware brings to intra-organizational application integration (e.g.,
transaction support). In this paper, we identify a framework for defining
extended service models to enable the definition of richer Web service
abstractions. We also identify and define specific abstractions based on
an analysis of existing e-commerce Web portals. Finally, we show how
the model and the abstractions are supported by a conversation manager
implemented on top of the SELF-SERV platform.

1 Introduction

Web services are emerging as the technology of choice for application integra-
tion across wide area networks and across companies [1–4]. The essential benefit
they bring to application integration is standardization. In fact, Web service
technology builds on top of Web standards and extends them with additional
languages and protocols (e.g., WSDL, UDDI, and SOAP [5]) that enable service
description, discovery, and interaction. Standardization is important in Enter-
prise Application Integration (EAI) [6, 3], but is critical in the Web where the
interaction occurs without a central coordinator and without a central authority.

However, despite the growing interest in Web services, several issues still
need to be addressed to provide similar benefits to what traditional middleware

brings to intra-organizational application integration. Indeed, EAI middleware
provides much more than basic features such as service description, discovery,
and invocation. For example, it supports transactions, a very useful abstraction
when it comes to developing reliable distributed applications. Having a shared
understanding of this abstraction makes it easier to describe the properties of a
system. In addition, automated tools can support, manage, and enforce trans-
actions, without the developer having to worry about writing ad-hoc code for
this purpose. Without the help of transactional middleware, the development of
reliable applications would be quite hard.

Abstractions provided by EAI middleware can be beneficial for modeling and
implementing Web services as well, although their notion needs to be reinter-
preted in this new context. For example, a notion of transactions for Web service
operations may define whether from a users’ perspective, an operation can be
aborted at any time without effect. A more complex transaction model may also
allow for operation or conversation description languages that specify that an
operation can only be rolled back within a specified time or with the payment
of a fee. Just like for EAI middleware, this abstraction has the potential of sim-
plifying the interpretation of service behaviors and allowing the development of
tools that support the definition of transactional services and enforce transac-
tional properties, without the application developers having to worry about it.
Indeed, it is not surprising that proposals in this direction are emerging [7, 8].

Endowing Web services with abstractions analogous to those of traditional
application integration is not, however, sufficient to support many of the require-
ments posed by application integration over the Web, since the problem is more
complex in this domain. In fact, in EAI many of the properties and semantics
of the services are assumed to be known a priori. Very often, clients and servers
are deployed by the same project team. This is why the service interface (for
example specified in terms of CORBA-IDL) is often all that is available in terms
of service description. Properties and semantics are discussed face to face, and
are either documented informally or not at all.

In Web services this is not the case (or, at least, this scenario is not the one
Web services are targeting). The idea here is to enable developers to discover
(at development time) service descriptions on the Web and, by reading these
descriptions, be able to code client applications that can (at run time) bind to
and interact with services of a specific type (i.e., compliant to a certain interface
and protocol). As such, richer service descriptions and richer description models
are needed, so that users can better understand the service execution seman-
tics and how to interact with the service. In addition, richer service description
model also allows the development of tools that better support Web service de-
ployment, execution, monitoring, and management, as the transaction example
demonstrate. Finally, it enables a more sophisticated dynamic binding, as clients
can be more selective on the properties of the services they bind to when they
search for a service. Referring again to the transactional example, clients can for
instance require that the service supports transactions. The ultimate goal is that
a service description includes all that is needed for developers to understand how

to write clients that interact with the service and for automated tools to dynam-
ically bind to a service, based on the specified characteristics. This is essential
especially as the number of services to be integrated grows and the environment
becomes more dynamic. This is the scenario that Web services eventually aim
at addressing, despite the many hard challenges it presents.

In this paper we identify a framework for defining extended service models,
to enable the definition and description of richer abstractions and achieve the
above-mentioned benefits. The main goal that guided us in the design of the
framework is that of enabling the definition of service properties in a way that
can support: (i) humans in understanding the service properties, (ii) clients in
searching services based on these properties, and (iii) applications in automating
the enforcement of the properties, much like transactional middleware supports
transactional abstractions.

In addition to the framework, we identify and specify a set of abstractions
that we have found useful and commonly needed in many practical situations. We
observe that defining framework and properties that cover many different aspects
of Web services is relatively easy. Indeed, there are tons of service description
models around, developed in many different fields of computer science, and trying
to extend service descriptions with functional and non-functional properties (we
discuss some of them in Sect. 5). The problem, often overlooked, is that adding
abstractions to models and primitives to languages is a delicate issue. In fact,
while in general new abstractions may provide the benefits described above, they
also make the service model more complex. Complexity severely compromises the
usability (and therefore the adoption) of models and languages. Indeed, simple
things are always the ones that work best, because they are both easier for users
to understand and for developers to implement. Therefore, the hard part lies in
striking a balance between expressive power and simplicity. As a consequence,
another goal that guided our work is exactly that of striking this balance and
“right-sizing” the model, while providing room for it to evolve as the need arises.
In order to achieve this goal, we tried to understand what is the minimal set of
features and abstractions that are useful and needed in practice to describe a
Web service. This required an analysis of existing e-commerce applications and
of their behaviors so that we could:

• determine a set of abstractions that could adequately model most or even
all of them, and

• avoid the artificial introduction of complex abstractions that we could have
thought useful, and that may even be needed in some occasion, but that are
rarely used in practice.

In the following, we describe in detail how we approached the problem
(Sect. 2), what are the resulting frameworks and models that we have developed
(Sect. 3), and how they are supported by extending the SELF-SERV service
development platform [9] (Sect. 4). Finally, in Sect. 5, we review some related
work and give concluding remarks.

2 Web Portal Interaction Analysis: In Search of Real

Needs

This section describes the rationale that guided the analysis of existing Web
applications to identify the abstractions needed in real scenarios.

2.1 Web Portals versus Web Services

When starting the research described in this paper, our original intent was that
of analyzing existing Web services to understand their characteristics and re-
quirements in terms of description languages. However, we quickly recognized
that a better approach was to analyze e-commerce Web portals rather than
Web services. There are two main reasons for this choice. The first is that the
Web services area is still rather immature. Only few Web services are available
on the Internet, and they typically provide very simple functionalities (such as
conversions from postscript to PDF), without any commitment required on ei-
ther the client or the service side (e.g., no guarantees and no payments). There
are indeed a few contexts in which Web services are available and are used for
e-commerce transactions, but this mostly happens within a closed community
of business partners, so that these services (and, most of all, the description of
their interface and conversation) are not publicly available.

On the other hand, Web-based commerce is now a mature area. There is a
huge number of Web portals that enable B2B, B2C, and C2C business trans-
actions. In particular, e-commerce Web portals often include “terms and condi-
tions” documents that describe the semantics of many operations (in particular
those that involve some form of commitment on the client’s or provider’s side).
However, Web portals are oriented to humans, while Web services are oriented
to applications. Nonetheless, we believe that by analyzing a Web portal it is
possible to extrapolate what would be the behavior of an “equivalent” Web ser-
vice. For example, by analyzing a Web site (such as Travelocity.com) and by
understanding the operations it makes available via a browser as well as the
semantics of such operations, we can extrapolate what would be the behavior of
its dual “Web service”.

2.2 An Embryonic Conversation Model

To perform this kind of reverse engineering analysis we needed a Web service
description model, so that we could use it to abstract the Web service charac-
teristics of a Web portal. However, we intentionally wanted a model that was
very simple, so that it could help us start from a minimal base and progressively
extend it as needed, as opposed to start from a rich model that included many
possibly unnecessary features, thereby defeating our purpose of determining a
“right-sized” Web service description model. A key ingredient of any service
model is the interface definition language. For this, we simply use WSDL as a
base, as it is now an accepted standard. Besides, WSDL is quite simple, and as

such it suits our purposes. Another important aspect of a service is the conver-

sation it supports, i.e., the set of acceptable message exchanges and the order in
which they should occur. For this, we defined a very simple conversation model,
with the idea of progressively extending it according to the requirements derived
from the analysis of real applications.

Start
T1: Login

books
Search

T2: SearchBook()
T3:AddToCart()

Book
selection

T11 T5:RemoveFromCart()

T4: SearchBook()

Ordered Canceled

Returned

T7

ShippedCompleted
T9:ReturnBook()

T8:CancelBookPurchase()

T6:OrderBook()

T10

Fig. 1. The behaviour of Amazon.com as a Web service

The proposed embryonic conversation description model is based on the tra-
ditional state machine formalism, since it is simple, well known, and suited to
describe reactive behaviors, which is the most relevant one as far as conversations
are concerned (although, as we will see, other aspects of conversation behaviors
need to be modeled as well). We assume that a conversation a Web service sup-
ports is modeled by a set of states and state transitions. States are labeled with a
logical name, such as logged in, seat reserved, or conversation completed.
Transitions are labeled by service operations. When an operation op is invoked
within a conversation that is in state src, then:

• if src has an output transition tr labeled with operation op, then the con-
versation moves into the destination state of tr,

• if src has no output transition labeled with operation op, then the conver-
sation remains in state src.

This model is analogous to that of WSCL [10], although it is expressed
through a state machine rather than a simplified version of UML activity di-
agrams, since we believe that state machines are better suited, for the reasons
described above. In the following, we will use the term conversation schema to
denote the specification of a conversation, while the term conversation instance

will refer to an individual execution of a conversation between a service and
a client. Figure 1 presents an example of a conversation schema supported by
Web portal, namely Amazon.com, modeled with the formalism described above.
Some transitions are unlabeled as they are not caused by explicit operation in-
vocations. This is one of the indicators that this simple model is not enough, as

anticipated, and that extensions are needed. The figure shows a slightly simpli-
fied version of the actual interfaces and conversations supported by the site, but
this is solely for ease of presentation.

2.3 Discussions and Observations

In this section, we discuss the main lessons learned during the analysis
of about twenty Web portals including Amazon.com, Travelocity.com, and
Expedia.com. They will provide the basis for progressively extending the Web
service conversation model in a way that it retains the same simplicity (to the
possible extent), but that also allows the specification of the features that are
really needed in practice.

Implicit and timed transitions. Most transitions between states occur due to
explicit operation invocations. However, there are cases in which transitions oc-
cur without operation invocations, or at least without an explicit invocation by
requesters. An example is the transition between states Ordered and Shipped.
This transition occurs when the ordered books are physically shipped to the cus-
tomer. An important type of implicit transitions are timed transitions. A timed
transition occurs automatically after a time interval is elapsed since the transi-
tion is enabled (i.e., the conversation state is the transition’s source state), or as
a certain date and time is reached. As an example, flights on Travelocity.com

can be put on hold for a period of time, or until midnight of the next day.

Compensation. In several Web portals we found operations (called compen-

sating operations in the following) whose purpose is to semantically cancel the
effects of other operations (called forward operations). For example, there are
operations to cancel the purchase of a book or the reservation of a flight. Note
that, unlike rollback in database transactions, “cancel the effects” here is meant
from the perspective of the client. On the provider’s side, executing forward op-
erations and subsequently compensating them may indeed be very expensive in
terms of money, time, and other resources. The execution of a compensation op-
eration is typically allowed only within a certain time period. For example, this
is how most online booksellers handle returns. Compensation may also have an
associated cost (e.g., cancellation fee). Cost and time constraints are sometimes
combined, so that the fee is charged only after a certain date and time, or after
some time has elapsed from the execution of the forward (i.e., compensated)
operation.

Resource locking. The execution of some operations seems to acquire (or, using
database terminology, lock) some resources for the client. For example, flight
reservation Web portals allow customers to hold seats on a plane. Analogously
to compensations, resource reservation may be associated to a cost, and may
have a validity limited in time, after which the resource is released.

Conditions and instance-specific properties. In some conversations, tran-
sitions may require that certain conditions be verified in order to be enabled.
For example, some operations may only be available to “premium” customers.
As another example, Amazon.com has the concept of “gold box”, where special

one-day discounts are offered to certain customers. Other aspects of a conver-
sation may also be instance-specific. For example, the cancellation fee and the
time constraint may vary depending on the client or on the kind of goods being
purchased.

Multi-state enabled operations. Many operations can be executed in more
than one state. In particular, most conversations have a subset of operations
that can be executed at any time. For example, it is always possible to search
for books or flights, without “loosing” previously done work (e.g., the content
of the shopping cart). Another related observation is that, in many cases, the
execution of such operations does not cause a state change.

3 Modeling Multiple Aspects of Web Service

Conversations

The previous section has outlined many aspects to be included when specify-
ing Web services, thereby paving the road for extending the embryonic model
according to what appear to be the needs of service developers. We focus specif-
ically on conversations, both because conversation modeling is one of the most
interesting (and innovative) aspects of service descriptions, and because the dis-
cussion in the previous chapter has emphasized that many service properties are
defined in the context of a conversation. In particular, we intend to provide two
different contributions in this section: the first is to define an extensible conver-
sation meta-model that enables the definition of conversation properties. The
second is to identify specific properties, based on the analysis of the previous
section. We observe that this analysis, being driven by and extrapolated from
Web portal analysis, may be polarized towards certain classes of Web services
and may not fully account for the requirements of applications that are more
cross-organizational and loosely coupled in nature. A more comprehensive analy-
sis will be possible only when the requirements of such Web services applications
become better known.

3.1 Requirements for a Conversation Model

We start the description of the conversation model by characterizing the require-
ments for such a model, based on the findings discussed in the previous section
as well as on the intended usage of the model.

Genericity: The model should provide a set of horizontal properties that can be
used to expose the semantics of a service, so that the concepts and the supporting
tools are generally applicable. As such, the semantics of the defined properties
should go across domains. Transactionality is one such example. We are not
interested in defining vertical (domain-specific) properties: this is the job of
standardization consortia, and besides we do not have the required knowledge
and expertise.

Automated support: While a main goal of the model is to provide human
readable description of a service, our aim is also that of enabling the develop-
ment of tools that provide automated conversation support. This also means

that, although at the conceptual level the semantics of properties should be in-
dependent of any particular representation language, an agreed upon notation
for representing properties is also essential. We will propose one such notation,
which is also the one supported by the conversation management tool presented
in Sect. 4.

Extensibility: While we have tried to identify the main properties in our Web
portal analysis, there are other properties that we failed to recognize, or that may
become relevant in the future. In addition, each vertical domain may recognize
the need for adding more properties. Therefore, the model should be extensible
in that it should allow the use of any identified property to describe a specific
abstraction.

Relevance: As mentioned before, adding abstractions to models and primitives
to languages is a delicate issue. In fact, while in general new abstractions may
provide the benefits described above, they also make the model more complex.
Therefore, the model should not contain artificial and complex abstractions that
could have been thought as useful, and that may even be needed in some very
rare occasion, but that are not actually used in practice. Indeed, we argue that
the identification of properties should be based on the analysis of existing Web
and business to business applications. The identified properties should provide
the basis for an effective reasoning paradigm for understanding the behavior of
service conversations (e.g., a composite service can reason about the transac-
tional effect of one of its components on the overall service). Their use should
benefit several automation activities of the service life cycle including services
selection, composition, monitoring and management.

Compliance with Web services standards: The model should build upon
the building blocks of XML and Web service concepts and standards (e.g., XML
Schema, SOAP, WSDL, and UDDI).

3.2 Conversation Meta-Model

The “skeleton” on which we base the proposed conversation model is essentially
a state machine, just like in the embryonic model presented above. We have
motivated earlier why state machines are an appropriate paradigm for defining
the set of conversation supported by a service (although other analogous ap-
proaches are possible). State and transitions have the same meaning as those
described earlier. However, we generalize the approach by enabling the associa-
tion of several descriptive properties with transitions, to characterize when the
transition should occur and what are its implications (e.g., transactional seman-
tics). In addition to transition properties, we also characterize properties of the
conversations as a whole. In particular, we have identified the following charac-
terizations as being useful for both conceptually describing a conversation and
for automatically supporting its execution:
Conversation objects. Service objects refer to service main information such
as product sold by an e-commerce portal. In our model, we consider service re-
quests (i.e., operation names and input parameters) and responses (i.e., output

parameters) as conversation objects. This is compatible with the Web services
model where users submit requests, whose structure (e.g., SOAP message) is
represented according to service interfaces. As illustrated below, among other
usages, service objects can be referenced in the pre-conditions of operation in-
vocations (i.e., state transitions). In addition to service requests and responses,
a service object may consist of an internal variable. Internal variables can repre-
sent service data items such as service-log (i.e., a variable that keeps a reference
to the logged service invocations). They can also represent conversation-specific
data items such as conversation instance identifier or the maximum number of
operation invocations in a conversation instance.

Requester profiles. Requester profiles characterise users invoking operations.
A requester profile consists of a set of attributes such as identity of user, purchase
history, membership of a user to group(s) (e.g., premier member), etc. Similarly
to conversation objects, requester profiles may be used in the description of
conversations (e.g., in pre-conditions of operation invocations).

 Target
 Source
 Name

 Type
 L−Resources
 TL−Resources
Cost
Domain Specific Extensions

Domain Specific Extensions
Event

 Mode Type
Domain Specific Extensions

Domain Specific Extensions
 Cost
 Name

Domain Specific Extensions
 T−Condition
 U−Condition
 O−Condition

 Transition

 Composition

Aggregation

 Compensation

1 0..1

 Locking

Legend: Pre−Conditions

1 0..1

 Activation

1

 Compensation−Transition

Fig. 2. UML Conceptual Model for Transition Properties

3.3 Transitions with Multiple Properties

In this section, we will describe transitions using our conversation description
model. We discuss a list of properties that can be used to capture abstractions
identified in Sect. 2.3. These properties consist of an initial set of abstractions
that we have found to be useful and commonly needed in many practical situa-
tions, namely description, activation, compensation, and locking properties. The
model is extensible in the sense that other properties may be defined and used.
The description property provides human-understandable description (e.g., tex-
tual or HTML document) about the Web service conversation. It also contains
any information that is not easily formalized and can not be interpreted by an
automated tool such as a conversation controller.

The conceptual model shown in Fig. 2 represents a UML static model for the
different components that constitute the properties of a transition. Each prop-
erty is described using a set of attributes. The model is also open to the extension
of definitions of properties by adding new domain-specific attributes4. The re-
mainder of this section gives details about the identified transition properties,
namely activation, compensation, and locking.

Activation Property. This property allows to describe the triggering features
of a transition. Besides the fact that a transition is activated by invoking an
operation, an activation property specifies an activation mode, the activation

event and pre-conditions. The activation mode indicates whether the triggering
of the transition is explicit (mode="user") or implicit (mode="provider"). When
the activation mode is explicit, the transition is activated by explicitly invoking
a service operation. In this case, the value of the attribute event is the name
of the corresponding operation. When the activation mode is implicit, the value
of the attribute event is a specification of a temporal event (i.e., the transition
will occur automatically after the occurrence of this event). A pre-condition is a
triple (0-condition, U-condition, and T-condition), where:

• An O-condition specifies conditions on service objects.
• A U-condition specifies conditions on user profiles. It is used to specify the

fact that an operation can be invoked by certain users (e.g., an operation is
only available to "premium" customers).

• A T-condition specifies temporal constraints to allow the description of
timed transitions (e.g., a transition can occur only within a certain time
period).

A part of a pre-condition may be missing, in which case, the associated
condition is True. An O-condition (respectively, U-condition) is a predicate
or query over service objects (respectively, user profiles). It is satisfied if the
predicate is True or the query result is not empty. We adopt XPath [11] as a
language to express queries as service objects and user profiles are represented
using XML.

The definitions of temporal constrains use XPath time functions (e.g., current
time) and some pre-defined time functions in our model. A complete description
of the temporal model, we use to specify temporal constraints, is outside the
scope of this paper. In this section, we describe the constructs that are used to
model timed transitions.

To keep track of beginning dates, termination dates, and number of invo-
cations of transitions, we introduce the following functions: beginT and endT.
beginT(T) (resp., endT(T)) denotes the beginning (resp., termination) date of
the last invocation of the transition T within the same conversation instance.
The conversation model features also the following temporal predicates:

• M-Invoke prescribes when an implicit transition must be automatically fired.
• C-Invoke prescribes a deadline or a time window within which a transition

can be fired.

4 Attributes named in Fig. 2 are cross-domain attributes.

• L-Invoke prescribes the maximum number of invocations of a given transi-
tion within a time window.
M-Invoke is used to specify temporal events. C-Invoke and L-invoke are

used to specify temporal pre-conditions of a transition. For the sake of simplic-
ity, we assume that all temporal values (time instants, durations, and intervals)
are expressed at the same level of granularity. Formally, a temporal constraint
is specified as either Pred(op,d), where Pred ∈ {M-Invoke, C-Invoke}, or
L-Invoke(op,n,d1,d2). op is a comparison operator (e.g., =, ≤, and between)
and d (resp., d1, and d2) is either an absolute time or a relative time (e.g.,
beginT(T)). The constraint M-Invoke(op,d) is only authorized for implicit tran-
sitions and means that the transition is automatically fired when the condition
current-date op d is evaluated to True. Here, current-date denotes the sys-
tem time. The constraint C-Invoke(op,d) means that the transition can be
triggered only if the condition current-date op d is evaluated to True. The
constraint L-Invoke(op,n,d1,d2) means that the transition can be invoked n

times within the time interval [d1,d2]. In all the previous predicates, a time
value can be expressed as a function on service object or user profiles attributes.
This allows to cater for requirements such as the time constraint may vary de-
pending on the client or on the kind of goods being purchased.

Let us consider the descriptions of the activation properties of the transi-
tions T9 and T10 of Amazon.com example (see Fig. 1). The following XML code
represents the descriptions of the respective activation properties.

<transition name="T9" source="Shipped" target="Returned">

<activation mode="user" event="ReturnBook">

<pre-conditions O-condition="True"

U-condition ="boolean(/user[@membership=’gold’])"

T-condition="C-Invoke(<,end(T7) + 30 days)"/>

</activation>

</transition>

<transition name="T10" source="Shipped" target="Completed">

<activation mode="provider" event="M-Invoke(>=, end(T7) + 30 days)">

<pre-conditions O-condition="True" U-condition = "True"

T-condition="True"/>

</activation>

</transition>

The transition T9 can be explicitly performed (mode="user") by invoking
the operation ReturnBook within 30 days after the completion of the transition
T7 by only “gold” customers. After this period of time, the transition T9 cannot
be performed (constraint C-Invoke). However, the transition T10 is implicit
(mode="provider"). This transition is automatically performed 30 days after
the completion of the transition T7 (constraint M-Invoke).

Compensation Property. This property specifies the effect of a transition on
the client state. With regard to this property, we distinguish the following types
of transitions:
• Effect-less to denote a transition which has no effect on the client state. Can-

celling this kind of transition does not require the execution of any particular

operation. For example, the transition T2, carried out during the execution
of the operation SearchBook(), do not have any effect on the client state.
The cancellation of these transitions is implicit and does not require the
execution of any particular operation.

• Credential-disclosure to denote a transition which has no effect on the client
state from transactional point of view (e.g., the client is not going to make
a payment), but client may be required to reveal certain credentials (e.g.,
postal address, credit card number) to the provider. In general, the release of
these credentials is governed by privacy policies. We do not consider further
this aspect as it is a challenging topic by its own. We assume here that
cancellation of these kind of transitions is implicit and does not require the
execution of any particular operation.

• Definite to denote a transition whose transactional effects are permanent
(i.e., are not compensatable). For example, after the delivery of the pur-
chased items, the Amazon.com service remains in the state shipping during
30 days, corresponding to the period of time where the user can, under cer-
tain conditions, returns the purchased items. After this period of time, the
transition cannot be undone. This abstraction is conveyed by labeling the
transition T10, for instance, as definite transition.

• Compensatable to denote a transition which has some effect on the client
state but this effect can be undone by explicitly invoking a compensation
operation. A compensatable transition is characterized by giving the name
of the corresponding compensation transition and its cancellation cost. Sim-
ilarly to time values in T-condition, values of cost attribute can be ex-
pressed as functions on service objects and user profiles. Consider, for in-
stance, the transition T7. The effect of this transition consists of transfer-
ring money from the client bank account to the provider account. However,
the effect of this transition can be (partially) undone (i.e., the client can
be refunded) if the client decides to return the purchased items (operation
ReturnBook()). The transition T8:CancelBookPurchase() can be used to
compensate the transition T6:OrderBook().
The examples below illustrate the transactional properties of the transitions

T6, T7, and T10 of Amazon.com example (see Fig. 1).

<transition name="T6" source="BookSelection" target="Ordered">

<transaction type="Compensatable">

<compensation-transition name="T8" cost="0"/>

</transaction>

</transition>

<transition name="T7" source="Ordered" target="Shipped">

<transaction type="Compensatable">

<compensation-transition name="T9" cost="/books/book/price * 0.1"/>

</transaction>

</transition>

<transition name="T10" source="Shipped" target="Completed">

<transaction type="Definite"/>

</transition>

The transitions T6 and T7 are compensatable and their effects can be re-
spectively undone using the compensation transitions T8 and T9. The effects of
the transition T10 cannot be undone (i.e., it is a definite transition).

Resource Locking Property. This property specifies temporary reservation
of provider resources for a client when invoking a transition. We distinguish the
following types of resource locking:

• Lock to denote that certain resources are locked for the client. A resource is
a service object. The list of locked objects is specified by means of an XPath
query.

• Tentative-Lock to denote that there is a tentative non-blocking reservation on
certain resources. In fact, this kind of transitions is similar to the lightweight
reservations in the Tentative Hold Protocol 5. It allows several clients to place
locks on the same item, and then once one client completes the purchase of
the item the other clients receive notifications that their locks are no longer
valid. An example of Tentative-Lock can be found in the travel arrange-
ments domain. Some airlines companies allow travel agents to make flight
reservations without effectively locking the seats until the tickets are paid.
When the number of available seats in a given flight decreases, a warning is
sent to the agents that have reservations in that flight. Whenever one flight
becomes fully booked, the agents are notified that their reservations are no
longer valid.

Information about the status of the resources is conveyed by the attribute
type of the element locking. The locking type indicates whether some resources
are locked (type="L"), some resources are on tentative lock (type="TL"), or
both (type="mixed"), i.e., some resources are locked and others are on tentative
lock. The attribute L-resources (respectively, TL-resources) is a query that
specifies the resources to be locked (respectively, on tentative lock). Finally, the
attribute cost indicates the cost of resources locking.

Assume that, in the example of Fig. 1, the transition T7 locks the items that
are in the shopping cart (i.e., purchased books) for which the price is above $100
at a cost of $10. In this case, the locking property is specified as follows:

<transition name="T7" source="Ordered" target="Shipped">

<locking type="L" L-resources="/books/book/price > 100"

TL-resources="" cost="10"/>

</transition>

4 Automated Support for Conversation Management

In this section, we present the design and implementation of a tool called con-

versation manager. This tool is used to facilitate the creation, monitoring, and
control of conversation life cycle operations. It is implemented as an extension
of the SELF-SERV service development platform. A description of SELF-SERV
prototype can be found in [9]. The prototype architecture (see Fig. 3) features

5 http://www.w3.org/TR/tenthold-1.

a service manager and a conversation manager. These modules have been im-
plemented using Java and the IBM Web Services Toolkit (WSTK) [12]. WSTK
provides several components and tools for Web service development (e.g., UDDI,
WSDL, and SOAP). Services communicate via (SOAP) messages. The imple-
mentation of the conversation manager is an ongoing effort. Here we describe an
initial design and implementation of the conversation manager. The conversa-
tion manager consists of two modules, namely, conversation builder and conver-

sation controller. Section 4.1 overviews the design of the conversation controller.
Section 4.2 describes the creation and management of conversations using the
conversation builder and conversation controller.

Service Manager

Services

UDDI Registry

Service Builder

Service Orchestrator

Communication Bus

Workflow Database Applications Web-accessible Programs

Service Discovery Engine

S1 S2 S3 S4

Web-based
Interface

Service Advertisements

Service Discovery

Conversation Manager

Conversation Builder

Conversation Controller

Log Manager

Requests

Results

Fig. 3. Prototype Architecture

4.1 Conversation Controller: Overview

The conversation controller is essentially an extensible object attached to a ser-
vice. It contains operational knowledge (e.g., conversation states). It also pro-
vides operations for monitoring conversations (e.g., triggering a transition). At
run-time, a conversation controller is responsible for:

• Receiving service requests (i.e., SOAP request messages), determining if
new conversation instances should be created, and removing conversation
instances when they are no longer valid.

• Checking whether messages received and sent are in accordance with con-
versation definitions.

• Triggering transitions whenever all their pre-conditions are met.
• Tracing service executions.

The information required by a conversation controller to conduct the above
tasks is extracted from the conversation definition and represented in the form
of control tables. Control tables are associated to states. A control table of a
state S is a set of rules of the form E[C]/A such that:

• E is an event of the form : (i) explicit(op), meaning that an invocation
of an operation op has been received, or (ii) implicit(t), meaning that a
temporal event t has occurred.

• C is a conjunction of conditions appearing in the pre-conditions clause of a
transition (i.e., O-condition, U-condition, and T-condition).

• A is an action of the form trigger(T), meaning that the transition T of the
state S needs to be triggered. The triggering of a transition causes: (i) a state
transition, meaning that the conversation controller marks the conversation
instance as moved from the source state into the target state of the transition,
and (ii) the invocation of the corresponding Web service operation6.

Briefly, the basic semantics of a control table, is as follows: While at state S

(i.e., state S is active), when one of the elements (i.e., one of the event) of the
table is triggered, if its condition evaluates to true, the corresponding transition is
activated. The control tables of a conversation are statically derived by analysing
the activation properties of transitions. The detailed description of the generation
algorithm is outside the scope of this paper due to space reasons.

4.2 Creating and Managing Conversations

The conversation builder assists providers to create conversation definitions and
generate control tables. A conversation definition is edited through a visual in-
terface and translated into an XML document for subsequent processing. The
visual interface offers an editor for describing a state machine diagram of a con-
versation. It also provides means to describe the properties of transitions. The
conversation builder generates the control tables using the XML representation
of a conversation. The control tables are formatted in XML as well.

The functionalities of the conversation controller are realised by a pre-built
class called ConversationController. This class extends a service with pre-
built capabilities to participate in conversations which are defined using the
model proposed in this paper by providing access to operational knowledge such
as control tables. It provides methods for receiving service requests, managing
conversation instances (i.e., creating and deleting instances), detecting transition
activation events (i.e., explicit operation invocations, temporal events), trigger-
ing transitions, tracing service executions, and communicating with service re-
questers in accordance with conversation definition (e.g., sending a notification
informing the requester that deadline for cancelling an operation is passed).

More precisely, the class ConversationController implements a software
module made up of a container and a pool of objects. There is one container per
conversation schema. The container is a process that runs continuously, listening

6 In the case of an implicit transition, the corresponding operation is an internal service
operation.

to service request messages. When the container receives a request message, it
proceeds as follows7:

• If the message does not carry an existing conversation instance identifier
(i.e., the conversation instance is unknown to the container because it is a
new or expired conversation), a new controller object is created, and this ob-
ject is given access to the conversation control tables. The task of handling
the request message is delegated to this newly created object by invoking a
method called process request on it. The newly created object is temporar-
ily added to the pool of objects so that it can handle subsequent messages
related to the same conversation as they arrive.

• If on the other hand the container has previous knowledge about the con-
versation instance to which the request message relates, the message is for-
warded to the controller object that was created when the first message re-
lated to that instance was received. This object is retrieved and the method
process request is invoked on it.

A service may participate in several conversations simultaneously. Each con-
troller object in the pool is dedicated to a particular conversation instance, and
processes all the incoming and outgoing messages related to that instance. By
keeping track of the status of these requests and by having access to the relevant
control tables, the controller object is able to check whether messages received
and sent are in accordance with conversation definition and detect when should
a given transition of the conversation be activated. When a controller object de-
tects that a given transition needs to be activated, it sends an invocation message
to the related service. Once the corresponding completion message is received,
the object sends the response to the requester. The lifespan of a controller object
is bound to the life span of the associated conversation. This means that, once
the conversation expires (e.g., because of timeout), the associated controller ob-
ject is no longer needed. The container removes the object from the pool and
destroys it. It is worth-noting that the conversation controller relies on the log
manager to trace conversation executions and interactions.

It should be noted that controller objects are different from service instances.
Controller objects are responsible for managing conversation instances. Service
instances are responsible for processing invocations to the service, initiating the
service, collecting the outputs, and returning them back to controller objects that
initiated the invocations. The messages exchanged between a controller object
and a service instance are SOAP request/response messages. The controller

class is provided by our system. A service provider only needs to download and
install the class ConversationController in order to support the functionalities
of the conversation controller (i.e., message correlation, conversation/messages
conformance checking, etc). In fact, a service creator needs to provides only
the business logic of the service. The class ConversationController shields
the service creator from the implementation details of the functionalities of the
conversation controller.

7 Conversations are tracked in a similar manner as in WS-Coordination, i.e., we assume
that SOAP Messages carry identifier of conversations in their headers.

5 Related Work and Conclusions

In this paper, we argue that abstracting Web services in terms of generic
properties that describe conversation behaviors (e.g., transactional semantics
and temporal constraints), will benefit several automation activities in cross-
organizational application integration.

Several ongoing efforts recognize the need to extend the current technological
infrastructure for Web services in order to effectively support cross-organization
application integration [8]. Emerging standards such as BPEL4WS [13], WSCI
[14], WS-Coordination [15], and WS-Transaction [7], layer up functionality re-
lated to composition and transactions on top of the basic Web service standards
such as SOAP, WSDL, and UDDI [5]. BPEL4WS is particularly related to the
work presented in this paper since, in addition to proposing a model for com-
posing Web services, it also presents a way for defining the conversations that
a Web service supports. However, the conversation functionality provided by
BPEL4WS is essentially driven from its composition nature: in other words,
BPEL4WS has been primarily designed as a composition language, in which the
same formalism used for composition (a process) can also be used for defining
conversations. As such, many of the properties needed for defining conversations
(such as activation and compensation properties) are missing from BPEL4WS.
WS-Coordination and WS-Transaction are also related to the work presented
in this paper since they deal with conversations, and in particular with trans-
actional conversations. However, their goal is that of providing a framework
through which conversation properties can be enforced, rather than providing
a conversation model. Other efforts which aim at addressing issues related to
reliable coordination and transactional execution of integrated services include
the OASIS Business Transaction Protocol (BTP)[16]. In general, the focus in
this area is on extending traditional transaction techniques to provide reliable
and dependable execution of integrated services. In the context of Web service
conversations,WSCL [10] builds upon WSDL to describe valid interactions that
a service can support, but focuses only on choreography aspects (i.e., accept-
able message exchanges and the order in which they should occur). Within the
research community, a Web service middleware which is based on the notion
of transactional attitudes was proposed in [17]. The middleware monitors and
controls client transactions according to transactional capabilities of provider
services. Finally, we mention that other complementary proposals such as [18,
19] focus on enhancing the descriptions of services with non-functional properties
(e.g., quality of service).

Our work makes complementary contributions to the efforts mentioned
above. Our approach builds upon the building blocks of Web standards and
provide a framework for defining extensible conversation meta-model, to enable
the description of generic abstractions such as temporal constraints and implica-
tions of service conversations. We presented a conceptual model for the identified
abstractions. We derived most of the concepts of abstractions from the analysis
of real e-commerce Web portals. We presented a conversation management tool
that supports the identified abstractions.

References

1. Aissi, S., Malu, P., Srinivasan, K.: E-Business Process Modeling: The Next Big
Step. IEEE Computer 35 (2002) 55–62

2. Benatallah, B., Casati, F., eds.: Special Issue on Web Services. Volume 12 of
Distributed and Parallel Databases., Kluwer Academic Publishers (2002)

3. Bussler, C.: B2B Protocol Standards and their Role in Semantic B2B Integration
Engines. IEEE Data Engineering Bulletin 24 (2001) 3–11

4. Weikum, G., ed.: Special Issue on Infrastructure for Advanced E-Services. Vol-
ume 24 of IEEE Data Engineering Bulletin., IEEE Computer Society (2001)

5. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Un-
raveling the Web Services Web: An Introduction to SOAP, WSDL, and UDDI.
IEEE Internet Computing 6 (2002) 86–93

6. Cobb, E.E.: The Evolution of Distributed Component Architectures. In: Pro-
ceedings of the 9th International Conference on Cooperative Information Systems
(CoopIS’01), Trento, Italy (2001)

7. Cabrera, F., Copeland, G., Cox, B., Freund, T., Klein, J., Storey, T., Thatte, S.:
Web Services Transaction (WS-Transaction). http://dev2dev.bea.com/techtrack/
ws-transaction.jsp (2002)

8. Papazoglou, M.P.: The World of e-Business: Web Services, Workflows, and Business
Transactions. In: Proceedings of the CAiSE’02 International Workshop on Web
Services, e-Business, and the Semantic Web (WES’02), Toronto, Canada (2002)

9. Sheng, Q.Z., Benatallah, B., Dumas, M., Mak, E.: SELF-SERV: A Platform for
Rapid Composition of Web Services in a Peer-to-Peer Environment. In: Proceed-
ings of the 28th Very Large Data Base Conference (VLDB’02), Hong Kong, China
(2002)

10. Banerji, A., Bartolini, C., Beringer, D., Chopella, V., Govindarajan, K., Karp, A.,
Kuno, H., Lemon, M., Pogossiants, G., Sharma, S., Williams, S.: Web Services Con-
versation Language (WSCL). Note, W3C (2002) http://www.w3.org/TR/wscl10.

11. Clark, J., DeRose, S.: XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath (1999)

12. IBM WSTK Toolkit. (http://alphaworks.ibm.com/tech/webservicestoolkit)
13. Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller, D., Thatte, S., Weer-

awarana, S.: Business Process Execution Language for Web Services (BPEL4WS).
http://dev2dev.bea.com/techtrack/BPEL4WS.jsp (2002)

14. Arkin, A., Askary, S., Fordin, S., Jekeli, W., Kawaguchi, K., Orchard, D., Pogliani,
S., Riemer, K., Struble, S., Takacsi-Nagy, P., Trickovic, I., Zimek, S.: Web Service
Choreography Interface (WSCI). Note, W3C (2002) http://www.w3.org/TR/wsci.

15. Cabrera, F., Copeland, G., Freund, T., Klein, J., Langworthy, D., Orchard,
D., Shewchuk, J., Storey, T.: Web Services Coordination (WS-Coordination).
http://dev2dev.bea.com/techtrack/ws-coordination.jsp (2002)

16. OASIS Committee Specification: Business Transaction Protocol, version 1.0 (2002)
17. Mikalsen, T., Tai, S., Rouvellou, I.: Transactional Attitudes: Reliable Composition

of Autonomous Web Services. In: Workshop on Dependable Middleware-based
Systems (WDMS’02), Washington DC (2002)

18. Maximilien, E.M., Singh, M.P.: Conceptual Model of Web Service Reputation.
SIGMOD Record 31 (2002)

19. O’Sullivan, J., Edmond, D., ter Hofstede, A.: What’s in a Service? Distributed
and Parallel Databases 12 (2002) 117–133

