

Sensor-enhanced Mobile Web Clients:
an Xforms Approach

John Barton, Tim Kindberg, Hui Dai, Nissanka B. Priyantha
Fahd Al-bin-ali
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2003-52
March 17th , 2003*

E-mail: John_Barton@hpl.hp.com, timothy@hpl.hp.com, huid@cs.colorado.edu, bodhi@copley.lcs.mit.edu,
albinali@cs.arizona.edu,

mobile
computing,
ubiquitous
computing,
sensors,
browsers,
forms, MIME
types

This paper describes methods for service selection and service
access for mobile, sensor-enhanced web clients such as wireless
cameras or wireless PDAs with sensor devices attached. The clients
announce their data-creating capabilities in “Produce” headers sent
to servers; servers respond with forms that match these capabilities.
Clients fill in these forms with sensor data as well as text or file
data. The resultant system enables clients to access dynamically
discovered services spontaneously, as their users engage in
everyday nomadic activities.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2003

 1

Sensor-enhanced Mobile Web Clients:
an XForms Approach

John Barton (John_Barton@hpl.hp.com)
Tim Kindberg (timothy@hpl.hp.com)

Hui Dai (huid@cs.colorado.edu)
Nissanka B. Priyantha (bodhi@copley.lcs.mit.edu)

Fahd Al-bin-ali (albinali@cs.arizona.edu)
Hewlett Packard Labs
1501 Page Mill Road

Palo Alto California, USA 94304

ABSTRACT
This paper describes methods for service selection and service
access for mobile, sensor-enhanced web clients such as wireless
cameras or wireless PDAs with sensor devices attached. The
clients announce their data-creating capabilities in "Produce"
headers sent to servers; servers respond with forms that match
these capabilities. Clients fill in these forms with sensor data as
well as text or file data. The resultant system enables clients to
access dynamically discovered services spontaneously, as their
users engage in everyday nomadic activities.

Keywords
Mobile Computing, Ubiquitous Computing, Sensors, Browsers,
Forms, MIME types.

1. INTRODUCTION
Currently some mobile phones come equipped with digital
cameras and color displays for sharing images. This mobile
phone/display/camera device and its use model is a special case
that can be generalized. The camera is a particular type of sensor:
a device that reads data from the user's physical environment. And
the users may submit their sensed data — the images — over the
wireless connection to only a limited set of services that are the
same everywhere the user goes: they send the images to other
users or upload them to a web site. The general case has much
more potential than the camera-enhanced phone. First, the camera
could generalize to several types of sensors. Second, the services
for processing the sensed data could be open: in addition to
existing services, users could send them for photo printing, image
processing, optical-character recognition, or whatever services
arise on the Internet. Third, services could be specialized to the
user's location or circumstances.

Consider how to utilize a world of open services specialized for a
nomadic user's physical environment, services that process values
from a variety of sensors integrated into a range of devices that
the user carries. How can a user of a device with a digital camera
load images into a photo printing service they encounter while
traveling? How can this user send the same image to their digital
display at home? Or to the digital display in a friend's house? Will
the answer change when the user's device includes global
positioning values, the ability to co-record temperature,

orientation, and the values in nearby electronic beacons and object
identifiers [18] such as bar-codes that may be read via a camera or
a standard scanner? Will the answer change when the photo-
printing service or digital displays change? In general, how can a
user with a wirelessly networked, mobile, digital, data-capture
appliance interact with electronic services in a way that works in
many different places, and as devices and services change over
time?

These questions arose from our effort to develop a system for
supporting "nomadic computing" [19]. We have in mind a system
of the future with advanced wireless digital cameras, "badges"
with sensors [22], PDAs equipped with cameras [13] or position
and orientation devices [21], and so forth, carried by people as
they work, play, or shop. These future nomads use these devices
routinely in a variety of services associated with places and other
entities in the physical world, which they discover and utilize as
they move around. For example, they could be recording notes
from a meeting with work colleagues, then in a store uploading a
photograph of a chair that might look good in their home, then
helping to construct a record of their child's school project.

These activities are technically realizable today. However, such a
realization would be difficult or expensive even if the hardware
and communications infrastructure was already in place. While all
the uses involve both data capture and communication, the
destination of the data and its compatibility with the sensors
varies. Actual use would require, at one extreme, specialized
interworking of the destination service and sensors or, at the other
extreme, global uniformity so that all sensors and services fit a
common model. Neither solution can be realistic for nomadic
users, who interact with different systems, in different places, and
with devices that change over time.

1.1 Contribution and scope
In this paper we explore an HTTP- and XForms-based solution to
the problem of nomadic service discovery and service invocation.
We'll call our networked, mobile, digital data-capture appliance a
"sensor-enhanced web client", thinking of it as a new kind of
input to web servers while minimizing the differences from
present-day browsers. Conceptually a "sensor" captures data, but
often the word sensor conjures up simple measuring devices and
the term "sensor network" has come to mean large numbers of
simple devices. We use the term in a broader sense, to include

 2

cameras (image sensors), bar-code scanners, RFID readers and so
on. We'll restrict our electronic services to Web-based services,
meaning that the primary communications channel will use HTTP
over TCP/IP. We describe the protocol that allows sensor-
enhanced handheld web clients to upload data to spontaneously
discovered location-dependent services. We also describe our
implementation that allows the potential for these clients to be
explored.

Nomadic, sensor-enhanced computing is our main interest, but
our web-centric approach has the potential to benefit other users
as well. A desktop PC might also be equipped with sensors such
as bar-code readers and it certainly can run a similar web client to
the one we put on a mobile device. Sensors are not the only
sources of data that a web client can supply to a service — why
not data from applications, such as entries from address books?
 And while we normally consider there to be a "human in the
loop", a ubiquitous computing environment might include devices
that supply sensed values such as temperatures to services
autonomously.

2. TYPE-DEPENDENT DISCOVERY
Our approach begins with two analogs from the current Web:

1. Multimedia content negotiation on the Web allows
clients to notify servers of their media capabilities.
These servers interact with a wide variety of clients and
gracefully move to improved media technologies over
time. The HTTP Accept header drives the simplest
version of this content negotiation.

2. Humans with keyboards interact with server-side
applications via HTML forms. This model allows a vast
variety of applications to be fronted by Web-based user
interfaces and those UI's can change dramatically
between applications and over time.

Those considerations lead us, first, to make the linchpin of our
service selector the same one used by the Web, i.e. MIME types.
Second, they lead us to retain the simplicity of the Accept
paradigm by straightforwardly reversing it: to think of services as
sinks of standard MIME (media) types and sensors as sources of
standard MIME types.

Our solution adapts these two aspects to nomadic handheld clients
with sensors.

1. Our client announces to services that it can provide
particular types of data by supplying a Produce
header that parallels the Accept header of HTTP 1.1.
The service can, for example, reply with a web page
containing links to services that can consume these
types. These links return forms, but the fields in the
form are not (just) text or file fields. They also accept
multimedia data that the client can supply from its
sensors.

2. Thus the second part of our solution: form-based
support for MIME-typed data upload from sensors in
devices. Subsequent use of the device, for example

taking a picture, loads the form with data matching the
MIME type, and sends it to the service, resulting in, for
this example, the upload of an image. In filling out
forms, users are not concerned with intermediate files:
as far as they are concerned, data flows directly from
sensors into forms and thus to Web services and
applications.

The Produce header works in tandem with the
existing Accept header for devices that include both sensors
and a display or other media playback capabilities. Moreover, the
form model for uploading sensed data allows the client to access
heterogeneous services without deployment of service-specific
client code. These services need not be hosted in general-purpose
server machines; they might be services like printing or projecting
embedded in devices [20]. Our aim is to support either extreme
equally.

Concretely we propose:

1. a new HTTP header, Produce

2. an analysis of the W3C XForms [26] candidate
recommendation applied to sensor data from mobile
clients.

These two items are covered in the next two major sections of this
paper. Then we discuss our implementation that allows the
implications of these proposals to be explored.

2.1 The Produce Header
The Produce header mirrors the Accept header in form but
not in function. Like the Accept header, its purpose is to
specify a set of MIME types, but ones that the client can produce
instead of consume. Unlike the Accept header, its role is not
media type selection but rather service selection. Depending on
the use model, the content that the client receives when it does an
HTTP POST or GET with a Produce header is either a form
that a service has selected for the client based on its capabilities
(assuming at least one match was found), or a page giving links to
services that match the client's capabilities. For example, a
wireless camera that can produce images of type image/jpeg
retrieves an upload form for the user's Web album when the user
points it at myPortal.com. But when the user points the same
camera at the dynamically discovered home portal of their friend's
house, they see (on the back of the camera) links to the digital
picture frames and printer in that home.

Note that utilizing the Produce header may be only the first
step in service selection. In general, we expect a returned service
page to show customization, quality, and pricing options. The user
can then select from among the options or seek another service
with the required data-consuming characteristics. The Produce
header prefilters the service but the user makes the selection.

 3

2.2 Syntax of the Produce Header
The syntax of the Produce header is shown in Fig. 1. This
specification of the Produce Header is isomorphic to
the Accept Header defined in the HTTP /1.1. Using the
convention defined in the HTTP protocol, the "*" character is
used to refer to a set of media types, e.g. "*/*" indicates all the
defined media types and "foo/*" means all the subtypes of the
type "foo". The media-range describes the types of data that the
client device can produce. The device may have the ability to
produce either a single type or a set of types.

The requester can specify preferences between media types
through specificity and "qvalues". As in the Accept header
definition in HTTP /1.1 [9], "the media-range can be overridden
by more specific media ranges or specific media types. If more
than one media range applies to a given type, the most specific
reference has precedence." For example:

 Produce: image/*, image/jpeg, */*

has the precedence (1) image/jpeg, (2) image/*, (3) */*.
As with the Accept header, the "quality factor" parameter
allows the client to indicate relative preferences with a weighting,
"q", between 0 and 1 (the default). For example:

 Produce: image/*;q=0.2, image/jpeg;q=0.6,
image/gif;level=1, */*;q=0.5

would cause the following values to be associated:

 image/gif;level=1 image/jpeg = 0.6
image/bmp = 0.2 image/png = 0.5

Another example, for a digital camera, is:

 Produce: image/jpeg; q=0.6, image/jpeg2000;
q=0.4, video/quicktime

This camera prefers to produce quicktime video (with a default q
value of 1). Otherwise, it prefers to send a jpeg-encoded image
but can also produce the jpeg2000 format.

2.3 Evaluating Service Precedence with the
Produce Header

Consider a set of services, each of which requires a vector of data
of one or more media types to be submitted. Each service is
associated with the equivalent of a compound Accept header
specifying one or more required and/or acceptable media types,
each with an effective qvalue. For example, a service might
require both (video/quicktime) and (image/jpeg,
image/*; 0.2). That is, it requires a video of type
video/quicktime in addition to an image, preferably of
type image/jpeg.

We rank the "preference" of the different services against the
Produce header from the point of view of the service

providers; we ignore the requester's Accept headers for the
sake of simplicity in the explanation. Depending on the use
model, the preference could be used to select the "best" service or
to send back a ranked list to the requester.

1. Check the appropriate Produce header field. If
no Produce header is found, terminate with a "no
available service" indication. Otherwise proceed to step 2.

2. For each service, if the requester does not produce one or
more media types required by the service, eliminate this
service. Otherwise:

a. For each media type accepted by the service entity and
contained in the Produce header, multiply the quality
factor from the Produce header with the quality
factor for this media type specified for the service, and
choose the largest result if there are alternatives. Add all
the values together. The final value is the final
preference factor for this service.

b. Add this service to a list, sorted by preference factor.

3. The algorithm ends with a list of the available services that
are sorted by preference.

We expect that an algorithm like this would be included in any
standard for a Produce header.

3. XFORMS FOR SENSOR DATA
Once we have the ability to select a service appropriate to the
data-creating sensors of our device, we need a mechanism to
couple the service and the sensors. Form filling is the web-based
method used to couple keyboard input from humans in to services.
Therefore we chose to explore extensions of this approach for
sensor-enhanced devices.

In a web-based service-access model, a client downloads a "form"
that has two roles: it contains markup for presentation on the
client device, including controls and related information; and it
has fields that accept data values from the client device, which
may include values from sensors as well as more conventional
values such as text entered by a human. Once the form has been
completed, it is submitted to the URL it specifies.

To realize form-based service access, we explored the utilization
of the proposed XML-based form standard called XForms [26].
This choice seem to be the lowest-effort way for these capabilities
to be added into the W3C protocol suite. We considered working
with conventional HTML forms, but XForms overcomes several
limitations of HTML forms valuable for mobile sensor systems.
 We describe the XForms advantages by example. The XML
fragment shown in Fig. 2, to be embedded in the head of an
XHTML document, solicits one or two images and a comment on
the images:

Produce = "Produce" ":" #(media-range [produce-params])
media-range = ("*/*" | (type "/" "*") | (type "/" subtype)) *(";" parameter)
produce-params = ";" "q" "=" qvalue *(produce-extension)
produce-extension = ";" token ["=" (token | quoted-string)]

Figure 1. Syntax of the proposed Produce header

 4

<xforms:model xmlns:my="http://purl.org/net/TimKindberg/xmlns/imageUpload">

 <xforms:instance>

 <my:data>

 <my:image/>

 <my:comment/>

 </my:data>

 </xforms:instance>

 <xforms:input ref="my:data/my:comment">

 <my:caption>Add a comment</my:caption>

 </xforms:input>

 <xforms:bind ref="my:data/my:comment"

 required="true()"

 relevant="/my:data/my:image = true()" />

 <xforms:input ref="my:data/my:image">

 <caption>Snap an image or two</caption>

 </xforms:input>

 <xforms:bind ref="my:data/my:image" required="true()" maxOccurs="2" />

 <xforms:submission action="http://example.com/submit" method="post" />

</xforms:model>

Figure 2. Part of an XML document illustrating the Xforms elements

The XML specifies a logical model for the items of data to be
collected, the "controls" used to collect the data, and constraints
on the data collection. This is textually separate from presentation
markup in an XForms-based document, and both model and
presentation are in turn separate from the instance data to be
collected and submitted to the "action" address. The example
shows an instance XML element, which defines the values
that are to be filled in and submitted. XForms authors also
specify abstract "controls" such as the example's input element,
used for obtaining values for an instance of the form. XForms
authors can also use the bind element to specify constraints that
the form-filling client must interpret and satisfy when values are
filled in.

The following are the main XForms features in relation to the
sensor-enhanced clients we are considering:

Separate presentation logic. Since we are dealing with client
devices of various types and sizes, form input widgets should be
tailored appropriately to the device's capabilities—rather than, as
in HTML, rendering them with a standard appearance. XForms
already provides for this, allowing the client to render abstract
controls with appropriate concrete representations. The example's
input element for the comment may be rendered as any text-
input widget appropriate for the device. That might be a keyboard
or a microphone used to record speech that is then converted to
text.

Constraint constructs. Xforms bind elements provide
functionality not found in HTML forms, such as specifying
whether a given field is optional or not, and the type of data that
may be filled in. In general, constraints enable the client to give
feedback to the user about invalid entries, without the time delay of
a return trip to the server for validation. In the example, the bind
element refers to the comment field and one of the specifications is
that comments are required. The user-agent (web client) should
thus insist on this field being filled rather than wastefully
submitting an invalid empty field to the server.

Selective rendering of input widgets. The "relevant" constraint
enables the form's author to schedule the filling of different fields
in a form through preconditions. This is useful when dealing with
devices of limited rendering capabilities, and when seeing controls
for operating several sensors concurrently might confuse the user.
 In the example, the comment field becomes relevant only when
 the image field evaluates to true()—that is, is non-empty.

Multiple instance values per field. Clients sometimes need to
capture several values—for example, a set of images—whose
number is unknown in advance of form-filling. XForms supports
multiple instance entries per field, with constraints on the allowed
number. In the example, the user is allowed to enter up to two
images.

3.1 Sensor-filled fields
In our devices, form fields may be filled in with data directly
captured from sensors—in addition to data from files and data
entered by humans. Furthermore, sensed data should be specified
by media type only—not by sensor type. In our prototype
implementation we extended the values allowed in the "type"
attribute in the bind element of XForms to MIME media types.
As we explained in the above example, the bind element
specifies constraints on input data. But the current specification
allows only types from the XML Schema [26], and XForms-
specific types for list items and duration values. We allow MIME
media types [10] as type values. In the following we augment the
example above by specifying that the field whose instance data is
"my:data/my:image" is to be filled with a value of type
"image/jpeg":

<xforms:bind ref="my:data/my:image"
required="true" maxOccurs="2"
type="image/jpeg" />

(Note this is not XForms-compliant, see below.) Our client
interprets the bind element and associates the MIME type with

 5

the referenced instance element. Then when the input element
is rendered, the MIME type binding causes the client to render
this input control as an imaging sensor dialogue rather than, for
example, a keyboard input widget.

This approach satisfies our most important requirement: by
requiring a media type rather than specifying a device type,
services are freed of concern with which sensors the client
possesses. For example, if the form requires image/jpeg then
a client might supply an image from a camera or a scanner or
whatever image sensor it has available. The form should not
specify "camera", since the client may not have a camera but may
have another image-producing device for which the service still
has value. Therefore, the point of agreement between a client and
server is the media type—which, by hypothesis, belongs to the
extant MIME standard—rather than a device description, for
which there is much less agreement on vocabulary and semantics.
We expect the range of sensors producing any given media type to
increase, leading to more and more lost opportunities for service
access unless agreement is by media type rather than device type.

This MIME-based approach naturally leads to a number of issues
in the connection between the media type and sensors. Because
the service's specification for a given field is only the required
media type, the client might be able to choose which of possibly
several sensors produce data of that type. Consequently the client
will have to provide a means of activating the appropriate sensors.
If the client has a user interface, then the choice can be offered to
the user with a selection widget. Otherwise, it can activate any
suitable sensor.

Another issue is that the types of sensed values relevant to
nomadic computing go beyond those in the MIME set. For
example, to our knowledge there is no MIME type corresponding
to the value from a Global Positioning System (GPS) sensor, or
for the value from a bar-code reader.

Finally, feedback is an important issue. Users may want to review
the sensed values that they have filled into the form, just as they
can see the values they have entered into text widgets before
clicking the "submit" button. Fields filled from sensors should be
rendered appropriately, but only when the user wishes to examine
them, because of the limited output capabilities of many clients.
We shall return to these points in the final discussion.

Our work proceeded concurrently with the evolution of the
XForms specification. Recent versions of the specification contain
an "upload" control that allows for input of data from a sensor.
The specification uses this example

 <upload ref="mail/attach1"
mediatype="image/*">

 <label>Select image:</label>

 </upload>

This syntax has a similar effect as our ad-hoc approach; the
upload control would be rendered into a sensor-activation widget.
However, the XForms specification introduced a new element
rather than trying to overload the form input element, whereas
we experimented with the simpler approach of type extension—a
method that would be applicable to uploading data from files as
well as sensors. Both approaches suffer from potential ambiguity:
a form could be created with two bind elements or two upload
elements referencing the same point in the XML instance. One
alternative without this problem would place the MIME type

specification in the model element of the form as we suggested
in an online comment on XForms [2].

3.2 New issues with Sensors
Client-Side Coordination. We considered two aspects of
coordination in form-filling with sensors. The first is that there is
sometimes a requirement to fill several fields at the same time.
For example, an image upload service might present its clients
with a form containing one field for the image and the other for a
location, e.g. from a GPS unit attached to a camera, so it can
annotate the picture with where it was taken. The location field
should be filled in at the time the image was taken, because doing
so later or earlier might produce misleading results. Although we
have not yet implemented this facility, the first type of
coordination seems to be achievable through the XForms
"relevant" constraint, which would enable activation of an
appropriate sensor when a target field has been filled in.

The second aspect of coordination is that sometimes it is
convenient to tie field-filling to submission. For example, to save
a user from an extra interaction with awkwardly small controls on
a PDA, a form could specify that it was to be submitted as soon as
an identifier had been read — e.g. from a bar-code. The user's
interaction model, once the form has been downloaded, is then
"scan and view": the user presses a button to scan a bar-code on,
say, a product and then looks at the resultant Web page that the
server provided. The XForms specification 1.0 does not appear to
support this second type of coordination.

Multi-client form processing. Multiple mobile devices should be
able to contribute to the filling of a single form. This roughly
corresponds to various approaches to "multibrowsing" [12, 17]. A
simple approach is to pass a partially filled-in form between
multiple clients with different capabilities. For example, a form
could be passed between several personal devices such as a
camera and a PDA, each of which fills in some subset of fields in
the form. Indeed the conceptual simplicity of this approach leads
to the suggestion that, ideally, a submitted form should also be
form, albeit one with, in general, more fields filled in than when it
arrived at the client. Then the form becomes at all stages a
completely self-describing data structure, not just at the XML
level but also at the markup level; "at all stages" may even include
form processing among multiple services acting as "clients" to
other services. The XForms 1.0 specification would not allow this
as clients submit only instance data, without a model or enclosing
markup.

4. IMPLEMENTATION
To explore our proposal and to gain some experience in its
potential we have implemented a set of sensor-enhanced web
clients and some form-based services.

4.1 Sensor Enhanced Web Client Simulation
To develop our software rapidly and to be able to examine a wide
variety of application scenarios without overcoming the
complexities of actual sensors in this prototype, we used a
prototyping tool for ubiquitous computing called Ubiwise [4].
This program simulates the visual appearance of electronic
devices and their physical environment using a combination of
two programs, one to show devices and one with a 3D model of
the use scenario. While the sensors, device screens, and controls
are simulated, the web client and web service code is not.
Consequently this approach aids in the development of the client-

 6

server connection, but it allows only rudimentary experiments on
user interface design.

4.2 Scenario
To demonstrate our implementation, we simulated a nomadic
computing scenario. In our scenario, a user arrives in a room she
has never visited before, with her web-browser enhanced camera
equipped with bar-code conversion software. She uses that device:

1. to obtain links to the services in the room that she can
take advantage of with her client device, and

2. to access services that work with the sensed values she
can produce.

Both service discovery and service access take place via forms.
While we don't know of a digital camera with these capabilities
currently, there are commercially available PDAs and phones that
can read bar-codes via a camera attachment [15]; such software
saves the bulk and expense of a specialized scanner.

4.3 Bootstrapping Service Discovery via the
web/id Application

To begin our nomadic user needs to find services available in the
space she has just entered. She uses her bar-code scanner to
discover the available services via a "you-are-here" bar-code
placed by the entrance to the room (see Fig. 3). This bar-code is a
"physical hyperlink": the code values can be mapped to a web
page with the "web/id" service [18]. The user selects the web/id
service URL from her bookmarks. Her client fetches the page in a
GET operation that specifies the Produce header
"image/jpeg; text/id" (we made up the latter for this
experiment). This particular implementation of web/id ignores the
first media type but uses the second to return a form specifying a
field to be filled from an text/id value. In the absence of the
Produce header, a form with a simple text input widget for the

identifier would have been sent and the user would have to read
the code off the wall and enter it manually.

The user's device renders the web/id form into a tiny web browser
on back of the camera. The browser, while too small for typical
web pages, can show simple text like "Snap an ID for Local
Information" (see Fig. 4). On seeing web/id's form, the user snaps
an image of the "you are here" bar-code. The camera software
images the bar-code, recovers the identifier, fills the resultant
identifier (a string) into the form and submits the form back to
web/id. Web/id takes the identifier and looks up the URL that the
room's administrators have bound to it: the URL of a "service
selector" page giving a customized list of the available services.
Web/id redirects the client to that page.

4.4 Service selection and service access
At this point in our scenario, the user has a web client requesting a
list of services. Again the Produce header, image/jpeg;
text/id is added to the request. The service selector examines
the client's capabilities from the Produce header. It sends back
a page that is customized to the client, including, along with more
general information, links to a digital picture frame and a printer
in the room, both of which can consume image/jpeg. It omits
the audio service that would be able to play audio from the client
through speakers if the client were able to produce it.

4.5 Produce Header Analysis
The server side of our system has a new web-based selector meta-
service for analyzing Produce headers. The analysis is needed
in two cases: for a service that returns forms for sensor fill-in and
for a directory service that lists those services. Both cases share
the code for analyzing the Produce header itself; the latter case
also requires a registry of the form-based services. We
implemented our example services as Java Servlets running in the
Apache/Tomcat servlet engine. The registry is currently a "service
map" file directly analogous to Apache's type-map file [1].

Figure 3. Screenshot of a simulated digital camera about to sense a bar-code to find location-specific services.

 7

4.6 Forms Proxy
We implemented a sensor-enhanced web client by interposing a
"form-proxy" on the client between a standard web browser and
web services (see Fig. 5). The form-proxy acts in part as a web
proxy. It intercepts XForms that the browser downloads from
services, renders them into HTML to send on to the browser, and
it coordinates the filling of those forms. To fill the forms, the
form-proxy activates sensors and intercepts data sent back from
the browser. The form-proxy is written in Java and it has been
used with both desktop HTML browsers and the Java based
browser in the Ubiwise simulator.

Our implementation includes an abstraction of sensors wherein
each is associated with the media type it can produce and each is
classified as "blocking" or "non-blocking". For example, a
human-operated camera is a blocking sensor since the human has
to click the shutter. A GPS sensor, on the other hand, potentially
always has a value to produce and is classified as non-blocking.
Client implementers have to examine the type requirements for a
given form and determine how to map the sensors:

• A form that maps to a set of non-blocking sensors
should be rendered with a submit button to trigger the
sensor measurements and immediate subsequent upload.

• A form that maps to a set of sensors that includes one
blocking sensor could render without a submit button,
allowing the operation of the blocking sensor by the
user to trigger both sensor measurements and upload.
This model would allow a digital appliance-like
operating mode where the user is simply using the
device without detailed attention to the web page
rendered for the form.

• A form that maps to more than one blocking sensor
requires a more complex user interface design. Note that
this is the normal case for current Web HTML forms
with keyboard inputs.

For our simple scenario we have two forms, one for web/id and
one for uploading an image to a digital picture frame. Both have a
single blocking sensor, the imaging sensor. In our first
implementation, both forms were submitted after the user takes a
picture. Thinking of ourselves as users, this worked well for the
web/id step: we selected that service and want immediate results.
However, for image transfer from the camera to the digital picture
frame, immediate transfer when the image is capture may or may
not be the behavior users expect. Our experimental set up allows
us to explore approaches for how web clients can gracefully adapt
to these cases in future work.

5. RELATED WORK
Service discovery systems such as those of UDDI [23], Jini [16],
SLP [11], and UPnP [24] enable clients to discover services based
upon arbitrary attributes. In principle, these discovery services
allow for more fine-grained service selection than we have
described. In practice, such services have proved to have little
utility except in largely static—that is, non-nomadic—
environments. The level of agreement on vocabulary, syntax and
semantics required between the developers of clients and the
developers of services is too onerous, especially as the set of
possible services (and thus the set of possible attribute values) is a
rapidly moving target. Moreover, detailed service specification
tends to defeat nomadic interoperation through lost opportunities:
if the user's wireless camera searches automatically for a
"printer", then it does not thereby search for the new type of

Figure 4. Screenshot of the back of a simulated bar-code-reading camera equipped with a miniature web browser.

 8

image upload service that someone will invent tomorrow, even
though in principle it could take advantage of it.

Sensing systems include specialized applications in which sensors
are configured to transmit their data to a specific custom service
or application. This is the approach used in surveillance systems
for example. Aiming for greater applicability in ubiquitous
computing environments, Dey et al [6] describe a "Context
Toolkit" for processing sensed data in the acquisition of
application context. Their toolkit has a specialized purpose but
uses HTTP to maximize interoperability.

Architecturally the critical preceding work for us is the
HTML/HTTP system underlying the Web and the peer-to-peer
data-transfer protocol called Jetsend that was supplied in a
number of HP products.

As the analysis in Fielding [8] argues, HTTP supports distributed
hypermedia through a design optimized for requests moving from
clients to servers and data returning in replies. HTML Forms
added the ability for clients to reply to services with data. With
HTML pages of links acting as directories and web crawler/search
engines providing service discovery, the Web system for
spontaneous interactions was created.

Jetsend [25] allowed data to be transferred between digital
"appliances", that is peer devices with wireless connectivity and
consumer electronics interfaces. Implementations sold in HP
products used IrDA for the wireless transport. The Jetsend
datatype system resembled MIME types in having sets of
functionally similar types like "image/*" containing only a few
widely used types like "image/jpeg" or "image/tiff". The Jetsend
content-negotiation focused on data transfer like we do with our
Produce header. However, Jetsend was a push-based protocol

with the content negotiation driven by the client and no markup
language or hypertext was involved.

In previous work [19], we investigated HTTP-based protocols for
"content exchange", whereby the nomadic user can push content
to services in the pervasive infrastructure from their portable
device. In that work, the nomadic user selects a service such as a
printer, which supplies its interface as an HTML form; the user
fills out the form and sends the form and the content that they
wish to upload from their sensor as multipart MIME encoded data
over HTTP. This type of spontaneous interaction with
dynamically discovered services enables the nomadic user to
interact with services without the need to reconfigure their device
when they enter new environments. But there is no support for
client- (sensor-) specific service selection; and as we observed
above, HTML forms do not have sufficient structure to meet the
requirements of multimedia data upload.

The SpeakEasy project [7] has goals similar to ours for
spontaneous interoperation between devices. However, rather than
being web-based, SpeakEasy uses mobile code to implement user
interfaces and transport-protocol endpoints, which are migrated
between the service and the client. Users do not have to
reconfigure their devices in order to take advantage of a
dynamically discovered service; however, they do have concerns
about the security and resource challenges that mobile code raises,
which have yet to be overcome, especially for portable devices.
Applets have been relatively unsuccessful on the desktop web,
while HTTP continues to serve us well.

6. DISCUSSION
Up to this point we have the tools to explore the potential for
direct interaction between mobile sensors and spontaneously
encountered services based on web technologies. Our first

HTTP
Engine

Forms
Engine

Form Filler Sensor Reader
& Manager

HTML
Browser

network display

sensors

Media
types

Media

data

Poll for
data

HTMLXML

XML HTML

XForms
HTML

Converter

Figure 5. Client-side transforming XForms proxy. The Form Engine acts as an event dispatcher to coordinate the other
components. Requests from the HTML browser are sent to the HTTP engine. If HTML comes back it is sent to the browser; if

XML comes back it is sent to the Converter. If the Converter finds XForms, the media types requested are sent to the Form
Filler to (possibly) activate sensors. HTML comes back from the Converter and is sent to the browser for user interactions.

 9

experiments indicate that the approach has promise as well as a
number of open issues and directions that would have to be
pursued to make reach our goal.

On the client side we have already found three areas that require
deeper examination:

1. how to allow media types to be extensible and yet
sufficiently standard,

2. how client software can map media types to sensors in
ways that users find effective, and

3. how client software can allow review before submission
when users want it but be also easy to use when they do
not.

The first issue is systemic and in part lies outside of any one
designer's ability to affect. The web-based approach already
allows extensibility by not mandating any particular media types
beyond some lower bound like text/xhtml; it already points
to a set of standards through the MIME registration. Missing in
the XForms model now however is a means for identifying when
input that can be in character text (object identifiers, GPS
coordinates, orientations, temperature, and so forth) should be
held in self-describing XML or in MIME-like prescribed
standards.

The other two issues concern client designers. For mobile sensor-
based web clients these designers are more likely to be digital
device engineers than software engineers with a background in
web-browser design. We hope our work will simulate more
studies to guide these designers in future.

On the service side, we can take the Produce header idea in
two directions. First we intend to provide a formal proposal for
the Produce header syntax to appropriate standards bodies.
Then we can develop a module for web servers like Apache that
makes Produce header analysis easily accessible to developers.
Finally we can embed the Produce header module in a meta-
service that acts as a directory for form-based services. This meta-
service could have front-end content-adapters for the variety of
sensor-based appliances and back-end adapters for the variety of
other services that list services, such as UDDI.

Systemically we have the interesting possibility of lifting forms to
be "first-class" objects sent between clients and between services.
The current asymmetric form model with forms arriving at clients
and data returning means that the service that supplied the form is
the only one that can interpret the reply. Indeed it may be quite
difficult for even an expert in the service to debug form fill-in
failures. If forms were themselves submitted to services, with the
blanks filled it, then they would be self-describing. This is exactly
the model adopted in most paper-based form systems whenever
the technology allows.

Every client-server system has issues of privacy and security.
Since our proposal extends XForms and parallels the Accept
header, these issues will be easily analyzed by analogy to existing
practice.

Finally, we have implemented client and service components that
enable experimentation with the form paradigm, as our proof-of-
concept application for image-upload shows. In other directions
we can explore services for building web-site content [14] like on-
line merchandising. With just web/id and image upload we can
implement a service for "physical registration" as described in [3],
which builds a list of physically-based services in an environment,

like printing, projecting, displaying, and communicating through
operations with handheld sensor clients. Our implementation,
which runs on the desktop and uses simulations of mobile devices,
also enables investigation of the other use-models we described in
our introduction: desktop vs. mobile, application-data vs. sensed
data, and autonomous vs. human-supervised form fill-in. Many of
the necessary mechanisms exist; now it is a question of pursuing
the open issues we have identified.

7. References
[1] Apache HTTP Server Version 1.3 "Module

mod_negotiation",
http://httpd.apache.org/docs/mod/mod_negotiation.h
tml.

[2] Barton, J. "Markup Support for Sensor Data Upload
in Forms",
http://www.hpl.hp.com/personal/John_Barton/XFO
RMs/ExtendingInputElement.htm, 2001.

[3] Barton, J., Kindberg, T., and Sadalgi, S. "Physical
Registration: Configuring Electronic Directories
using Handheld Devices", IEEE Wireless
Communications, Vol. 9, No. 1, Feb. 2002 and HP
Labs Technical Report HPL-2001-119.

[4] Barton, J. and Vijayaraghavan, V.," UBIWISE, A
Ubiquitous Wireless Infrastructure Simulation
Environment". HP Labs Technical Report HPL-
2002-302, and
http://www.hpl.hp.com/personal/John_Barton/ur/ubi
wise/.

[5] Biron, P. and Malhotra, A, Eds., "XML Schema Part
2: Datatypes", http://www.w3.org/TR/xmlschema-
2/.

[6] Dey, A., Salber, D., and Abowd, G. "A Conceptual
Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications ".
Human-Computer Interaction (HCI) Journal,
Volume 16 (2-4), 2001, pp. 97-166.

[7] Edwards, K., Newman, M., Sedivy, J., Smith,T.,
Izad, S. "Recombinant Computing and the
Speakeasy Approach". In proceedings MobiCom
'02, ACM, Sept. 2002, pp. 279-286.

[8] Fielding, R. "Architectural Styles and the Design of
Network-based Software Architectures", PhD
Thesis, Univ. Calif. Irvine, 2000,
http://www.ics.uci.edu/~fielding/pubs/dissertation/to
p.htm.

[9] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and Berners-Lee, T.,
"Hypertext Transfer Protocol — HTTP 1.1". RFC
2616, June 1999.

[10] Freed, N. and Borenstein, N., "Multipurpose Internet
Mail Extensions (MIME) Part Two: Media Types",
Request for Comments: 2046, November 1996.

 10

[11] Guttman, E., Perkins, C., Veizades, J. , and Day, M.,
"Service Location Protocol, Version 2", Internet
RFC: 2608. 1999.

[12] Han, R., Perret, V. and Naghshineh, M.,
"WebSplitter: A Unified {XML} Framework for
Multi-device Collaborative Web Browsing", in
Computer Supported Cooperative Work, p21-230,
2000.

[13] HP Cambridge Research Lab's "Project Mercury"
http://crl.research.compaq.com/projects/mercury/,
and MIT's Project Oxygen "Handy 21 Project"
http://oxygen.lcs.mit.edu/H21.html.

[14] Huang, A., Ling, B.C., Barton, J., and Fox, A.,
"Running the Web Backwards: Appliance Data
Services", Proceedings of the 9th International
World Wide Web Conference, May 2000, pp. 619-
631 and HP Labs Technical Report HPL-2000-23.

[15] International Wireless, http://www.mitigo.com/ (as
of Feb. 2003).

[16] Jini http://www.jini.org/.
[17] Johanson, B., Ponnekanti, S., Sengupta, C., Fox, A.,

"Multibrowsing: Moving Web Content Across
Multiple Displays", Proceedings of Ubicomp 2001,
September 30-October 2, 2001 and
http://graphics.stanford.edu/papers/mb_ubicomp01/
mb_cam2.pdf

[18] Kindberg, T., "Implementing Physical Hyperlinks
Using Ubiquitous Identifier Resolution", Proceeding
of 11th International World Wide Web Conference,
July 2002.

[19] Kindberg, T. and Barton, J., "A Web-Based
Nomadic Computing System", Computer Networks,
Elsevier, vol 35, no. 4, March 2001, and HP Labs

Technical Report HPL-2000-110.
[20] Kindberg, T., Barton, J., Morgan, J., Becker, G.,

Bedner, I., Caswell, D., Debaty, P., Gopal, G., Frid,
M., Krishnan, V., Morris, H., Pering, C., Schettino,
J., Serra, B., and Spasojevic, M., "People, Places,
Things: Web Presence for the Real World", MONET
Vol. 7, No. 5 (October 2002) and HPL-2000-16.

[21] Pradhan, S., Brignone, C., Cui,J-H., McReynolds,
A., and Smith, M., "Websign: Hyperlinks from a
Physical Location to the Web" , IEEE Computer
special issue on location-based computing, August,
2001 and HP Labs Technical Report HPL-2001-140.

[22] Smith, M., and Maguire Jr., G.,
"SmartBadge/BadgePad version 4", HP Labs and
Royal Institute of Technology (KTH),
http://www.it.kth.se/~maguire/badge4.html, date of
access 2002-11-15.

[23] UDDI Home page. http://www.uddi.org/.
[24] Universal Plug and Play http://www.upnp.org/.
[25] Williams, P. "JetSend: An Appliance

Communication Protocol". In proceedings IEEE
International Workshop on Networked Appliances,
IEEE IWNA '98, IEEE Press, Kyoto, Japan,
November 1998.

[26] XForms homepage
http://www.w3.org/MarkUp/Forms/.

