

On-Demand BlueTooth: Experience integrating
BlueTooth in Connection Diversity

Jean Tourrilhes
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2003-51
March 17th , 2003*

E-mail: jt@hpl.hp.com

wireless,
BlueTooth,
TCP/IP,
BNEP,
inquiry

This paper describes our experiences implementing the Connection
Diversity framework over the BlueTooth wireless link layer. The
goal of this work is to enable TCP / IP applications to transparently
use BlueTooth. First, we describe how Connection Diversity
interfaces to the link layer and its requirements. We explain in
detail various aspects of the implementation, including the
management of connections, discovery, Co-Link and name
resolution. This implementation allowed us to test various usages
models, and we report their performance characteristics. We then
suggest a few improvements to the BlueTooth implementation to
improve the suitability of BlueTooth for peer to peer applications.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2003

ble

er
ce,
r

n’t
ture

).

rk

e
e
ss
es,

er
ff
d,
r
on

te
ce
le

f
em.

ces
se
ry
nd

s,
he
1 Introduction
Connection Diversity is a framework enabling the use of

Internet applications for peer to peer interactions over any
local wireless technology (e.g. : IrDA, 802.11, BlueTooth...).

The BlueTooth wireless technology started as a humble
cable replacement [1], but has quickly evolved into the Swiss
Army Knife of wireless technologies, allowing all kinds of
appliances to be wirelessly connected. BlueTooth is quite
different from technologies already supported by Connection
Diversity, so integrating BlueTooth helps validating the
original design of the Connection Diversity framework.

BlueTooth wasn’t primarily designed as peer to peer, but
as master-slave [2]. The experience gained from this
integration shows various ways BlueTooth can be used for
peer to peer applications and illustrates how some design
features of the BlueTooth protocol impact user experience.

2 Connection Diversity
This section describes the main features of the Connection

Diversity framework and its Link Adaptation Layers.

2.1 Motivation, assumptions and usage model
Connection Diversity explores how mobile devices can

interact using the wide variety of wireless technologies
existing today, with a special emphasis on peer-to-peer and
ease of use. One goal is to bring the ease of use of wireless
technology to the same level as removable storage [10].

A principal underlying assumption of Connection
Diversity is wireless diversity : the availability of multiple
wireless technologies with different characteristics in each
information device. All applications are TCP/IP based to

achieve link layer independence, and we want to ena
existing popular network applications unmodified.

Connection Diversity offers a simple usage model for pe
to peer applications, where a user, through his mobile devi
interacts locally with other physically nearby users o
appliances in the environment (peer to peer). We do
consider other usage models such as access to infrastruc
(wireless Internet) and PAN (master device to peripherals

2.2 On-demand TCP, P-Handoff and Co-Link
The work presented in this paper extends previous wo

done with On-demand TCP, P-Handoff and Co-Link.

On-demand TCPenables peer to peer TCP/IP on a wid
variety of wireless links [10]. TCP/IP connections ar
automatically established and configured over the wirele
link when applications need them, between two peer devic
without the need for infrastructure, and then closed down.

P-Handoffenables transparent migration of peer to pe
TCP connections between wireless links [11]. P-Hando
doesn’t require any infrastructure and is fine graine
allowing flexible use of available links. A Policy Manage
tries to optimally use those links for each connection based
range, speed and cost.

Co-Link enables the use of any wireless link to activa
and configure another wireless link [12]. This allows a devi
to use the most power efficient links for discovery and enab
higher performance links only on-demand.

2.3 Generic architecture
The Connection Diversity framework is composed o

various components inserted in a standard operating syst
It currently fully supports IrDA, BlueTooth and 802.11.

The Connection Manager (fig. 2.3) is the central
controller, a daemon managing the various wireless interfa
of the system and mapping application connections to tho
[13]. The Connection Manager monitors both peer discove
and outgoing connection requests to implement On-Dema
TCP and P-Handoff (section 2.2).

2.4 Link Adaptation Layer requirements
Different wireless technologies present different API

different operating characteristics and topologies [11]. T

On-Demand BlueTooth :
Experience integrating BlueTooth in Connection Diversity

Jean Tourrilhes
jt@hpl.hp.com

Hewlett Packard Laboratories
1501 Page Mill Road, Palo Alto, CA 94304, USA.

This paper describes our experiences implementing the Connection Diversity framework over the
BlueTooth wireless link layer. The goal of this work is to enable TCP/IP applications to transparently
use BlueTooth. First, we describe how Connection Diversity interfaces to the link layer and its
requirements. We explain in detail various aspects of the implementation, including the management of
connections, discovery, Co-Link and name resolution. This implementation allowed us to test various
usages models, and we report their performance characteristics. We then suggest a few improvements to
the BlueTooth implementation to improve the suitability of BlueTooth for peer to peer applications.

fig. 2.3 :
Discovery

adapt.
IP adapt.

Link layer

query

Application Application

TCP/IP

Routing

IP adapt.

Link layer

config
events

traffic

query

Policy
Manager

Connection
Manager

DNS

Ad-hoc
resolver

Connection
Diversity

Co-Link
server
1

es
ss

r

r

e
e

n

d
e
s

nt.

k
s
to

d

d.

er
A
ts

of
e
et

e
y

nd
;

core and methods of Connection Diversity are generic but
require aLink Adaptation Layer(LAL) for each wireless
technology we want to manage [10]. We enumerate those
requirements here.

2.4.1 Discovery Management
The Connection Manager depends on the knowledge of

which peers can be reached via each link layer, so it can
decide what potential connections can be routed on each link
layer.

The LAL needs to providepeer discovery. Wireless
Discovery is not trivial [12], most link layers offer built-in
facilities for discovery, and we want to reuse those for
efficiency [10]. The LAL needs to know within a reasonable
time when a new peer is discovered. It also managespeer
expiry: it must keep track of discovered peers and remove
them from the discovery log when they are no longer
reachable (again, within reasonable time).

2.4.2 Peer IP Identity
Most often, the link layer discovery only reveals the link

layer identity of peers discovered (MAC address). However,
both the Connection Manager and the Ad-Hoc resolver need
theIP identityof those peers, consisting of a Globally Unique
IP address and a DNS name [10]. Therefore the LAL needs to
convert peer link identities to peer IP identities.

2.4.3 IP adaptation
Applications are TCP/IP based, so the LAL needs to

transport IP traffic over the link layer. This requires the proper
encapsulation of IP packets in link layer packets, and the
proper setup of IP configuration and routes.

2.4.4 Connection Management
Many link layers are connection oriented and don’t offer

automatic connection management, leaving it up to the user to
connect devices together. The Connection Diversity
framework automates this connection management [10].

To enable TCP/IP traffic, the LAL needs to be able to
create link connectionsto the desired peers, and toclose
those, based on its routing decisions. It also needs to detect
and closeidle link connections.

Most wireless links are unreliable, so the LAL must
monitor those connections for link failures. It needs to know
when the link detects likely failure conditions (blockedlink),
and also when the link layerdestroysthe link connection
because of this failure condition. We usually prefer to have
those two events separate [11], because it’s more efficient to
monitor the likely failure condition while the link is still
connected (even with error) and because disconnecting and
reconnecting the link layer incur a large overhead.

2.4.5 Ad-Hoc Name Resolver
The name resolver allows to translate both the DNS nam

and link local names of peers into their Global IP addre
[10], without using a global infrastructure. Aresolver module
is needed for each link layer, with correspondinglink local
names.

2.4.6 Co-Link support
Co-Link uses HTTP requests and is mostly link laye

independent [12]. Co-Link needs to query and represent alink
layer configuration, and must be able to activate the link laye
and apply efficiently such configuration.

3 The BlueTooth Adaptation Layer
To better understand the integration of BlueTooth into th

Connection Diversity framework, we did a complet
implementation of its Link Adaptation Layer. We also
implemented additional features in the BlueTooth Adaptatio
Layer to enable additional usage models (section 5).

3.1 The BlueTooth link layer
BlueTooth is a wireless communication standard initiate

in 1997 by Ericsson and Intel [1] and now managed by th
BlueTooth SIG (Special Interest Group) [2]. BlueTooth wa
influenced by the IrDA [5] and USB [6], and offers the
functionality of a wireless USB and serial cable replaceme

Like IrDA, and as opposed to 802.11, the BlueTooth lin
layer is connection oriented, so two BlueTooth device
explicitly need to connect to each other before being able
exchange any data [2].

3.2 Discovery Management
BlueTooth offers a link layer discovery process calle

Inquiry. The Inquiry procedure returns the list ofBdAddr
(BlueTooth MAC addresses) of devices that can be reache

Most devices periodically check if they need to answ
Inquiries (Inquiry Scan mode - every 1.28s for 11ms).
device performs an Inquiry by repetitively sending reques
and collecting answers from its neighbours (fig. 3.2).

The default Inquiry duration is 12s. Due to the design
Inquiry Scan mode (delayed answer [2]), the minimum tim
to get any answer from Inquiry is 4s, and the probability to g
an answer from a peer within 4s is often below 50%.

We have implemented adiscovery managerthat can use
Inquiry to build a discovery log (fig. 3.5). It performs a
periodic Inquiry for 4s every 60s (table 1). This aims to
tradeoff the latency of discovery, the length of time th
interface is unusable (while doing Inquiry) and the Inquir
overhead (both in throughput loss and power -section 6.1).

Once a peer is discovered, we need to keep track of it a
manage its expiry. This is done through the periodic Inquiry

Inquiry
Scan fig. 3.2 : Discovery and Identity Query

Inquiry

Inquiry
Scan

Page SDP

Page
Scan Passive

discovery
Inquiry
Scan

Page

Page
Scan

SDP

Passive
discovery

Peer 2

Peer 3

Peer 1
2

tor

ge
to

d
3

ve

ng
s
DP
ion

e
ed
r

of

he
ic

ost
n,

k
s it.

PI,
er
ces
for
2],

e
P

o
P
n
ted
if a peer is not discovered for 10 successive Inquiries, it is
expired and removed from the discovery log (table 1).

Inquiry in the discovery manager can be turned off, and
can also be triggered on-demand by the name resolver. The
additional “auto” mode allows tracking of discovered peers :
Inquiry is off by default and enabled only when there is a valid
peer in the discovery log.

The discovery manager can also performpassive
discovery, i.e., to discover peers without doing any Inquiry.
Peers performing Inquiry don’t reveal anything about their
identity. However, whenever a peer connects to us, we can be
notified of it and get its BdAddr. The discovery manager
monitors this event and adds the BdAddr of every incoming
connection in the discovery log (if it doesn’t already exist).

The discovery manager also monitors Inquiries triggered
by other applications on the device and collects their results.

3.3 Peer IP Identity
Inquiry and passive discovery only return theBdAddrof

peers and theirclass of devicebit-field, and do not contain any
other data that could be used to identify the peer. Therefore,
the discovery manager needs to query individually each
BdAddr found for its peer IP identity (section 2.4.2).

This is done usingSDP (Service Discovery Protocol).
SDP associates metadata to each BlueTooth socket, enabling
discovery of their functionality and attributes [2]. The SDP
server on each device maintains a list of SDP service records,
and any peer can query those records with a simple protocol.

We simply added an additional SDP attribute to the SDP
record of the BNEP socket (section 3.4). This attribute
contains the IP identity of the device (section 2.4.2).

Each time the discovery manager finds a new BdAddr, it
creates a BlueTooth connection to this peer and fetches the
SDP attribute containing the IP identity (fig. 3.2).

The BlueTooth connection is based on aPaging
handshake, and requires the BdAddr of the peer. After Paging
completes, the higher level of BlueTooth stack can connect
(SDP in our case). The time to perform the SDP request itself
is usually small with respect to Page time (table 2).

Paging is similar to Inquiry and synchronises the two
BlueTooth devices on the same Frequency Hopping pattern
[2]. The target device periodically checks if it needs to answer

Pages (Page Scan mode - for 11ms every 1.28s). The initia
sends Page requests until it gets an answer or timeout.

To minimise connection latency, we reduced the Pa
timeout from 5s to 4s and the Page Scan period from 1.28s
0.6s (table 1). The peer itself may be doing an Inquiry an
unable to answer us, so we will retry the SDP query up to
times (once after each successful Inquiry or passi
discovery) before marking the discovery log entry invalid.

Performing a SDP query on each peer is time consumi
(fig. 3.2), therefore to improve scalability the peer identity i
cached in the discovery log. Since not all peers answer S
requests, especially those that don’t support Connect
Diversity, we pre-filter peers based on theirclass of device.

3.4 IP adaptation
We decided to use a simple subset ofPAN to do IP

adaptation. PAN (Personal Area Network) [3] is one of th
standardised networking profiles of BlueTooth, design
specifically for creating ad-hoc networks of devices o
connecting to dedicated access points.

The subset of PAN we use isBNEP(BlueTooth Network
Encapsulation Protocol), which is a direct encapsulation
Ethernet frames over a BlueTooth L2CAP socket (fig. 3.5).

The IP address configured at each end of the link is t
node Global IP address [10], so there is no need for dynam
IP configuration. The BlueTooth Manager also sets up a h
IP route and a ARP proxy entry for each BNEP connectio
so that packets are properly routed.

3.5 Connection Management
When the Connection Manager requests a lin

connection, the BlueTooth manager creates and configure
It first connects to the peer using Paging (section 3.3), then
creates a BNEP connection using the standard BNEP A
finally configuring IP and the route. The BlueTooth Manag
maps the peer connections to the various BlueTooth interfa
available and attempts to find the best BlueTooth interface
each one. It enforces the 7 slaves and 1 master limitation [
and has basic master/slave switch support [2].

There is no facility in BlueTooth to detect idle links, so w
use Netfilter and optional KeepAlive packets to monitor I
traffic. Netfilter [9] is the standard packet monitoring facility
of the Linux kernel and allows the BlueTooth Manager t
count incoming and outgoing packets on the BNE
connection. After 10s without seeing any activity betwee
two peers, the BlueTooth Manager closes the associa
connection and puts the peer back in demand mode (table 1).

Table 1: BlueTooth parameter settings

Parameter standard new value

Periodic Inquiry period - ~60 s

Periodic Inquiry duration - 3.84 s

Discovery log expiry - 10 min

On-demand Inquiry duration 12.8 s 6.4 s

SDP retries - 3

Page timeout 5.12 s 4 s

Page Scan period 1.28 s 0.64 s

Link Supervision Timeout 20 s 5 s

QoS latency variation limit - 250 ms

Connection idle timeout - 10 s

ApplicationApplication

Paging

BNEP SDP

BlueTooth stack (L2CAP, HCI)

MAC connections

Connection Mgr.

Discovery Mgr.

fig. 3.5

BlueTooth Mgr.

BlueTooth

Inquiry

BT resolver
TCP/IP stack

IP routing

Ethernet

Adaptation
Layer
3

].
R
e

P

ed
nel
in
oth

r
ls.
s of
s.

r
k.

on
e
e
y

to
s.
hat
es

se
is

y

iry,
of

s
ur
del

n
or
me

)

To detect loss of connectivity, we use the underlying
BlueTooth facility : theLink Supervision Timeoutdictates the
time a BlueTooth link remains alive without an answer from
the peer [2]. We set it to 5s (the smallest value larger than an
Inquiry, to avoid false positives). When the Link Supervision
Timeout expires, the BNEP channel is automatically
destroyed, the Connection Manager gets notified of it and
usually triggers P-Handoff [11].

We attempted to implement the blocked link event
(section 2.4.4). The BlueTooth manager sets a latency
variation limit of 250 ms in the link layer for each connection.
Unfortunately, BlueTooth hardware currently available
doesn’t generate any QoS events, so we could not test this
feature and determine its proper setting (section 6.4).

3.6 Ad-Hoc Name Resolver
The BlueTooth name resolver module interfaces to both

the Connection Manager and the discovery manager (fig. 3.5).

If periodic Inquiry is active, the Connection Manager
already knows about all BlueTooth peers, and the name
resolver only needs to query the Connection Manager cache.

If periodic Inquiry is not active, the cache is empty. In the
case of DNS names, the name resolver will return “not found”
to avoid impacting the performance of regular DNS queries.
The resolver still tries to resolve BlueTooth link local names,
because those can be resolved only on the BlueTooth link.

The first form of link local name is composed with the
name of the peer and the.bt suffix, such asname.bt. After the
cache lookup, the resolver can trigger an complete Inquiry
(via the discovery manager - including associated SDP
requests) and wait for the result.

The second form of link local name is composed with the
BdAddr of the peer and the.bdaddrsuffix. After the cache
lookup, the resolver can trigger a SDP request on this BdAddr
(via the discovery manager).

Unlike the IrDA resolver [10], the BlueTooth resolver
doesn’t yet support service attributes in link local names. We
have found that some current BlueTooth implementations
don’t set properly theclass of device bit-field [2].

3.7 Co-Link support
The Co-Link configuration [12] data for BlueTooth only

contains the BdAddr (BlueTooth MAC address) of the peer.
We can not add BlueTooth clock offset, because it is relative
to the adapter local clock. The XML fragment looks like :

<BT BdAddr="BD:AD:D8:01:23:45"/>

When Co-Link activation of BlueTooth is requested, the
BlueTooth manager switches on the best BlueTooth interface,
extracts the BdAddr from the XML, and passes it to the
discovery manager. The discovery manager then directly
issues an SDP request on this BdAddr to verify its
reachability and get its IP identity. Once the identity is known,
the Connection Manager can reroute traffic to this peer.

4 Implementation details
Connection Diversity has been implemented on Linux [7

The hardware used is 3Com USB BlueTooth dongles (CS
chipset, BlueTooth 1.1 compliant, 100m range). Th
BlueTooth Linux stack is BlueZ 2.3 [8], with its standard SD
and BNEP support.

Both the discovery and identity process are implement
in a standalone daemon. The IP adaptation is the BNEP ker
module of BlueZ. The BlueTooth manager is implemented
a module of the Connection Manager daemon. The BlueTo
resolver is a NSS library [10].

5 Usage models and findings
The current implementation of Connection Diversity ove

BlueTooth is quite flexible and enables various usage mode
However, each usage model exposes some usability issue
BlueTooth that would apply to other peer to peer application

5.1 Transparent usage model
Connection Diversity aims for full transparency : the use

and the application should not be aware of the BlueTooth lin
In this usage model, we want to support any IP applicati
over BlueTooth without explicit setup. This is also the usag
model most compatible with P-Handoff : the IP traffic may b
transparently migrated on and off the BlueTooth link at an
time based on the policy and link layer events.

The way to achieve this is to set the discovery module
do periodic Inquiry and collect identity of reachable peer
When the Connection Manager detects an application t
wants to communicate this peer, it automatically establish
the relevant BlueTooth connection (section 3.5).

In this model, name resolution is instantaneous, becau
all peer identities are cached. The establishment of the link
fairly fast (seetable 2), because the MAC address is alread
known (so this time is mostly equal to the Paging time).

The main issue is that each peer has to do periodic Inqu
which is slow (minutes) and results in a significant number
connection failures (section 6.1).

5.2 On-demand usage model
The typical usage model for most BlueTooth application

is to have discovery and connection explicitly triggered. O
current implementation allows to reproduce this usage mo
with TCP/IP applications unmodified.

To enable this, the user must specify in the applicatio
only BlueTooth link local names (and not IP addresses
DNS names). Those names force on-demand na
resolution, therefore we don’t need to run periodic Inquiry.

Table 2: Connection Diversity typical times

Action Typical time

Page (no failure) 150 ms - 700 ms

SDP request (excluding Page) < 40 ms

BNEP + IP setup (excluding Page) ~ 70 ms

TCP connection, transparent mode 250 ms - 850 ms

TCP connection, on-demand mode ~ 8.5 s (1 peer

TCP connection, Co-Link on IrDA ~ 2s
4

he
at
o
th

tly
e

age
do

e

n
ew
it

es
).

o

th
at is
’t

g,
. In
his
put
to

t is
ly
o

es

e
ly
.

e
ait
g
en

of

on
on’t
The link local name specified is resolved by the BlueTooth
ad-hoc resolver. As periodic Inquiry is disabled, it triggers a
full Inquiry and waits until the discovery module has queried
all the discovered peers via SDP. The name resolution process
takes a minimum of 7s (seetable 1) and increases with the
number of discovered peers (and this time also depends on the
success or failures of the SDP queries).

The BlueTooth destination must also learn the identity of
the initiator of the connection, to set up IP properly. When the
initiator does its SDP query on the destination, the destination
uses the passive discovery mechanism (section 3.2) to query
back the IP identity of the initiator.

When the name resolution is done, the application starts
sending data to the destination. The demand mechanism of
the Connection Manager triggers the establishment of the
BNEP connection, similar to the previous usage model.

The main advantage of this usage model is that there is no
periodic Inquiry, so power consumption is lower and
connection setup is more reliable. Unfortunately the whole
setup is so slow that it is noticeable to most users (table 2). In
addition the restriction to only use local link names prevent
compatibility with the P-Handoff protocol.

5.3 Co-Link usage model
One of the main issues with BlueTooth is the need to

perform Inquiry (section 6.1). By using Co-Link, we can use
a link offering a better discovery process to enable BlueTooth
and bypass Inquiry entirely.

The two alternatives that we currently support are IrDA
and 802.11. Using 802.11 is problematic because it needs to
be preconfigured (ESSID and mode setting). On the other
hand, IrDA is a good discovery link [12].

IrDA discovery is relatively low power, efficient and fast.
The default setup on IrDA is to have periodic discovery every
3s [10]. The full connection setup (including TCP/IP) over
IrDA is less than 1s [11].

The usage model is transparent, identical to our initial
usage model (section 5.1) with the restriction that the IrDA
ports must be aligned. The application can use an IP address,
DNS name, link local name or wildcard such asany.irda.

After the initial setup over IrDA, the application can start
to communicate. In parallel, Co-Link does the HTTP query,
enables the BlueTooth port, and does a SDP query to the peer.
After those steps are completed, the connection may be
migrated to BlueTooth using P-Handoff.

This is a typical run using a SIR link (115 kb/s) :

time event => action
23:19:33.678 packet on demand channel => connect on IrDA
23:19:34.375 connected on IrDA => forward packets on IrDA
23:19:34.378 packets forwarded => Start Co-Link query
23:19:34.521 Co-Link reply => connect on BlueTooth
23:19:35.287 connected on BlueTooth, P-Handoff done

Another scenario is to use BlueTooth to activate and
configure a 802.11 link, in this case the usage model is similar
to the two previous ones, and with similar restrictions.

6 BlueTooth issues and improvements
This experiment has uncovered some issues with t

current BlueTooth implementation and specification th
would likely apply to other peer to peer applications. We als
present a few simple techniques that would make BlueToo
more friendly for such peer to peer applications.

The BlueTooth specification was designed to be mos
master-slave [2], and by using it in peer to peer mode, w
seems to be pushing some of its limits. The peer to peer us
model increases concurrency, two nodes are more likely to
incompatible activities at the same time.

6.1 Issues with Inquiry
The single most problematic aspect of BlueTooth is th

slow, exclusive and expensive Inquiry procedure.

While performing an Inquiry the BlueTooth interface of a
node can’t be used for anything else for its whole duratio
(such as servicing existing connections or accepting n
incoming connections). If a peer tries to connect to
(Paging), it will fail. If two nodes perform Inquiry at the same
time, they won’t discover each other. We see those failur
fairly often in the discovery process (periodic Inquiry + SDP

When using periodic Inquiry, it usually takes minutes t
discover new peers and expire them (section 3.2). The Inquiry
consumes significantly more power than other BlueToo
modes. Another issue is that, once connected, the node th
the slave usually loses its ability to perform Inquiry, so can
keep track of its reachable peers until it disconnects.

The cause of this is both the nature of Frequency Hoppin
which requires peer synchronisation, and design choices
BlueTooth, the node can synchronise to a peer only when t
peer goes in Inquiry Scan mode, and to preserve through
this happen infrequently. The node doing Inquiry also has
transmit in every possible transmission slot [2].

Beyond our current setting of periodic Inquiry (table 1),
there is not much that can be done to fix Inquiry, because i
a core feature of the BlueTooth specification. The on
workaround we can currently think of is to use Co-Link t
bypass entirely the Inquiry process (section 5.3).

6.2 Issues with Paging
If a node tries to connect (Paging) to a node that do

Inquiry, it will fail (section 6.1). Similarly, if two nodes Page
each other at the same time, they both will fail. Therefore, w
had to make the Co-Link process over BlueTooth explicit
asymmetric : only the initiator attempts to do a SDP query

We also had stability problems with the hardwar
(lockups). When doing passive discovery, we have to w
until the incoming connection is accepted before performin
Paging. With Co-Link, we also needed a 20ms delay betwe
the activation of the BlueTooth interface and Paging.

6.3 Power saving modes
Many proposals in the PAN working groups make use

BlueTooth power saving modes (Park mode) to improve
scalability or enable scatternets.

The Connection Manager only establishes link connecti
as needed and close them down when unused, so we d
5

his
le.

o
les
iry
ues

is

n
ge
of
ive

of
er
ing

s
.

.

.

r

s.
need scatternet and are already saving power. One scenario is
to use Park mode to improve the discovery process, by
keeping track of discovered peers : the node would
automatically connect to all discovered peers, put them in
Park mode, and periodically poll them.

Using park mode forces the use of a networking model
and introduces a significant complexity : we would have to
manage a mesh of peer-to-peer connections. Between each
pair of nodes, one must be master and the other slave. Some
nodes may be parked by multiple masters, and some nodes
might be both master and slave (with respect to different
peers). The master also will need to periodically unpark each
slave to verify if it is still reachable.

The performance of Park mode is not much better than our
current solution (using Paging). To wake up a peer, the device
has to wait for the park beacon [2], and this is roughly in the
same order of time as the Page Scan period.

Finally, park mode does not allow us to eliminate the need
for periodic Inquiry. Only Inquiry allows to discovernew
nodes coming into range. As we still need periodic Inquiry to
happen, the advantage of using Park mode is marginal, and we
believe that the complexity and management overhead of
such setup is not justified for our usage model (section 2.1).

6.4 QoS implementation (Link monitoring)
The Connection Manager needs an event to detect quickly

potential link failures prior to the actual closure of the link
connection (blocked link -section 2.4.4).

The Link Supervision Timeout mechanism closes the link,
so can’t be used. BlueTooth offers some RSSI and link quality
measurements [2], but those are tricky to translate into link
failure (need to define threshold and window, if receive traffic
stops measurements are not updated) and must be polled
(increasing I/O overhead and time granularity).

The only natural way to implement such an event in
BlueTooth would be through the QoS mechanism : setting a
latency variation constraint in the link layer, forcing an event
for transmitted packets delayed by more than this constraint.
Delays in transmission are mostly due to retransmissions (and
therefore excessive range or interference). Unfortunately,
current implementations don’t support QoS yet.

6.5 Paging probes (Expiry)
The Connection Manager needs a way to keep track of

peers it has discovered, and to expire them (section 2.4.1).

Currently, this is implemented via the periodic Inquiry.
We don’t want to use any of the Power Saving mode due to
the complexity and lack of benefits (section 6.3).

Another solution is to usePaging probes[14]. Every
BlueTooth node has a known Paging Scan behavior (typically
a 11ms window every 1.28s). Once the initial discovery of a
peer is done, the node could remember its peer’s Paging Scan
parameters. Then, it only needs to send a Page at the time it
knows the peer is doing Page Scan to verify that the peer is
still reachable (and timeout or disconnect immediately).

If the number of peers is relatively limited, this technique
would be much more efficient than periodic Inquiry or Park

mode. Unfortunately, due to the timing accuracy needed, t
can only be implemented in the BlueTooth hardware modu

7 Conclusion
The Connection Diversity framework is flexible enough t

accommodate the BlueTooth technology. Various modu
need to be added to the framework, to handle the Inqu
process, SDP queries and BNEP connections. The techniq
we implemented and our configuration of BlueTooth
mostly generic and should apply to other applications.

The current implementation of Connection Diversity ca
make full use of BlueTooth and offers several useful usa
models for peer to peer networking. Unfortunately, most
those models can’t workaround the slow and expens
Inquiry process needed to discover new peers.

Based on this experience, we make suggestions
improvements to the BlueTooth implementations to aid pe
to peer applications, such as adding QoS support, Pag
Probes and using Co-Link.

8 References

[1] Anders Edlund and al.MC-Link. Rev PA2, 15.10.97.

[2] Bluetooth SIG.Specification of the Bluetooth System.
v1.0b. http://www.bluetooth.org.

[3] Bluetooth SIG. Bluetooth Network Encapsulation
Protocol (BNEP) Specification. http://bluetooth.org.

[4] IEEE. IEEE 802.11 : Wireless LAN medium acces
control (MAC) and physical layer (PHY) specifications

[5] Patrick J. Megowan, David W. Suvak & Charles D
Knutson. IrDA Infrared Communications: An
Overview. http://www.irda.org.

[6] USB-IF. Universal Serial Bus specification v1.1.
http://www.usb.org.

[7] Linus Torvalds and others. linux-2.4.0.tar.bz2
http://www.kernel.org

[8] Maksim Krasnyanskiy and al.Linux BlueZ Howto.
http://bluez.sourceforge.net.

[9] Rusty Russell.Linux 2.4 Packet Filtering HOWTO.
http://netfilter.samba.org/unreliable-guides/

[10] Jean Tourrilhes, Luiz Magalhaes & Casey Carter.On-
Demand TCP : Transparent peer to peer TCP/IP ove
IrDA. Proc. of ICC 2002.

[11] Jean Tourrilhes & Casey Carter.P-Handoff : A
framework for fine grained ad-hoc vertical handoff.
Proc. of PIMRC 2002.

[12] Jean Tourrilhes & Venky Krishnan.Co-Link
configuration : Using wireless diversity for more than
just connectivity. Proc. of WCNC 2003.

[13] Casey Carter, Robin Kravets & Jean Tourrilhe
Contact Networking: A Localised Mobility System.
Proc. of MobiSys 2003.

[14] Jean Tourrilhes.BlueTooth roaming proposal. http://
www.hpl.hp.com/personal/Jean_Tourrilhes/Papers/
6

	1 Introduction
	2 Connection Diversity
	2.1 Motivation, assumptions and usage model
	2.2 On-demand TCP, P-Handoff and Co-Link
	2.3 Generic architecture
	2.4 Link Adaptation Layer requirements
	2.4.1 Discovery Management
	2.4.2 Peer IP Identity
	2.4.3 IP adaptation
	2.4.4 Connection Management
	2.4.5 Ad-Hoc Name Resolver
	2.4.6 Co-Link support

	3 The BlueTooth Adaptation Layer
	3.1 The BlueTooth link layer
	3.2 Discovery Management
	3.3 Peer IP Identity
	3.4 IP adaptation
	3.5 Connection Management
	3.6 Ad-Hoc Name Resolver
	3.7 Co-Link support

	4 Implementation details
	5 Usage models and findings
	5.1 Transparent usage model
	5.2 On-demand usage model
	5.3 Co-Link usage model

	6 BlueTooth issues and improvements
	6.1 Issues with Inquiry
	6.2 Issues with Paging
	6.3 Power saving modes
	6.4 QoS implementation (Link monitoring)
	6.5 Paging probes (Expiry)

	7 Conclusion
	8 References
	On-Demand BlueTooth�:
	Experience integrating BlueTooth in Connection Diversity

