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Abstract

With the falling price of memory, an increasing number of multimedia servers and proxies
are now equipped with a large memory space. Caching media objects in memory of a proxy
helps to reduce the network traÆc, the disk I/O bandwidth requirement, and the data deliv-
ery latency. The running bu�er approach and its alternatives are representative techniques to
caching streaming data in the memory. There are two limits in the existing techniques. First,
although multiple running bu�ers for the same media object co-exist in a given processing pe-
riod, data sharing among multiple bu�ers is not considered. Second, user access patterns are
not insightfully considered in the bu�er management. In this paper, we propose two techniques
based on shared running bu�ers (SRB) in the proxy to address these limits. Considering user
access patterns and characteristics of the requested media objects, our techniques adaptively al-
locate memory bu�ers to fully utilize the currently bu�ered data of streaming sessions, with the
aim to reduce both the server load and the network traÆc. Experimentally comparing with sev-
eral existing techniques, we show that the proposed techniques achieve signi�cant performance
improvement by e�ectively using the shared running bu�ers.
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1 Introduction

The building block of a content delivery network is a server-proxy-client system. In this system,
the server delivers the content to the client through a proxy. The proxy can choose to cache the
object so that subsequent requests to the same object can be served directly from the proxy without
contacting the server. Proxy caching strategies have therefore been the focus of many studies. Much
work has been done in caching static web content to reduce network load and end-to-end latency.
Typical examples of such work include CERN httpd [16], Harvest [4] and Squid [14].

The caching of streaming media content presents a di�erent set of challenges: (i) The size of a
streaming media object is usually orders of magnitudes larger than traditional web contents. For
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example, a two-hour long MPEG video requires about 1.4 GB of disk space, while traditional web
objects are of the magnitude of 10 KB; (ii) The demand of continuous and timely delivery of a
streaming media object is more rigorous than that of text-based Web pages. Therefore a lot of
resources have to be reserved for delivering the streaming media data to a client. In practice, even
a relatively small number of clients can overload a media server, creating bottlenecks by demanding
high disk bandwidth on the server and hight network bandwidth to the clients.

To address these challenges, researchers have proposed di�erent methods to cache streaming media
objects via partial caching, patching or proxy bu�ering. In the partial caching approach, either a
pre�x [18] or segments [20] of a media object instead of the whole object is/are cached. Therefore,
less storage space is required. For on-going streaming sessions, patching can be used so that later
sessions for the same object can be served simultaneously. For proxy bu�ering, either a �xed-size
running bu�er [3] or an interval [9] can be used to allocate bu�ers to bu�er a running window of an
on-going streaming session in the memory of the proxy. Among these techniques, partial caching
uses disk resource on the proxy; patching uses storage resource on the client side, and theoretically
no memory resource is required at the proxy; proxy bu�ering uses the memory resource on the
proxy. However, neither running bu�er nor interval caching uses the memory resource to the full
extent. More detailed analysis of these techniques can be found in Section 2.

In this paper, we �rst propose a new memory-based caching algorithm for streaming media objects
using Shared Running Bu�ers (SRB). In this algorithm, the memory space on the proxy is allocated
adaptively based on the user access pattern and the requested media objects themselves. Streaming
sessions are cached in running bu�ers. This algorithm dynamically caches media objects in the
memory while delivering the data to the client so that the bottleneck of the disk and/or network
I/O is relieved. More importantly, similar sessions can share di�erent runs of the on-going sessions.
This approach is especially useful when requests to streaming objects are highly temporal localized.
The SRB algorithm (i) adaptively allocates memory space according to the user access pattern;
(ii) enables maximal sharing of the cached data in memory; (iii) optimally reclaims memory space
when requests terminate; (iv) applies a near-optimal replacement policy in the real time.

Based on the SRB media caching algorithm, we further propose an eÆcient media delivering algo-
rithm: Patching SRB (PSRB), which further improves the performance of the media data delivery
without the necessity of caching.

Simulations are conducted based on synthetic workloads of web media objects with mixed lengths as
well as workloads with accesses to lengthy media objects in the VOD environment. In addition, we
use an access log of a media server in a real enterprise intranet to further conduct simulations. The
simulation results indicate that the performance of our algorithms is superior to previous solutions.

The rest of the paper is organized as follows. In Section 2, the related work is surveyed. Section 3
describes the optimal memory-based caching algorithms we propose. To test the performance of
the proposed algorithms, we use synthetic workloads as well as real workload from an enterprise
media server. Some statistical analysis of these workloads is provided in Section 4. Performance
evaluations are conducted in Section 5. We then make concluding remarks in Section 6.

2 Related Work

In this section, we survey previous work related to the caching of streaming media content. Three
types of methods are investigated. First, we brie
y discuss streaming media caching methods that
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use the storage resource on the proxy. These methods cache media objects for streaming sessions
that are not overlapped in time. The cached data persists in cache even after session termination.
Usually, a long-term storage resource such as disk storage is used. Second, we investigate caching
methods that use the storage resource on the client device. These methods share streaming sessions
that are overlapped in time. However, the proxy does not bu�er data for any session. Lastly, we
study caching methods that use the storage resource on the proxy to bu�er portions of media
objects for streaming sessions that are overlapped in time. Note that the bu�ered data persists
in cache only when the sessions are alive. Therefore, short-term storage resource such as RAM is
used.

2.1 Partial Caching

Storing the entire media object in the proxy may be ineÆcient if mostly small portions of very
large media objects are accessed. This is particularly true if the cached streaming media object
is not popular. The �rst intuition is to cache portions of the media object. These partial caching
systems always use the storage on the proxy. Some early work on the storage for media objects can
be found in [2, 19]. Two typical types of partial caching have been investigated.

Pre�x caching [18] stores only the �rst part (pre�x) of the popular media object. When a client
requests a media stream whose pre�x is cached, the proxy delivers the pre�x to the client while it
requests the remainder of the object from the origin server. By caching a (large enough) pre�x,
the start-up latency perceived by the client is reduced. The challenge lies in the determination of
the pre�x size. Items such as roundtrip delay, server-to-proxy latency, video speci�c parameters
(e.g., size, bit rate, etc.), and retransmission rate of lost packets can be considered in calculating
the appropriate pre�x length.

Alternatively, media objects can be cached in segments. This is particularly useful when clients
only view portions of the objects. The segments in which clients are not interested will not be
cached. Wu et al. [20] use segments with exponentially incremental size to model the fact that
clients usually start viewing a streaming media object from the beginning and are more and more
likely to terminate the session toward the end of the object. A combination of �xed length and
exponential length segment-based caching method is considered in the RCache and Silo project [5].
Lee et al. [15] uses a context-aware segmentation so that segments of user interest are cached.

2.2 Session Sharing

The delivery of a streaming media object takes time to complete. We call this delivery process a
streaming session. Sharing is possible among sessions that overlap. To this end, various kinds of
patching schemes are proposed for sharing along the time line. This type of work is typically seen
in research related to video on demand (VOD) systems.

Patching algorithms [13] use storage on the client device so that a client can listen to multiple
channels. Greedy patching always patches to the existing full streaming session while grace patching
restarts a new full streaming session at some appropriate point in time. Optimal patching [17]
further assumes suÆcient storage resource at the client side to receive as much data as possible
while listening to as many channels as possible. Figure 1 shows the basic ideas of the patching
techniques through examples.

In these �gures, media position indicates a time position at which o�set the media object is delivered
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Figure 1: Left to right, (a) Greedy Patching, (b) Grace Patching, (c) Optimal Patching.

to the client. For illustration purpose, we assume instantaneous delivering of media content at a
constant rate equal to the presentation rate of the media object. That is, if a request is served
immediately, the client receives n time units of data after n time units since the request is initiated.
The solid lines represent a streaming session between the server and the proxy. The goal of these
algorithms is to reduce the server-to-proxy traÆc.

A greedy patching example is shown in Figure 1(a). A full server-to-proxy session is established
at the �rst request arrival for a certain media object. All subsequent requests for the same media
object are served as patches to the this full session before it terminates, at which point another
full session is established for the next request arrival. It is obvious that the patching session can
be excessively long as shown in the last two requests in Figure 1(a). It is more eÆcient to start a
new session even before the previous full session terminates. The grace patching example shown in
Figure 1(b) indicates that upon the arrival of the �fth request, a new full server-to-proxy session is
started. Therefore, the patching session of the last request is signi�cantly shorter than in the greedy
patching example. The optimal point to start a new full session can be derived mathematically
given certain request arrival pattern [12].

The optimal patching scheme is introduced in [17]. The basic idea is that later sessions patch to
as many on-going sessions as possible. The on-going sessions can be a full session or a patching
session. Figure 1(c) shows an example scenario. The last request patches to the patching session
started for the second last request as well as the full session started for the �rst request. This
approach achieves the maximum server-to-proxy traÆc reduction. On the other hand, it requires
extra resource in client storage and proxy-to-client bandwidth as well as complex scheduling at the
proxy.

Note that no storage resource is required on the proxy for these session sharing algorithms. On
the other hand, since the clients have to listen to multiple channels and store content before its
presentation time, client side storage is necessary.

One special type of the session-sharing approaches is the batching approach [10, 11]. In this ap-
proach, requests are grouped and served simultaneously via multicast. Therefore, requests arriving
earlier have to wait. Hence, certain delay is introduced to the early arrived requests.
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2.3 Proxy Bu�ering

To further improve the caching performance for streaming media, memory resources on the proxy
are used. This is more and more practical given that the price for memory keeps falling. For
memory-based caching, running bu�er and interval caching methods have been studied.
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Figure 2: (a) Running Bu�er, (b) Interval Caching.

Dynamic caching [3] uses a �xed-size running bu�er to cache a running window of a streaming
session. It works as follows. When a request arrives, a bu�er of a predetermined length is allocated
to cache the media data the proxy fetches from the server, in the expectation that closely followed
requests will use the data in the memory instead of fetching from other sources (e.g., disk or origin
server or other cooperative caches). Figure 2(a) shows an example of running bu�er caching. A
�x-sized bu�er is allocated upon the arrival of request R1. The bu�er is �lled by the session started
by R1 and run to the end of stream (the paralleled vertical lines indicate the bu�er fullness and the
location of the bu�ered data relative to the beginning of the media object). Subsequent requests
R2, R3, R4 are served from the bu�er since they arrived within the time period covered by the
bu�er. Request R5 arrives beyond the range covered by the �rst bu�er, hence a second bu�er of
the same predetermined size is allocated. Subsequently, R6 is served from the second bu�er.

On a di�erent approach, interval caching [8, 9] further considers request arrival patterns so that
memory resource is more eÆciently used. Interval caching considers closely arrived requests for the
same media object as a pair and orders their arrival intervals globally. The subsequent allocation of
memory always favors smaller intervals. E�ectively, more requests are served given a �xed amount
of memory. Figure 2(b) shows an example of the interval caching method. Upon the arrival of
request R2, an interval is formed, and a bu�er of the size equivalent to the interval is allocated.
The bu�er is �lled by the session started by R1 from this point on. The session initiated by R2

only needs to receive the �rst part of data from the server (the solid line starting from R2). It can
receive the rest of data from the bu�er. The same applies when R3 and R4 arrive. The situation
changes until the arrival of R5. Since the interval between R4 and R5 is smaller than that between
R3 and R4, the bu�er initially allocated for the interval of R3 and R4 (not �lled up yet) is released,
and the space is re-allocated for the new interval of R4 and R5. Now the session for R4 has to run
to the end of the stream.

Note that these two approaches use the memory resource on the proxy so that the client is relieved
from the bu�er requirement as in the patching schemes discussed in the previous section. In
addition, one proxy-to-client channel suÆces for these bu�ering schemes.
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3 Shared Running Bu�er (SRB) Media Caching Algorithm

Bu�ering streaming content in memory has been shown to have great potential to alleviate con-
tention on the streaming server so that a larger number of sessions can be served. It has been shown
that two existing memory caching approaches: running bu�er caching [3] and interval caching [8, 9],
do not make e�ective use of the limited memory resource. Motivated by the limits of the current
memory bu�ering approaches, we design a Shared Running Bu�er (SRB) based caching algorithm
for streaming media to better utilize memory. In this section, with the introduction of several new
concepts, we �rst describe the basic SRB media caching algorithm in detail. Then, we present an
extension to the SRB: Patching SRB (PSRB).

3.1 Related De�nitions

The algorithm �rst considers bu�er allocation in a time span T starting from the �rst request. We
denote Rj

i as the j-th request to media object i, and T j
i as the arrival time of this request. Assume

that there are n request arrivals within the time span T and Rn
i is the last request arrived in T .

For the convenience of representation without losing precision, T 1
i is normalized to 0 and T j

i (where
1 < j � n) is a time relative to T 1

i . Based on the above, the following concepts are de�ned to
capture the characteristics of the user request pattern.

1. Interval Series: An interval is de�ned as the di�erence in time between two consecutive
request arrivals. We denote Iki as the k-th interval for object i. An Interval Series consists a
group of intervals. Within the time T , if n = 1, the interval I1i is de�ned as 1; otherwise, it
is de�ned as:

Iki =

8<
:

T k+1
i � T k

i ; if 1 < k < n

T � T n
i ; if k = n:

(1)

Since Ini represents the time interval between the last request arrival and the end of the
investigating time span, it is also called as the Waiting Time.

2. Average Request Arrival Interval (ARAI): The ARAI is de�ned as
Pn�1

k=1 I
k
i =(n � 1) when

n > 1. ARAI does not exist when n = 1 since it indicates only one request arrival within
time span T and thus we set it as 1.

For the bu�er management, three bu�er states and three timing concepts are de�ned respectively
as follows.

1. Construction State & Start-Time: When an initial bu�er is allocated upon the arrival of a
request, the bu�er is �lled while the request is being served, expecting that the data cached
in the bu�er could serve closely followed requests for the same object. The size of the bu�er
may be adjusted to cache less or more data before it is frozen. Before the bu�er size is frozen,
the bu�er is in the Construction State.

Thus, the Start-Time Sji of a bu�er Bj
i , the j-th bu�er allocated for object i, is de�ned as

the arrival time of the last request before the bu�er size is frozen. The requests arriving in a
bu�er's Construction State are called as the resident requests of this bu�er and the bu�er is
called as the resident bu�er of these requests.
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Note that if no bu�er exists for a requested object, a �rst bu�er with superscript j = 1 is
allocated. Subsequent bu�er allocations use monotonically increasing js even if the immediate
preceding bu�er has been released. Therefore, only after all bu�ers of the object run to the
end, is it possible to reset j and start from 1 again.

2. Running State & Running-Distance: After the bu�er freezes its size it serves as a running
window of a streaming session and moves along with the streaming session. Therefore, the
state of the bu�er is called the Running State.

The Running-Distance of a bu�er is de�ned as the distance in time between the start-time of
a running bu�er and the start-time of its preceding running bu�er. We use Dj

i to denote the

Running-Distance of Bj
i . Note that for the �rst bu�er allocated to an object i, D1

i is equal to
the length of object i: Li, assuming a complete viewing scenario. Since we are encouraging
sharing among bu�ers, clients served from Bj

i are also served from any preceding bu�ers that

are still in running state. This requires that the running-distance of Bj
i equals to the time

di�erence with the closest preceding bu�er in running state. Mathematically, we have:

Dj
i =

8<
:

Li; if j = 1

Sji � Smi ; if j > 1;
(2)

where m < j and Smi is the start time of the closest preceding bu�er in running state.

3. Idle State & End-Time: When the running window reaches the end of the streaming session,
the bu�er enters the Idle State, which is a transient state that allows the bu�er to be reclaimed.

The End-Time of a bu�er is de�ned as the time when a bu�er enters idle state and is ready
to be reclaimed. The End-Time of the bu�er Bj

i , denoted as Ej
i is de�ned as:

Ej
i =

8<
:

Sji + Li; if j = 1

min(Slatesti +Dj
i ; S

j
i + Li) if j > 1:

(3)

Slatesti denotes the start time of the latest running bu�er for object i. Here, Ej
i is dynamically

updated upon the forming of new running bu�ers. The detailed updating procedure of is
described in the following section.

3.2 Shared Running Bu�er (SRB) Algorithm

For an incoming request to the object i, the SRB algorithm works as follows: 1) If the latest
running bu�er of the object i is caching the pre�x of the object i, the request is served directly
from all the existing running bu�ers of the object. 2) Otherwise, (a) If there is enough memory,
a new running bu�er of a predetermined size T is allocated. The request is served from the new
running bu�er and all existing running bu�ers of the object i. (b) If there is not enough memory,
the SRB bu�er replacement algorithm (see Section 3.2.3) is invoked to either re-allocate an existing
running bu�er to the request or serve this request without caching. 3) Update the End-Times of
all existing bu�ers of the object i based on Eq. (3). During the process of the SRB algorithm, parts
of a running bu�er could be dynamically reclaimed as described in Section 3.2.2 due to the request
termination and the bu�er is dynamically managed based on the user access pattern through a
lifecycle of three states as described in Section 3.2.1.
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Figure 3: SRB Memory Allocation: the Initial Bu�er Freezes its Size (a) (b) (c)

3.2.1 SRB Bu�er Lifecycle Management

Initially, a running bu�er is allocated with a predetermined size of T . Starting from the Construc-
tion State, the bu�er then adjusts its size by going through a three-state lifecycle management
process as described in the following.

� Case 1: the bu�er is in the Construction State. The proxy makes a decision at the end of T
as follows.

{ If ARAI = 1, which indicates that there is only one request arrival so far, the initial
bu�er enters the Idle State (case 3) immediately. For this request, the proxy acts as a
bypass server, i.e., content is passed to the client without caching. This scheme gives
preference to more frequently requested objects in the memory allocation. Figure 3(a)
illustrates this situation. The shadow indicates the allocated initial bu�er, which is
reclaimed at T .

{ If In > ARAI (In is the waiting time), the initial bu�er is shrunk to the extent that the
most recent request can be served from the bu�er. Subsequently, the bu�er enters the
Running State (case 2). This running bu�er then serves as a shifting window and run
to the end. Figure 3(b) illustrates an example. Part of the initial bu�er is reclaimed at
the end of T . This scheme performs well for periodically arrived request groups.

{ If In � ARAI, the initial bu�er maintains the construction state and continues to grow
to the length of T 0, where T 0 = T � In + ARAI, expecting that a new request arrives
very soon. At T 0, the ARAI

0

and In0 are recalculated and the above procedure repeats.
Eventually, when the request to the object becomes less frequent, the bu�er will freeze
its size and enter the Running State (case 2). In the extreme case, the full length of
the media object is cached in the bu�er. In this case, the bu�er also freezes and enters
the running state (a static running). For most frequently accessed objects, this scheme
ensures that the requests to these objects are served from the proxy directly. Figure 3(c)
illustrates this situation. The initial bu�er has been extended beyond the size of T for
the �rst time.

The bu�er expansion is bounded by the available memory in the proxy. When the
available memory is exhausted, the bu�er freezes its size and enters the running state
regardless of future request arrivals.
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� Case 2: the bu�er is in the Running State. After a bu�er enters the running state, it starts
running away from the beginning of the media object and subsequent requests can not be
served completely from the running bu�er. In this case, a new bu�er of an initial size T is
allocated and goes through its own lifecycle starting from case 1. Subsequent requests are
served from the new bu�er as well as its preceding running bu�ers.

Figure 4 illustrates the maximal data sharing in the SRB algorithm. The requests Rk+1
i to

Rn
i are served simultaneously from B1

i and B2
i . Late requests are served from all existing

running bu�ers . Note that except for the �rst bu�er, the other bu�ers do not run
to the end of the object.
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Figure 4: Multiple Running Bu�ers

The Running-Distance and End-Time are determined based on Eq. (2) and Eq. (3) respec-
tively for any bu�er entering the Running State. In addition, the End-Times of its preceding
running bu�ers need to be modi�ed according to the arrival time of the latest request, as
shown in Eq. (3). Figure 5 shows an example scenario for the updating of End-Times. Note
that E2

i is updated when B3
i is started, at which time the running distance of B2

i is extended
(dashed line). When a bu�er runs to its End-Time, it enters the Idle State (case 3).

� Case 3: the bu�er is in the Idle State. When a bu�er enters the Idle State, it is ready for
reclamation.

In the above algorithm, the time span T (which is the initial bu�er size) is determined based on the
object length. Typically, a Scale factor (e.g., 1/2 to 1/32) of the origin length is used. To prevent a
extremely large or small bu�er size, the bu�er size is bounded by a upper bound High-Bound and
a lower bound Low-Bound. These bounds are dependent on the streaming rate to allow the initial
bu�er to cache a reasonable portion (e.g., 1 minute to 10 minutes) of media objects. The algorithm
requires the client be able to listen to multiple channels at the same time: once a request is posted,
it should be able to receive data from all the ongoing running bu�ers of that object simultaneously.
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Figure 5: Example on Updating of End-Time

3.2.2 SRB Dynamic Reclamation

Memory reclamation of a running bu�er is triggered by two di�erent types of session terminations:
complete session termination and premature session termination. In complete session termination,
a session terminates only when the delivery of the whole media object is completed. Assuming
that R1

i is the �rst request being served by a running bu�er, when R1
i reaches the end of the media

object, the resident bu�er of R1
i is reclaimed as follows.

� If the resident bu�er is the only bu�er running for the media object, the resident bu�er enters
the Idle State. In this state, the bu�er maintains its content until all the resident requests
reach the end of the session, at which time the bu�er is released.

� If the resident bu�er is not the only bu�er running, that is, there are succeeding running
bu�ers, the bu�er enters the Idle State and maintains its content until its End-Time. Note
that the End-Time may have be updated by succeeding running bu�ers.

Premature session termination is much more complicated. In this case, a request that arrives later
may terminate earlier. Consider a group of consecutive requests R1

i to Rn
i , the session for one of

the requests, say Rj
i , where 1 < j < n, terminates before everyone else. The situation is handled

as follows.

� If Rj
i is served from the middle of its resident bu�er, that is, there are preceding and succeeding

requests served from the same running bu�er, the resident bu�er maintain its current state
and Rj

i is deleted from all its associated running bu�ers. Figure 6(a) and (a') show the bu�er

situation before and after Rj
i is terminated, respectively.

� If Rj
i is served from the head of its resident bu�er as shown in Figure 6(b), the request is

deleted from all of its associated running bu�ers. The resident bu�er enters the Idle State for
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a time period of I. During this time period, the content within the bu�er is moved from Rj+1
i

to the head. At the end of the time period I, the bu�er space from the tail to the last served
request is released and the bu�er enters the Running State again as shown in Figure 6(b').

� If Rj
i is served at the tail of a running bu�er, two scenarios are further considered.

{ After deleting the Rj
i from the request list of its resident bu�er, if the request list is not

empty, then do nothing. Alternatively, the algorithm can choose to shrink the bu�er to
the extent that Rj�1

i is served from the bu�er assuming Rj�1
i is a resident request of the

same bu�er. In this case, the End-Time of the succeeding running bu�ers needs to be
adjusted.

{ If Rj
i is at the tail of the last running bu�er as shown in Figure 6(c), the bu�er is shrunk

to the extent that Rj�1
i is the last request served from the bu�er. Rj

i is deleted from
the request list. Subsequently, the bu�ers run as shown in Figure 6(c').
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Figure 6: SRB Memory Reclamation: Di�erent Situations of Session Termination

3.2.3 SRB Bu�er Replacement Policies

The replacement policy is important in the sense that the available memory is still scarce compared
to the size of video objects. So to eÆciently use the limited resources is critical to achieve the best
performance gain. In this section, we propose popularity-based replacement policies for the SRB
media caching algorithm. The basic idea is described as follows:
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� When a request arrives while there is no available memory, all the objects that have on-going
streams in memory are ordered according to their popularities calculated in a certain past
time period. If the object being demanded has a higher popularity than the least popular
object in memory, then the latest running bu�er of the least popular object is released, and
the space is re-allocated to the new request. Those requests without running bu�ers do not
bu�er their data at all. In this case, theoretically, they are assumed to have no memory
consumption.

Alternatively, the system can choose to start a memoryless session in which the proxy bypasses
the content to the client without caching. This is called a non-replacement policy. We have
evaluated the performances of both two polices by simulations in the later section. It is shown
that a straightforward non-replacement police may achieve similar performance given long enough
system running time.

3.3 Patching SRB (PSRB) Media Delivering Algorithm

Since the proxy has �nite amount of memory space, it is possible that the proxy serves as a bypass
server without caching concurrent sessions. The SRB algorithm prohibits the sharing of such
sessions, which may lead to excessive server access if there are intensive request arrivals to many
di�erent objects. To solve this problem, the SRB algorithm can be extended to a patching SRB
(PSRB) algorithm which enables the sharing of such bypass sessions. This is related to the session
sharing algorithms as discussed in Section 2.2. It is important to note that PSRB scheme makes
the memory-based SRB algorithm work with the memoryless patching algorithm.
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Figure 7: PSRB Caching Example

Figure 7 illustrates a PSRB scenario. The �rst running bu�er B1
i has been formed for requests R1

i

to R5
i . No bu�er is running for R6

i since it does not have a close neighboring request. However, a
patching session has been started to retrieve the absent pre�x in B1

i from the content server. At
this time, request R6

i is served from both the patching session and B1
i until the missing pre�x is

patched. Then, R6
i is served from B1

i only (the solid line for R6
i stops in the �gure).

When R7
i and R8

i arrive and form the second running bu�er B2
i , they are served from B1

i and B2
i
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as described in the SRB algorithm. In addition, they are also served from the patching session
initiated for R6

i . Note that the patching session for R6
i is transient, or we can think of it as a

running bu�er session with zero bu�er size. As evident from Figure 7, the �lling of B2
i does not

cause server traÆc between position a and b (no solid line between a and b) since B2
i is �lled from

the patching session for R6
i . Thus, sharing the patching session further reduces the the number of

server accesses for R7
i and R8

i . By using more client-side storage, PSRB tries to maximize the data
sharing among concurrent sessions in order to minimize the server-to-proxy traÆc.

4 Workload Analysis

To evaluate the performance of the proposed algorithms and to compare them with prior solutions,
we conduct simulations based on several workloads. Both synthetic workloads and a real workload
extracted from enterprise media server logs are used. We design three synthetic workloads. The �rst
simulates accesses to media objects in the Web environment in which the length of the video varies
from short ones to longer ones. The second simulates the video access in a video-on-demand (VOD)
environment in which only longer streams are served. Both workloads assume complete viewing
client sessions. We use WEB and VOD as the name of these workloads. These workloads assume
a Zipf-like distribution (pi = fi=

PN
i=1 fi; fi = 1=i�) for the popularity of the media objects. They

also assume request inter arrival to follow the Poisson distribution (p(x; �) = e�� � (�)x=(x!); x =
0; 1; 2:::).

In the case of video accessing in the Web environment, clients accesses to videos may be incomplete,
that is, a session may terminate before the whole media object is delivered. We simulate this
scenario by designing a partial viewing workload based on the WEB workload. In this workload,
called PARTIAL, 80% of the sessions terminate before 20% of the accessed objects is delivered.

For the real workload, we obtain logs from HP Corporate Media Solutions, covering the period from
April 1 through April 10, 2001. During these ten days, there were two servers running Windows
Media ServerTM , serving contents to clients around the world within HP intranet. The contents
include videos, with the coverage of keynote speeches at various corporate and industry events,
messages from the company's management, product announcements, training videos and product
development courses for employees, etc. This workload is called REAL. A detailed analysis of the
overall characteristics of the logs from the same servers covering di�erent time periods can be found
in [6].

4.1 Workload Characteristics

Table 1 lists some statistics of the four workloads. For the WEB workload, there is a total of 400
unique media objects, with a total size of 51 GB, stored on the server. The length of the media
objects ranges from 2 minutes to 2 hours. The request inter-arrival follows a Poisson distribution
with � = 4 seconds and � = 0:47 (according to[7]) of Zipf-like distribution for object popularities.
The media objects are coded and streamed at 256 Kbps. The total number of requests is 15188.
The simulation lasts 87114 seconds or roughly 24 hours. The Low-Bound and High-Bound for the
initial bu�er size are set as 2 MB and 16 MB respectively.

For the PARTIAL workload, 80% of the requests view only 20% of the requested streaming media
objects and then prematurely terminate. Both the partial-viewing requests and the partial-viewed
objects are randomly distributed. Other parameters of the synthesized trace are identical to those

13



Workload Number of Number of Total Object Poisson Zipf Simulation
name requests objects size (GB) length (min) � � duration (day)

WEB 15188 400 51 2�120 4 0.47 1
PARTIAL 15188 400 51 2�120 4 0.47 1
VOD 10731 100 149 60�120 60 0.73 7
REAL 9000 403 20 6�131 - - 10

Table 1: Workload Statistics

of WEB as shown in Table 1.

For the VOD workload, the number of unique objects stored on the server is 100, which accounts
to total size of 149 GB. The length of the objects ranges from 1 hour to 2 hours. The request inter-
arrival follows a Poisson distribution with � = 60 seconds. The Zipf-like distribution for object
popularity is set as � = 0:73 (according to [1]). The media objects are coded and streamed at 2
Mbps. The total number of requests is 10731. The simulation runs for 654539 seconds or roughly
a week. The Low-Bound and High-Bound for initial bu�er allocation are set as 16 MB and 128 MB
respectively.

For the REAL workload, there is a total of 403 objects with a total size of 20 GB. There are
9000 request arrivals in a time span of 916427 seconds or roughly 10 days. Figure 8(a) shows
the distribution of the absolute length of viewing time (in minutes). It shows that 83.08% of the
sessions last less than 10 minutes. Figure 8(b) shows the cumulative distribution of the percentage
of viewing time with respect to the full object length. It shows that 56.24% of the requests access
less than 10% of the media object. Only 9.74% of the requests access the full objects.
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Figure 8: Real workload (left to right), (a) Distribution of absolute viewing time (b) distribution of viewing
percentage.
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4.2 Potentially Cachable Content

To �nd out the amount of potentially cachable content, we evaluate the number of overlapped
sessions at each time instance during the simulation. Speci�cally, at one point in time, if a session
is streaming a media object similar to at least another session, it is called a shared session. Note that
shared sessions may be streaming di�erent portions of the media object. If a session is streaming
a media object that no other session is streaming, it is called a not-shared session. Figures 9 and
10 show the accumulated number of sessions in two categories during full or part of the simulations
for the four workloads.
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Figure 9: Potentially Cachable Content: WEB (left) and VOD (right) workloads
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Figure 10: Potentially Cachable Content: PARTIAL (left) and REAL (right) workloads

At the �rst sight of these �gures, it seems that the potential cachable contents of di�erent workloads
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in the decreasing order should be WEB, VOD, PARTIAL and REAL. But be aware that only WEB
and PARTIAL show their whole durations in the �gures, while VOD and REAL only show a part of
their full durations since their durations are too large to be shown on these �gures. Recall that the
duration of PARTIAL is 7 days, while the duration of REAL is 10 days. Combining these factors,
we expect that the WEB workload presents the greatest amount of potentially cachable contents,
followed by VOD, REAL and PARTIAL workloads in that order.

4.3 Shared Session

During the course of a streaming session of an object, when there are other requests accessing the
same object, this portion of the streaming session is shared. The actual caching bene�t depends
on the number of sharing requests. For example, the bene�t of caching an on-going sessions
simultaneously shared by two requests is di�erent from that by three requests. To further evaluate
the bene�t the proxy system can get by caching for shared sessions, we obtain the distribution of
the number of requests on the shared sessions. This statistics is collected as follows. At each time
instance (second), we recode the numbers of on-going sessions that are shared by di�erent numbers
of sharing requests. These numbers are accumulated in bins representing numbers of sharing
requests. At the end of the simulation, the number in each bin is divided by the total simulation
duration in second, thus obtaining a histogram of the averaged number of shared sessions at any
time instance. Figure 11(a) shows the distribution in full range on the number of sharing requests,
and (b) shows the range from 2 to 20 in more detail. For a given point (x; y) on the curves, y
indicates the average number of on-going sessions that are shared by x number of requests.
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Figure 11: Shared request histogram. (a) full, (b) part.

We �nd that the number of sharing sessions ranges predominately from 2 to 20. Since the sessions
in the VOD workload last the longest, it is expected that its average number of shared sessions is
the largest among the group of workloads. PARTIAL is the partial viewing case of WEB, thus the
number of shared sessions in PARTIAL should be less than that in WEB workload.
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5 Performance Evaluation

5.1 Evaluation Metrics

We have implemented an event-driven simulator to model a proxy's memory caching behaviors.
Since object hit ratio or hit ratio is not suitable for evaluating the caching performance of the
streaming media, we use server traÆc reduction rate (shown as "bandwidth reduction" in the
�gures) to evaluate the performance of the proposed caching algorithms. If the algorithms are
employed on a server, this parameter indicates the disk I/O traÆc reduction rate.

Using SRB or PSRB algorithms, a client needs to listen to multiple channels for maximal sharing
of cached data in the proxy's memory. We measure the traÆc between the proxy and the client
in terms of the average client channel requirement. This is an averaged number of channels the
clients are listening to during the sessions. Since the clients are listening to earlier on-going sessions,
storage is necessary at the client side to bu�er the data before its presentation. We use the average
client storage requirement in percentage of the full size of the media object to indicate the storage
requirement on the client side.

The e�ectiveness of the algorithms is studied by simulating di�erent scale factors for the allocation
of the initial bu�er size and varying memory cache capacities. The streaming rate is assumed to
be constant for simplicity. The simulations are conducted on HP workstation x4000, with 1 GHz
CPU and 1 GB memory.

For each simulation, we compare a set of seven algorithms in three groups. The �rst group contains
the bu�ering schemes which include dynamic bu�ering and interval caching. The second group
contains the patching algorithms, namely greedy patching, grace patching and optimal patching
algorithms. The third group contains the two shared running bu�er algorithms proposed in this
paper.

5.2 Performance on Synthetic Workloads

We consider complete viewing scenario for streaming media caching in both Web environments and
VOD environments. We also simulate the partial viewing scenario for web environment. There are
no partial viewing cases for media delivery in the VOD environment.

5.2.1 Complete Viewing Workload of Web Media Objects

First, we evaluate the caching performance with respect to initial bu�er size. With a �xed memory
capacity of 1GB, the initial bu�er size varies from 1 to 1/32 of the length of the media object. For
each scale factor, an initial bu�er of di�erent size is allocated if the media object length is di�erent.
The server traÆc reduction, the average client channel requirement and the average client storage
requirement are recorded in the simulation. The results are plotted in Figure 12.

Figure 12(a) shows the server traÆc reduction achieved by each algorithm. Note that PSRB
achieves the best reduction and SRB achieves the next best reduction except optimal patching. RB
caching achieves the least amount of reduction. As expected, the performance of the three patching
algorithms does not depend on the scale factor for allocating of the initial bu�er. Neither does that
of interval caching since it allocates bu�ers based on access intervals.
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Figure 12: WEB workload (left to right): (a) Server TraÆc Reduction, (b) Average Client Channel and (c)
Storage Requirement(%) with 1GB Proxy Memory

For the running bu�er schemes, we notice some variation in the performance with respect to the
scale factor. In general, the variations are limited. To a certain extent, the performance gain of the
bandwidth reduction is a trade-o� between the number of running bu�ers and the size of running
bu�ers. A larger bu�er indicates that more requests can be served from the it. However, a larger
bu�er indicates less memory space left for other requests. This in turn leads to more server accesses
since there is no available proxy memory. On the other hand, a smaller bu�er may serve a smaller
number of requests but it leaves more proxy memory space to allocate for other requests.

Figure 12 (b) and (c) show the average channel and storage requirement on the client. Note that
optimal patching achieves the better server traÆc reduction by paying the penalty of imposing the
biggest number of client channels required. Comparatively, PSRB and SRB requires 30�60% less
client channels while achieving similar or better server traÆc reduction.

PSRB allows session sharing even when memory space is not available. It is therefore expected that
PSRB achieves the maximal server traÆc reduction. In the mean time, it also requires the maximum
client side storage and client channels. On the other hand, SRB achieves 6 percentage point less
traÆc reduction than PSRB, but the requirement on client channel and storage is signi�cantly
lower.
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Figure 13: WEB workload (left to right): (a)Bandwidth Reduction, (b)Average Client Channel and
(c)Storage Requirement(%) with the scale of 1/4
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We now investigate the performance of di�erent algorithms with respect to various memory ca-
pacities on the proxy. In this simulation, we use a �xed scale factor of 1/4 for the initial bu�er
size. Figure 13 (a) indicates 
at traÆc reduction rate for the three patching algorithms. This
is expected since no proxy memory resource is utilized in patching. On the other hand, all the
other algorithms investigated achieve higher traÆc reduction when memory capacity increases. It
is important to note that the proposed two SRB algorithms achieve better traÆc reduction than
the interval caching and running bu�er schemes.

In Figure 13(b), the client channel requirement decreases for the PSRB algorithm when the cache
capacity increases. This is again expected since more clients are severed from the proxy bu�ers
instead of proxy patching sessions. When the cache capacity reaches 4 GB, PSRB requires only
30% of the client channel needed for the optimal patching scheme. PSRB also requires less client
storage at this cache capacity as indicated in Figure 13(c). And yet, PSRB achieves more than
10 percentage points of traÆc reduction comparing to the optimal patching scheme. For the SRB
algorithm, it generally achieves the second best traÆc reduction with even less penalty on client
channel and storage requirements.

5.2.2 Complete Viewing Workloads of VOD Objects

To further evaluate the performance of the proposed algorithm in a video delivery environment
with relatively longer streaming sessions, we use the VOD workload for the simulation. Compared
with the result we obtained in the WEB workload simulation, the simulation on VOD workload
demonstrates similar trade-o�s with respect to varying scale factors. This is evident as shown in
Figure 14.
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Figure 14: VOD workload (left to right): (a) Bandwidth Reduction, (b) Average Client Channel and (c)
Storage Requirement(%) with 1GB Proxy Memory

With a �xed scale factor for the initial bu�er size, Figure 15 (a) illustrates similar performance gain
as achieved for the WEB workload. In addition, similar penalties are imposed on each algorithm
as is evident from Figure 15 (b) and (c).

Note that the performance gain for the VOD workload is larger than that of the WEB workload.
This is mainly due to the longer streaming session on average in the VOD workload. A longer
streaming session provides more opportunity for multiple clients to share the session.
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Figure 15: VOD workload (left to right): (a) Bandwidth Reduction, (b) Average Client Channel and (c)
Storage Requirement(%) with the Scale of 1/4

5.2.3 Partial Viewing of Web Workload

In streaming media delivery over the Web, it is possible that some clients terminate the session
after watching for a while from the beginning of the media object. It is important to evaluate
the performance of the proposed algorithm under this situation. Using the PARTIAL workload as
de�ned in Section 4, we perform the same simulations and evaluate the same set of parameters.
Figure 16(a) shows similar characteristics as that in Figure 12. PSRB and SRB still achieves better
traÆc reduction. The conclusion holds that PSRB uses 60% of the client channel to achieve 5
percentage point better traÆc reduction compared with the optimal patching.
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Figure 16: PARTIAL workload (left to right): (a) Bandwidth Reduction and (b) Average Client Channel
Requirement with 1GB Proxy Memory

In the event that a session terminates before it reaches the end of the requested media object, it is
possible that the client has already downloaded future part of the media stream which is no longer
needed. To characterize this wasted delivery from the proxy to the client, we record average client
waste. It is the percentage of wasted bytes versus the total prefetched data. Figure 17 shows the
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client waste statistic. Note that for PARTIAL and REAL workloads, since both contain premature
session terminations, the prefetched data which is not used in the presentation are not counted as
bytes hit in the calculation of the server traÆc reduction.
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Figure 17: PARTIAL workload (left to right): (a) Average Client Storage Requirement(%) and (b) Client
Waste(%) with 1GB Proxy Memory

As shown in Figure 17(b), PSRB and SRB have about 42% and 15% of prefetched data wasted
comparing with 0% for interval caching. Since the wasted bytes are not counted as hit, this leads
to the lowered traÆc reduction rate for PSRB and SRB comparing to that of interval cache. From
another perspective, interval caching does not promote sharing among bu�ers, hence the client
listens to one channel only and there is no bu�ering of future data. Thus, there is no waste in
proxy-to-client delivery in the event of premature session termination.

We now again start investigation of the caching performance with a �xed scale factor for the initial
bu�er size in Figure 18. Comparing with Figure 12(a), the distances between the traÆc reduction
curves between PSRB, SRB and interval caching become much smaller in general. This reinforces
the observation above that PSRB and SRB may lead to more wasted bytes in the partial viewing
cases. In addition, the grace patching achieving almost no traÆc reduction shows its incapability
in dealing with the partial viewing situation. The reason might be that the new session started
by the grace patching, which is supposed to be a complete session, often terminates when 20% of
the media object is delivered. Since the duration of the session is short, it is less likely that a new
request to the same media object is received.

In Figure 18(b), PSRB demonstrates monotonic decreasing of average client channel requirement
when memory capacity increases. This is due to the fact that there is a fewer number of zero-sized
running bu�ers with increasing proxy memory capacity. Similarly, as shown in Figure 19, the client
storage requirement and average client waste also decrease since a fewer number of patching is
required.
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Figure 18: PARTIAL workload (left to right): (a) Bandwidth Reduction and (b) Average Client Channel
Requirement with the Scale of 1/4
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Figure 19: PARTIAL workload (left to right): (a) Average Client Storage Requirement(%) and (b) Client
Waste(%) with the Scale of 1/4

5.3 Performance on REAL Workload

Based on a real video delivering workload captured from corporate intranet, the same simula-
tions are conducted to evaluate the caching performance. We start �rst by evaluating the caching
performance versus varying scale factor for the initial bu�er size.

Comparing Figure 20(a) with Figure 12(a), it is clear that the di�erence in the scale factor has a
much more signi�cant impact on the performance of the proposed SRB and PSRB algorithms for
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Figure 20: REAL workload (left to right): (a) Bandwidth Reduction and (b) Average Client Channel
Requirement with 1GB Proxy Memory
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Figure 21: REAL workload (left to right): (a) Average Client Storage Requirement(%) and (b) Client
Waste(%) with 1GB Proxy Memory

REAL. This could be due to the bursty nature of the accesses logged in the workload. To a certain
extent, this result indicates the e�ectiveness of the adaptive bu�er allocation scheme we proposed
in the algorithms.

Setting the initial bu�er size as 1/4 of the requested media objects, we again evaluate the caching
performance with increasing amount proxy memory available. Figure 22 and 23 show the server
traÆc reduction and the client side statistics. Compared with the simulation results obtained with
synthetic workloads, Figure 22(a) shows a 
at gain when memory capacity increases. It seems to
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indicate that memory capacity is less of a factor. Once again, the bursty nature of the request
arrival may play a role here. In addition, the volume of the burst may also be low which leads to
the fact that limited amount of memory space suÆces the sharing of sessions.
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Figure 22: REAL workload (left to right): (a) Bandwidth Reduction and (b) Average Client Channel
Requirement with the Scale of 1/4
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Figure 23: REAL workload (left to right): (a) Average Client Storage Requirement(%) and (b) Client
Waste(%) with the Scale of 1/4

The simulation results for the real workload provide the following understanding for the studying
of caching of streaming media. Contrary to the intuition that the caching of streaming

media requires large memory space, our study using the synthetic and real workloads

shows that the user-access pattern based bu�er allocation and sharing policy is critical

to achieve good caching performance with a limited memory resource. This is also the
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motivation of the proposed SRB and PSRB algorithms.

5.4 Further Analysis

5.4.1 Replacement Policies

The caching system faces two choices when the proxy memory is exhausted. First, the proxy
executes no caching until memory space becomes available again either due to session termination
or bu�er reclamation. Second, the proxy reclaims bu�ers that serve on-going sessions. The detail
description of the replacement can be found in Section 3.2.3 Here, we compare the performance of
this two approaches. Figure 24 shows for various workloads, the server traÆc reduction rate achieved
by the SRB algorithm using the no-replacement and two 
avors of replacement approaches.
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Figure 24: Di�erent Replacement Policies for SRB Caching Algorithm

Evident from Figure 24, the three approaches achieve similar caching performance. This indi-
cates that the proposed algorithm achieves similar caching performance without considering the
replacement. This is because the proposed algorithms themselves adaptively allocate the bu�er and
always favor the popular and frequently requested objects. In other words, the sessions that delivers
popular objects are more capable of obtaining and retaining the running bu�ers. In addition, as
shown in Table 1, the time interval covered by a running bu�er is often longer than the request
inter-arrival time. The temporal-popularity-based replacement policy achieves similar performance
as the global-popularity-based replacement policy since there is no variation in the popularity dis-
tribution when the synthetic workloads are created. In reality, if the popularity parameter varies
with time, there may be a di�erence in performance.

5.4.2 Client Channel Requirement

The performance analysis in the previous section indicates that SRB and PSRB algorithm achieve
superior server traÆc reduction by utilizing the memory resource on the proxy and suÆcient band-
width resource between the proxy and the clients. In most cases, the proxy streams data from
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multiple bu�ers to the client through multiple channels. To have a better understanding on the
client channel requirement, we collect additional statistics that illustrates the distribution of the
number of client channels required. Figure 25 and 26 show the CDF of the client channel require-
ment for simulations on four workloads. In these simulations, the proxy has 1GB memory capacity
and the scale factor for the initial bu�er size is �xed at 1/4.
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Figure 25: Client Channel Requirement CDF (left to right): (a) WEB and (b) VOD Workloads
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Figure 26: Client Channel Requirement CDF (left to right): (a) PARTIAL and (b) REAL Workloads

For simple running bu�er caching, only one channel is required for a client since there is no session
sharing. Greedy and grace patching algorithms need at most two client channels. For WEB and
VOD workloads, approximately 60% of greedy patching sessions and 40% of grace patching sessions
require only one client channel. Interval caching also requires at most two client channels with 78%
of the sessions requiring only one channel.
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Optimal patching needs the largest number of client channels. It is not surprising since requests
arrive later always try to patch to as many earlier on-going sessions as possible. Among the
simulation results of all four workloads, the number of client channel required could exceed nine
for the optimal patching scheme.

For the proposed SRB and PSRB algorithms, the number of the required client channel often falls in
between that of the optimal patching and the group of algorithms containing greedy, grace patching
and interval caching. Note further that for SRB algorithm, very few sessions require more than
three client channels with around 98% of session requires no more than two. The statistics shown
for in the REAL workload as in Figure 26(b) veri�es further that 94% of the PSRB sessions needs
no more than two client channels. On the other hand, more than 10% of the optimal patching
sessions needs three or more client channels. Referring back to Figure 22(a), it is clear that SRB
and PSRB algorithms achieve higher server traÆc reduction rate than the optimal caching but
pay less penalty in proxy-to-client channel requirement. This analysis enhances the advantages
of the proposed algorithms. In addition, these observations are useful when limited bandwidth
resource is available between the proxy and the client. In this case, the proxy system can choose to
execute a session sharing algorithm which achieves better caching performance without exceeding
the proxy-to-client link capacity.

6 Conclusion

In this paper, we propose two new algorithms for caching of streaming media objects. Shared
Running Bu�ers (SRB) caching algorithm is proposed to dynamically cache media objects in the
proxy memory during delivery. Patching SRB(PSRB) algorithm is proposed to further enhance
the memory utilization on the proxy. The adaptiveness of the two algorithms are analyzed and
exploited. Extensive simulations using both synthetic and real workloads are conducted. The
simulation results demonstrate the eÆciency achieved by the proposed algorithms. Both algorithms
require the client capable of listening to multiple channels at the same time. Compared with
previous solutions which also require multiple client channels, the proposed algorithms achieve
higher server traÆc reduction rate with less or similar load on the link between the proxy and the
client.

As observed from the simulation results based on the real workload, the proposed algorithms
perform better when the access arrivals are bursty. We plan to improve the adaptiveness of the
proposed algorithms taking into consideration of the bursty nature. Future work also includes the
the investigation on the performance of the algorithms when the client side storage is limited and
the streaming rate is not a constant.
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