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1 Introduction

In recent years, systems to index vast audio repositories have emerged (e.g. [18], [2], [16],
[5]). Typically, speech recognition is used to transcribe the audio and then standard textual in-
formation retrieval (IR) algorithms are applied. However, this approach cannot process queries
which are not in the recognizer’s vocabulary. This is a problem for example in broadcast news
as public figures with unseen names appear over time. A typical out of vocabulary (OOV) rate
for user queries could be over 10% [10], even when a large vocabulary recognizer is used.
Much effort has been devoted to the OOV problem. A popular solution is to transcribe the audio
using sub-word units such as phonemes or syllables. Word queries are then converted to the
sub-word units and searched for in the hypotheses. (e.g. [7], [6], [14], [20]). Additionally, to
compensate for recognition errors, phonetic confusion matrices and N-best lists may be used to
expand the query and document representations (e.g. [7], [11], [15]).
Although the use of sub-word units can improve retrieval, the improvement often comes at the
cost of many false alarms since syllables occur much more frequently than words. For example,
in [6], a false alarm rate of the order of 0.5 per hour of audio indexed is quoted for phoneme
queries of length 7-11. For an index of 1,000,000 hours, this would mean that a single query
might generate 500,000 or so false alarms.
A second disadvantage of phoneme-based systems is that each new query involves a search
through the multiple hypotheses. The search time increases linearly with the size of the repos-
itory. A word-based system however can use an index with a relatively constant access time
regardless of size. This search problem can be alleviated by building an index of sequences
phonemes or syllables (e.g. [20]).
Approaches which combine word and phoneme models have also been tried (e.g. [8], [12]).
Typically, linear combinations are considered. The theoretical properties of linearly combined
indexes are studied in [17]. Here it is noted that the usefulness of linear combination is limited
to certain situations. The main problem is that it is not known how to optimize the combination
parameters for all possible queries as this set is infinite.
Other researchers have tackled the OOV query problem using IR techniques such as query ex-
pansion and stemming [21]. Query expansion, which uses documents from a different source
to find words related to the query, is reliant on the quality of these additional documents. Stem-
ming’s ability to help retrieve OOV proper names is limited.
An approach related to query expansion is to change the recognizer vocabulary using documents
from a parallel corpus (e.g. [9]). This has two disadvantages. First, previously recognized
documents must be reprocessed if it is desired to find the OOV words in them. Second, it
may be difficult to obtain enough data to train good language models which include the new
words. The first problem may be less of an issue if words are hypothesized from an intermediate
representation (e.g. [19]).
In this paper, we examine several strategies to attack the OOV problem. Ideally we would like
to develop systems that have the low OOV rates of sub-word based systems while maintaining
the good scalability, speed of search and low false alarm rate of word-based indexing systems.
We first examine a novel indexing system based on particles. This is a syllable-like system with
particles consisting of automatically determined within-word sequences of phonemes. Our hope
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is that it can find OOV queries with less false alarms than a phoneme system since it indexes
frequently occurring syllables.
We then investigate a novel indexing scheme which can handle OOV words using a word index.
It expands query words into in-vocabulary phrases and searches for these phrases in the word
index. For example, taliban may be expanded to tell a band. The aim is to mimic mistakes the
speech recognizer makes when transcribing the audio. This technique has several advantages.
First, it can expand all types of OOV words and can be applied to any word index without
reprocessing the audio. Second, because we use a word index, the space and time requirements
are very reasonable. Third, we do not need to make decisions about which parallel document
collections to use which may bias our results.
Finally, we consider simple techniques for combining the various indexing systems.

2 Particle-based Indexing

Particles are defined as within-word sequences of characters obtained from orthographic or
phonetic transcriptions of words [19]. Particles are used as the recognition units in a speech
recognition system which permits word-vocabulary independent speech decoding, and thus can
be used to alleviate the OOV problem in spoken document retrieval applications.
Our particles are obtained from phonetic transcriptions and are learnt by decomposing words
into sub-sequences of phonemes so as to maximize the leaving-one-out likelihood of a particle
bigram language model. The resulting particle dictionary consists of phoneme sequences from
single phonemes to full words.

Table 1: Example of particle transcription
Particles
IH N W AA SH IH NG T AH N T AH D EY
AH K AH N G R EH SH AH N AH L
K AH M IH T IY IH Z B AH N S T AH D IY IH NG
B AE D AO R W ER S B IH HH EY V Y ER

Word transcription
IN WASHINGTON TODAY
A CONGRESSIONAL
COMMITTEE HAS BEEN STUDYING
BAD OR WORSE BEHAVIOR

This particle representation is quite flexible. If the dictionary of particles only contains single
phoneme particles then the particle recognizer behaves like a phonetic recognizer. If the par-
ticles are as long as words then it behaves like a word recognizer. In effect a particle based
recognition system behaves like a syllable based speech recognizer where the basic units are
automatically learned from textual data.
Once the dictionary of particles is defined it can be used to translate a word corpus to particles
(see 1). This new particle corpora can then be used to train acoustic and language models in the
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Figure 1: Query expansion algorithm

usual manner. To perform indexing, we recognize audio using these particle models and insert
the particle transcripts into the index. The particle representation for word queries is found either
by looking them up in the dictionary or by choosing the most likely particle decomposition of
the words’ pronunciation. The sequence of particles then form query terms that can be search
in the index.
Our analysis of the OOV shows that we can recover about 20% of the OOV words when re-
decoding the word sequences from the particle sequences transcribing the indexed documents
[19]. A particle based index, with a simple look-up of the query terms in a hash table will lead
to a similar accuracy improvement for the retrieval of documents containing OOV query terms,
as shown in 5.

3 Confusion-based Query Expansion

Our second novel approach to the OOV problem is to expand word queries into in-vocabulary
phrases according to intrinsic acoustic confusability and language model scores. We then use
these phrases to query a word index. Our query expansion algorithm is shown in Figure 1. The
steps are as follows.
First, given a query word or query phrase, we convert it into a sequence of phonemes. For each
query word, if we can find it in a dictionary, we use the most likely pronunciation. Otherwise,
we automatically generate its pronunciation using Pagel et al’s algorithm [13].
Given this pronunciation we now seek confusable in-vocabulary phrases generated using the
recognizer’s dictionary and language model. We achieve this by first using a modified version
of our existing Viterbi decoder to generate a lattice of word hypotheses for the query. We then
run an A* search to generate the N-best confusable phrases from this lattice.
Normally, the decoder scores acoustic features against all combinations of words in the dic-
tionary according to acoustic and language model scores. In our modified decoder, the input
‘feature’ for each query is its pronunciation and the ‘acoustic’ score between it and words in the
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dictionary is determined using a confusion matrix. We use a language model as usual and also
prune paths which have likelihood below a given threshold.
Our confusion matrix is obtained using the clean speech TIMIT corpora [1] and gives scores
for the confusions between phonemes as well as the likelihood of inserting and deleting each
phoneme. We experimented with confusion matrices obtained from more broadcast news-like
sources but found little impact on results.
Although our search of the space of confusable phrases is not exact due to pruning, it gives
believable results. We tuned the language model weights and pruning thresholds on a held
out set of queries. In practice, we obtained similar retrieval performance for a wide range
of parameters. Table 2 shows typical query expansions obtained using our algorithm. If we
implement our program as a server with the language models permanently loaded in memory,
the computational requirements to generate each set of phrases are very small.

Table 2: Typical confusable phrases generated by our algorithm
Query Expansions
blackfeet black feet, black feat, black wheat
looper luper, looped, loop are
yassar yasir, yasser, ya sir
aerosmith aerosmith, aero smith, arrow smith,

aero smyth, arrow smyth
afghanistan afghanistan, afghan stan, afghan austin,

afghan us tan, afghan bran
bilbao biller, bill bow, bill bough, bill bao, bil bow

We use the set of confusable phrases to query our index, searching for exact matches of each
phrase.

4 Experimental Setup

We examine the operation of our algorithms on a broadcast news audio database. The details
are given below.

4.1 Audio Database

We index a set of broadcast news audio for which we have transcriptions supplied by the LDC
[1]. The transcripts provide us with the ground truth and allow us to automatically estimate
precision, recall and false alarm rates. The audio is from broadcast sources and is sampled at
16kHz. For training acoustic models we use 65 transcribed hours of the HUB4 96 training set.
Our indexing experiments are performed on about 75 hours of audio composed of the HUB4 96
development and test data and the HUB4 97 training and test data.
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4.2 Document and Relevance Definitions

We index audio documents which are at least half an hour long. Our current user interface plays
10s audio clips in response to user queries. We therefore define a document as a 10s clip and
define it as relevant if the query word was spoken within it according to the transcripts.

4.3 Evaluation Metric

Our primary evaluation metric is 11-pt average precision. This is an estimate of the area under
a precision vs recall curve and is an overall measure of the quality of a retrieval system. The
greater this area, the better the system. An ideal system has average precision 1.0.
Because we are examining sub-word-based systems for which false alarms are a major prob-
lem, we also explicitly report the number of false alarms even though 11-pt average precision
implicitly includes this quantity. The number of false alarms for a given query is defined as the
number of incorrect hits divided by the total number of hits returned. We average our results
over all queries.
For completeness, we also show recall, top 5 precision, and top 10 precision. These measures
are also implicitly included in 11-pt average precision since it is an overall figure of merit. For
all metrics we average over all queries.

4.4 Query Selection

In [3] it is recommended that at least 25 and preferably 50 queries are used for an evaluation for
which average precision is the metric. We therefore use 50 queries. Our aims in query selection
are:

• to use unambiguous queries for which relevance can be determined automatically;

• to have a high proportion of OOV queries;

• to use ‘real-world’ queries;

• to have at least 10 hits for each query similar to what would appear on a Web page of hits.

For our database, comparison of the ground truth to the word recognition dictionary yields 23
suitable OOV queries (i.e. proper names with at least 10 hits). We choose the remaining 27
queries as the most frequent in-vocabulary queries to the SpeechBot1 public site which have at
least 10 hits and are proper names. The result is a query set with 47 single word queries and 3
two word queries.
The SpeechBot site has been in operation since December 1999 and is therefore a good source
of real-world queries. According to its user logs, almost 80% of user queries are two words or
less. Note that our query OOV rate of around 50% is much higher than the 13% rate observed
on the site[10].

1www.speechbot.com

5



4.5 Indexing Systems

We build three indexes: a word index, a particle index and a phoneme index. These are con-
structed as described below.
To construct the word index, we first transcribe the audio using our in-house large vocabulary
speech recognizer. This is a standard speech recognition system based on hidden Markov model
(HMM) technology. We model 6,000 tied states using Gaussian mixture models. We use a
standard trigram language model with a vocabulary of 64,000 words. The acoustic and language
models are trained on the 65 hour HUB4 96 training set (disjoint from the indexed audio). Some
additional text sources are also used to train the language models. The word error rate for the
indexed audio is 34%.
For the particle system, we transcribe the audio using our particle recognizer. This is trained
on the same audio and text corpora as the word recognizer. In our implementation we use a
dictionary of about 7,000 particles. We have found that this dictionary size with particles of
length from one to three phonemes yields optimal results.
Finally, our third system indexes phoneme sequences. We do not run a phoneme recognizer.
Instead, we use a dictionary to automatically convert the transcripts from the word recognizer
in our first system to phonemes. Small-scale tests indicated that this gives better results than
running a phoneme recognizer.
Having obtained three sets of time-marked transcriptions for the audio, we then build three
indexes. We use a modified version of the AltaVista indexing engine [4]. The original version
was designed to index text documents so for a given query it returned the list of documents. Our
version can return multiple hits per document so as to find each location of the query words in
long audio files. The indexer ranks documents using a standard tf.idf IR metric augmented by
information about the proximity of query terms.
In our experiments we examine five basic indexing systems plus combinations of these. The
first three systems are as described above: a word index with word queries, a particle index with
particle queries and a phoneme index with phoneme queries.
We additionally examine two techniques of acoustic query expansion. First we study our word
expansion technique in which a word index is queried with confusable phrases derived by our
algorithm as described in Section 3.
We also study querying the phoneme index with queries expanded into overlapping sequences
of phonemes, similar to [20]2. Here, word queries are converted to phonemes either by looking
up a dictionary or by using spelling to pronunciation rules [13]. Each query is further expanded
into sequences of 5 phonemes overlapped by 4 phonemes. For example, the sequence jh uw
p ah t er is expanded as jh uw p ah t and uw p ah t er. We then search for exact matches of
these sequences in the phoneme index. Since many expansions give hits in the same document,
these results are merged into one hit and the scores added. This system is meant to serve as an
example of a good existing approach to the query OOV problem so our choice of expansion and
overlap length is tuned to give the best results on our database.
For clarity, Table 3 enumerates the five basic indexing schemes studied. As described in the

2In addition to querying with phoneme sequences, Witbrock additionally indexed phoneme sequences but this
is an implementation detail.
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results, we also examine combinations of some of these schemes.

Table 3: Characteristics of the five basic indexing schemes studied.
Scheme Index Queries Example Query
Word Word Word “peekskill”
Particles Particles Particles “p iy ”, “k s ”, “k ih l ”
Phonemes Phonemes Phonemes “p iy k s k ih l ”
Confusions Word Confusable phrases “peeks kill”, “pig skill”, ...
Phonemes (5/4) Phonemes Phoneme sequences “p iy k s k”, “y k s k ih”, “k s k ih l”

5 Results

In this section, we describe the results of our experiments.

5.1 Particle Index

We first study the performance of the particle index and compare it to that of the word and
phonemes indexes. Figure 2 and the first three lines of Table 4 show the performance of the
word, particle and phoneme indexing systems averaged over all queries. We see that the word-
based system has the best performance overall. However, as Figures 3 and 4 and Tables 5 and
6 demonstrate, the performance of the particle and phoneme systems are better than the word
system for OOV queries and worse for in-vocabulary queries. The particle system performs
slightly better than the phoneme system on OOV queries.

Table 4: Results averaged over all queries for word, particle, phoneme and phoneme (5/4)
indexing systems.

System 11-pt Avg. Recall Top 5 Top 10 False
Precision Precision Precision Alarms

Word 0.35 0.39 0.50 0.48 0.08
Particles 0.33 0.39 0.51 0.47 0.21
Phonemes 0.32 0.42 0.48 0.44 0.27
Phonemes (5/4) 0.35 0.48 0.48 0.45 0.57

Although the particle index has better performance than a phoneme index for OOV words, a
more fair comparison is to the phoneme sequence query expansion scheme described in Section
4.5 which expands queries to syllable-like units. The preceding Tables and Figures also show
results for such a system. It is denoted ‘Phonemes (5/4)’ since we study expansions to sequences
of 5 phonemes overlapped by 4 phonemes. From these results we see that using sequences of
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Figure 2: Precision-Recall curves averaged over all queries for the word, particle, phoneme and
phoneme (5/4) indexing systems and the ideal system.
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Figure 3: Precision-Recall curves for the in-dictionary queries for the word, particle, phoneme
and phoneme (5/4) indexing systems.
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Figure 4: Precision-Recall curves for the OOV queries for the word, particle, phoneme and
phoneme (5/4) indexing systems.
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Table 5: Results averaged over all in-dictionary queries for the word, particle, phoneme and
phoneme (5/4) indexing systems.

System 11-pt Avg. Recall Top 5 Top 10 False
Precision Precision Precision Alarms

Word 0.66 0.73 0.92 0.89 0.14
Particles 0.55 0.65 0.82 0.79 0.24
Phonemes 0.56 0.71 0.84 0.77 0.29
Phonemes (5/4) 0.58 0.76 0.80 0.76 0.56

Table 6: Results averaged over all OOV queries for the word, particle, phoneme and phoneme
(5/4) indexing systems.

System 11-pt Avg. Recall Top 5 Top 10 False
Precision Precision Precision Alarms

Word 0.00 0.00 0.00 0.00 0.00
Particles 0.06 0.09 0.15 0.10 0.17
Phonemes 0.04 0.08 0.07 0.05 0.24
Phonemes (5/4) 0.08 0.14 0.10 0.09 0.58

phonemes can improve the average precision. The system is at least as good as using particles
for OOV words and equivalent to words overall.
However, although both the word index and phoneme sequence system have an average preci-
sion of 0.35, they operate at different recall and false alarm levels. From Table 4, we see that
using phoneme sequences rather than words improves the recall from 0.39 to 0.48. However,
this comes at a cost of increasing the number of false alarms from 0.08 to 0.57. In some ap-
plications this increase in false alarms could be crippling. In others it might be justified by the
increase in recall.
Similarly, for OOV words only, although the average precision for the phoneme (5/4) scheme
(0.08) is slightly better than that of the particle index (0.06), there is a recall-false alarm trade-
off. The phoneme (5/4) system has recall 0.14 with 58% false alarms whereas the particle
system has recall of only 0.09 but only 17% false alarms. For some applications, the particle
system may be more useful.

5.2 Confusion-based Query Expansion

We now examine our second approach to the OOV problem, namely expanding word queries
into in-vocabulary phrases and querying a word index as described in Section 3. Table 7 shows
the 11-pt average precision, recall and false alarms averaged over all queries for standard word
queries and queries expanded to various depths using our algorithm. We see that our query
expansion scheme results in improved performance for 10 confusions. For 100 confusions,
however, the performance is worse than simply using word queries due to excessive false alarms.

9



Table 7: Results averaged over all queries for word queries and confusion-based expanded
queries to the word index; All queries expanded.

Query Nr. 11-pt Recall Top 5 Top 10 False
Expansion Conf. Av.Prec. Precision Precision Alarms
None (words) - 0.35 0.39 0.50 0.48 0.08
Confusions 1 0.35 0.40 0.50 0.48 0.15

10 0.37 0.44 0.49 0.46 0.29
100 0.30 0.47 0.37 0.34 0.53

Examination of the results reveal that it is never helpful to use query expansion for in-vocabulary
words. We therefore consider only using query expansion for OOV words and a simple word
query otherwise. Table 8 shows results for such a scheme. Note that these results are averaged
over all queries but only OOV queries have been expanded. Here we see that our technique
provides a definite improvement. This is also evident in Figures 5 and 6 which show precision
vs recall curves for this scheme. Figures 5 shows the results for all queries while Figure 6 shows
results only for OOV queries.

Table 8: Results averaged over all queries for word queries and confusion-based expanded
queries to the word index; Only OOV queries expanded.

Query Nr. 11-pt Recall Top 5 Top 10 False
Expansion Conf. Av.Prec. Precision Precision Alarms
None (words) - 0.35 0.39 0.50 0.48 0.08
Confusions 1 0.37 0.42 0.52 0.49 0.15

10 0.38 0.43 0.55 0.51 0.26
100 0.37 0.46 0.52 0.49 0.41

5.3 Index Combination

In the previous section, we noted that the best performance was obtained by the use of a word in-
dex with word queries for in-vocabulary words, our confusable phrase query expansion scheme
otherwise. This can be thought of as a form of index combination in which query hits from dif-
ferent indexing schemes are selected depending on whether the query words are in-vocabulary
or not. We now compare this type of scheme to more standard linear index combination where
the scores of the hits from two indexing schemes are weighted and added together to give a new
set of hits.
Table 9 summarizes the results of combination experiments. The first line repeats the results
for the word index system with word queries. The second line shows results for the best linear
combination technique in which a word index is linearly combined with the phoneme (5/4)
system. These results are from an exhaustive search of the space of all possible combination
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Figure 5: Precision-Recall curves averaged over all queries for word queries and confusion-
based expanded queries to the word index; Only OOV queries expanded.
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Figure 6: Precision-Recall curves averaged over all OOV queries for word queries and
confusion-based expanded queries to the word index; Only OOV queries expanded.
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Table 9: Results averaged over all queries for the baseline word index system and various com-
binations of systems.

Combination Query 11-pt Avg. Recall Top 5 Top 10 False
Expansion Precision Precision Precision Alarms

None None 0.35 0.39 0.50 0.48 0.08
Linear Phonemes (5/4) 0.39 0.48 0.54 0.51 0.57
OOV-based Word confusions 0.38 0.43 0.55 0.51 0.26
OOV-based Phonemes (5/4) 0.39 0.46 0.56 0.53 0.34
OOV-based Phonemes (5/4) + 0.40 0.47 0.60 0.54 0.38

Word confusions

coefficients. This result is therefore an upper bound, obtainable only if the coefficients could be
optimized on a development query set. We see that a marked improvement over using solely the
word index or the phoneme (5/4) scheme (line 4 of Table 4) is possible using linear combination.
The next two lines of Table 9 show the results of combining a word index with the phoneme
(5/4) system or with our confusable word expansion scheme based on whether the word in
in-vocabulary or OOV. We denote this type of combination ‘OOV-based’. For in-vocabulary
words, we query the word index, otherwise we use phoneme or confusable word expansions.
We show results for the best word confusions scheme which was 10 confusions.
These results are similar to the best linear combination technique and have the added advantage
that they do not rely on the use of a development set and could therefore be recommended for all
query types. The phoneme (5/4) expansion scheme is slightly better than the confusable word
expansion scheme when only used on OOV words.
Finally, the last line of Table 9 shows the result of combining the word system and the two
query expansion schemes. For in-vocabulary words, we again query the word index. For OOV
words, we linearly combine the hits from the phoneme (5/4) and word confusion schemes.
Specifically, we add the scores for the documents returned by each scheme. The resulting
average precision of 0.40 is slightly better than either scheme, indicating the two approaches
are somewhat additive. It is also the best average precision obtained overall and a marked
improvement over the baseline of 0.35 obtained using simply a word index with word queries.
Figure 7 shows the precision-recall curves for the various combination schemes. Figure 8 shows
curves for OOV queries only.

5.4 Discussion

In the previous sections we have seen that our proposed approaches to the OOV problem while
certainly providing better results than simply using a word index, are at best comparable to the
phoneme sequence (phoneme (5/4)) scheme. We have also seen that the best result is obtained
by combining systems. This is key and can be partly explained as follows.
Close examination of the hits for queries expanded into confusable phrases using our technique
highlighted that a bad initial pronunciation could be fatal. For example, the OOV query lider-
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man appears in the speech recognition transcripts as liederman, that is l iy d er m ah n. However,
the automatically generated pronunciation for liderman is l ay d er m ah n, generating confus-
able queries leiberman, leiter mun and so on. If a full Viterbi search without pruning were
conducted or the initial pronunciation were better, liederman would more likely appear as one
of the proposed queries. This problem is particularly acute for foreign names and other unfa-
miliar words which are prone to have poor pronunciations unless accounted for when learning
spelling to pronunciation rules.
The phoneme (5/4) system, however, expands the pronunciation for an OOV word into over-
lapping sequences of phonemes as described in Section 4.5. We then search for exact matches
of these sequences in the phoneme index, summing the scores of hits which occur in the same
document. This means that the resulting score is a good reflection of how likely the phonemes
in the OOV query are to be found in the indexed documents. Even if only part of the pronun-
ciation is correct, there is a chance that some of the sequences will be found in the index. This
increased recall comes at the cost of more false positives however. By combining systems, we
combine some of the advantages of both schemes.

6 Conclusions and Future Work

We have presented several novel approaches to the OOV query problem for audio indexing:
indexing based on syllable-like units called particles and query expansion according to acoustic
confusability for a word index. We examined the performance of these schemes on 75 hours of
broadcast news, comparing their performance to a standard word-based index, a phoneme index
and a phoneme index queried with overlapping phoneme sequences. We also examined linear
and OOV-based combination of indexing schemes.
For our query set, which has an OOV rate of around 50%, we found that both the particle index
and our acoustic query expansion scheme were superior to both a word index and a phoneme
index, and had comparable performance to the overlapping sequences of phonemes system. The
particle system had worse performance than the acoustic query expansion scheme, but operated
at a lower false alarm rate which could be important for some applications.
When combining systems, we found that detecting the query word as OOV and using the pho-
netic, acoustic expansion or particle system for that query works as well as using an optimal lin-
ear weighting scheme. The best system overall was was a combination system which used word
queries for in-vocabulary words and a linear combination of the phoneme sequence scheme and
acoustic query expansion for OOV words. This scheme improved the average precision from
0.35 for a simple word index to 0.40.
Many directions are possible for future work. First, we have not deeply explored the use of
the particle system introduced in this paper. We regard our current study quite preliminary
and intend to investigate this approach more in the future. Second, our experiments have high-
lighted that the confusion expansion scheme would benefit from improved pronunciations of
OOV queries. We will also further investigate index combination, exploring more sophisticated
techniques based on data fusion and Bayesian mixing of classifiers.
Finally, our attempts to compensate for OOV words have thus far been based on acoustic infor-
mation. We feel that a more robust solution would additionally incorporate semantic information

14



about the query and intend to explore this direction in the future.
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A List of Queries

Table 10: Queries to the system

In dictionary Count Out of Dictionary Count
bill clinton 56 cunanan 70

al gore 31 mair 57
clinton 626 fayed 52

microsoft 40 dodi 37
israel 104 tamraz 26
egypt 15 peekskill 23

montreal 23 sankara 18
china 226 plavsic 18

nasdaq 53 reineck 13
paris 101 rutan 16

christmas 97 fenphen 16
jesus 11 lia 13

kennedy 48 mcaleese 14
france 62 bilbao 13

england 86 reesjones 13
germany 37 cortisol 10

switzerland 13 onondaga 10
india 39 hightech 12
nasa 73 zorich 12

australia 25 liderman 12
mexico 121 montserrat 11

cuba 141 boughton 10
florida 198 pazuto 10
canada 106

iran 66
texas 151

stock market 41
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