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Abstract

Multicast technology is highly efficient for the large scale
multimedia content service delivery. Its efficiency is maxi-
mized when all the service recipients have identical needs.
In reality however, the end users may have a heterogeneous
set of requirements for different service levels as well as
different service components, depending on their system
and network capabilities. We propose the notion of Ser-
vice Adaptive Multicast (SAM) that balances the tradeoffs
between providing individualized service to each client and
maintaining an efficient overlay multicast tree structure.
The novel aspects of our approach are (a) the ability to aug-
ment and transform existing paths into service paths with
the desired attributes; and (b) integration of two tree main-
tenance processes: a receiver-initiated just-in-time adapta-
tion of the multicast service tree driven by application/user
perceived QoS, and a demand-driven tree maintenance pro-
cess geared towards long-term tree quality. We demonstrate
the performance of our approach using simulations of large
client population.

1. Introduction

Widespread use of electronic multimedia content over
the Internet is rapidly increasing. Along with this trend, it is
also apparent that different end users require the content de-
livered to them in different forms, wrapped in different ser-
vices, depending on their personal preferences, end-system
capabilities and network connectivity [2]. For example, one
user requires an encrypted version of the content, while an-
other user wants the audio portion of the content in a dif-
ferent language, and a third user wants an encrypted and
transcoded-down version of a video to view on a mobile
handheld device. While these kinds of services are offered
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today by only a handful of service providers, we anticipate
that the number of service providers will grow exponen-
tially as more individuals and small businesses offer spe-
cialized services for sale using a peer-to-peer infrastructure.
For real-time multimedia services such as video streaming,
providing acceptable end-to-end quality of service (QoS) is
imperative. While it is possible to serve diverse and ge-
ographically separated users by creating a special service
for each user group, this approach is highly inefficient from
the standpoint of computing, storage, and networking re-
sources. Our goal is to serve diverse user groups with a
single efficient overlay service multicast that is capable of
providing individualized service to users with the necessary
QoS and maintaining high levels of efficient resource uti-
lization.

Scalable and efficient multicast technology is essential
to enable the above goal. Multicasting provides signifi-
cant bandwidth savings and is particularly crucial for the
dissemination of live as well as stored high fidelity mul-
timedia content because of the sheer size of the content,
the relatively long duration of the session, and the corre-
spondingly high bandwidth requirements. Due to the lack of
widespread deployment of network level IP multicast, over-
lay multicast protocols are being researched extensively.
However, even if IP multicast were available everywhere,
the above stated goals of service delivery could most likely
only be achieved using the overlay technology.

We propose an efficient application layer Service Adap-
tive Multicast (SAM) infrastructure for real-time multime-
dia applications. Our approach rests on providing a global
view of the system stored in a distributed hash table (DHT),
which is scalable, fault-tolerant, and administration-free.
The global view is generated from landmark clustering [21].
Combining the landmark information with a small number
of round-trip time (RTT) measurements to locate physically
close-by neighbors, our approach provides very fast, high
quality tree construction and adaptation. Starting from a
service definition, we build end-to-end service paths as de-
fined in [12, 32]. As required, new service paths are built



from existing “close-by” service paths, thereby creating an
efficient multicast service tree. Our goal is to create highly
scalable mechanisms that handle scenarios with very large
number of service providers as well as large numbers of ser-
vice consumers. There are several key differences between
our approach and that of prior work.

• Most existing overlay multicast schemes consider only
a single homogeneous service — typically only packet
delivery. We provide a new framework that considers
the more realistic scenarios where different users have
different service requirements when accessing the same
content.

• None of the existing schemes address the problem of ap-
plication quality disruption during the tree reconfigura-
tion. Our goal is to develop mechanisms that transpar-
ently reconfigure the overlay tree in very short timescales
such that the user’s perceptual service quality does not
suffer during the reconfiguration process. Our approach
utilizes the landmark information stored in DHT and con-
figures the tree quickly using concurrent network mea-
surements. The aim is to perform tree reconfigurations
under a second while producing a tree that is more effi-
cient than existing algorithms and reasonably close to the
optimal bandwidth efficiency.

• Unlike other schemes that advocate only periodic or
event triggered (e.g., RTT increase) tree reconfigurations,
our approach integrates two types of tree maintenance
processes: a just-in-time reconfigurations driven by ap-
plication/user perceived QoS, and a less frequent tree
maintenance driven by network state change observed
from a global information table atop a DHT. Unless the
end application perceives a performance degradation, or
a service path that can deliver the desired service has later
become available, there is no need to reconfigure the tree,
even when network metrics such as RTT has changed.

We focus on the construction and maintenance of ser-
vice multicast trees as application driven just-in-time tree
adaptation is introduced in [33]. To make the paper self-
contained, we describe the essential components of our pre-
vious work when necessary. The paper is organized as fol-
lows. We define service paths and service trees and then de-
scribe our tree construction and reconfiguration techniques
in Section 2. We next provide numerical results using sim-
ulations of large client population. Section 4 discusses the
related work. The paper concludes with a brief discussion
of open problems, ongoing work, and future directions.

2. Service Adaptive Multicast Infrastructure

Constructing an efficient multicast tree for rich media
distribution is complicated by the heterogeneity of user

needs and available resources. An important challenge is
to deliver “personalized” end-to-end service that meets the
individual needs while keeping the multicast tree structure
as efficient as possible. To handle the above conflicting
goals, we take a “user-centric” approach where each end
user explicitly specifies the desired service and the QoS re-
quirements. The tree construction algorithm attempts to sat-
isfy the user’s need by reusing or augmenting existing paths.
To ensure that the resulting multicast service tree efficiently
utilizes network resource, our algorithm relies on global in-
formation maintained in a DHT, and follows the three intu-
itive heuristics.

• Service paths should be reused to the extent possible.

• New service paths should be created from existing ser-
vice paths using appropriate transformations to the extent
possible.

• New service components should be placed as near as pos-
sible to the nodes requiring the service.

To minimize unnecessary disruptions to the end users,
our tree maintenance process is receiver-initiated and just-
in-time when the service quality no longer satisfies a user’s
need [33]. Furthermore, we take advantage of the abun-
dance of computing resources (e.g., those that can be pro-
vided by the computing grid, perhaps using resources inside
Internet data centers across the Internet) to insert service
components appropriately in existing service paths. In the
remainder of this section, we describe the basic concepts of
a multicast service tree and the basic notations, and then il-
lustrate multicast service tree construction and maintenance
algorithms.

2.1. Basic Concepts and Notations

For simplicity, we assume that there is only a single con-
tent source and use O to denote the output from this single
source. In practice, there could be multiple data streams
from different sources that are merged to create composite
media content.

• Service: A service is modeled as a function that oper-
ates on an input and produces an output. The letters f ,
g, and h are used to denote services. In the case of me-
dia content, examples of services include encryption, im-
age repair and analysis, error correction, transcoding and
so forth.1 It should be noted that some services are re-
versible, i.e., the effect of the service on a given input
can be undone (e.g., encryption). Other services such as
transcoding are irreversible. For a reversible service f ,
we use f−1 to denote the service that can “undo” the ef-
fect of f .
1For simplicity, we omit other parameters of services. For example, for

a transcoding service, an additional parameter could be the bit rate of the
transcoded stream.



• Service path expression: Services are composable. For
example, f(g(O)) denotes that service g is first applied
to the original input, and the output of which is fed into
the service f . We call formulas such as f(g(O)) that
specify a list of composed services, a service path ex-
pression. The path between the origin source to the des-
tination client node, with intermediate nodes that provide
various services is termed a service path that delivers the
composite service specified by the service path expres-
sion. While all nodes on a service path participate in the
routing process, not all nodes on a service path provide a
service. In service paths, the order in which the services
are applied is significant. For example, a transcoding op-
eration typically needs to be executed before an encryp-
tion operation. In this paper, we use the terms service
path expression and service path interchangeably.

• QoS-qualified service path expression: We use service
path expression to denote the services requested by an
end-user. A service path expression can be “qualified”
by QoS requirements to indicate user QoS requirements.
Formally, a QoS-qualified service path expression is de-
fined by a pair [service path expression: QoS require-
ments]. QoS requirements are represented as logical con-
junctions of a list of atomic requirements such as (de-
lay<100ms), (bandwidth>100kb/s), etc.

• Service requirements: A user request of encrypted
and transcoded media content with an end-to-end de-
lay requirement under 100ms can be represented as
(encryption(transcoding(O)) : delay < 100ms).
Again, the parameters of encryption and transcoding ser-
vices are omitted for simplicity. The user can specify
service priority by placing more important services ear-
lier in the logical disjunction of multiple QoS-qualified
service path specifications.

2.2. Multicast Service Tree Construction

Our tree construction algorithm relies on global state
maintained in a DHT that maps “keys” onto “values.” The
DHT is implemented on infrastructure nodes that have good
availability and network connectivity.

We represent the position of a node in the physical net-
work using a landmark vector that is produced by measur-
ing round-trip time against a set of well known landmark
nodes [21]. The landmark vectors of the nodes define a co-
ordinate space with distances among the landmark vectors
reflecting the distances among the corresponding nodes in
the physical network.

The global information of the nodes is stored on the DHT
using the landmark vectors of the node as DHT keys. As a
result, information about nodes that are physically near each
other are stored close to each other on the DHT. A typical

Table 1. Schema of global table.
Items Description

nodeID Identifier of the tree node.
landmark vector It represents the node’s position in the physical

network.
node metric Capacity, load, and the services the node pro-

vides (e.g., storage, computing, service capa-
bility, etc.).

path metric Characteristics of the path from the root to
the node. Information may include delay to
the root, bottleneck bandwidth, service compo-
nents, nodeIDs of the nodes in the path to root,
etc.

global table has the schema shown in Table 1.2

When new node n wants to join the multicast tree, it
computes its own landmark vector and carries out the fol-
lowing steps.

(i) Node n submits its own landmark vector and its service
requirements to the DHT infrastructure. The DHT infras-
tructure matches the service path requirements with the
stored information to compute a set of candidates close to
node n with which the service requirements can be satis-
fied directly or a new service path that meets the QoS re-
quirements can be constructed. When no existing service
path matches the requirement such as when the node re-
quests the service f(g(O)) and the only service available
is g(O), the DHT sends to n a list of nodes that provide
the service g and a list of nodes that provide the service f .
In certain cases, some current services need to be undone
to provide the desired service. For instance, if the ser-
vice path h(O) is available, then one possibility is to con-
struct the required service by first reversing the effect of
h(.) and constructing the service path f(g(h−1(h(O)))).
A corresponding example could be when the new node
needs unencrypted media stream but only the encrypted
stream is available. The computation of the candidate
sets is out of the scope of this paper.

(ii) Upon receiving the candidates from the DHT, the new
node n performs additional measurements by estimating
delay and bandwidth between n and the candidate nodes.
In the case where a new service path needs to be con-
structed, node n instructs some candidate nodes to per-
form measurements among themselves to obtain delay
and bandwidth information between some of the nodes.

(iii) Node n carries out a series of actions to either reuse an
existing service path by attaching to a node as its child or
constructs a new service path.

In the first step of the algorithm, when providing the new
node n with the candidates, the DHT accounts for both the

2More details about landmark clustering and DHT techniques will be
provided in Section 2.2.1 and Section 2.2.2.
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Figure 1. Tree construction.

user requirements and the tree quality. The DHT finds ex-
isting services that are near the new node when possible.
However, when exact requested services do not exist, ser-
vice components that can be used to construct a desired ser-
vice path are provided close to the new node.

Figure 1 exemplifies our tree-construction algorithm.
The new nodes n and n′ request for service f(O). In
Figure 1 (a), the DHT finds an existing service path
(root, ..., a, b) near n and the new node n attaches to b as
its child. In Figure 1 (b), when the new node n′ wants to
join the multicast tree, nodes b and n that offer the service
are far away from n′. Consequently, node a that provides
the original stream O and node f that is not on the tree
but provides the service, are identified. A new service path
(root, ..., a, f, n′) is constructed as shown in Figure 1 (c).

2.2.1. Landmark Clustering

Landmark clustering is based on the intuition that nodes
close to each other are likely to have similar distances to
a few selected landmark nodes. Our landmark clustering
is based on [21], where a set of well known landmark
nodes is first identified. The landmark nodes measure the
RTT among themselves and use this information to com-
pute a coordinate in a Cartesian space (i.e., landmark vec-
tor) for each of the landmark. These coordinates are then
distributed to the clients, which measure RTTs to the land-
mark nodes and compute their own landmark vector.

Landmark clustering however, is only a coarse-grained
approximation. It is not very effective in differentiating
nodes within close distance. To remedy this effect, we
propose two techniques: (i) combining landmark clustering
with RTT measurements, and (ii) hierarchical landmarks .

With hierarchical landmarks, the top-level global land-
marks provide a rough estimation of nodes’ physical po-
sition and lower-level local landmarks further differentiate
nodes that are in close distance. We are in the process of
evaluating the effectiveness of several hierarchical schemes
and plan to incorporate them in our tree construction and
maintenance algorithms.
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Figure 2. Storing and retrieving global state
on a DHT.

To obtain more accurate information, actual RTT mea-
surements are performed against the set of nodes that is re-
turned through landmark clustering.

2.2.2. Storing and Retrieving Global State on a DHT

DHT-based overlays, represented by Content Addressable
Networks (CAN) [24], Chord [30], and Pastry [27], are
scalable, fault-tolerant, and administration-free. Their ba-
sic functionality is to map “keys” onto “values.” Our DHT
stores the global state and is based on CAN, which provides
a hash table abstraction over a Cartesian space. The Carte-
sian space is partitioned into zones, with one or more nodes
serving as owner(s) of a zone. A key is a point in the space
and the owner of the zone that contains the point stores the
corresponding value. Since the landmark vectors define a
coordinate space, we use the landmark vectors directly as
the hash keys.

To take advantage of the physical network topology, we
employ landmark clustering when constructing the DHT
and storing the information. We build a topologically-aware
CAN [25] where each node joins the Cartesian space own-
ing a zone that contains its landmark vector.

When storing information about a node in the multicast
service tree, we compute its landmark vector in the same
way as we did for the DHT nodes, and use its landmark
vector as the key to store the information according to the
schema described in Section 2.2. This approach has two ad-
vantages: (i) information of a tree node are stored on a DHT
node that is close to it with a high probability; and (ii) infor-
mation of nodes that are near each other are stored close to
each other on the DHT. Therefore, to find information about
nodes that are close to a particular node, we first route to the
zone using the node’s landmark vector as the key and then
perform a localized flooding.

Figure 2 illustrates how the global state is stored on a
DHT based on landmark clustering using a two-dimensional
CAN. In the figure, the x and y coordinates of the nodes are
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drawn to reflect their landmark vectors. The Cartesian space
of CAN is the coordinate space. The coordinate space is
partitioned into four zones from Z1 to Z4 with DHT nodes
n1 to n4 serving as their owners, respectively. Each DHT
node owns a CAN zone in which its landmark vector falls
into. The information about the tree nodes are stored on the
DHT using their landmark vectors as keys. For example,
the information of nodes a and b are stored on the DHT
node n2. Similarly, the information of nodes c, e, and f are
stored on the node n3.

2.3. Adaptation of Multicast Service Trees

Driven by the inherent dynamics in the underlying in-
frastructure, we propose two tree adaptation schemes—a
just-in-time adaptation to address application quality, and
a long-term adaptation to address tree quality driven by the
network state change observed by the DHT.

2.3.1. Just-in-Time Adaptation

This algorithm, based on [33], is driven by application per-
ceived QoS that is impacted not only by fluctuations in the
link quality but also by the availability of the requested ser-
vice. To provide the end users with desired services with
reasonable QoS, the tree continuously adapts to the chang-
ing conditions and minimizes any service disruption to the
end users. This translates into finding the best location to
perform the adaptation and minimizing the latency for each
repair. We assume that all tree nodes can monitor the avail-
ability of relevant services and the quality of the link, and
translate these into user-perceived QoS.

We illustrate our tree adaptation algorithm in Figure 3.
When node n perceives that the requested service is not
available or QoS degrades over its tolerance threshold, it
sends a complaint to its parent p in the tree along with its
landmark vector and service requirements. If p is not re-
sponsive, n switches to a new parent by performing a new
join process as described in Section 2.2. If p responses, we
have two cases as shown in Figure 3 (a) and (b).

(i) p is happy with the services it receives, which indicates
that the bottleneck link lies on the path (p, n). p forwards
the complaint initiated by n directly to the DHT, which
will provide n with a set of new candidates that are close
to n, judging from the landmark vectors. This candidate
set includes p′ and b. n chooses its new parent, for exam-
ple p′, based on the measured RTTs to candidates and the
QoS they provide. n then carries out the switching with
the handoff process we describe in Section 2.4.

(ii) p is also unhappy with its QoS, which indicates that
the bottleneck link exists on the upstream path, e.g., path
(a, p) in our example. In this case, p starts its own com-
plaint process by sending a message containing its land-
mark vector to its parent a. Note that by the time the
complaint from n arrives at p, p may already have sent
its own complaint to a. In this case, p suppresses n’s
complaint. These concurrent complaints save significant
adaptation time.

In Figure 3 (b), because a is happy with the services it
receives, it directs the complaint to the DHT, which will in-
struct p to switch to a new parent with the candidate set in-
cluding a′ and c. p then measures the RTTs to these nodes
and switches to a′. During this process, n waits for the
service to become available or the QoS to improve, or an
instruction from the DHT to switch to a new parent. If it
is still unhappy after a timeout, i.e., there are multiple bot-
tleneck links on its upstream path, it starts the complaint
process again.

Our tree-adaptation algorithm minimizes the overall dis-
ruption by locating the problematic link and having the node
incident to that link to adapt. For instance, when the qual-
ity of a link close to the root degrades or a service close
to the root becomes unavailable, our local repair algorithm
requires only the node incident to that link to attach to a
new parent, instead of having every downstream node of
that link to find a new parent.

Our tree adaptation algorithm avoids the cyclic path be-
cause the DHT keeps the nodeIDs of the nodes from the
root to every tree node. If the DHT finds that the ID of a
complaining node is in the path from the root to a candidate
it identifies, this candidate is not selected as the new parent.
Tree adaptation could cause oscillations where a node keeps
switching parents back and forth among a set of candidate
nodes. To avoid this problem, each node caches the parent
nodes of the recent past and does not choose a node in the
cache as the new parent.

Our approach typically takes three steps to obtain a set
of parent candidates. Using Figure 3 (a), assume that (n, p)
and (n, p′) distances are 20ms since n is close to p and p′,
and (p, DHT ) and (n, DHT ) are 100ms. Considering that
routing in the DHT typically doubles the latency of IP rout-
ing [34], it takes approximately 320ms to obtain the can-
didate sets. Assume that we perform three rounds of con-
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current RTT measurements to all candidates and choose the
candidate that has the lowest RTT. This process takes addi-
tional 120ms. This leaves us with 560ms to complete the
entire switching under one second.

2.3.2. Demand-driven Maintenance

The basic tree construction algorithm is greedy in nature.
The order in which the nodes join the tree can affect the
tree quality. For example, when a node joins the tree, there
may not be a close-by upstream node that provides the de-
sired service but such an upstream node may later become
available. Instead of relying on local repair, we leverage
the global state kept in the DHT. The basic idea of our tree
maintenance algorithm is described below:

• When node n joins the tree, the DHT maintains informa-
tion including the requirements of this node (e.g., the ser-
vices it requests and QoS requirements), and its upstream
(and possibly downstream) nodes. Node n can also spec-
ify conditions (predicates) under which it is interested in
getting notified.

• As nodes join and leave the system, the DHT continues
to evaluate the predicates of the nodes in the system and
notifies the appropriate nodes when a predicate becomes
valid (e.g., there is a node near a particular node and is
offering a desired service).

• After a node receives a notification from the DHT, it
makes a local decision as to whether to reconstruct the
tree by switching to a new parent.

We give an example of the tree maintenance algorithm
in Figure 4. When node d first joined the system, the only
choice it had was to attach to node b. Later on, when
f joined the system, it decided that attaching to b or d

will not satisfy its delay requirement. A new service path
(root, ..., a, e, f) was therefore constructed. The DHT re-
members d’s service requirements and notifies d the avail-
ability of e and f . Node d performs some measurements
and attaches to e as its child.

2.4. Smooth Application Handoff

One of our goals is to develop methods to ensure that
the application performance suffers minimally and the tree
reconfiguration is conducted transparently. Because switch-
ing to a new parent may incur delay, it is essential to main-
tain the performance levels during the parent handoff pro-
cess. For media applications, this is crucial as the user per-
ceived media quality may suffer significantly when there is
a sudden high loss rate or large delay period inflicted by the
handoff. To minimize disruption, we use multi-homing at
the multicast overlay layer during the handoff period, simi-
lar to [28]. The idea is to have a child connected to both the
new and old parents, and receive application packets from
both until the handoff is complete.

3. Experimental Results

To evaluate our algorithms, we conduct a simulation
study on two transit-stub topologies produced by GT-
ITM [4], both with approximately 10,000 nodes. The first
topology, small-transit, has 25 transit domains, five tran-
sit nodes per transit domain, four stub domains attached to
each transit node, and 20 nodes in each stub domain. The
second topology, large-transit, has 228 transit domains and
two nodes in each stub domain instead. With this second
topology, we intend to simulate a network with a large back-
bone. The link latencies in this topology are set automati-
cally by GT-ITM, whereas the link bandwidth is set manu-
ally according to the fan-outs of the nodes that a link con-
nects to. A link connecting two nodes with a higher fan-out
has a higher bandwidth than a link connecting two nodes
with a lower fan-out.

We compare our algorithm against two other algorithms.
The first algorithm is an abstraction of the existing level-by-
level (LBL) tree construction schemes such as Host Multi-
cast Tree Protocol (HMTP) [35] and Yoid [11]. LBL tra-
verses down the tree level-by-level from the root to search
for the node that is closest to the new node until it reaches
the leaf. This algorithm does not account for the QoS re-
quirements of the end users. The second algorithm, LBL+,
is an enhancement to LBL that we propose. It performs
level-by-level tree traversal, but also accounts for the QoS
requirements of the end users. Since there are many LBL-
based schemes, we propose LBL+ to maintain compatibil-
ity with the prior work. We use “SAM(C)” to denote our
approach with RTT measurements to C closest candidates
identified by the DHT.

The performance metrics of interest are:

• Tree quality metrics: We use stress and stretch to mea-
sure the tree quality. Stretch is defined as the ratio of tree
cost (the sum of the delay associated with the tree links)
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Figure 5. Small-transit topology: stretch, stress, and speedup.
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Figure 6. Large-transit topology: stretch, stress, and speedup.

to that of a minimal spanning tree. The stress of an over-
lay multicast tree is the average number of overlay links
over a physical link in the underlying topology.

• Tree construction metrics: Speedup is used to measure
the tree construction time of our algorithm against that of
LBL.

• Tree QoS metrics: Satisfaction is the fraction of users
that are satisfied with their bandwidth and delay require-
ments.

We vary the tree size from 8 to 2,048 nodes. For each
tree size, we present the average results for 20 runs. Table 2
summarize the parameters, their default values, and the var-
ied range. We constrain the degree of each node on the tree
to simulate the fact that the number of flows that a node can
serve are constrained by its processing capacity and network
connectivity. For simplicity, we assume that there is only a
single service, the original media stream. We set the QoS

Table 2. Parameter values.
Parameter Default value range

Tree size - 8 ∼ 2, 048
Landmarks 15 -

RTTs - 10 ∼ 30
Maximum node degree 10 -

requirements for the different nodes as follows. For each
individual node n, let d(n) denote the shortest path latency
from the root of the tree to n and b(n) denote the bottleneck
bandwidth from the tree root to n. The user requirement is
set to (delay < 2×d(n)

∧
bandwidth > 0.25×b(n)).

The preliminary results of our experiments are shown
in Figures 5 to 8, where Figures 5 and 6 compare the tree
quality of the different algorithms and RTT measurements.
They also show the speedup of our tree construction algo-
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Figure 7. Satisfaction rate in small-transit
topology.

rithm when compared with LBL and LBL+. Figures 7 and
8 compare the user-perceived QoS in the two topologies.

In Figures 5 and 6, we can see that our tree construc-
tion algorithm is an order of magnitude faster that LBL and
LBL+ when the tree degree is constrained to ten. The tree
construction times for LBL and LBL+ are similar. In fact,
this speedup can be as large as 20 for a tree with 2,048 nodes
when the tree degree constraint is set to five.

The figures also show that the stress and stretch of the
trees produced by our algorithm is comparable to that of
trees produced by LBL+. The quality of the LBL trees is
better than others because LBL trees are not restricted by
the quality-of-service constraints. The stress and stretch
numbers in the small-transit topology are slightly worse
than in the large-transit topology for the following reasons:
(i) landmark+RTT scheme is less effective in the small-
transit topology because of the difficulties in differentiating
nodes within a close distance; and (ii) in the small-transit
topology, there are more nodes in the same stub domains
and shortest paths between nodes are more likely to share
common links, therefore the worse stress numbers. Despite
the seemingly larger stretch numbers for the small-transit
topology, the absolute overhead is small, because the laten-
cies are short and the penalty for not finding the closest node
is small.

Figures 7 and 8 show the fraction of users that are satis-
fied by their needs. The satisfaction rate in the large-transit
topology is lower than that in the small-transit topology.
This is because when the nodes are sparely populated over
a very large area network, the parent of a tree node is less
likely to be on the shortest path from the tree root to the
node. Note that the absolute number is not important, since
it is a consequence of how we select the QoS requirement.
What is significant is that SAM achieves better level of QoS
and comparable tree quality as LBL at a much faster speed.
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Figure 8. Satisfaction rate in large-transit
topology.

In our experiments, we have varied the number of RTT
measurements. The number of RTTs does not affect the
tree quality and user perceived QoS when it is greater than
20. Moreover, we use a very small number of landmarks to
cluster the nodes for a very large transit-stub graph. We ex-
pect the hierarchical landmark clustering scheme described
in Section 2.2.1 to further improve our tree quality and the
user-perceived QoS these trees offer.

4. Related Work

4.1. Overlay Multicast Trees

Several application-level multicast schemes achieve data
distribution by implicitly building a multicast structure. For
instance, Scribe [6] is a multicast infrastructure built on top
of Pastry [27]. In Scribe, the multicast tree is formed by the
union of the Pastry routes from multicast members to the
rendezvous point (RP). Bayeux [37] is an architecture built
on top of Tapestry [36] and supports source-specific mul-
ticast. The Content-Addressable Network (CAN) frame-
work [24] is extended for multicast in [26]. In this work, the
multicast group members establish a mini-CAN and mul-
ticast data is distributed by flooding over the mini-CAN,
without explicitly building a tree. The Scribe’s tree-based
approach and CAN’s flood-based approach are compared in
[7]. Their experiments show that the tree-based multicast
consistently outperforms the flooding approach.

The “NICE is the Internet Cooperative Environment”
(NICE) protocol [1] builds and maintains hierarchical topol-
ogy of multicast members. The multicast routes are implic-
itly defined by the structure of the hierarchy. A protocol that
uses Delaunay triangulation as an overlay network topol-
ogy is proposed in [20]. With the distributed construction
of a Delaunay triangulation, multicast paths are embedded



in the overlay without a routing protocol. Overlay Multicast
Network Infrastructure (OMNI) [3] proposes a two-tier ar-
chitecture and builds a multicast tree consisting of multicast
service nodes (MSN) which in turn connect to clients. This
distributed scheme is adaptive with changes in the client dis-
tribution and network conditions.

The following protocols explicitly form the multicast
tree. Targeting at content distribution applications, over-
cast [15] builds a single source multicast tree rooted at the
source. The optimization goal of its “up/down” protocol
is to provide each tree node with a high bandwidth path to
the root. Yoid [11] forms a shared multicast spanning tree
across the end hosts. Yoid builds a mesh structure among
members for routing stability. Similar to Yoid, Host Multi-
cast Tree Protocol (HMTP) [35] builds a shared tree. When
a new node joins, it probes the tree at each level, start-
ing from the root, to find the nearest member node as a
parent. CoopNet [22] focuses on using multiple descrip-
tion coding to handle flash crowd while reducing disrup-
tion. They rely on a centralized server for tree construction
and maintenance. Application Level Multicast Infrastruc-
ture (ALMI) [23] uses a centralized approach to construct
shared minimum spanning tree based on network measure-
ments.

Narada [9] and Scattercast [8] build a mesh topology of
all multicast members, and then compute a multicast span-
ning tree for each source. Both protocols periodically re-
fresh the mesh to maintain the multicast topology.

SplitStream [5] addresses the problem of load imbalance
of interior and leaf nodes in a multicast tree. It constructs a
forest, rather than a single tree. The content is partitioned
into multiple stripes using erasure coding or multiple de-
scription coding, with each stripe being multicasted on one
of the trees. Each participating node serves as an interior
node of a tree but as a leaf of some other trees in the for-
est. Similar to most other DHT-based multicast schemes,
the trees in the forest are embedded in the DHT.

ZIGZAG [31] proposes a peer-to-peer multicast for
streaming media based on an administrative organization
in which peers are organized in a multi-layer hierarchy of
clusters. Given the administrative logical organization, the
multicast tree is built using three given rules. The tree is
periodically reconfigured to balance the load based on the
node degree and capacity.

The Scalable Adaptive Randomized Overlay (SARO)
protocol [18] has been recently proposed, built on top of a
Random Subsets (RanSub) utility. The RanSub utility is
used to deliver state information about a random subset of
global nodes with each node selected in a subset with equal
probability.

Our scheme differs from existing approaches in that pre-
vious P2P multicast systems embed the multicast trees in
the overlay, and therefore are constrained by the logical

structure of the P2P networks. In this aspect, SAM is simi-
lar to the ZIGZAG approach which decouples the adminis-
trative organization and the multicast data delivery paths.

In addition, with the exception of OMNI and ZIGZAG,
none of the existing approaches take QoS into account
in tree construction and maintenance. Unlike OMNI and
ZIGZAG, the tree reconfiguration in our scheme is initiated
by the receiver based on the application perceived QoS. The
objectives of SARO are similar to that of SAM in terms of
adapting quickly to network changes. However, SAM ad-
vocates the use of application QoS feedback to trigger tree
transformations rather than the use of the periodic random
subset distribution approach of SARO.

4.2. Service Paths

Ninja [13] and Composable, Adaptive Network Services
(CANS) [12] are typical examples of infrastructures that
support heterogeneous user devices and needs. Ninja is a
distributed service architecture that builds paths of com-
posed services. Active proxies are located between the ser-
vice base and the user devices for dynamic service adapta-
tion. CANS is very similar to Ninja, but one of the main
differences is that CANS performs resource-aware service
adaptation. Service On-Demand Architecture (SODA) [16]
shares the same high-level goal of Ninja and CANS, but fo-
cuses on service virtualization by executing multiple User-
Mode Linux atop a unmodified host OS to achieve fault iso-
lation. Service Overlay Networks (SON) [10] is pieced to-
gether via service gateways, the logical connection between
which is provided by the underlying network domain with
certain QoS (e.g., bandwidth) guarantees. The Internet in-
direction infrastructure (I3) [29] introduces a level of indi-
rection to avoid the limitations of the current point-to-point
communication model of the Internet. It provides the basic
primitives to enable efficient multicast, anycast and service
composition.

Service path in overlay networks is considered in Ser-
vice Proxy Networks (SPY-Net) [32]. SPY-Net builds a
highly connected mesh to maintain network resource con-
ditions. It then performs a link-state algorithm on the
mesh to construct overlay service paths. SPY-Net requires
the proxy to have global network resource availability in-
formation. QoS-aware service aggregation [14] composes
overlay service paths by mapping user request into re-
source requirements (e.g., bandwidth, processor, memory,
etc.). The path that satisfies these resource requirements
is selected and used. QoS-aware Routing in Overlay Net-
works (QRON) [19] builds QoS-satisfied hierarchical ser-
vice paths using Dijkstra-like algorithms, with computa-
tional capacity and available bandwidth as the path weight.

Although the above schemes consider building service
paths to accommodate heterogeneous users, none have ex-



plored multicast. We recently discovered work concurrent
with ours that extends SPY-Net to multicast [17]. It pro-
poses two algorithms: (i) shortest service path tree that
is basically a union of unicast routes from the source to
each multicast member, and (ii) longest match approach that
stresses on path sharing. While the concept of multicast
service trees is similar to our work, there are several differ-
ences. The primary difference is that [17] is geared towards
an environment with a small number of service proxies, and
uses a link-state like protocol to distribute service routing
information between the proxies. This is clearly not scal-
able to an environment with a large number of service prox-
ies, as we envision. The framework proposed in [17] as-
sumes the existence of service proxies, while our algorithm
deploys one if necessary based on available resources. To
construct the most efficient and high quality service paths,
we recognize that some services are reversible, which pro-
vides added flexibility in creating new service paths. In ad-
dition, we advocate just-in-time multicast service tree re-
configuration based on receiver perceived media quality as
well as periodic longer term tree maintenance operations.

5. Discussion and Conclusion

We provided a new framework that considers scenarios
where different users have different service requirements
when accessing the same media content. The services can
be provided by a small number of well known large ser-
vice providers with multiple service offerings, and/or by a
large number of small single-service providers over a peer-
to-peer infrastructure. Unlike the big service providers that
may host their services in data centers several network hops
away from the end user, the small service providers may
host their services closer to the network edge and thus the
end user. This proximity to the end user may provide a
higher perceived service quality in some cases and bears
further investigation. This framework presents several diffi-
cult challenges in coordinating end-to-end service paths to
deliver composite personalized services to end consumers.
Our emphasis is on scalable mechanisms that works well in
such large scale environments. While the mechanisms in
this paper have been described in the context of rich media
streaming applications, they can be applied to other types of
applications and services as well.

Towards this end, we have presented the concept of Ser-
vice Adaptive Multicast (SAM) that provides composite
individualized services to consumers while balancing the
need for an efficient infrastructure that maximizes resource
utilization. Our approach rests on providing a global view
of the system stored in a distributed hash table (DHT). The
global view is generated from landmark clustering. Com-
bining the landmark information with a small number of
RTT measurements to locate physically close-by neighbors,

our approach provides very fast, high quality tree construc-
tion and adaptation. Performance evaluation using simula-
tions indicate that this approach is promising.

Our future work focuses on improving the accuracy of
the landmark clustering scheme. Designing efficient service
path computation algorithms is an ongoing research thread
as well as a comprehensive evaluation of the framework pre-
sented.
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