

SmartLOCUS: An autonomous, self-assembling sensor network
for indoor asset and systems management

Cyril Brignone, Tim Connors, Geoff Lyon, Salil Pradhan
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2003-41
June 7, 2005*

 Indoor localization technology is a prerequisite to location aware services

within building infrastructures. For large buildings, or frequently
remodeled indoor spaces, a scalable, easily deployed localization system
is required to avoid recurring costs of installation. Current localization
systems require extensive manual intervention during installation.
Additionally, localization computations are centralized, rendering them
inflexible and not easily scalable. In this report, we describe a
localization system formed by a wireless location aware network that is
self-assembling. The nodes compute their locations autonomously in the
face of topology changes and the localization algorithm is distributed
enabling new nodes to localize themselves. These features make the
system easy to deploy and scalable. We also suggest how this system can
be used in commercial applications such as asset tracking.

* Internal Accession Date Only Approved for External Publication
© Copyright 2005 Hewlett-Packard Development Company, L.P.

 1

SmartLOCUS: An autonomous, self-assembling sensor
network for indoor asset and systems management

Cyril Brignone, Tim Connors, Geoff Lyon, Salil Pradhan

Sentient Environment Department,

Mobile and Media Systems Laboratory,
Hewlett-Packard Laboratories,

1501 Page Mill Road
Palo Alto, CA 94304, USA

Abstract: Indoor localization technology is a prerequisite to location aware services
within building infrastructures. For large buildings, or frequently remodeled indoor
spaces, a scalable, easily deployed localization system is required to avoid recurring costs
of installation. Current localization systems require extensive manual intervention during
installation. Additionally, localization computations are centralized, rendering them
inflexible and not easily scalable. In this report, we describe a localization system formed
by a wireless location aware network that is self-assembling. The nodes compute their
locations autonomously in the face of topology changes and the localization algorithm is
distributed enabling new nodes to localize themselves. These features make the system
easy to deploy and scalable. We also suggest how this system can be used in commercial
applications such as asset tracking.

1. Introduction

Location aware services have proven to be very useful. Although adequate for outdoor
positioning, GPS receivers do not usually function indoors. In addition, the accuracy
requirements for interior applications are quite high, i.e., on the order of decimeters. For
these reasons GPS is not an adequate solution for indoor positioning.

The typical solution to the indoor sensor localization problem consists of installing a
physical wire with one end terminating at a known fixed position. A centralized database
is manually programmed with a mapping between sensors and wires. Frequently, when
an alternative sensor is desired at some currently serviced location, the wire is of the
wrong type and must be replaced. Similarly, when a new location is to be serviced, a
new wire must be installed. Additionally, changes must be reflected in the central
database with an explicit manual update. Note too, that these activities involve both IT
and construction skill sets, complicating the process and likely requiring a multi-
disciplinary workforce. Although this approach solves the localization problem, it is
prohibitively expensive.

Tracking physical assets is even more problematic, since inventories and equipment are
often easily transported by building occupants without the knowledge (or permission) of
building infrastructure maintainers. Unless the central database is fastidiously updated,
physical assets become virtually lost.

 2

A SmartLOCUS system is a collection of small embedded platforms most of which are
attached to an asset, sensor, or other equipment whose location is important. Each
platform or node is designed to automatically track its own location. Each node knows
when it is moving and when its position is stable. Stable nodes help moving nodes
determine where they are. Typically, a few nodes, called infrastructure nodes, are
deployed with the expectation that they will move very infrequently. Other nodes are
called mobile nodes and are expected to move frequently including exiting a space and
reentering at a later time.

Since the technology for determining position is based partially on radio transmissions,
these radios can be used to transmit sensor and location information to a back-end
application. The back-end has no need to record the location of any SmartLOCUS node
as they all know their own position. As long as several nodes are position stable, even an
infrastructure node can be moved with no rewiring or database maintenance.

A SmartLOCUS system is self-assembling. When a new node is introduced into a space,
it automatically finds its neighbor nodes and, using information provided by them,
determines its own location within the space. In this way, new assets, sensors and other
equipment can be trivially deployed into a space. A special case exists for the first few
nodes to become active within a space. We describe a simple algorithm below to handle
this case.

2. SmartLOCUS Architecture

The SmartLOCUS architecture is one of a number of component technologies being
investigated by the Sentient Environment Department. Taken together, these technologies
enable us to demonstrate end-to-end solutions in the building management space. A
collection of ad-hoc networking nodes form the SmartLOCUS system, similar in concept
to a number of ad-hoc networking solutions from academic research groups. However,
the key differentiating features of SmartLOCUS are location awareness (with an accuracy
of a few centimeters) together with self-assembly and autonomous management
attributes.

Figure 1: Prototype SmartLOCUS nodes

 3

Figure 1 shows two appliances each incorporating the first prototype hardware. The left
hand picture is a stand-alone SmartLOCUS device suited for fixed infrastructure nodes.
The righthand picture shows a SmartLOCUS that has been attached to an HP iPAQ via
an expansion sleeve. This latter configuration represents a mobile node and suggests
possible application usages such as pinpointing location on a displayed map. Figure 2
shows a prototypical configuration of SmartLOCUS nodes implementing a combined
suite of monitoring applications, including environmental, asset, security, systems control
and in-building navigation. Depending on user requirements, data-management and geo-
visualization tools enable custom reconstructive views of the building including up-to-
date sensor and location information. As an example of customized views consider that
security staff may have access to people and object tracking. However, only object
tracking may be available to a service technician trying to locate a faulty printer.

Figure 2: Building scenario example

2.1 Hardware platform

The SmartLOCUS hardware platform (Figure 3.) consists of two circuit boards. The main
board is powered by an ARM7 microcontroller with sufficient Flash Memory and SRAM
to provide a basic computation solution. A CPLD is used to perform additional digital
operations and to provide interfacing to a wide variety of sensors. These sensors (and
other IO devices) are outfitted via an auxiliary circuit board. This computation board has
been used for several projects. The auxiliary IO board for SmartLOCUS incorporates a
low power FSK radio transceiver module for data communications; several serial ports; a
“OneWire” sensor network interface chip from Dallas Semiconductor; and an ultrasound
transceiver, which is used for distance ranging between different nodes. As seen in
Figure 1, these components may be embedded into an array of other appliances.

 4

Figure 3: SmartLOCUS hardware platform, processor board and IO board.

2.2 Embedded software components

SmartLOCUS nodes use a modular embedded operating system, the e-Kernel, which has
been configured to include the relevant system level functions required for multi-tasking,
inter-nodal communications, distance ranging, position determination and sensor
interfacing. Application code, in C or C++, is compiled and linked using the open source
GNU toolset. Code download, flash programming and de-bugging are facilitated using a
commercial JTAG interface controller.

2.3 Sensor interfacing

We customize the SmartLOCUS platform to a variety of sensors and sensing sub-
systems. In traditional sensor systems, such custom interfacing is often performed
individually, device at a time. Only raw data is transferred and then interpreted at a
centralized location. With SmartLOCUS, we are considering the adoption of standardized
interfaces to smart sensing devices (e.g. IEEE P1451) and actively researching methods
of creating and distributing area based rules for localized control policies, where most of
the sensor network traffic is processed and analyzed within localized regions.

 5

3. Related Work.

Before describing the SmartLOCUS system in detail, we briefly describe two similar
projects.

3.1 The Bat Ultrasound Localization System.

As does SmartLOCUS, the Bat System [1] from Cambridge University uses ultrasound to
measure distances. Nodes whose positions are to be measured are outfitted with a small
US transmitter, called a Bat. A fixed array of receivers listens for these transmissions.
By using the relative time of arrival among multiple receivers together with their known
fixed locations, a position for the Bat can be determined. This technique requires
deploying receivers in advance and determining their positions by some other mechanical
measuring system. Also the timing information is collected by many receivers. The Bat
System assembles this timing information at a central computation site to do the actual
calculations.

3.2 The Cricket Location-Support System.

The Cricket System [2] from MIT uses time of flight of both RF and US signals to
measure distances. The distances measured are those from various “beacons” to
“listeners.” The listeners are mobile and receive both the RF and US signal from each
beacon. A listener can then determine which beacon is the closest. In this system, each
listener must know in advance where all the beacons are. As in the Bat System, the
beacon positions must be determined though some alternative location technique. Also
the accuracy of the location depends on the density of the beacons within the space.

4. SmartLOCUS Localization Algorithms

In this section, we discuss in detail the various algorithms used to achieve autonomous
localization.

In the general case, the distinction between infrastructure and mobile nodes is logical
only. The localization platforms can be physically identical and automatically recognize
their own status as infrastructure or mobile. If an infrastructure node happens to move, it
should stop helping other mobile nodes determine their location. When its motion stops,
it can return to the role of helper for mobile nodes. Note that, even without some kind of
motion detector, such as an accelerometer, a node can still detect that it is moving by
comparing a newly calculated position with a previous one. However, there could be
some lag in recognizing this condition. Since the first prototype SmartLOCUS lacks any
form of instantaneous motion detection, we temporarily require that infrastructure nodes
not be moved.

 6

4.1 Inter-node distance calculation

SmartLOCUS uses the speed difference of an ultrasound (US) signal and a radio
frequency (RF) signal to calculate distances between nodes. An US signal propagates at
the speed of sound or 340 m/s. A RF signal propagates at the speed of light or
300,000,000 m/s. Because the RF signal is so fast compared to the US signal (900 000
times faster) we use 0 as an approximate travel time of an RF message from one node to
another.

Figure 4 portrays a distance request sequence between two nodes A and N. As the first
step in computing its location, node N sends a broadcast RF message requesting distance
information. It is the reply to this request that is used to measure distance. Upon hearing
the request, node A replies with the following.

• A RF message containing its own position and its own identity. This appears in
Figure 4 as (xA, yA) and idA.

• A US blip consisting of 64 cycles of sound at 40 kHz.

The RF and US replies are sent at the same time. The difference in time of arrival, ∆t,
allows node N to calculate its distance to node A. This distance, called dAN, is given by
dAN = ∆t * speed of sound.

Since several nodes may hear the distance request, each one performs a random back-off
in time before replying. This prevents collisions among the replies. For additional
robustness, each replying node repeats their reply several times over a period of 15
seconds. Note also that the RF and US reply can be observed by nodes other than the
original requestor. Any node hearing a reply can also calculate their distance to the
replying node.

Figure 4: Distance request sequence

Mobile nodes calculate their location using only one distance measurement for each
neighbor. In this case, the distance accuracy is typically 20 cm.

 RF instantaneous message

 US blip (340 m/s)

RF distance request from N

RF answer from A with position (xA,yA) and idA

US blip answer from A

A N

At the
same time

 7

For the location initialization of an infrastructure node, the distance measurement to each
neighbor is performed multiple times to get an accuracy of about 1 centimeter. Because
of environmental conditions such as noise, a typical 10 measurement sequence between
two nodes has a distribution as shown in figure 5. The distance chosen is the center of a 3
centimeter window located where the measurements have the highest density.

Figure 5: Typical spread of 10 distance measurements between two nodes.

This section has discussed using RF and US measurements to calculate distances between
nodes. An emerging technology, called Ultra Wide Band or UWB [3], has the potential
to replace the described methods. Designed as a data communication mechanism, UWB
has the fortuitous property that distance measurements can be easily obtained as a side
effect of communication. Thus UWB could replace both the RF and US components of a
SmartLOCUS platform while still providing communication and distances. The bulk of
the SmartLOCUS localization algorithms would remain the same. These are described
next.

4.2 Node location calculation

Once the distance calculation has been done, node N knows the following information
about each of its neighbors.

• Their identity.

• Their position and distance away.

• The distances between neighbors as calculated from their positions.

Figure 6 portrays a node N with two neighbors A and B. Given the positions of nodes A
and B together with the distances to them, node N can determine its position as one of
two possibilities. Information from a third neighbor is required to disambiguate amongst
these choices. Therefore, if all nodes are in one plane, it requires three neighbors to
locate node N to a unique position. (Note that the three neighbors cannot be collinear.)
Similarly, to locate node N within a three dimensional space requires four neighbors, not
all in one plane. For simplicities sake, we discuss the planar environment only. Extension
to the three dimensional case is trivial, albeit tedious.

20 cm

Measured distance

3 cm

Chosen distance

 8

Figure 6: Two possible locations, N1 and N2, for a node given its distances to positioned nodes A and B.

The positioning calculations we use could be easier if we employed the Law of Sines and
the Law of Cosines. However, since our hardware platform is simple and low power, the
runtime environment does not support trigonometric functions. (In fact, it doesn’t even
support a floating point data type – we use fixed point.) The available operations are
simple arithmetic together with square root. These operations allow us to use the
Pythagoras Theorem to calculate positions.

One difficulty arises in position calculation due to the approximate nature of the distance
measurements. To address this difficulty, we take advantage of the fact that we need three
neighbors to locate a given node. Recall that that in the previous discussion, the third
node disambiguated amongst two possible locations. In an information theoretic sense,
this is only one bit of information. However, the data supplied by the third neighbor
carries significantly more information. To capture the full information available, we use
each neighbor node in symmetrical roles. This is explained next.

Consider a node N with three neighbor nodes, A, B and C. There are three possible
pairings of neighbor nodes, AC, AB and BC. For each pair, one could calculate two
possible positions for node N as was shown in Figure 6. Exactly one of these possibilities
would be correct. Given three pairs, there would be six calculated positions for node N,
where three of them must be correct, and therefore the same, while the other three of six
must be incorrect. To locate node N is simply a matter of choosing the three out of six
calculated positions that are the same. However, this assumes that all information is
infinitely accurate. In reality, the distance measurements between nodes seldom are. In
practice, the three calculated positions which should be the same are merely close.

Y

X

B

A

N1AB

N2AB

dAN

dAN

dBN

dBN

0

After calculation, we have

 xN1 = xA + (kx * (xB-xA) - ky * (yB-yA)) / dAB;
 yN1 = yA + (kx * (yB-yA) + ky * (xB-yB)) / dAB;

 xN2 = xA + (kx * (xB-xA) + ky * (yB-yA)) / dAB;
 yN2 = yA + (kx * (yB-yA) - ky * (xB-yB)) / dAB;

Where
 dIJ is the distance between the node I and J
 kx = (dAB

2 + dAN
2 – dBN

2) / (2*dAB)
 ky = (dAN

2 – kx2) 0.5

 9

Figure 7: Computation of the position of a node N using the three positioned nodes A, B and C

This situation is depicted in Figure 7. The leftmost diagram shows the three nodes A, B
and C. In addition, it shows the six possible locations for node N derived by considering
the location of N relative to each of the pairs AB, AC and BC in turn. The rightmost
diagram repeats the leftmost and marks the incorrect possibilities. In addition, the
rightmost diagram circles the three possible locations for N that, in a perfect world,
should be coincident. Even in the face of slight inaccuracies, one can eliminate the
incorrect possibilities, since they are so different. We take as the position for node N the
average (or center of gravity) of the three nearly coincident possibilities. By using the
average, this position incorporates uniformly all of the information contained in the
neighbor data.

This algorithm can be extended to the case where there are more than 3 neighbor nodes
which have already located themselves. Given k such neighbors, there are (k-1) + (k-2) +
. . . + 1 possible pairs of neighbors each generating two possible positions. Because of the
combinatorics, considering more than 3 or 4 neighbors is impractical. Later, we discuss a
technique to select the “best” subset of available neighbors.

N2AB

N1AB
N1AC

N2BC

N2AC

N1BC

B

A

C

All the possible locations of N

B

A

C

N

The 3 right possible locations of N

 10

4.3 Infrastructure node location initialization

Several initialization algorithms were tried for this project. The present one provides a
simple way to setup any local coordinate system. In the future, it will be possible to
translate this local coordinate system within some global system (latitude and longitude
for example).

Figure 8: Initialization of infrastructure nodes to create coordinate system

ON

ON
ON

ON

ON

ON Step 1

Click

Step 2

(0,0)

Click
Step 3

(0,0)

(d,0)

x Click

Step 4

(0,0)
(x,|y|)

(d,0) y

x

 11

SmartLOCUS platforms that are designed to be infrastructure nodes have a coordinate
reset button. The following steps initialize a local coordinate system.

• Step 1: turn on all nodes.

• Step 2: Choose a node to be the origin 0 and push its coordinate reset button.

• Step 3: Choose a node on the positive x axis and push its coordinate reset button.

• Step 4: Choose a node that should have a positive y coordinate and push its
coordinate reset button.

All other nodes will determine their own location within the newly created coordinate
system (as described previously). These four steps are shown pictorially in figure 8. Note
that there is no need to measure or calculate distances. The installer merely presses the
same button once on each of the initial nodes.

Figure 9 shows the state diagram used by infrastructure nodes during initialization. When
a node is turned on, it simply listens for chatter from its neighbors. State transitions occur
as follows:

• If a node hears at least 3 neighbors who know their position, it will calculate its
own position and will begin answering position requests from other nodes.

• If the coordinate reset button is depressed, the node will send a distance request.
Only nodes knowing their location answer.

• If no neighbor answers, the node sets its position to (0, 0), it is the origin.

• If the only responder is a neighbor at (0, 0) and the response(s) show this
neighbor to be D units away, then the node sets its position to (D, 0). This node
lies D units along the x axis from the origin.

• If exactly two neighbors respond with their coordinates, the node uses the
distances obtained from these responses to calculate its two possible positions as
depicted in Figure 6. The one with y > 0 is chosen as the location.

The three nodes to have their coordinate reset button pressed establish a coordinate
system. All others will calculate their coordinates as explained in paragraph 4.2.

Once initialized, infrastructure nodes recalculate their position every 10 minutes. A
history of measured locations is maintained and the location reported to other nodes is
adjusted using the history data. In our current implementation, nodes use the average of
the last five measured locations if all of them are within a circle of 20 cm radius.

 12

Figure 9: SmartLOCUS infrastructure node initialization diagram

4.4 Neighbor filtering

Using a distance request message, a node can determine its distance to all of its location
aware neighbors. In our current implementation, we trim this list of neighbors down to
the minimum (k = 3) required to calculate the local position. The reduced list consists of
those neighbors whose location information is likely to produce to the most accurate
result for the local position calculation. To accomplish this, each node calculates a
position accuracy factor, called a. In essence, this factor indicates how far removed a
node is from the set of nodes that established the coordinate system. It is an integer

Node turned
on

Send distance
request message

Coordinate reset

01>2

Number of replies

X = 0
Y = 0

X = dAN
Y = 0

X = fx(dAN,dBN,dAB)
Y = | fy(dAN,dBN,dAB) |

Wait for query

Answer query

The node hears at least 3
neighbors who know

their position

Listen for inter-node
messages

*x

X = …
Y = …

2

 13

number between 0 and 7. Accuracy factors and geometry are both considered when
choosing the reduced list of neighbors. Accuracy factors are described next.

• a = 0 means the node should not help other nodes to initialize. This is the case
for a mobile node or for an infrastructure node which does not know its location.

• a = 1 means the node is one of the 3 initial nodes defining the coordinate system.
They are the ones with the highest accuracy.

• a = 2 to 7 means that at least one of the neighbors used by the node to initialize
itself had an accuracy of a-1. In other words, the accuracy factor is one step worse
then the most accurate neighbor.

• If a node initializes using a neighbor with an accuracy a = 7, its accuracy will
still be 7.

Since errors in distance measurement are independent of the actual distance, longer
distances have a smaller percentage error. Also, triangulation with very small angles
magnifies errors. With that in mind, we describe the filtering algorithm. Let S be the list
of location aware neighbors whose distances are known and which is ordered by
decreasing accuracy factors. Then:

• The first chosen neighbor N1 is the one with the best accuracy.

• The second chosen neighbor N2 is the next node in S more than 2 meters from
N1.

• The third chosen neighbor N3 is the next node in S more than 2 meters from N1
and N2, and such that the three angles of the triangle N1, N2 and N3 are greater
than 25 degrees.

4.5 Mobile node location

In our current implementation, mobile nodes calculate their location once every second.
To do so, they broadcast a distance request. The infrastructure nodes answer back once
every second for 10 seconds. After, if the mobile node is still in the room, it will
broadcast again a distance request.

The mobile nodes do not keep any data history. Every second, they check the distance
data they have. If there are at least 3 recent (one second or less) distances recorded, it
calculates its location from theses. Otherwise, it broadcasts a distance request message.

 14

5. Conclusion

This paper has presented an overview of the SmartLOCUS system. The system creates an
ad-hoc network of nodal communication points that can be attached and attributed to
various areas or objects of interest within an indoor space. The key attributes of self-
management and location awareness form a powerful base onto which many possible
applications can be established.

References

[1] Harter A., Hopper A., Steggles P., Ward A., and Webster P. The Anatomy of a
Context-Aware Application. In Proc. 5th ACM MOBICOM Conf. Seattle WA. Aug
1999.

[2] Priyantha, N, Charkraborty, A, Balakrshnan, H. The Cricket Location-Support
System. In Proc, 6th ACM MOBICOM Boston MA. Aug. 2000

[3] IEEE 802.15 Low Rate Alternative PHY Task Group (TG4a)
http://www.ieee802.org/15/pub/TG4a.html

