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Abstract—Multi-homed, mobile wireless computing and commu-
nication devices can spontaneously form communities to logically
combine and share the bandwidth of each other’s wide-area commu-
nication links using inverse multiplexing. But membership in such a
community can be highly dynamic, as devices and their associated
WAN links randomly join and leave the community. We identify
the issues and tradeoffs faced in designing a decentralized inverse
multiplexing system in this challenging setting, and determine pre-
cisely how heterogeneous WAN links should be characterized, and
when they should be added to, or deleted from, the shared pool.
We then propose methods of choosing the appropriate channels on
which to assign newly-arriving application flows. Using video traf-
fic as a motivating example, we demonstrate how significant perfor-
mance gains can be realized by adapting allocation of the shared
WAN channels to specific application requirements. Our simulation
and experimentation results show that collaborative bandwidth ag-
gregation systems are, indeed, a practical and compelling means of
achieving high-speed Internet access for groups of wireless comput-
ing devices beyond the reach of public or private access points.

I. I NTRODUCTION

An increasing number of multi-homed wireless mobile com-
puting devices are being equipped with two distinct types of wire-
less communication interfaces: a local area network (LAN) in-
terface such as IEEE 802.11x, and a wide area network (WAN)
interface such as a 2.5G or later generation cellular link. The ca-
pabilities of these interfaces differ greatly, most notably with the
available LAN bandwidth exceeding the WAN’s bandwidth by
one to three orders of magnitude. For the foreseeable future we
anticipate that this bandwidth disparity between local and wide
area wireless network connections will remain intact.

Public high-speed Internet connectivity from such devices is
now typically achieved by connection via the wireless LAN inter-
face to an access point which is connected to a high-speed, wired
connection. It remains unlikely, however, that opportunistic de-
ployment of these access points will ever realize ubiquitous — or
even relatively geographically broad — access. Even where ac-
cess points are densely deployed, seamless roaming between ac-
cess points remains a technical challenge, and may not serve the
business interests of either access point operators, venue owners
or service providers. Further, even where access point coverage
is rich, the transmission rate of the wired connection — typically
1.5Mb/s — is limited and shared among a possibly large group of
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users, and unlikely to increase significantly in transmission speed
in the foreseeable future.

To overcome the limited geographic coverage of public access
points, we envision an alternative, complementary solution to
high-speed Internet access through collaborative resource shar-
ing. A group of wireless, mobile computing and communication
devices in close proximity can dynamically form communities
interconnected through their compatible high-speed LAN inter-
faces; we call these ad hoc communitiespiconets. Each piconet
member independently uses its WAN interface to create a com-
municationchannelto an inverse multiplexer, and optionally of-
fers to other members (full or partial) access to this channel. The
set of participating channels connecting the piconet members to
the inverse multiplexer can be logically combined with an in-
verse multiplexing protocol to yield a higher-speedaggregated
channelthan is available from any one of the individual piconet
members. The participating members acting ashandheld routers,
receive some of the packets destined to other members over their
WAN links and forward them onto the LAN.

The envisioned bandwidth aggregation mechanism is an en-
abling technology, as illustrated by the following example. A
group of train commuters could spontaneously form a piconet,
and all members could receive a video stream delivered at a
higher bandwidth — and higher quality — than any one mem-
ber could receive. Each piconet member would also enjoy higher
speed, statistically-multiplexed WAN access, a service often far
more desirable than private, but lower-speed access. Indeed, the
same technology would apply to Personal Area Networks, where
an individual possesses multiple, multi-homed devices.

Striping data across multiple, parallel communication chan-
nels is a conventional communications technique used to im-
prove system performance or reliability in relatively statically-
configured disk storage systems [7,9,31] and fixed, wired LAN–
WAN interconnection systems [11, 33, 35]. In stark contrast,
due to end-device heterogeneity, mobility, and time-varying link
transmission characteristics, the system we consider here is
highly dynamic, and must be assembled, administered, and main-
tained in a decentralized fashion. We present the design of a col-
laborative bandwidth aggregation architecture that is both prac-
tical and readily deployable. A key contribution we make is
showing that significant performance gains can be realized by
adapting shared WAN link selection to the specific application
requirements of the communication flows. As an illustration, we
demonstrate how the quality of a hierarchically-layered video
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stream transmitted over lossy channels can be improved by a
priority/application-aware traffic assignment.

The rest of the paper is organized as follows. Section II ex-
plores the issues and tradeoffs faced in creating a decentralized
inverse multiplexing system. Section III introduces algorithms
for the assignment of application flows to heterogeneous WAN
channels, and Section IV describes the specific system architec-
ture we chose to study. Performance evaluation results from
an ns-based simulation are presented in Section V, and Sec-
tion VI describes the implementation of a prototype system used
to corroborate our findings. Related work is summarized in Sec-
tion VII, and our conclusions are presented in the final section.

II. I SSUES, CHALLENGES, AND APPROACHES

Let’s first consider a relatively basic channel aggregation sys-
tem. Assume that each shared channel contains only the single
WAN link between a participating piconet member and the in-
verse multiplexer. Suppose we seek to provide a single, bidirec-
tional, unicast connection between an Internet source and a sin-
gle piconet node. End-system applications are oblivious to the
presence of the aggregated channel in the downstream path; all
upstream traffic follows the single WAN link associated with the
shortest return path. No cross traffic is present on either LAN
or WAN links. Each packet flowing downstream is received by
a piconet member, and immediately forwarded to the destination
via the receiving device’s LAN interface.

At the receiving-end we assume that devices belong to a sin-
gle, self-organizing piconet. Each device is exactly one wireless
LAN hop away from any other device. Piconet membership is
dynamic; a newly-arriving device can join an existing community
and contribute its (partial or full) WAN channel to the resource
pool. Member devices can also leave the community — typi-
cally without prior announcement — due to either device failure
or movement out-of-range of LAN communications. We will as-
sume that a mechanism exists to detect such departures from the
resource pool, though packets may be lost until the system can
detect and recover from that resource loss.

Even with this remarkably simple system model we are im-
mediately faced with several intriguing questions. What is the
performance loss associated with an unannounced departure of a
single, actively-used WAN channel? How does this performance
loss vary with the traffic type traversing the channel? What is
the minimum time duration that a newly-arriving channel par-
ticipates in an aggregated channel such that its throughput is in-
creased?

To begin to address this last question, consider the decision of
whether to run a TCP connection over a single, persistent link,
or an inverse-multiplexed connection comprising that same link
plus a second link of equal capacity alternating between con-
nected and disconnected states. It is intuitive that though the mul-
tiplexed connection mightpromisegreater average bandwidth ca-
pacity, the fluctuating presence of the second link may result in
TCP window size reductions in response to packet losses, such
that the two links can have lower throughput than the single per-
sistent link. See the appendix for a more rigorous development
of a method for best channel selection.

Internet

Server

Piconet LAN

Laptop

PDA

Laptop

Aggregation Proxy

WAN Connection

GRE Tunnel

Fig. 1. A bandwidth aggregation service architecture.

The challenge of designing an effective inverse multiplexing
system becomes far harder when we recognize that the compo-
nents are heterogeneous, imperfect, and supporting time-varying
workloads. For example, WAN link transmission characteristics
(i.e., bandwidth, packet latency, loss) will vary, possibly dramat-
ically as end-devices move around. Links from different service
providers may be of dissimilar technologies with different costs,
complicating link selection. Links of the same type from a single
network operator might have dependent or correlated transmis-
sion characteristics or outages.

The potentially large latencies introduced by packet forward-
ing through power- and processing-limited mobile computing de-
vices is also a challenge. Disparities in the forwarding latency on
different paths traversing heterogeneous computing devices with
time-varying computing workloads can introduce packet misor-
dering in the end-to-end path that can affect certain applications
adversely. For example, non-interactive multimedia streaming
applications will typically be lightly affected, though larger client
buffer capacities might be desired. Although packet reorder-
ing might not reduce multimedia application performance notice-
ably, it can complicate TCP RTT computation and decrease TCP
throughput. Packet reordering is not uncommon in today’s Inter-
net [4], and in the event that reordering becomes significant, there
are approaches that can mitigate performance degradation [5].

Another key issue in our overall system design is the identifica-
tion of the preferred protocol layer for the multiplexing function.
Since IP performs routing and multiplexing, it is natural to con-
sider a network layer multiplexing implementation. An IP-based
solution could be implemented exclusively at the communicat-
ing end-systems; in this case any packet scheduling, reordering,
and reassembly would occur, as usual, only at the source and the
destination. Though such a network layer implementation can be
achieved in several ways, each requires end-system kernel modi-
fication, restricting the availability of channel aggregation to data
transfers between modified end-systems. An additional disad-
vantage of network layer striping is that it could restrict the chan-
nel assignment policies (i.e., the intelligent mappings of flows
to available channels) that we might seek to implement, since the
network layer is generally not aware of application characteristics
and requirements. Performing multiplexing at the network layer
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does have the advantage that it would not require any changes to
existing applications.

An alternative solution is to perform multiplexing at the trans-
port layer. Once again, end-system protocol stacks would require
modifications, though transport-layer channel assignment poli-
cies could potentially be made more easily aware of application
requirements. The obvious deployment issues associated with
either network- or transport-layer multiplexing suggest a role for
solutions using application-layer multiplexing. Although such an
implementation would incur more packet processing overhead, it
requires no kernel modification and is easy to install, maintain
and monitor. Application layer multiplexing also permits con-
trolling packet scheduling on a per-application, per-connection
or per-packet priority basis.

What forwarding mechanism should an inverse multiplexer
use to transmit a packet over a chosen channel? Irrespective of
a packet’s destination, different packets must traverse different
routes. There are several means of achieving this. One approach
is to change each packet’s destination address to the IP address
of the appropriate piconet member’s WAN interface. When a
packet arrives at the piconet, its destination address would be re-
verted back to the original piconet member destination address.
This would, in a sense, be similar to providing a Network Ad-
dress Translation (NAT) service, albeit in a distributed manner.
But packet modification and processing overhead at the forward-
ing nodes associated with this approach would be prohibitive.

Another packet forwarding approach could useloose source
routing to forward a packet through the intermediary interfaces
associated with the desired WAN channel to traverse. This would
avoid the need to provide a special NAT-like packet forwarding
service beyond ordinary IP routing itself. However, loose source
routing has multiple, well-known weaknesses (e.g., use of IP op-
tions, extra router processing) as well as limited router support,
making its use largely unworkable.

A preferred packet forwarding implementation would usetun-
nelsbetween the inverse multiplexer and each piconet node. Tun-
neling has long been used to establish static paths [38], and most
operating system network stacks today have built-in support for
tunnels. In such a system packet forwarding would operate as
follows. Unicast packets sent from an Internet-connected source
would be routed normally to the inverse multiplexer, where each
would then be forwarded, according to the multiplexer’s flow-
to-channel assignment policy, to the tunnel corresponding to the
appropriate WAN channel. Upon arrival at the piconet node,
the packet would be decapsulated and forwarded on the wireless
LAN to its intended destination. In this simple case, all upstream
traffic would be sent over a single WAN link, typically — but not
necessarily — the receiver’s own. Figure 1 shows a bandwidth
aggregation service architecture using Generic Routing Encapsu-
lation (GRE) [14] tunnels.

Another key question in the design of our system is the ap-
propriate placement of the inverse multiplexer in the end-to-end
connection. In principle, this function can be located at almost
any point between the WAN link terminations and the connection
end-point (e.g., origin server), including the end-point itself. The
preferred location depends on many factors including the type
of WAN links, whether collaborating devices agree to connect to
a common multiplexing point, and how generally accessible the

multiplexing service must be from a wide range of origin servers.
If all the WAN links from a piconet terminate at the same point,

a preferred location for the inverse multiplexer is that termination
point. It is natural to think of aproxyproviding this service, and
to ease our discussion, we will simply use this term to refer to
the location of the inverse multiplexer, regardless of whether a
distinct physical component is used to implement the function. If
the proxy is located near the WAN link termination points, then it
is likely easier and more efficient for a wide range of services to
use the proxy to transfer data to the piconet. The proxy can also
be located at the network edge close to the origin server, or even
at the origin server itself. While this location avoids the potential
restriction of requiring a common WAN link termination point,
piconet members might have to communicate with different ag-
gregation services to communicate with different servers.

One of the most common but disruptive events affecting a flow
traversing an aggregated channel is a sudden, unannounced chan-
nel loss. Depending on the reason for channel unavailability, it
is necessary for either the proxy or surviving piconet members to
detect the departure, and the process of detection and informing
the proxy might be slow. In the meantime, a substantial num-
ber of packets might be lost. Upon detection of a lost channel
a proxy’s highest priority is to quickly reassign the flow compo-
nent associated with the lost channel to other available channels.
In general, recovery of lost packets is the responsibility of the
affected end-systems, not the proxy.

In the remainder of this paper we will focus on the proper
design of a proxy’s channel allocation and packet striping algo-
rithms, and show that such a design can achieve significant per-
formance gains. There are many other intriguing issues beyond
the scope of this paper, including handling malicious piconet
community members, retaining privacy of information transmit-
ted through piconet devices, as well as a host of questions associ-
ated with more sophisticated topologies involving devices partic-
ipating in multiple piconets, connections transmitted over one or
more inverse-multiplexed hops (in sequence or in parallel), and
fairness issues between flows being assigned to channels.

III. C HANNEL ALLOCATION AND PACKET STRIPING

For each active flow a proxy is responsible for two tasks. First,
the proxy must select a set of channels on which to forward
packets to the piconet destination. Second, the proxy must in-
telligently stripe arriving packets across those channels. Effi-
cient channel allocation and striping algorithms map or remap
the flows to the channels based on both application requirements
and the number and the condition of available channels. Hence,
the algorithms we examine in this section are bothapplication-
awareandchannel-adaptive. As an example, the algorithms we
consider would seek to assign a flow from an audio or video
source to channels that would maintain that application’s strin-
gent delay or delay jitter requirements, while assigning bulk data
transfer (e.g., FTP) flows to channels that might incur longer de-
lays but are reliable. Of course, both the number and condition
of assignable channels might vary over a given flow’s lifetime.
Channel allocation and striping algorithms can be categorized
along the following orthogonal dimensions:
• Channel-adaptive: These algorithms assign packets on dif-
ferent channels according to the channel conditions such as
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TABLE I
CATEGORIZATION OF CHANNEL ALLOCATION AND SCHEDULING.

Application-aware Application-agnostic

Channel adaptive Layer Priority Striping WRR, WFQ

Channel non-adaptive Not applicable Random, Round-robin

bandwidth, loss, and delay. For example, a Weighted Round
Robin (WRR) algorithm stripes packets to channels in propor-
tion to each channel’s bandwidth.

• Application-aware: Striping algorithms can also use knowl-
edge or aprofile of an application flow and its end-system re-
quirements for channel selection and packet striping. Since
applications can have different profiles, each application
would potentially need a different algorithm. These algo-
rithms promise to provide better performance than application-
agnostic algorithms, but they have the burden of obtaining in-
formation about a flow’s requirements. This information can
be obtained explicitly from the traffic source, or may be in-
ferred by examining the flow itself, or some combination of
both. For instance, a source might mark its packets (e.g., ToS
field in the IP header) or a proxy might infer application type
from destination information (e.g., TCP or UDP port numbers)
or even the application payload.

A given striping algorithm can be both channel-adaptive and
application-aware, as summarized in Table I.1

We now (1) define and characterize application requirements,
and (2) describe how to monitor and update channel character-
istics before presenting illustrative algorithms for intelligently
mapping/remapping and scheduling flows to available channels,
using video as a motivating example.

A. Application Characteristics

Each application flow can be described by itself (intra-
characterization) or against other application flows (inter-
characterization). Examples of the former include Multiple De-
scription video Coding (MDC) [2,37] and the imprecise compu-
tation model [20] that is widely used in the real-time computing
community. That is, an application flow has multiple representa-
tions or versions expressing different degrees of satisfaction (be-
ing minimally-to-fully satisfactory). The proxy must allocate and
schedule resources to at least guarantee the minimum degree of
satisfaction for each given application flow. That is, timely de-
livery of the base layer or essential part of each application flow
must be guaranteed, and the enhancement layer or the optional
part receives lower priority.

On the other hand, the inter-characterization deals with relative
importance among different applications, rendering their priority
order. In general, it is more “beneficial” to give more important
application flows priority over less important ones in scheduling
their data transmission or allocating bandwidth.

An application flow itself is also characterized by its minimum
packet interarrival time, burstiness, multiple QoS levels, band-
width, loss rate, delay, and jitter requirements.

1Application-aware, channel-adaptive algorithms are application-specific. We
propose layer-priority striping for hierarchically-layered videos in Section III-D.

B. Channel Characteristics

The number and condition of channels between the proxy and
piconet can change with time due to many factors including inter-
channel interference, and communication failure due to piconet
member departure, device mobility, or power depletion. While
a proxy must be continuously aware of channel conditions, it
does not have the benefit of observing packet reception or pi-
conet member behavior directly. The proper design of a moni-
toring system providing such feedback is rather complicated, and
deserves to be covered in a separate paper. Here we will assume
the existence of a two-sided channel monitor (i.e., one side on the
piconet and the other side at the proxy) that is jointly responsi-
ble for detecting membership changes, “sensing” channel charac-
teristics (e.g., bandwidth, error rate, latency, security, reliability,
cost, etc.) and ensuring that the proxy has reasonably current
channel information.

The proxy is thus capable of ordering channels in its resource
pool according to the application requirements of arriving flows.
For example, channels can be sorted according to their delay and
reliability characteristics, and then the proxy may choose then
most reliable channels for transporting the base layer (or essential
part) of a video flow while choosing less reliable channels for the
enhancement layer.

C. Allocation/Reallocation of Channels

Each application flowfi; 1 ≤ i ≤ k, is assumed to have been
demultiplexed into an ordered (according to the application char-
acteristics) set ofnfi ≥ 1 subflows{sfj : j = 1, . . . , nfi}.
The traffic of each subflowsfj is represented by either a simple
token bucket model(ρj , σj) or a linear bounded arrival process
(pj , smaxj , bmaxj ) [10], where

ρj : average token drain rate,
σj : bucket size,
pj : minimum or average time separation between

two consecutive packets,
smaxj : maximum packet size (in bytes),
bmaxj : maximum burst size (in bytes) for subflowj.

Let C = {ch` : ` = 1, . . . , nc} be an ordered (according to
their condition) set of channels available. Note that the size and
ordering of this set changes with time and will be updated by the
monitor. The problem is now to select one or more channels from
C on which to assign each subflowj. This selection must also be
adapted to reflect the changing number and condition of available
channels.

We first treat the simple case of only one application flow be-
tween a proxy and a piconet, and then the more general case of
multiple application flows.

1) Case I: Single Application Flow:We want to map a de-
multiplexed application flowfi = {sf ij : j = 1, . . . , nfi}
to a dynamically-changing set of channelsC = {ch` : ` =
1, . . . , nc}. Recall that the subflows offi are ordered accord-
ing to their importance to the application, while the channels are
ordered according to their relevance to the application require-
ments. For example,fv = {sfv1 , sfv2 } andC = {ch1, ch2, ch3}
wheresfv1 andsfv2 represent the base and enhancement layers
of a video streamfv, respectively, andchi’s are ordered accord-
ing to their reliability or their signal-to-noise ratio values. In this
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casesfv1 may be transported viach1 andch2, andsfv2 via ch3,
assuming that the former requires two channels while the latter
requires only one channel.

In general, as many topmost (say,k) channels as necessary
for transportingsf i1 are assigned first tosf i1, and then repeat the
same procedure with the remaining channels forsf i2, and so on.
If sf i1 does not need the entire bandwidth of channelchk, the
remaining bandwidth of this channel is assigned tosf i2, andchk
will transmit the packets ofsf i1 andsf i2 using a Weighted Round-
Robin (WRR) scheduling algorithm where the weights between
the two subflows are determined based on thechk ’s bandwidths
assigned tosf i1 andsf i2. Also, if there is not enough bandwidth
available, the least important subflows are not transported at all,
realizing a form of imprecise computation [20].

The actual number of channels to be allocated for each subflow
are determined by the subflow’s requirements of delivery delay
or bandwidth. For example, one can compute the bandwidth and
delay requirements of both the base and the enhancement layers
for layered videos, and derive the effective bandwidth of each
channel from its raw bandwidth and loss-rate information.

2) Case II: Multiple Application Flows: In the case where
there are multiple application flowsfi, i = 1, . . . , nf , the chan-
nels between the proxy and the piconet must be shared among
these flows according to the relative importance of the flows and
the channel condition. We now order applications flows accord-
ing to their relative importance, and allocate channels to the ap-
plication flows, exactly in the same way as the channels are allo-
cated to the subflows in the previous subsection. Multiple appli-
cation flows of the same importance share some channels using
WRR where the weights are assigned according to their band-
width requirements.

If (weighted) fairness is used instead of importance, or if all
channels are of the same quality, one can use a weighted round-
robin scheduling algorithm to “serve” the different application
flows. If multiple flows are multiplexed on a channel, packet
transmissions of the multiplexed flows can be scheduled using ei-
ther WRR or Weighted Fair Queueing (WFQ) to reflect the differ-
ence in the flows’ bandwidth requirements, or Rate-Monotonic
(RM) or deadline scheduling [19] for delay guarantees.

D. Example: Assignment of Video Flows

The potential benefit of application-aware channel assignment
is best illustrated by considering the case of video traffic. First, a
high-quality video flow might be of sufficiently high bandwidth
that it could not be transmitted over a single WAN channel. Sec-
ond, link transmission characteristics can directly affect the per-
ceived quality of the transmission. We present three ‘strawman’
algorithms, based on simple heuristics, for striping video packets.
• Layer-Priority Striping (LPS) : This algorithm can be used
for video streams that are hierarchically layer-coded [24, 36].
This encoding process generates a base layer`0 containing in-
formation required for decoding, and one or more optional en-
hancement layers (`i : i = 1, . . . , n) in a hierarchical struc-
ture of cumulative layers. The reconstruction is progressive
(i.e., enhancement layer`k can only be used if all sublayers
`i : i = 0, . . . , k − 1 are available). Thus, the layer indexi
corresponds to the layer priority.

The LPS algorithm matches the layer-priority to the channel
reliability as described in Section III-C.1. For instance, the
base layer (̀0) is assigned to the most reliable channels, where
the channel loss rate is used as the metric for reliability. The
packets for each layer are striped in WRR fashion onto the
allocated channels. If a new channel with higher reliability be-
comes available, allocation of layers is shifted up to channels
with higher reliability. Similarly, if the channel with the high-
est reliability becomes unavailable, the allocation is shifted
down.

• Frame-Priority Striping (FPS) : This algorithm can be used
for MPEG video traffic [17]. The MPEG video stream is sepa-
rated into three subflows (sfI , sfP , sfB) based on frame types.
The priority order for the frames in MPEG Group of Pictures
(GoP) is I>P>B. Similar to the LPS algorithm, the channels
are allocated according to the subflow priority. The I-frame
subflow (sfI ) is sent over the most reliable channels, and so
on.

• Independent-Path Striping (IPS): This algorithm is well
suited to multiple state video coding [2, 37], where a stream
is encoded into multipleindependentlydecodeable subflows.
Moreover, information from one subflow can be used to cor-
rect the errors in another subflow. Hence, it is important for
a receiver to successfully receive as many complete subflows
or components as possible, and it is desirable to achieve a low
correlation of loss across different subflows.

The IPS algorithm tries to achieve path diversity by allocating
a separate channel for each description. Since the video can
be reconstructed (albeit at lower quality) even if one or more
entire subflows are lost, video reception is protected against
one or more complete channel failure(s).
We will later show using simulation that even these simple al-

gorithms based on heuristics can improve video quality signifi-
cantly in realistic settings.

IV. A RCHITECTURE

Considering the many systems issues identified in Section II,
we chose a channel-aggregation architecture that is both sim-
ple and scalable. Figure 1 shows the proposed architecture
which permits deployment by various types of network transport
and service providers, including content owners, Internet access
providers, wireless telecommunication service providers, or con-
tent distribution network operators.

The system architecture has three principal components: a
dedicated appliance providing channel-aggregation proxy ser-
vices, standard LAN-based announcement and discovery proto-
cols, and standard protocol tunnels. The dedicated aggregation
proxy performs inverse multiplexing at the application layer.

Generic Routing Encapsulation (GRE) [14] tunnels are used
to create channels between the proxy and participating piconet
members, and support packet forwarding. This approach requires
no modification to piconet members, as most operating systems
(Linux, FreeBSD, Windows, etc.) today have built-in support for
GRE tunnels. Each packet received by a piconet member over
a GRE tunnel is automatically decapsulated and forwarded via
the wireless LAN to the destination device. Since the destination
is oblivious to which piconet node forwarded the data packets,
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no additional data reassembly functionality is required at the re-
ceiver.

To participate in piconet formation and channel aggregation,
a standard announcement and discovery protocol is required on
end-devices. The choice of a standard protocol enables end-
devices to participate in other types of resource or service dis-
covery and access. Though the specifics of these protocols are
beyond the scope of this paper, Jini, Universal Plug and Play
(UPnP), and the Service Location Protocol (SLP) [13] may all
be suitable candidates.

The performance gains that our channel aggregation can re-
alize will be explored through simulation and implementation
in Sections V and VI. These benefits come at the expense of
some computing and communication overhead. Note, for exam-
ple, that it will not be possible in general to have a proxy on
the shortest path between a source and a destination. Clearly,
both an application-layer proxy as well as tunneled channels in-
cur packet-processing overhead. However, since the total trans-
mission bandwidth of an aggregated channel will ordinarily be
modest (< 2Mb/s), we anticipate that a dedicated proxy will be
capable of managing a very large number of incoming flows and
outgoing aggregated channels.

V. PERFORMANCEEVALUATION : SIMULATION

We evaluated the proposed bandwidth aggregation system us-
ing thens-2[28] simulator. Figure 2 shows the network topology
we used for simulating an entire end-to-end system. The number
of piconet members was varied from 2 to 14, and those piconet
members were interconnected via an 11Mb/s wireless LAN. In
our experiments with homogeneous WAN links, the link band-
width was set at 115.2kb/s, consistent with currently-available
2.5G cellular services. With the exception of the single dedicated
receiver, each piconet member was equipped with both a WAN
and a LAN interface. The receiver could only communicate up-
stream using one of the other members as a gateway. We consider
a variety of scenarios with varying link characteristics such as
bandwidth, loss, and membership dynamics. We first evaluate the
benefits of bandwidth aggregation for different applications: we
use (1) bulk file transfer over TCP and measure TCP throughput,
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Fig. 3. TCP throughput as a function of piconet size.

and (2) CBR traffic over UDP and measure packet loss rate and
delay jitter. We then study how much performance improvements
application-aware striping can make using layered video as an
example application. For experiments with TCP and UDP traffic
we implemented three application-agnostic striping algorithms:
random, round-robin (RR), and weighted round-robin (WRR).2

We implemented the LPS algorithm described in Section III-D
for application-aware, channel-adaptive striping algorithms.

A. TCP Throughput

We first evaluate the effect of the addition or deletion of a WAN
link in an aggregated channel on TCP throughput. Let’s consider
the simple case of a fixed membership piconet. We measured
TCP throughput by transferring a 1MB file from a data source to
a piconet receiver using2 ∼ 14 identically-configured links ag-
gregated into the shared pool. To provide a baseline for measured
TCP throughput, we also performed the experiment with a single
channel (i.e., no aggregation).

Figure 3 plots the measured TCP throughput as the piconet size
changes. The average throughput achieved with a single link was
103.2kb/s. As expected, the TCP throughput increases nearly lin-
early as the number of links grows under both RR and WRR poli-
cies until saturation occurs with six links. This saturation occurs
due to the limit imposed by the receiver’s maximum window. As
the number of available channels increases, the bandwidth-delay
product increases, but TCP cannot utilize all the available band-
width because of the small receiver window. The TCP throughput
continues to increase linearly if the receiver-advertised window
is increased to accommodate a larger bandwidth-delay product.
The random policy does not perform as well as (W)RR because
it causes undesired side effects, such as packet reordering and
unstable RTT calculation, thus reducing the TCP throughput.

We next explore TCP performance for the highly-dynamic
case where the channels were frequently added or removed from
the pool. It is difficult to predict the likely rates of joins and
leaves in a piconet, as the behavior will likely change dramati-
cally with the actual setting (e.g., a bus or a conference room).

2To be precise, since packets are not fragmented in the proxy we have imple-
mented the Surplus Round Robin approximation of bit-WRR.
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Fig. 4. TCP throughput with 3 persistent links and 1 transient link.
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Fig. 5. TCP throughput with 2 persistent links and 2 transient links.

Hence, we conducted a variety of experiments to study join and
leave dynamics, repeating the file-transfer scenario described ear-
lier and measuring the TCP throughput. In this set of experiments
there was no significant difference in the achieved throughput for
RR and WRR striping. Hence it is difficult to distinguish between
the two in the figures presented here.

1) Case I: 3 persistent links, 1 transient link:In this scenario,
three links always remain active in the pool. The fourth link peri-
odically joins the pool forup-timeand leaves fordown-time. The
sum ofup-timeanddown-timewas kept constant at 20 seconds.
That is, anup-timeof 20 seconds is same as striping continu-
ally over four links (i.e., 100% duty cycle) and adown-timeof
20 seconds is the same as continually striping over only three
links. Figure 4 shows that as the duty cycle increases, the TCP
throughput increases for RR and WRR schemes, whereas the ran-
dom striping cannot effectively utilize the available bandwidth of
the transient link.

2) Case II: 2 persistent links, 2 transient links:This scenario
is identical to the previous one, except that there are two links
remaining active and two links being simultaneously added and
removed from the pool. Figure 5 shows that as the duty cycle in-
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Fig. 6. TCP throughput as a function ofup-timeinterval.

creases, the average TCP throughput increases for RR and WRR.
Even though two of the links in the pool are rather short-lived,
channel-adaptive striping is able to utilize their capacity to im-
prove the transfer rate.

3) Case III: 1 persistent link, 1 transient link:In this scenario
only one link is persistent and one link is periodically added and
removed from the pool. We varied the length of theup-timein-
terval from one second to five seconds. The duty cycle was kept
constant at 50% by using same value fordown-timeandup-time
intervals. Figure 6 shows the TCP throughput as the interval is
varied. Although the duty cycle is constant, the TCP throughput
slightly increases with the length ofup-timeinterval. Thus, we
observe that TCP throughput varies with not only the frequency
of change in the number of links, but also with the length of the
change intervals.

We also measured the TCP throughput by transferring a 1MB
file over an aggregated channel consisting of four links with un-
equal bandwidths of 128kb/s, 64kb/s, 32kb/s, and 16kb/s. The
throughput achieved by Random, RR, and WRR striping was
measured at 41.2kb/s, 44kb/s, and 55.6kb/s, respectively. It is
interesting to note that —even for WRR— the throughput for the
aggregated channel is less than the highest bandwidth of a sin-
gle link. Since the proxy does not fragment packets and, instead,
uses an approximation of bit-WRR, there is frequent packet mis-
ordering if the link bandwidths vary greatly. The effect of link
bandwidth disparity in TCP throughput is explored in [30]. Sev-
eral techniques as weighted packet fragmentation [34] and multi-
ple parallel TCP connections [16] can be adopted to address this
problem.

B. CBR Media Traffic over UDP

Many media applications generate CBR traffic carried
over UDP. We studied the loss and jitter observed for a
920(=8×115)kb/s CBR stream from a video source to a piconet
destination. The RTP delay jitter as described in RFC 1889 [32]
was measured at the receiver. The topology used for this set of
experiments was the same as the one for the TCP throughput ex-
periments.
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TABLE II
CBR LOSS RATE(%) AS A FUNCTION OF PICONET SIZE.

# of members Random RR WRR No proxy

2 75.15 75.15 75.15 87.57
4 50.31 50.3 50.32 87.57
6 25.48 25.45 25.5 87.57
8 1.14 0.61 0.59 87.57

10 or more 0 0 0 87.57
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Fig. 7. CBR jitter as a function of piconet size.

Table II shows the packet loss rate as a function of the piconet
size. Without channel aggregation we observe 87.5% loss as the
CBR stream rate was eight times the bandwidth of a single link.
As more links are pooled, the loss rate decreases. Figure 7 shows
that except for random striping, the jitter values remain largely
unaffected by channel aggregation. With random striping, the
jitter increases as the number of piconet members increases to
eight. The maximum jitter value of 425ms was observed with
eight members, i.e., when the offered CBR traffic load is equal
to the sustainable throughput of the pool. When there are more
than eight piconet members, the jitter decreases as the number
of piconet members increases because packets will be delivered
to piconet members with less queueing delays over (assumed)
homogeneous channels.

We also studied the performance of different striping algo-
rithms for UDP streaming over four heterogeneous links of
128kb/s, 64kb/s, 32kb/s, and 16kb/s, respectively. Table III
shows the loss rates when a CBR stream of 256kb/s is sent over
the aggregated channel. Random and RR algorithms do not adapt
to channel bandwidth and allocate an equal number of packets
to each channel. Hence, the lower bandwidth links drop larger
amounts of traffic, resulting in higher total loss rates. In con-
trast, WRR achieves a low overall loss rate by assigning packets
proportionally to the bandwidths of various links and distributing
the loss uniformly over different links. A small penalty is paid
through a very slight increase in jitter under the WRR algorithm
as shown in Table IV, but this small increase in jitter can be easily
absorbed in the receiver buffer.

We also evaluated how CBR streaming over UDP is affected

TABLE III
CBR LOSS RATE(%) OVER FOUR HETEROGENEOUS LINKS.

Random RR WRR

Link 1 (128kb/s) 0 0 14.1
Link 2 (64kb/s) 6.93 7.9 13.75
Link 3 (32kb/s) 53.67 53.95 13.06
Link 4 (16kb/s) 77.15 76.97 11.54

Total 34.18 34.4 13.25

TABLE IV
CBR JITTER (MS) OVER FOUR HETEROGENEOUS LINKS.

Protocols Random RR WRR
Jitter 7.24 2.45 13.25

by the dynamics of piconet membership. Under the same join
and leave dynamics as for the TCP throughput experiments, the
loss rate decreased with the increase of duty cycle.

C. Application-Aware Striping

We now present the results from the application-aware strip-
ing experiments. We experimented with the application-aware,
channel-adaptiveLPSalgorithm introduced in Section III-D. The
scenarios were chosen so as to elucidate the key benefits of
application-aware mechanisms in comparison with application-
agnostic schemes.

1) Availability of Extra Channels:Let’s consider a scenario
where the proxy has 10 channels available for striping data. All
the channels are identical except for having different error rates
that vary from 1 to 10%. The error rateei for channelchi was
set ati%. The traffic source generated CBR traffic at 30kb/s and
the bandwidth of each channel was 20kb/s. Thus, at least two
channels are required for the transfer. Table V shows the av-
erage loss rates for different striping algorithms. If the proxy
is unaware of the application profile/requirements, then it will
use all the available channels indiscriminately. Hence, the ob-
served loss rate is higher for the application-agnostic striping
algorithms. But a proxy using an application-aware algorithm
achieves better performance by striping data over only the two
channels with minimum loss. Hence, even minimal information,
such as the bandwidth requirements of the application, can make
a significant improvement in the system performance.

2) Priority-awareness:As we discussed in Section III, differ-
ent packets in an application flow can have higher priority than
others, such as base layer or I-frame packets. We now present the
results for striping a hierarchically-layered video stream with a
base layer̀ 0 and two enhancement layers`1 and`2. Each layer
was modeled as a 15kb/s CBR stream. The topology consists of
three piconet members, each with a 20kb/s WAN link. The error
rate on the channels was 1, 5 and 10%, respectively. Table VI
shows the percentage loss rate suffered by each layer. As ex-
pected, the random striping indiscriminately distributes the loss
over all the layers. Since all the layers are constant bit-rate with
equal bandwidth and the number of channels is same as the num-
ber of layers, the RR algorithm stripes all the packets from one
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TABLE V
LOSS RATE(%) WITH EXTRA AVAILABLE CHANNELS .

Protocols Random RR WRR LPS

Loss rate 5.56 5.58 5.68 1.41

TABLE VI
LOSS RATE(%) FOR LAYERED VIDEO WITH STATIC CHANNELS.

Application-agnostic Application-aware
Random RR WRR LPS

Layer`0 5.07 9.97 6.05 1
Layer`1 5.28 1.02 4.89 4.96
Layer`2 5.53 4.81 5.16 9.72

layer to one channel. Instead of the loss being spread over all the
layers equally, the layer sent over the most unreliable link suffers
the most loss. The loss rate for the base layer is significantly less
with the LPS algorithm. LPS uses priority-awareness to assign
the base layer to the most reliable link, and the highest enhance-
ment layer to the link with the highest error rate.

The striping algorithms utilize application-awareness to intelli-
gently drop lower-priority subflows when an insufficient amount
of resource is available. To demonstrate this benefit of applica-
tion, we simulated a scenario with two piconet members con-
nected to the Internet via 20kb/s WAN link. The error rate of
the channels was 1% and 5%, respectively. Note that the offered
traffic rate exceeds the aggregated channel bandwidth. Table VII
shows the loss experienced by different layers while streaming
the same video traffic as described above. Since the two available
channels cannot handle the offered load of all the three video lay-
ers, the LPS algorithm drops the layer`2 entirely, improving the
loss suffered by the base layer`0 and the enhancement layer`1.
The application-agnostic mechanisms end up spreading the loss
over all the layers.

3) Dynamic Channel Adaptation:What happens if in the
above scenarios the link error rates change dynamically? Let
us assume that each link has an error rate of 1% for 100 sec-
onds and then 10% for 50 seconds, repeating this cycle several
times during the lifetime of the flow. The changes in error rates
are distributed such that at any instant two links have error rate
of 1% and one link has error rate of 10%. Thus, the total error
rate is the same throughout the experiment. Table VIII shows the
measured loss rates for this experiment. Once again, in the case
of application-agnostic schemes, lack of application knowledge
leads to uniform loss rates for all the layers of the flow. In con-
trast, LPS is able to protect the base layer from loss, and instead
increase the loss rate of enhancement layers.

We also simulated the limited channel scenario described ear-
lier with varying channel error rates. At any instant one link ex-
periences 1% error rate and the other 10%. Layer-wise measured
loss has been shown in Table IX. In this case too, with random,
RR and WRR striping, all the layers suffers similar loss. As be-
fore, LPS entirely drops the enhancement layer`2 due to limited
channel availability, to shield layers̀0 and`1 from loss. Also, it
remaps the base layer to the more reliable channel as the channel
error rates change. Hence, the loss suffered by the base layer is

TABLE VII
LOSS RATE(%) FOR LAYERED VIDEO IN LIMITED STATIC CHANNELS.

Application-agnostic Application-aware
Random RR WRR LPS

Layer`0 18.99 23.57 18.76 0.96
Layer`1 19.64 12.44 20.53 5.15
Layer`2 19.89 22.4 19.25 100

TABLE VIII
LOSS RATE(%) FOR LAYERED VIDEO IN DYNAMIC CHANNELS.

Application-agnostic Application-aware
Random RR WRR LPS

Layer`0 3.87 4.09 4.04 0.91
Layer`1 3.99 3.93 4.18 1.08
Layer`2 4 4.24 3.97 10.11

lower and similar to the static case.
It is important to note that in these experiments we assumed

that the monitoring agent is continuously measuring the link con-
ditions and the proxy is informed instantaneously of any change.
Due to resource limitations and propagation delays this assump-
tion may not be true in practice, and we would expect to see
somewhat higher loss rates. The design of a monitoring agent for
our system that balances the need to keep the proxy informed of
current link state while efficiently using bandwidth and process-
ing resources is an ongoing work. Similarly, the performance of
application-aware mechanisms is subject to accuracy of applica-
tion traffic profile.

VI. I MPLEMENTATION, EXPERIMENTS AND RESULTS

We now present a detailed description of the channel aggre-
gation testbed we built and the experiments we performed. The
principal goal of the testbed was to corroborate our proposed ar-
chitecture and explore deployment issues that might not readily
emerge from our simulations.

A. Testbed Implementation

Figure 8 shows a block diagram of the prototype channel ag-
gregation system we constructed, with dark arrows represent-
ing control messages and light arrows representing data traffic.
Each piconet member runs a compactClient Connection Man-
ager(CCM) application. The CCM participates in the announce-
ment and discovery of piconet members (and their associated
WAN links). Though we anticipate that standard announcement
and discovery protocols would be used in an actual system, re-
source discovery was done manually in our testbed. This gave us
precise control over piconet membership, facilitated automated
testing, and allowed us to modify resource availability on very
short time scales.

The CCM communicates the addition or deletion of links to the
Server Connection Manager(SCM) which resides on the proxy
and maintains the channel resource pool. The CCM also moni-
tors link transmission characteristics such as bandwidth and de-
lay that is provided to the striping proxy. The CCM can also re-
quest the striping algorithm to be used for an aggregated channel.
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TABLE IX
LOSS RATE(%) FOR LAYERED VIDEO IN LIMITED DYNAMIC CHANNELS .

Application-agnostic Application-aware
Random RR WRR LPS

Layer`0 18.88 22.9 18.9 1.01
Layer`1 19.73 12.78 20.75 4.97
Layer`2 19.96 22.76 18.88 100
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Fig. 8. Linux-based implementation of an aggregation proxy.

The SCM and CCM together also coordinate setup and teardown
of the GRE tunnels [14] between the proxy and the piconet mem-
bers.

We implemented a Linux-based inverse multiplexing proxy.
The proxy intercepts each packet destined for a piconet and for-
wards it to the GRE tunnels corresponding to each active chan-
nel. Packet interception at the proxy is handled byNetfilter [26],
a packet filtering subsystem in Linux that is primarily used for
building firewalls and NATs. For each channel aggregate, the
proxy sets up Netfilter’s forwarding rules to intercept appropriate
data traffic and passes it to the proxy’s user-layer forwarding en-
gine. The forwarding engine currently implements both random
and round-robin data striping policies. Use of the IP address of
a piconet member’s WAN interface to set up the tunnel ensures
that each packet sent over the GRE tunnel traverses the desired
WAN channel.

Data reassembly at the receiving side is automatic and straight-
forward. Packet forwarding is enabled at each piconet node shar-
ing a WAN link. When a packet is received by a node over a GRE
tunnel, it is decapsulated and passed to the node’s routing engine.
Since the destination address of the decapsulated packet corre-
sponds to the receiver’s LAN address, the packet is forwarded to
the LAN.

Figure 9 shows the topology of the testbed we used for emulat-
ing an entire end-to-end system; all subsequent results presented
in this section are from experiments conducted on this testbed.
The membership of the piconet in our experiments varied from
two to five notebook computers running Linux (2.2.16 kernel),
each with built-in support for GRE tunnels. We selected rela-
tively low-performance systems with an eye toward ultimately
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Fig. 9. Experimentation testbed topology.

supporting even lower performing handheld PDAs. Forwarding
was enabled on each piconet node. Our proxy was implemented
on a Linux-based desktop PC.

The piconet members were connected to each other via a
10Mb/s Ethernet. WAN links were emulated by connecting a
wired serial null modem running PPP to theNISTnet[25] net-
work emulator whose transmission link characteristics we could
control. As in simulations presented in Section V, the transmis-
sion speed of each serial link was set at 115.2kb/s. Each piconet
member, with the exception of the dedicated data receiver, had
both an emulated WAN interface and an Ethernet interface. The
data receiver could only communicate upstream to the Internet
using one of the other members as a gateway.

Traffic generation, collection and measurement was per-
formed using NetIQ’sChariot network measurement tool ver-
sion 4.2 [27]. Chariotend-pointsrunning on the data source and
receiver generated various packet flows, emulating reliable data
transfers, streams, etc.

B. Experimental Results

1) TCP Throughput: To validate our simulation results in
practice, we measured TCP throughput by transferring a 1MB
file from a data source to a piconet receiver using two to four
identically-configured, aggregated links. Each experiment was
repeated 50 times, with the results averaged. To provide a base-
line for measured TCP throughput we also performed the exper-
iment with a single channel (i.e., no aggregation) both with and
without the proxy in the data path. Performance was measured
using both round-robin and random striping policies. Figure 10
plots the measured TCP throughput as the number of links in the
aggregate bundle changes, with error bars showing the minimum
and maximum measured throughput among the 50 trials.

The average TCP throughput achieved with no proxy was
45kb/s. The TCP throughput with a single link and the proxy in
the data path is 38kb/s, not significantly lower than the through-
put achieved without a proxy, indicating that the proxy does not
introduce a long delay. The TCP throughput measured in the
testbed was lower than the simulation results due to PPP over-
head and the presence of background traffic. However, the trends
with respect to the number of piconet members were similar in
both the cases.
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Fig. 10. Effect of piconet size on TCP throughput.
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Fig. 11. Effect of link latency variation on TCP throughput.

To study the effect of varying transmission link parameters
of different WAN channels on TCP throughput, we used the
NISTnetemulator to add extra transmission delay to one of the
WAN channels. Figure 11 shows the change in TCP through-
put as the extra delay of one of the four links is varied from 0 to
100ms. As expected, increasing the link delay decreases through-
put. There are two reasons for this. First, the increased delay
can cause additional packet misordering, introducing reassem-
bly delays. Second, the extra delay results in a larger computed
value for RTT, directly decreasing throughput. With unequal link
latencies, round-robin is not the optimal scheduling algorithm.
Weighted fair queuing techniques such as that proposed in [34]
can reduce packet misordering and hence improve TCP through-
put.

We now measure the TCP throughput in a highly dynamic pi-
conet where channels are added and removed from the resource
pool. The topology is the same as we used in Section V-A. Ta-
ble X shows the TCP throughput as the duty cycle was changed
for two transient links among four total links. We observe that as
the duty cycle increases, the average TCP throughput increases in
most cases. Although some of the links in the bundle are rather

60

70

80

90

100

1 2 3 4 5

T
hr

ou
gh

pu
t (

kb
/s

)

Intervals (sec)

Round-Robin

Fig. 12. Effect ofup-timeinterval length on TCP throughput.
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Fig. 13. Effect of piconet size on RTP stream loss rate.

short lived, link aggregation is nonetheless able to use their ca-
pacity to improve the transfer rate.

Figure 12 shows the TCP throughput when the length ofup-
timeinterval is changed for one link while the other link is persis-
tent. The result verifies our earlier observation from simulation
(Figure 6) that the interval duration as well as the frequency of
change in the number of active channels affect TCP throughput.

2) Streaming Media via UDP: We next conducted experi-
ments to study how high bandwidth streaming is enabled with
channel aggregation. In these experiments a server streams a
stored media file to the receiver at one of various bit rates (64kb/s,
128kb/s, 175kb/s, and 256kb/s). Chariot generates a traffic pat-
tern intended to resemble the video transmission of Cisco’s IP-
TV. RTP [32] is used as the stream transport protocol. Each ex-
periment was repeated 25 times, measuring the loss rate and RTP
delay jitter observed by the receiver.

Without channel aggregation the receiver can only receive a
stream with negligible loss at the 64kb/s rate. Higher bit-rate
streams suffered more than 70% loss, and due to this high loss
rate, the tests were prematurely terminated by Chariot. Note
that the limited available bandwidth precludes use of retrans-
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TABLE X
TCP THROUGHPUT(KB /S) WITH TRANSIENT LINKS.

One transient link Two transient linksLink up/down time Duty cycle
Avg. Min. Max. Avg. Min. Max.

0 sec/20 sec 0% 197 142 259 138 127 145
5 sec/15 sec 25% 207 143 280 150 134 171
10 sec/10 sec 50% 188 143 291 161 140 219
15 sec/5 sec 75% 200 144 329 175 142 266
20 sec/0 sec 100% 224 143 348 224 143 348
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Fig. 14. Effect of piconet size on RTP stream jitter.

mission for loss recovery. Techniques such as Forward Error
Correction (FEC) can not be used in this setting, especially for
low-bandwidth links, as it further increases the bandwidth re-
quired. Such a high loss rate can severely degrade the perceived
stream reception quality, making it unwatchable. Yet striping
over just two links reduced the loss rate dramatically for the
128kb/s stream; every 128kb/s stream test completed with a loss
rate of less than 0.1%. The 175kb/s streaming experiment with
striping over two links was also terminated before completion
due to high loss rate. Striping over four links was capable of
sustaining a 256kb/s stream without significant packet loss. Fig-
ure 13 shows the streaming data loss rates. Observe that the data
loss rate does not exceed 0.2% when dynamic link striping is per-
formed.

Figure 14 shows RTP jitter values. Note that the system gener-
ates relatively little jitter. In most cases, the jitter is less than
10ms with the maximum jitter occasionally exceeding 20ms.
Such small amounts of jitter can be easily absorbed by the re-
ceiver buffer in multimedia applications and will have negligible
effect on the viewing experience of the video receiver.

We also studied how streaming is affected by heterogeneous
WAN link delays. In this experiment the server streamed a stored
media file to the receiver at 200kb/s. Each test was run 25 times
and the results averaged. All the four WAN links were active and
used for striping. An extra transmission delay of0 ∼ 140ms
was added to one of the links. Figure 15 shows the loss rate as
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Fig. 15. Effect of link latency variation on RTP stream loss rate.

the transmission delay varied. The average loss rate is very low
for delays of 20ms and 40ms, but as the delay increased beyond
60ms, the loss rate increased. This result is an artifact of our
measurement tool; the packets sent over the link with larger de-
lay arrive “late” at the client and are considered lost. The loss rate
is around 25% for 80ms delay and does not increase any further
for larger delays. This is because almost all the packets sent over
the larger delay link arrive late. Similar to the observation made
in Section VI-B.1, the use of a weighted fair queuing algorithm
could reduce this loss rate. In an actual noninteractive multime-
dia application, this kind of loss could also be reduced by merely
increasing the receiver buffer size.

The effect of link delay variation on RTP jitter is shown in
Figure 16. The jitter increases as the transmission delay of the
link increases from 20ms to 40ms. After that point, the jitter
decreases with increase in link latency. This corresponds to the
increase in loss rate as shown in Figure 15. Once again this is a
measurement artifact, as jitter in this region is only computed for
received packets, while the late arriving packets are considered
lost.

VII. R ELATED WORK

A combination of a strong demand for communication band-
width and high tariffs on WAN links has long made inverse
multiplexing a popular technique [12]. In the early 1990s the
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Bandwidth on Demand Interoperability Group (BONDING) cre-
ated a standard inverse multiplexing mechanism to achieve a vir-
tual high capacity WAN link usingn×56 (or 64)kb/s links [6].
Network equipment providers supported inverse multiplexing for
various link layer technologies such as frame relay, ISDN, and
SMDS. The same technique was later applied and standardized
within the context of ATM networks in the Inverse Multiplexing
for ATM (IMA) specification [3]. Each of these cases assumed
highly reliable, homogeneous links with constant link character-
istics such as capacity, delay, and error rates. Moreover, each
WAN connection being bundled together originated from and ter-
minated at the same endpoints. striping is achieved by splitting
packets into equal-sized fragments and transmitting one fragment
on each component link of the aggregate bundle. Extra framing
information is added to the fragments to resequence the pack-
ets at the reassembler. Additional hardware is required, both for
striping and reassembly. The link-layer aggregation is not visible
to higher-layer protocols and can be implemented for any link
(hop) of the network.

Various striping algorithms have been proposed and imple-
mented to reduce packet reordering, jitter, and load imbalance.
Round-robin scheduling is primarily used for striping data over
homogeneous links, while variants of weighted fair-queuing al-
gorithms are used in case of heterogeneous links. It has been
shown that maximum throughput is achieved by striping data
over each channel in proportion to the channel’s bandwidth-delay
product [1,30].

More recent research has explored adaptive inverse multiplex-
ing for CDPD wireless networks [34]. In this scheme the pack-
ets are split into fragments of size proportional to the observed
throughput of component links. Here the goal is to create vari-
able fragments sizes such that each fragment can be transmit-
ted in roughly the same amount of time. The fragment size of
each link is dynamically adjusted in proportion to the measured
throughput. The fragmented packets are then tunneled over mul-
tiple links using Multilink PPP [33]. In this case the endpoints of
the WAN connections forming the virtual link are the same.

The bandwidth of mobile users with multiple interfaces is ag-
gregated at the transport layer in pTCP (parallel TCP) [15, 16].

pTCP is a wrapper that interacts with a modified TCP called
TCP-virtual (TCP-v). A TCP-v connection is established for
each interface, and pTCP manages send buffers across the TCP-v
pipes. The striping is performed by pTCP and is based on con-
gestion window size of each TCP-v connection. When conges-
tion occurs on a certain pipe, pTCP performs data reallocation to
another pipe with large congestion window. One possible prob-
lem of this approach is that the congestion window size may not
accurately reflect the bandwidth-delay product.

Coordinating communications frommultiple mobile comput-
ing devices has become a new focus of interest. Network connec-
tion sharing has been proposed in [29]. This architecture permits
use of a single, idle WAN connection among collaborating mo-
bile devices but it does not address aggregation of multiple links
into a high capacity bundle.

Our goal of cooperation and resource aggregation among col-
laborating devices is similar to the vision of the mobile grouped
devices (MOPED) architecture [8, 18]. The goal of MOPED
project is to enable group mobility such that a user’s set of per-
sonal devices appear as a single mobile entity connected to the In-
ternet. The MOPED routing architecture builds amultipathlayer
to encapsulate packets between the home agent and MOPED de-
vices. Unlike our approach of using GRE tunnels, the home
agent and the mobile devices in MOPED must implement a new
lightweight encapsulation protocol calledmultipath routing en-
capsulation(MRCAP). MOPED architecture provides a higher-
capacity and better-quality connection to the Internet by adapt-
ing the MobileIP home agent to support aggregation of multiple
links at network and transport layers. It uses transport layer in-
verse multiplexing for multi-homed devices [21]. Aggregating
bandwidth at the transport layer requires different protocols for
different applications. Their research presents two new transport
protocols, namely: (1) R-MTP (Reliable Multiplexing Transport
Protocol) [23] for data, and (2) M-MTP (Multimedia Multiplex-
ing Transport protocol) [22] for multimedia. Additional trans-
port protocols might be needed as the application requirements
change. Modifications to both client and server kernels are also
required. Our application level approach does not require any
kernel changes and allows support for different application pro-
files.

VIII. C ONCLUSION

We have designed, implemented and evaluated a deployable
bandwidth aggregation system providing high-speed Internet ac-
cess to a collaborating community of wireless end-systems. We
have demonstrated that the system not only improves access ser-
vice quality, but enables otherwise unachievable services such
as the delivery of high-bandwidth streaming media. Further, we
have shown that network and application-aware allocation and
assignment policies do indeed improve system performance.

Though not described in this paper, we performed various ex-
periments with bandwidth-adaptive multimedia applications over
aggregated connections. Ideally, such applications would mea-
sure available bandwidth and smoothly increase or decrease au-
dio or video quality to optimize perceived reception quality. We
typically observed an application decreasing its streaming rate
to a predefined fraction of its maximum rate; often this rate was
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well below the available bandwidth of the aggregated connec-
tion. The application would subsequently maintain that low rate,
remaining unresponsive to any increase in available bandwidth,
no matter how large it is. Since the widely-used applications we
tested were proprietary, we were unable to modify their adapta-
tion algorithms.

We have also identified a significant number of technical prob-
lems that appear to be fertile areas for future research. Some of
these include WAN cost sharing, accounting, and security. Cur-
rently, we are evaluating the proper design of an efficient moni-
toring system that will allow the proxy to be rapidly informed of
piconet membership changes, time-varying WAN channel com-
munication characteristics (e.g., loss rate), network cross traffic,
and piconet member computing workloads. Yet it may be that
the primary barrier to adoption of this technology will be the
unanswered social question: “Will potential system users choose
to share their private WAN connections?” Lessons learned from
the distributed computing research community’s investigations of
Networks of Workstations (NOWs) clearly included observations
of reluctant participation in desktop computer sharing, largely
due to the perception of security and privacy risks, as well as
‘ownership’ rights. Yet the success of peer-to-peer file sharing
leads us to believe that device owners may be willing to share
communication and computational resources as readily as they do
information, particularly if they directly and immediately benefit
from resource sharing.
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Appendix: Selecting a Channel Group to
Maximize TCP Throughput

Suppose a proxy finds two or more sets of channels (i.e., chan-
nel groups) on which to assign packets from a newly-arriving
flow. How should the proxy choose the preferred set of channels
for the assignment?

We begin by assuming that our objective is to maximize the
throughput of a bulk data transfer via TCP. We will assume that
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the available channels (and their underlying WAN link transmis-
sion characteristics) will persist over the lifetime of the transfer,
and that each channel carries no additional traffic. Finding an an-
alytical expression for the throughput of even a single, isolated
TCP connection over an inverse multiplexed channel appears to
be a formidable problem. Instead, we will select the channel
group whose throughputboundis highest, optimistically assum-
ing that such a channel group is most likely to realize the highest
actualthroughput.

In the simplest case, suppose that the proxy must choose be-
tween either of two individual linksLi, i = 1, 2 with packet loss
probabilitiespi, round-trip timesRi, identical packet lengthsB,
and link-transmission ratesSi = S. The throughputTi of a TCP
connection using only linki is known to be bounded by

Ti ≤
CiB

Ri
√
pi
, (1)

whereCi is a constant directly proportional to a link’s congestion
window size and whose value is ordinarily calculated to be≈ 1.3.
If the two links of identical transmission rate are taken to have
identical window sizes, then the proxy would select link1 over
link 2 if

1
R1
√
p1

>
1

R2
√
p2
. (2)

What if the two links also had unequal transmission ratesS1

andS2? If we assume that each link’s window size is linearly
proportional to its transmission rate, then the proxy would select
link 1 if

S1

S2

R2

R1
>

√
p1

p2
. (3)

Note that this analysis extends immediately to the selection of
any one link to be used from among a set ofn links.

We next consider the case where a proxy must decide between
two sets of links, where each set may contain more than one link.
In such cases, the proxy would be performing inverse multiplex-
ing of packets across the links in a set. We first recognize that
the throughput ofn parallel linksT (~S, ~p, ~R) of identical trans-
mission rate is bounded by the sum of the throughputs of each of
then links operating independently, or

T (~S, ~p, ~R) ≤
N∑
i=1

CiB

Ri
√
pi
. (4)

In general, however, the throughput of a link group will be
smaller than the sum of each link’s maximum throughput. This
reduction is due in part to the increased round trip latency of
each component link due to remultiplexing delays (as packets
from different links wait to be recombined into a single stream)
and longer packet transmission delays on the component links.
It is possible to informally develop a reduced upper bound on
throughput by calculating these additional delays and rewriting
each link’s round trip latencyRi in Eq. (4). Evaluating this
equation then permits a proxy to compare multiplexed systems
with varying numbers of component links to decide which sys-
tem promises to maximize throughput.

As a simple example, suppose a proxy seeks to choose between
a single link with transmission speedS with loss probabilityph
and a multiplexed set ofn links each with speedS/n. Relative to
the single higher speed link, packets of lengthB bits traversing
any one of then links in the multiplexed system would suffer an
addition (n−1)B

S seconds of transmission delay, and an average
(n−1)

2
B
S seconds of remultiplexing delay. If we assume that for

each of the two systems the round trip latencyR due to other fac-
tors (e.g., propagation delay, queuing delays) is otherwise identi-
cal, then a proxy would choose the single higher speed link if the
RHS of Eq. (1) exceeded that of Eq. (4), or

1
R
√
ph

>
n∑
i=1

1

(R+ 3(n−1)
2

B
S )
√
pi
. (5)


