

Using Multiple Namespaces in
CC/PP and UAProf

John Gilbert1, Mark H. Butler
Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2003-31
February 24th , 2003*

E-mail: gilberj@tcd.ie, mark-h_butler@hp.com

CC/PP, UAProf,
XML, XML
namespaces,
namespace
aliasing, RDF,
QName, RDF
Schema; schema
versioning

CC/PP and UAProf are two related standards, proposed by the W3C
and the Open Mobile Alliance respectively, that allow devices such
as PCs or smartphones to communicate their capabilities to devices
such as web servers. Both these standards use XML namespaces to
describe multiple device vocabularies. UAProf specifies a base
device vocabulary whereas CC/PP is totally vocabulary agnostic.
This paper explores issues surrounding multiple vocabularies:
firstly it describes an appropriate data structure for dealing with
profiles using multiple vocabularies. Secondly it describes a
technique that can be used to process profiles that use incorrect
namespaces. Thirdly it describes issues surrounding the automatic
retrieval of schemas from namespace URLs, and issues surrounding
the encoding of version information in those URLs. Finally it
outlines some techniques that can be used to simplify the problem
of dealing with multiple vocabularies and multiple vocabulary
versions.

* Internal Accession Date Only Approved for External Publication
1 Trinity College Dublin, Eire
 Copyright Hewlett-Packard Company 2003

Using multiple namespaces in CC/PP and UAProf

John Gilbert (gilberj@tcd.ie)1
Mark H. Butler (mark-h_butler@hp.com)
Hewlett Packard Laboratories, Bristol UK

16 January 2003

Abstract

CC/PP and UAProf are two related standards, proposed by the W3C and the Open
Mobile Alliance respectively, that allow devices such as PCs or smartphones to
communicate their capabilities to devices such as web servers. Both these standards
use XML namespaces to describe multiple device vocabularies. UAProf specifies a
base device vocabulary whereas CC/PP is totally vocabulary agnostic. This paper
explores issues surrounding multiple vocabularies: firstly it describes an appropriate
data structure for dealing with profiles using multiple vocabularies. Secondly it
describes a technique that can be used to process profiles that use incorrect
namespaces. Thirdly it describes issues surrounding the automatic retrieval of
schemas from namespace URLs, and issues surrounding the encoding of version
information in those URLs. Finally it outlines some techniques that can be used to
simplify the problem of dealing with multiple vocabularies and multiple vocabulary
versions.

Keywords

CC/PP, UAProf, XML, XML namespaces, namespace aliasing, RDF, QName, RDF
Schema, schema versioning.

1

Introduction
CC/PP (Composite Capabilities / Preference Profiles) is a proposed W3C standard1
for the transmission of information about device capabilities. A CC/PP profile is a
Resource Description Framework (RDF) model2, written in its XML serialisation as a
two level structure consisting of a number of structural elements called components,
each of which contains descriptive elements called properties. UAProf is a specific
variant of CC/PP that also supplies a standard base vocabulary. When a profile is sent
as part of a request to a CC/PP enabled server, the server may use the information
contained within the profile to adapt web content to the target device. A sample
UAProf profile is shown in Figure 1 and its RDF/XML serialisation is shown in
Figure 2.

An XML namespace3 is a collection of XML element and attribute names, used in an
XML document, associated with a particular URI4. Namespaces are often used to
provide vocabularies, where the elements and attributes have an associated
conceptualization used in many XML document instances. In CC/PP a vocabulary is

1 John Gilbert was a summer intern at HP Labs Bristol from Trinity College Dublin, Eire.

mailto:smithcr@tcd.ie
mailto:mark-h_butler@hp.com

typically aimed at a specific type of device or a specific use case and is normally
specified using RDF Schema5. For example, the UAProf vocabulary maintained by
the OMA6 (formerly the WAP Forum) is targeted at describing the capabilities and
preferences of an Internet enabled mobile phone and its user.

An RDF model is a series of statements about resources where each statement is
represented by a triple consisting of a subject, a properties and an object. Resources
and properties in RDF are identified by a QName, short for qualified name, which
contains a namespace identifier along with a name from the namespace.

In a CC/PP profile it is common to see two or more XML namespace declarations at

online:
Software

online:
MyDeviceProfile

prf:
SoftwarePlatform

EN

FR

prf:component

prf:component

online:
Hardware

rdf:type

prf:ColorCapable

Yes

prf:
HardwarePlatform

prf:CcppAccept-Language

ES

rdf:type

rdf:Seq

rdf:type

rdf:_1

rdf:_2

rdf:_3

prf:CcppAccept

text/html

text/plain

rdf:_3

rdf:_2

rdf:_1

rdf:Bag image/jpeg

rdf:type

Figure 1 -Example UAProf profile represented in RDF

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:prf="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010430#">
 <rdf:Description rdf:ID="MyDeviceProfile">
 <prf:component>
 <rdf:Description rdf:ID="HardwarePlatform">
 <rdf:type
 rdf:resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-
 20010430#HardwarePlatform"/>
 <prf:ColorCapable>Yes</prf:ColorCapable>
 </rdf:Description>
 </prf:component>
 <prf:component>
 <rdf:Description rdf:ID="SoftwarePlatform">
 <rdf:type
 rdf:resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-
 20010430#SoftwarePlatform"/>
 <prf:CcppAccept>
 <rdf:Bag>
 <rdf:li>text/html</rdf:li>
 <rdf:li>text/plain</rdf:li>
 <rdf:li>image/jpeg</rdf:li>
 </rdf:Bag>
 </prf:CcppAccept>
 <prf:CcppAccept-Language>
 <rdf:Bag>
 <rdf:li>EN</rdf:li>
 <rdf:li>FR</rdf:li>
 <rdf:li>ES</rdf:li>
 </rdf:Bag>
 </prf:CcppAccept-Language>
 </rdf:Description>
 </prf:component>
 </rdf:Description>
</rdf:RDF>

Figure 2-Example UAProf profile serialized in RDF/XML

the top of the profile. These indicate that the profile uses RDF, that the profile uses
CC/PP and that the profile uses one or more specific vocabularies. Many UAProf
profiles, although based on CC/PP, omit the CC/PP namespace and just include a
UAProf vocabulary namespace indicating that the profile uses the UAProf vocabulary
and structure.

The Universal Resource Identifier (URI) used to identify each namespace may be a
valid Universal Resource Locator (URL). If it is a valid URL, it may refer to a
retrievable document that contains more information about the vocabulary. In the case
of CC/PP, if such a document is available it is most likely to be represented using
RDF Schema. However there is no guarantee or requirement that such a document
exists.

As already noted, a CC/PP profile does not solely consist of properties: it also has an
additional level of structure called components. QNames are used to represent both
components and property names. As CC/PP uses QNames, this allows us to
distinguish between two or more properties (or components) with the same name from
different vocabularies within a single profile. This is necessary because a CC/PP

Namespace: http://www.wapforum.org/profiles/UAPROF/ccppschema-20010430#

Attribute
Name
(Primary
Key)

Attribute
Value(s)

Parent
Component

Value
Data
Type

Value
Collection
Type

Resolution
Rule

ColorCapable Yes HardwarePlatform Boolean Simple Override
CcppAccept text/html

text/plain
image/jpeg

SoftwarePlatform Literal Bag Append

CcppAccept-
Language

EN
FR
ES

SoftwarePlatform Literal Sequence Append

Figure 3-Example UAProf profile data structure

profile may be created using multiple vocabularies, which may contain overlapping
local names.

1.1 Overview of this report
While implementing CC/PP and UAProf in DELI7, a CC/PP API for servers, a
number of issues have been identified regarding the use of namespaces within CC/PP
profiles and their associated vocabularies. This report aims to describe these issues
and provide an explanation of how they have been addressed in the most recent
version of DELI.

Specifically firstly it describes an appropriate data structure for dealing with profiles
using multiple vocabularies. Secondly it describes a technique that can be used to
process profiles that use incorrect namespaces. Thirdly it describes issues surrounding
the automatic retrieval of schemas from namespace URLs, and issues surrounding the
encoding of version information in those URLs. Finally it outlines some techniques
that can be used to simplify the problem of dealing with multiple vocabularies and
multiple vocabulary versions.

2 Issues

2.1 Representing properties and components using QNames
Early versions of DELI were designed to process UAProf profiles. As UAProf
enabled devices typically send profiles that use a single UAProf vocabulary, this
meant that a UAProf profile can be represented as a list of CC/PP properties, each
associated with a property value or set of values and a set of vocabulary attributes
such as parent component or resolution rule as shown in Figure 3. Component and
property names within profiles could be represented using local names i.e.
HardwarePlatform and ColorCapable. Namespace information on the other hand was
associated directly with the profile.

However although today profiles generally only use a single vocabulary and hence a
single namespace, it became apparent that such an approach could not cope with two

Attribute Name
(Primary Key)

Parent Component
(Primary Key)

Attribute
Value(s)

Value
Data
Type

Value
Collection
Type

Resolution
Rule

http://
www.wapforum.org/
profiles/UAPROF/
ccppschema-
20010430#
ColorCapable

http://
www.wapforum.org/
profiles/UAPROF/
ccppschema-
20010430#
HardwarePlatform

Yes Boolean Simple Override

http://
www.wapforum.org/
profiles/UAPROF/
ccppschema-
20010430#
CcppAccept

http://
www.wapforum.org/
profiles/UAPROF/
ccppschema-
20010430#
SoftwarePlatform

text/html
text/plain
image/jpeg

Literal Bag Append

http://
www.wapforum.org/
profiles/UAPROF/
ccppschema-

http://
www.wapforum.org/
profiles/UAPROF/
ccppschema-

EN
FR
ES

Literal Sequence Append

Figure 4 - Revised UAProf profile data structure

situations that are possible in CC/PP: firstly, in CC/PP, it is possible to use multiple
vocabularies in the same profile. Secondly it is also legal to have multiple versions of
the same property in different components.

In order to support multiple vocabularies in a single profile, DELI was modified to
represent components and properties as QNames. Additional API methods were
created to allow users to retrieve properties as fully qualified QNames as well as using
unqualified local names. The former approach would be used when they are referring
to a specific vocabulary, whereas the latter approach would be used if the user does
not wish to distinguish between different vocabularies. In addition, the API needs to
support methods commonly used on QNames such as retrieving the qualifier (the
namespace) in order to determine the vocabulary and version of a property or
retrieving the fragment i.e. the local name of the property or component.

Due to the use of the component / property structure in CC/PP, it was decided that
simply using a single QName was not sufficient to unambiguously identify a property
in the profile. As already noted in CC/PP it is valid for a property to appear inside
multiple components. For example, we can imagine the situation where a Vendor
property might be applied to both a SoftwarePlatform and HardwarePlatform
component within a single profile. Thus to uniquely identify a property, it is necessary
to use two QNames: one representing the component, and the other representing the
property. This representation is shown in Figure 4, where the primary key is now
composed of the attribute QName and the component QName. For lookup efficiency,
hash tables can be used to map to the primary key, the property QName, the parent
component QName and the property and component local names as deemed necessary
by the implementer.

2.2 Coping with erroneous namespace usage in profiles
Namespace aliasing is an efficient way of dealing with profiles that use arbitrary
namespaces i.e. namespaces that are not defined in the UAProf specifications and
hence do not correspond to retrievable schemas. As DELI requires vocabulary
information to process a profile it is necessary to guard against this problem in two
ways. Firstly DELI can be configured to alias these namespaces to an existing one.
Secondly it has a well-defined fallback behaviour if it encounters a profile that uses an
unknown namespace i.e. assume any unrecognized properties are literals and use the
override resolution rule.

In DELI, we load each vocabulary definition file or schema into memory when we
initialize the processor. In early versions of DELI, we had to load multiple versions of
certain vocabulary definitions in order to cope with the arbitrary namespace problem.
Clearly this is inefficient; a better solution is to map namespaces explicitly to
vocabulary definitions using a lookup table. In DELI the Vocabulary class stores this
table, containing direct mappings from incorrect namespace URIs to the correct
namespace URI used internally by DELI. Each time a new profile is processed, the
appropriate lookups are performed using this table to ensure the correct URI is used.
This table is configured by the namespace alias / vocabulary configuration file. Here
is an example of a namespace alias configuration file:

<?xml version="1.0"?>
<namespaceConfig>
 <namespaceDeclaration>
 <namespace>
 <uri>http://www.wapforum.org/UAPROF/ccppschema-20000405#</uri>
 <schemaVocabularyFile>
 config/vocab/ccppschema-20000405.rdfs
 </schemaVocabularyFile>
 </namespace>
 <namespace>
 <uri>http://www.wapforum.org/UAPROF/ccppschema-20010330#</uri>
 <aliasUri>
 http://www.wapforum.org/profiles/UAPROF/ccppschema-20010330#
 </aliasUri>
 <aliasUri>
 http://www.wapforum.org/UAPROF/ccppschema-19991014#
 </aliasUri>
 <schemaVocabularyFile>
 config/vocab/ccppschema-20010330.rdfs
 </schemaVocabularyFile>
 </namespace>
 </namespaceDeclaration>
</namespaceConfig>

will be represented within DELI’s vocabulary namespace lookup table as:

URI used by profiles URI used by DELI internally
http://www.wapforum.org/UAPROF/ccppschema-
20000405#

http://www.wapforum.org/UAPROF/ccppschema-
20000405#

http://www.wapforum.org/UAPROF/ccppschema-
20010330#

http://www.wapforum.org/UAPROF/ccppschema-
20010330#

http://www.wapforum.org/profiles/UAPROF/
ccppschema-20010330#

http://www.wapforum.org/UAPROF/ccppschema-
20010330#

http://www.wapforum.org/UAPROF/ccppschema-
19991014#

http://www.wapforum.org/UAPROF/ccppschema-
20010330#

2.3 Automatic retrieval of schemas
As the previous section noted, in order to process CC/PP and UAProf profiles we
need additional information about the vocabulary in use. Currently processors are
preconfigured for vocabularies during initialization, but it is desirable for processors
to be able to automatically configure themselves for new vocabularies. However as
we have already noted, namespaces URIs are used to uniquely identify something so
may not be directly usable for the retrieval of a schema8. In addition, even if schemas
are available, experience has shown they often contain errors and do not encode
sufficient information to describe vocabularies9. If a CC/PP processor tries to retrieve
schema and fails, it may not be possible for it to gracefully recover so that the server
can return content to the target device.

There is a simple solution to this problem: adopt a convention to distinguish between
namespaces that indicate retrievable resources. For example we could use a URL i.e. a
name starting with http:// if and only if the URL returns a schema document and a
URN (Universal Resource Name) e.g. start with urn:// to indicate there is no
retrievable schema document. For more details of URIs, URLs and URNs see 10.

2.4 URIs and resource versioning
Another problem when dealing with multiple versions of the same vocabulary is there
is often version information in a namespace, but that version information is not
encoded in a standardised way. Implementers may be tempted to try to use this
version information but this will not work reliably across different vocabularies. For
example versioning in UAProf is done like this:

http://www.wapforum.org/UAPROF/ccppschema-20000405#
http://www.wapforum.org/UAPROF/ccppschema-20020530#

whereas versioning in CC/PP is done like this:

http://www.w3.org/2000/07/04-ccpp#
http://www.w3.org/2002/09/24-ccpp#

In addition there are other alternative approaches to versioning URIs such as the Tag
URI scheme11. Clearly the problem of how to identify evolving resources is difficult,
but this matter is currently under consideration by the W3C Technical Architecture
Group (TAG)12 to see if there is any need for a generalised solution. We would like to
propose that resources on the World Wide Web should be identifiable via identity and
version. Having a clear separation of these axes allows user agents to easily determine
the set of available versions of a resource, and choose specific versions of a resource
as well as the most recent version. The ability to do both is essential for the automatic
configuration of a constantly evolving web, while maintaining the principle of
invariance of web resources identified in 13.

2.5 Dealing with multiple vocabularies and vocabulary
versioning

As already noted, CC/PP may deal with different vocabularies aimed at different
device types or different use cases. For each of these vocabularies, there may be
several different versions of the same vocabulary. Currently it is not clear what is the
best way to process multiple vocabularies, but it is possible to identify some strengths
and weaknesses of some possible approaches.

For example the approach to vocabulary versioning currently used in UAProf
involves rewriting the vocabulary schema for each version and publishing it under a
new namespace URI. Therefore a new version is released every time an update to the
vocabulary is made, and currently there are three versions available from the OMA
website. This approach has the advantage that typically a profile only uses one
namespace i.e. a specific version of the vocabulary, simplifying the creation of
profiles. It also means that UAProf processors can adopt a simpler processing model
as described previously.

However although this approach greatly simplifies processing profiles, it has some
disadvantages when you begin to consider multiple versions of vocabularies, as
vocabulary properties are duplicated every time a new version of the UAProf
vocabulary is released. As these properties are associated with a new QName, it may
be up to the application developer to determine that these properties have the same
meaning. In addition it is possible servers may encounter requests that mix vocabulary
versions, for example when the reference profile used by a device uses one version
whereas an intermediate proxy server uses another version. Ideally the CC/PP
processor should hide these complexities from the developer where possible.

There are five possible solutions to this problem: ignoring namespace information,
extending the capability class method for profile matching, denoting equivalence
using an external file, alternative approaches to versioning vocabularies and core
device attributes. The following sections describe each of these approaches in more
depth.

2.5.1 Ignoring Namespace Information
The first technique is to ignore namespace information altogether i.e. just work with
local names rather than QNames. This automatically hides the complexities of
processing multiple versions of UAProf from the developer. This approach has the
advantage it will require little, if any, extension of existing processors. Therefore
DELI does support this approach as it provides methods to retrieve properties via
local names as well as QNames.

However this does not solve the problem of how to merge profiles that use different
versions of the same vocabulary in a single request. To understand this problem, it is
necessary to consider why new vocabularies are introduced. There are two reasons:
firstly to add new properties to a vocabulary. Secondly there may be changes to
existing properties i.e. changes in data type, collection type and parent component of
the property. Therefore when merging profiles that use different vocabulary versions
we have to consider the vocabulary on a property-by-property basis. If the property is
unchanged, we can treat both versions in the same way. If the property has changed,
we either treat the two versions as distinct properties or we treat them the same but
adopt a policy for deciding which version to adopt.

In UAProf typically the later version of the property supersedes the earlier version as
changes to data type, collection type, parent component or resolution rule have been
introduced to correct errors in the original vocabulary. For example the property
SecuritySupport has been changed from a Simple Literal to a Bag Literal in later
versions of the vocabulary. This is because phones may support more than one

Security protocol. Therefore if a request contains multiple versions of
SecuritySupport associated with different vocabulary versions, we might want to treat
them all as Bag Literals. This process is not yet implemented in the current version of
DELI.

Therefore although the local name approach can deal with versioned vocabularies, it
fails if the processor is likely to encounter two distinct vocabularies that use the same
property name but with different meanings. In addition it cannot cope if a property
changes name between different versions of a vocabulary, for example from
WapPushMsgSize to PushMsgSize as it is using the name (i.e. fragment ID) to infer
equivalence.

2.5.2 Supporting multiple vocabularies in capability classes
A previous report14 outlined a mechanism called capability classes that simplify the
task of matching profiles to resources by providing a method of describing constraints
that must be met in order to use a particular resource. For example the following
capability class file

<?xml version="1.0" encoding="UTF-8"?>
<classes>
 <class name="smallScreen">
 <or>
 <lessthan value="160x160">ScreenSize</lessthan>
 <lessthan value="20x20">ScreenSizeChar</lessthan>
 </or>
 </class>
 <class name="largeScreen">
 <or>
 <greaterthan value="320x240">ScreenSize</greaterthan>
 <greaterthan value="80x40">ScreenSizeChar</greaterthan>
 </or>
 </class>
 <class name="jpegcapable">
 <contains value="image/jpeg">CcppAccept</contains>
 </class>
 <class name="color">
 <true>ColorCapable</true>
 </class>
 <class name="blackandwhite">
 <not>
 <true>ColorCapable</true>
 </not>
 </class>
 <class name=”colorphone”>
 <and>
 <lessthan value=”90x120”>ScreenSize</lessthan>
 <contains value=”wml”>CcppAccept</contains>
 <true>IsColorCapable</true>
 </and>
 </class>
</classes>

defines four capability classes: smallScreen, largeScreen, jpegcapable and color. In
the case of smallScreen, the device only belongs to this class if it has a screen smaller
than 160 wide and 160 pixels high or if it has a screen that is smaller than 20
characters wide and smaller than 20 characters high. Alternatively a device meets the
jpegcapable capability class criteria if it can display the MIME type image/jpeg. This
section outlines how to extend capability classes to provide support for multiple
namespaces.

In order to do this capability classes need to be able to both treat properties from
different namespaces identically and distinguish between them. For example in the
UAProf vocabulary, many properties are unchanged between different versions so
may be matched and treated the same when evaluating constraints. Alternatively
properties may have changed name or parent component, so we may want to use the
OR expression along with several capability operands in order to treat different
properties in the same way.

In the revised version of capability classes proposed here, we still have the option of
ignoring namespace information when defining a capability class. For example the
following capability class definition

<class name="jpegcapable">
 <contains value="image/jpeg">CcppAccept</contains>
</class>

says that any profile that has a property with local name CcppAccept regardless of the
namespace used with the value image/jpeg matches the jpegcapable capability class.
Alternatively we may want to define a capability class that explicitly states that the
constraint must match a specific namespace:

<class name="jpegcapable">
 <contains value="image/jpeg"
 namespace="http://www.wapforum.org/UAPROF/ccppschema-20000405#">
 CcppAccept
 </contains>
</class>

Here the profile only belongs to the jpegcapable class if it has a CcppAccept property
with value image/jpeg in a specific UAProf namespace.

In addition to treating namespaces in an identical fashion, or specifying a specific
namespace, we may also wish to treat a subset of namespaces in an identical fashion.
To simplify this situation we also provide a mechanism similar to the namespace
aliasing mechanism proposed previously. Here we alias a number of namespaces to an
abbreviated namespace name that can be used in a capability class definition, in a
similar way to the use of abbreviations for namespaces in XML. For example we
might want to define a number of namespaces as having the abbreviated namespace
UAPROF:

<vocabularyAlias>
 <aliasName>UAPROF</aliasName>
 <aliasList>
 http://www.wapforum.org/UAPROF/ccppschema-20000405#
 http://www.wapforum.org/UAPROF/ccppschema-20010330#
 http://www.wapforum.org/UAPROF/ccppschema-20020530#
 </aliasList>
</vocabularyAlias>

This abbreviation can then be used in a capability class definition file e.g.

<class name="jpegcapable">
 <contains value="image/jpeg"
 namespaceAlias="UAPROF">CcppAccept</contains>
</class>

In the example above, a device only belongs to the jpegcapable class if it has the
property CcppAccept in one of the UAProf namespaces defined previously with the
value ‘image/jpeg’.

The mechanisms outlined above allow capability classes to process multiple
vocabularies. However this approach has two limitations: firstly it is only applicable
to CC/PP, and cannot be applied to RDF vocabularies in general. Secondly this
approach still relies on the author of the capability class file to understand the
different vocabularies in use, and the variations between them. This is better than
every application developer or content author having to be familiar with the
complexities of all the device vocabularies in use, but it is still not ideal. A better
solution would be to provide mechanisms that allow organisations creating
vocabularies to hide some of the variations between different vocabulary versions
from users. The next section explores the use of Semantic Web techniques to achieve
this goal.

2.5.3 Denoting equivalence between vocabularies
As already noted, although ignoring namespace information allows us to deal with
multiple versions of the same vocabulary, it does not allow us to deal with multiple
vocabularies or with properties that change name in later versions of vocabularies.
Dealing with multiple vocabularies and vocabulary versions is a common problem for
the Semantic Web, so the Semantic Web architecture should provide appropriate tools
to define equivalences between vocabularies on a property-by-property basis. At the
time of writing, the current version of RDF Schema does not contain any method of
defining equivalence, so it is necessary to use higher-level ontology languages such as
DAML+OIL15 or the forthcoming Web Ontology Language (OWL)16. These ontology
languages can be used to describe the classes and properties used in RDF models. For
example OWL provides the samePropertyAs construct that could be used to map
between properties in different UAProf vocabularies in the following way:

<owl:ObjectProperty rdf:ID="ColorCapable">
 <owl:domain rdf:resource="#HardwarePlatform"/>
 <owl:samePropertyAs
 rdf:resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-
 20000405/ColorCapable"/>
 <owl:samePropertyAs
 rdf:resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-
 20010330/ColorCapable"/>
 <owl:samePropertyAs
 rdf:resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-
 20020710/ColorCapable"/>
</owl:ObjectProperty>

In the example, a property ColorCapable is defined which is equivalent to the
ColorCapable properties defined in the three versions of the UAProf vocabulary.
Currently DELI does not support using OWL in this way, as the OWL specification is
still being defined and there are no processors that implement OWL. It is possible to
imagine that in the future OWL could help CC/PP hide some of the complexities of
multiple vocabularies and multiple vocabulary versions from the application
programmer.

There are some limitations on OWL’s power to convert between different
vocabularies. OWL can cope with some differences in encoding and describe
equivalence between vocabularies that use different literals to describe the same
property value. For example, ignoring device capabilities for a moment, it is possible
in OWL to describe equivalence between a vocabulary which defined the property
business type with property value car hire onto a vocabulary with the property
business category with property value automobile rental i.e. convert between British
and American business terms. However there are some differences in encoding that
cannot be expressed. For example consider the situation where one vocabulary
ScreenSize is the entire size of the screen in pixels (AbsoluteScreenSize) whereas in
another it is the renderable area of the screen (RenderableScreenSize). In order to map
between these two encodings it is necessary to have another piece of information e.g.
the size of the unrenderable area and to define the mapping between the properties
using a mathematical relationship that describes how to convert AbsoluteScreenSize
to RenderableScreenSize. Currently languages like OWL do not allow property
equivalences to be defined in this way, although they can use class-hierarchy relations
to describe that there is some relationship between these properties but the properties
are not identical. For example OWL could be used to create an abstract property
called ScreenSize and derive two sub-properties, AbsoluteScreenSize and
RenderableScreenSize. This does not necessarily help us with the task of converting
one vocabulary format into another.

2.5.4 Other approaches to versioning
As already noted, previously UAProf have taken a specific approach to versioning
vocabularies where the entire vocabulary is duplicated. This creates additional
complexity because unchanged properties are duplicated. An alternative approach is
to only include new and changed properties in new vocabulary versions. Here profiles
using the updated vocabulary use the updated vocabulary and the previous version of
the vocabulary concurrently, reducing unnecessary duplication. As versioning is a
generic problem for the Semantic Web, perhaps there needs to be a more thorough
consideration of the optimal way to version resources?

2.5.5 Core device properties
A proliferation of different vocabularies that use different, but related, properties to
describe device capabilities is clearly undesirable as it creates complexity for
applications developers and content authors trying to develop device independent
applications. One way of avoiding this proliferation is to create a set of core device
properties that are then reused in target vocabularies. This provides standardization
along with flexibility as vocabularies are free to add additional properties where
necessary to cope with specific devices or use cases.

This approach is similar to the approach taken in the Dublin Core initiative that
defines a set of core properties for document metadata. Although there is clear value
in a core set of properties, creating such a set of properties is difficult. For example
how do we decide what goes into it, and what is left out? Or more importantly who
decides this? Currently the W3C Device Independent Working Group work is
considering this problem17. In the authors’ opinion, this work is essential to the
problem of device independence although the process of ensuring a wide adoption of
these core device properties may be difficult.

3

Conclusions
This paper has described a number of approaches that can be used in CC/PP
processors to simplify the use of multiple vocabularies and vocabulary versions. In
the future, the Web Ontology Language (OWL) and the W3C Device Independence
Working Group work on core device attributes should simplify this problem. It also
makes two proposals: firstly it would be helpful if there were some general principles
about how to version vocabularies to simplify processing with Semantic Web tools.
Secondly, in the authors’ opinion, a fundamental change in Web architecture to reflect
that fact that the Web is a collection of evolving, versioned resources could help
simplify the problem of dealing with multiple versions of vocabularies.

1 W3C CC/PP Working Group
http://www.w3.org/Mobile/CCPP/

2 W3C RDFCore Working Group
http://www.w3.org/RDF/

3 Namespaces in XML
Bray, T., Hollander, D., Layman, A.
W3C Recommendation 14 January 1999
http://www.w3.org/TR/1999/REC-xml-names-19990114/

4 Uniform Resource Identifiers (URI): Generic Syntax
Berners-Lee, T., Fielding, R., Irvine, U.C., Masinter, L.
IETF RFC2396 August 1998
http://www.ietf.org/rfc/rfc2396.txt

5 RDF Vocabulary Description Language 1.0: RDF Schema
Brickley D., Guha, R. V.
W3C Working Draft 30 April 2002
http://www.w3.org/TR/rdf-schema/

6 Open Mobile Alliance
http://www.openmobilealliance.org/

7 DELI : An open source CC/PP and UAProf processor
Butler, M. H.,
HP Labs Technical Report HPL-2001-260
http://www-uk.hpl.hp.com/people/marbut/DeliUserGuideWEB.htm
See also http://delicon.sourceforge.net

8 Architecture of the World Wide Web,
Jacobs, I.
W3C Working Draft 15 November 2002,
http://www.w3.org/TR/webarch/

9 Some Questions and answers on CC/P and UAProf
Butler, M. H.,
HP Labs Technical Report HPL-2002-73
http://www-uk.hpl.hp.com/people/marbut/someQuestionsOnCCPP.htm

10 Comparing URIs, URLs and URNs
Overview of materials on Web addressing, W3C Architecture Domain
July 2002
 http://www.w3.org/Addressing/#terms

11 Tag URI,

http://www.w3.org/Mobile/CCPP/
http://www.w3.org/RDF/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/rdf-schema/
http://www.openmobilealliance.org/
http://www-uk.hpl.hp.com/people/marbut/DeliUserGuideWEB.htm
http://delicon.sourceforge.net/
http://www.w3.org/TR/webarch/
http://www-uk.hpl.hp.com/people/marbut/someQuestionsOnCCPP.htm
http://www.w3.org/Addressing/

http://www.taguri.org/

12 TAG issue metadataInURI-31 : Should metadata (e.g., versioning information) be encoded in URIs?
W3C Technical Architecture Group
http://www.w3.org/2001/tag/ilist#metadataInURI-31

13 Cool URIs Don’t change
Berners-Lee, T.
W3C Style
http://www.w3.org/Provider/Style/URI

14 Using capability classes to classify and match CC/PP and UAProf profiles
Butler, M. H.
HP Labs Technical Report HPL-2002-89,
http://www-uk.hpl.hp.com/people/marbut/capClass.htm

15 DAML+OIL,
http://www.daml.org/

16 W3C Web Ontology Language (OWL) Working Group,
http://www.w3.org/2001/sw/WebOnt/

17 DI Deliverable: definitions of properties for DI
W3C Device Independence Working Group Charter 2002
http://www.w3.org/2002/06/w3c-di-wg-charter-20020612.html#delcon-coredev

http://www.taguri.org/
http://www.w3.org/2001/tag/ilist
http://www.w3.org/Provider/Style/URI
http://www-uk.hpl.hp.com/people/marbut/capClass.htm
http://www.daml.org/
http://www.w3.org/2001/sw/WebOnt/
http://www.w3.org/2002/06/w3c-di-wg-charter-20020612.html

	Introduction
	Overview of this report

	Issues
	Representing properties and components using QNames
	Coping with erroneous namespace usage in profiles
	Automatic retrieval of schemas
	URIs and resource versioning
	Dealing with multiple vocabularies and vocabulary versioning
	Ignoring Namespace Information
	Supporting multiple vocabularies in capability classes
	Denoting equivalence between vocabularies
	Other approaches to versioning
	Core device properties

	Conclusions

