
                                                                

       
Boxes:  black, white, grey and glass box 
views of web-services 
 
Steve Battle 
Digital Media Systems Laboratory  
HP Laboratories Bristol 
HPL-2003-30 
February 24th , 2003* 
 
 
 The purpose of this document is to contrast the different kinds of 

web service descriptions known as black, white, glass and grey-box 
views. In particular, the different assumptions underlying these 
views is claimed to be indicative of fundamental differences 
between DAML-Services (DAML-S), a DAML based Web Service 
Ontology, and the Web Service Modelling Framework (WSMF) 
that is central to the Semantic Web enabled Web Services (SWWS) 
project. Semantic web enabled web services are simply services 
with associated meta-data that helps us to understand what they do. 
By working with their semantics – the vocabulary is backed up by a 
model - the WSMF aims to support more robust web service 
interactions. 
 

 

* Internal Accession Date Only                              Approved for External Publication 
 Copyright Hewlett-Packard Company 2003 



     

 Page 1 of 8  

Boxes: black, white, grey and glass box views of web-services 
Steve Battle, HP Labs, Bristol.i 
 
The purpose of this document is to contrast the different kinds of web service 
descriptions known as black, white, glass and grey-box views. In particular, the 
different assumptions underlying these views is claimed to be indicative of 
fundamental differences between DAML-Services (DAML-S)1, a DAML2 based Web 
Service Ontology, and the Web Service Modelling Framework (WSMF)3 that is 
central to the Semantic Web enabled Web Services (SWWS) project4. Semantic web 
enabled web services are simply services with associated meta-data that helps us to 
understand what they do. By working with their semantics – the vocabulary is backed 
up by a model – the WSMF aims to support more robust web service interactions. 

Little boxes 

Black boxes 
Black-box approaches view a system purely in terms of observable inputs and 
outputs with the internals of the system hidden from view. One can make no 
assumptions about its behaviour or state beyond that specified by its interface. The 
black-box view deprives us not only of the ability to view the internal state, but also 
the rules by which the system is governed5.  

Black-box views can be extremely powerful. They are highly modular, so we get the 
desirable benefit that any system that supports an equivalent interface could be 
substituted for the original. The interface description confines itself to externally 
visible information. For example, we may describe messages that can be exchanged 
across the interface, and we can elaborate on these interactions by describing 
correlations between successive messages6. Additionally, we can attach pre- and 
post-conditions to these interactions, where these can again be expressed purely in 
terms of external entities. These interface descriptions are typically declarative, 
modelled in terms of the conditions that must hold at any time. 

The black-box view falls down where we must discuss aspects of a service that do 
not appear in the interface. We cannot even discuss the state of the system. For 
example, an interaction with a service creates a pattern of permissions and 
obligations (e.g. The service provider has permission to deduct money from my 
account but then they are obliged to deliver the goods). It is arguable that it is 
impossible to really understand a service without reference to these concepts. 

Black-box approaches also fall down where the system may interact with third parties 
in the course of its operation. Where the system presents multiple interfaces in this 
way, should we regard these other interactions as hidden from our view – are they, in 
fact, part of the system? But what if separately we have occasion to interact with 
these third-parties. This gives rise to the equivalent of the three-body problem of 
service interaction; sometimes we need to ascribe internal state to a system. 

White Boxes 
White boxes lie at the opposite extreme to black boxes, with the system internals 
being completely exposed to the user. However, this is an undesirable approach as 
we should be able to understand the service provided without being exposed to the 
full complexity of the implementation. While the white-box description defines exactly 
what the system does, it is over-specified. An ideal description should tell us only as 
                                                 
i Thanks also to my colleagues in Bristol who have unknowingly contributed to this paper. 



     

 Page 2 of 8  

much as is required to understand the system, but no more than is necessary; 
Abstraction is the key. 

Grey Boxes 
The Grey-box view stands in the middle ground between black- and white-box views. 
We move beyond the black-box view as soon as we have to introduce new entities to 
explain the behaviour of a process. A system is viewed as a grey-box if users have 
some knowledge of how it behaves behind the interface7. For example, this may 
include knowledge of a particular algorithm used in implementing the service. 

With black-box testing we select test cases that fall inside the range of legal 
inputs/outputs as defined by its interface. This allows us to check that the system 
really conforms to that interface. By contrast, grey-box testing is carried out with 
some knowledge of the internals of the system (possibly gathered purely by 
experimentation), looking for edge-case limitations suggested by the actual 
implementation. 

A more extreme characterization of the grey-box view, known as Grey-box 
integration8, permits partial exposure of the system in terms of a coarse-grained 
operational model9. For example, in the context of Workflow Management Systems 
(WfMS), a given subsystem exposes its API to the WfMS and remains essentially a 
black box. This is set within an overall process description, used by the WfMS to 
enact the workflow. The resulting grey mixture is white on top, but black underneath.  

While these examples appear difficult to reconcile at first glance, they do have a 
common theme. Where the white box view is fully exposed in all its gory details, the 
grey-box view allows only partial exposure of the system behaviour, whether by 
discovery or design. 

Glass boxes 
Both white- and grey-box views exist along a continuum that admits different levels of 
exposure of the system behaviour, defined in terms of its operational model. By 
contrast, the glass-box view attempts to retain the advantage of the purely 
declarative representation (expressed in terms of truth conditions) found in the black-
box view. The aim is to provide support for meta-level reasoning about the process 
(i.e. rather than just executing it) by exposing the rules that govern it10. Put another 
way, a glass-box view exposes what the process does, without necessarily giving 
away how it does it. An analogy here is how we might interpret the recipe for a cake; 
we can simply follow the recipe and bake a cake, or we may examine the recipe to 
work out what ingredients we’re missing. 

The glass-box view really introduces a knowledge-level11 approach to systems; a 
way to rationalise the behaviour of a system from the perspective of an external 
observer12. The system may be introspective, informing us about itself and what it is 
doing. 

DAML Services 
At the heart of the DAML-S ontology is the idea of the Service. We should begin by 
asking, what is a service? In the DAML-S conception of the world, services are 
modelled as single processes. They present a service profile that describes what 
they do, and a process model that describes in some way how they do it. They may 
also have a grounding that describes in concrete terms how the process is mapped 
onto a real web-service. 

Among other things, a service is described in terms of its ProcessModel. DAML-S 
utilizes black boxes and glass boxes, as distinct ways of thinking about process 



     

 Page 3 of 8  

modelling. It defines three distinct kinds of process: AtomicProcess; SimpleProcess; 
and CompositeProcess. 

We explore the process model using an example taken from the DAML-S home-
page; this is the Congo.com example of a fictitious online book-seller. We bring the 
example to life by providing graphical examples of resource description fragments 
that could be used. 

Atomic Processes 
Atomic processes are grounded in concrete web-accessible programs13. They are 
primitive and undecomposable, so in the absence of any prior knowledge about their 
implementation we can treat them only as black boxes. 

The DAML-S process model is inherently a 2-party model14. Inputs & outputs are 
defined with respect to the service provider, so a service invocation provides input to 
the service and returns output to the userii. The LocateBook process describes the 
initial interaction with the book-store where we might identify a desired book (by 
name) and obtain a description of it. Each call has a number of input parameters. For 
example, in Figure 1, LocateBook is described as an atomic process with an input, 
bookName, and an output, bookDescription. We can distinguish inputs from outputs 
by tracing the relevant sub-property relationships.  

 process:Process

process:AtomicProcess 

congo:LocateBook 

 

 

daml:subClassOf 

rdfs:subClassOf
congo:bookDescription 

congo:bookName
congo:bookName 

process:input 

process:parameter 

rdfs:subPropertyOf 

rdfs:subPropertyOf 

congo:bookDescription process:conditionalOutput 

rdfs:subPropertyOf  

Figure 1: Atomic process 

Simple Processes 
By contrast with atomic processes, simple processes are not grounded and cannot 
be invoked. They are really abstract place-holders for more complex process 
compositions. For the sake of modelling, they may be conceived as executing in a 
single step13. For example, in addition to describing the concrete process of locating 
a book as described above, we would like to raise the discussion one level, to talk 
about the end-to-end process of book buying. In Figure 2 below, we create the 
CongoBuy process. It assumes a single input, the congoBuyBookName that would 
be relayed to LocateBook. The book description does not feature as an output, as it 
is only used internally to raise the appropriate order. 

                                                 
ii The relative ordering between input and output is not fixed by the process model. Different 
groundings permit different kinds of operational mapping (i.e. SOAP request-response, one-
way, notification, and solicit-response). 



     

 Page 4 of 8  

 process:Process

process:SimpleProcess 

congo:CongoBuy 

 

daml:subClassOf 

rdfs:subClassOf
congo:bookDescription 

congo:congoBuyBookName
congo: congoBuyBookName 

process:input 

process:parameter 

rdfs:subPropertyOf 

rdfs:subPropertyOf 

 
Figure 2: Simple process 

As it stands, the simple model doesn’t help us buy a book – it isn’t a process we can 
directly invoke. We have to expand this simple process to describe the buying 
process in full. 

Composite Processes 

A DAML-S composite process defines a tree where each branch node includes a 
control construct, and each leaf node is a simple or atomic process. The example in 
Figure 3 shows an expanded process that first uses LocateBook as defined earlier, 
before proceeding to the checkout with CongoBuyBook. These things happen in a 
strict sequence, so this branch of the process tree uses a Sequence control 
construct. The components of the sequence are held in an ordered collection that 
can contain further sub-processes or control constructs (not shown). 

The composite process can use control constructs including Sequence; Split 
providing concurrency (same as Concurrent or Parallel); Split-Join for subsequent 
resynchronization (same as Concurrent-Sync, Parallel-Sync, or Fork-join); Unordered 
(executing a bag of processes sequentially but in Any-Order); Choice (or Alternative) 
allowing a selection of processes; If-then-else for conditionals; and for iteration we 
may use Repeat-until, Repeat-while or Iterate (for infinite loops). 

 

congo:ExpandedCongoBuy

process:CompositeProcess 

process:Sequence

congo:CongoBuyBook 

congo:LocateBook 

rdfs:subClassOf 

process:composedOf 

process:components 

process:composedOf 

process:ProcessComponentsList 

congo:CongoBuy 

process:expand 

congo:expCongoBuyBookName

 

 
Figure 3: Composite Process 



     

 Page 5 of 8  

A DAML-S composite process is described as a glass-box view. If needs be, it can 
be viewed as a black box by collapsing it down to a simple process15. The aims of 
DAML-S are fundamentally about the creation of service ontologies for the purpose 
of sharing service descriptions in support of automated reasoning about them. For 
these reasons, the mapping into a declarative logical formalism is paramount. 

The DAML-S composite process was not designed primarily as an operational model. 
It simply provides a vocabulary as a starting point for future work. If we want to 
execute a composite process, we have to go out of our way to add the required 
semantics16,17. Just as atomic processes must be grounded in concrete languages 
such as WSDL, we could devise a translation from a composite process into an 
executable process language such as BPEL4WS18. The strength of DAML-S and the 
glass-box view is that it supports reflection19 about processes, rather than directly 
executing on them. 

Web Service Modelling Framework 

Control flow versus data flow  
There is a darker side to DAML-S process modelling that limits the expressiveness of 
the language20. In addition to defining the control flow, the process model must define 
how data flows between processes. Even in the simple example shown, we have 
seen three different occurrences of the book-name parameter, one for each atomic, 
simple, and composite process that we have looked at. These input parameters must 
somehow be unified. Similarly, we may wish to unify the output of one sub-process 
with an input to the next, or to unify sub-process outputs with those of the composite. 

The process:sameValues constraint is used to unify the parameters of CongoBuy 
and its expansion with the parameters of the concrete LocateBook process. This 
relation surfaced on the www-rdf-logic mailing list, “DAML-S Expressiveness 
Challenge #1” 21, and is documented in the new version of DAML-S 0.722. The 
intention is that within an instance of a composite process, we unify the value of one 
property with another. Either of these properties may belong to the composite 
process itself, or to one of its sub-processes. 

We should be clear that these inputs and outputs represent the abstract content of 
the message, not the concrete message itself13. With WSDL23 groundings, all inputs 
to a process must be mapped onto a multi-part message; similarly for the outputs. 
There appears to be some ‘wiggle room’ that allows a parameter like the book name 
to be submitted to CongoBuy in one format but be passed on to LocateBook in 
another. The service description is independent of the syntax of any particular 
message. Therefore, there is room in DAML-S for data mediation, a key concept in 
the WSMF. 

The WSMF breaks from the DAML-S model by taking a more data-centric approach. 
Where DAML-S associates process inputs and outputs more or less directly with 
messages in the service grounding, the WSMF will utilise semantic models of these 
data resources, making extensive use of ontologies to model the data. The 
unification of one data resource with another need not require syntactic equality at 
the level of sameValue, but can be achieved if there is a suitable ontological 
equivalence. 

Where DAML-S primitives target the control flow, with data flow a secondary 
concern, the data-centric WSMF primitives emphasize data flow over control flow. 
The primitives it defines, such as split and join3, describe the distribution and merging 
of content, rather than process concurrency. Concurrency is implicit in the flow graph 
model, and we can assume that all sub-processes execute concurrently. Indeed, if 
we don’t want concurrency we have to re-introduce sequencing with explicit 



     

 Page 6 of 8  

signalling. In Figure 4 we attempt to illustrate these flows between processes 
(however a simple diagram like this ultimately fails to capture the dynamic nature of 
the flow). Taking the Congo.com example, the bookName flows into LocateBook 
while the bookDescription flows out of it. To make the example more exciting, we 
throw in a desired quantity with the book description. The join implies more than the 
simple creation of a multi-part message that we find in the DAML-S/WSDL 
grounding24; it requires the construction of a single document integrating information 
from both inputs. 

 

CongoBuyBook 

bookName 

quantity 

join 

LocateBook 

Book description

 
Figure 4: WSMF data flows 

DAML-S and the WSMF come from opposite poles in their approaches to managing 
the flow of control versus the flow of data. It may be on this basis that we can foresee 
a future in which the two may be integrated. 

abstract versus executable processes 

The DAML-S/WSDL service grounding provides an account of how atomic processes 
are mapped onto web-service operations, associating DAML-S parameters and 
outputs with particular input/output ports on a web-service interface. These atomic 
processes correspond to the smallest steps of the service that are exposed to the 
outside world. As with the Congo.com example, these steps must somehow be linked 
to form what is in effect a business process; by this we mean an outward facing 
model of a process, described only in terms of external conversations25. DAML-S 
provides us with the composite process, but remains unclear as to how they should 
be interpreted. On the face of it, the composite process describes the internal 
structure of a complex service. The ambiguity arises because this does not inform us 
about who is responsible for the composition. If we return briefly to our cake recipe 
analogy, then the difference is between going to a shop to buy a ready-made cake 
(server-side composition), and doing it yourself (client-side composition). You could 
even employ an agent to make it for you, but what matters is where the responsibility 
resides. In all cases the outcome should be more or less equivalent – depending 
upon your skills as a baker. The conversation is the trail of atomic steps that are 
executed. However, whereas in the former interpretation the composite service is 
seen as a wrapper obscuring the details of the trail, in the latter interpretation the 
conversation is fully exposed to the client. 

DAML-S does not differentiate between these two modes of use, which are described 
in BPEL4WS as executable and abstract processes. Executable processes model 
the actual behaviour of a participant (service), while abstract processes focus on the 
mutually visible message exchange behaviour, or business protocol18. The WSMF, if 
it is to focus on the service interface rather than on its internal representation, should 
address primarily these abstract processes. 



     

 Page 7 of 8  

Conclusion 
The black-box view introduces an almost clinical isolation between the front and the 
back-end. This approach lends itself most naturally to interface led development, 
where the interface is developed first and will encompass a wide range of possible 
realizations. This situation would arise if we were trying to agree a standard interface 
in collaboration with partners. The black-box would represent the as yet unrealised 
service. 

The grey-box view is more concerned with the pragmatics of the service 
implementation. It recognises the need of service providers to be able to code to 
abstract interface definitions without being absolutely conformant in every possible 
way. For example there may be real-time constraints on a given implementation that 
are more restrictive than the abstract interface would lead us to believe.  

The greying of the interface provides a real problem for automation. With 
innumerable clients cut to the clean lines of the black-box, how can they cope 
gracefully with the variations introduced along the way as service providers adopt 
and adapt an interface.  

The glass box view can serve the role of bridging between the two. It captures the 
semantics of the interface, providing a declarative way to represent the contingencies 
of the service instance. This contingent interface can be described as a specialisation 
of the abstract interface. We can use specialisation either to expand the range of 
behaviours beyond those described by the abstract interface, or to restrict the 
existing range of permitted behaviours (by adding constraints).  

Our hypothesis is that reasoning, based on glass box views, can support interactions 
between partners who can agree what it is they want to achieve, without first knowing 
how. This approach should be resistant to minor syntactic variations in service 
interfaces, or even to more significant changes, at least where a common semantics 
can be established. 

                                                 
1 DAML Services, http://www.daml.org/services 
2 The DARPA Agent Markup Language, http://www.daml.org 
3 Fensel and Bussler, The Web Service Modelling Framework, 
http://www.cs.vu.nl/~dieter/wese/wsmf.paper.pdf 
4 http://swws.semanticweb.org 
5 artificial intelligence laboratory, University of Michigan, Black Box Approach, 
http://ai.eecs.umich.edu/cogarch0/common/prop/blackbox.html 
6 W3C, Web Services Conversation Language, http://www.w3.org/TR/wscl10/ 
7 A. Arpaci Dusseau and R. Arpaci Dusseau , Information and Control in Gray-Box Systems, 
http://www.cs.ucsd.edu/sosp01/papers/arpacidusseau.pdf 
8 D. Tombros, A. Geppert , Managing Heterogeneity in Commercially Available Workflow 
Management Systems: A Critical Evaluation , 
http://www.ifi.unizh.ch/dbtg/Projects/SWORDIES/PubDocs/Bericht4.ps 
9 M.Büchi, A Plea for Grey-Box Components,  
http://www.cs.iastate.edu/~leavens/FoCBS/buechi.html 
10artificial intelligence laboratory, University of Michigan, Glass Box Approach,  
http://ai.eecs.umich.edu/cogarch0/common/prop/glassbox.html 
11 A. Newell. The knowledge level. Artificial Intelligence, 18:87-127, 1982. 
12 The knowledge level according to Newell, http://arti4.vub.ac.be/memos/AI-Memo-93-
09/section3.2.html 
13 DAML-S: Web Service Description for the Semantic Web, 
http://www.daml.org/services/ISWC2002-DAMLS.pdf 
14 DAML-S Design Rationale and Outstanding Issues, http://www.daml.org/services/daml-
s/2001/10/rationale.html 
15 DAML-S: Semantic Markup for Web Services, http://www.daml.org/services/daml-
s/2001/05/daml-s.html 



     

 Page 8 of 8  

                                                                                                                                            
16 A.Ankolekar, F.Huch, K.Sycara, Concurrent Semantics for the Web Services Specification 
Language DAML-S, Coordination models and languages, 2002. 
17Comparison of DAML-S and BPEL4WS, 
http://www.ksl.stanford.edu/projects/DAML/Webservices/DAMLS-BPEL.html 
18 Business Process Execution Language for Web Services, Version 1.0, http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/ 
19 Review about Computational Reflection, http://tunes.org/Review/Reflection.html 
20  DAML-S Design Rationale and Outstanding Issues, http://www.daml.org/services/daml-
s/2001/10/rationale.html 
21 www-rdf-logic archive, http://lists.w3.org/Archives/Public/www-rdf-logic/2001Jul/0029.html 
22 DAML-S 0.7 Draft Release, http://www.daml.org/services/daml-s/0.7/ 
23 Web Services Description Language (WSDL) Version 1.2, http://www.w3.org/TR/wsdl12/ 
24 Grounding.daml, http://www.daml.org/services/daml-s/0.7/Grounding.daml 
25 N.Apte and T.Mehta, Web Services, HP books Prentice Hall, 2002. 


